Éric Grégoire
email: gregoire@cril.fr

Jean-Marie Lagniez
email: lagniez@cril.fr

Bertrand Mazure
email: mazure@cril.fr

A CSP solver focusing on FAC variables ⋆

The contribution of this paper is twofold. On the one hand, it introduces a concept of FAC variables in discrete Constraint Satisfaction Problems (CSPs). FAC variables can be discovered by local search techniques and powerfully exploited by MAC-based methods. On the other hand, a novel synergetic combination schema between local search paradigms, generalized arcconsistency and MAC-based algorithms is presented. By orchestrating a multipleway flow of information between these various fully integrated search components, it often proves more competitive than the usual techniques on most classes of instances.

Introduction

These last decades, many research efforts have been devoted in the Artificial Intelligence community to the design of general algorithms and solvers for discrete Constraint Satisfaction Problems (in short, CSPs). Tracing back to the seminal work on simulated annealing by Kirkpatrick et al. [START_REF] Kirkpatrick | Optimization by simulated annealing[END_REF], stochastic local-search approaches (SLS) were investigated successfully in early pioneering works, mainly based on the so-called minconflicts heuristic developed by Minton et al. [START_REF] Minton | Minimizing conflicts: A heuristic repair method for constraint satisfaction and scheduling problems[END_REF]. They were considered powerful paradigms for CSPs -and their specific SAT case-in light of the results by e.g. Gu [START_REF] Gu | Design efficient local search algorithms[END_REF], Selman et al. [START_REF] Selman | A new method for solving hard satisfiability problems[END_REF] and Cheeseman et al. [START_REF] Cheeseman | Where the really hard problems are[END_REF].

However, apart from the specific SAT domain and with only a few exceptions (e.g. [START_REF] Galinier | Tabu search for maximal constraint satisfaction problems[END_REF], [START_REF] Jussien | Combining constraint programming and local search to design new powerful heuristics[END_REF], [START_REF] Eisenberg | Making the breakout algorithm complete using systematic search[END_REF], [START_REF] Eisenberg | Using the breakout algorithm to identify hard and unsolvable subproblems[END_REF]), the current mainstream approaches to general CSPs solving rely on complete methods that do not include SLS components as main tools (e.g., Abscon [START_REF] Merchez | Abscon: A prototype to solve CSPs with abstraction[END_REF][START_REF] Lecoutre | Abscon 112: towards more robustness[END_REF], Choco [START_REF] Team | Choco: an open source Java constraint programming library[END_REF], Mistral [START_REF] Hébrard | [END_REF], Sugar [START_REF] Tamura | Compiling finite linear CSP into SAT[END_REF], etc.). One reason lies in the fact that SLS is not an exhaustive search paradigm and does not allow by itself to prove the absence of any solution for a CSP. Moreover, SLS often entails significant computations and search-space explorations that advanced complete techniques are expected to attempt to avoid, at least partially. Finally, it is sometimes (but wrongly) believed that SLS should merely be devoted to situations where solutions are densely distributed throughout the state space, justifying some possible random aspects in the search.

On the contrary, this paper shows that complete and SLS techniques for solving CSPs can benefit one another. More precisely, it presents a synergetic combination of local search and elements of complete techniques that often outperforms the usual complete, SLS, or basic hybrid approaches involving (generalized) arc-consistency and SLS, in the following sense. This method is not only complete, it is also robust in the sense that it solves both satisfiable or unsatisfiable (structured or random) CSPs instances quite indifferently. Actually, our comprehensive experimental studies show that it solves more instances than the currently existing techniques.

One key issue is that the SLS computation that is guided as much as possible towards the most difficult subparts of the CSP can provide powerful oracles and information when some further steps of a complete search are required. Although this latter idea was already exploited in some previous works in the SAT domain [START_REF] Mazure | Boosting complete techniques thanks to local search methods[END_REF], it is refined here thanks to an original concept of FAC variables. FAC variables of a CSP, as Falsified in All Constraints, are variables occurring in all falsified constraints under some intrepretation, and thus in at least one constraint per minimal core (also called MUC, for Minimal Unsatisfiable Core) of the CSP when such cores exist. Interestingly, SLS often allows FAC variables to be detected efficiently and complete MAC-based techniques focusing first on FAC variables can have their efficiency boosted on many instances. Likewise, e.g. powerful heuristics (especially the dom/wdeg [START_REF] Boussemart | Boosting systematic search by weighting constraints[END_REF]) developed within complete CSP techniques can play an essential role in the SLS computation. Actually, the proposed method, called FAC-SOLVER, is an elaborate imbrication of SLS and steps of complete techniques that orchestrates a multiple-way flow of information between various fully integrated search components.

The paper is organized as follows. In the next Section, some basic technical background about CSPs is provided. Then, the FAC variable concept is presented. In Section 4, the architecture of the FAC-SOLVER method is presented globally, before each component is detailed. Comprehensive experimental studies are discussed in Section 5. In the conclusion, the focus is on perspectives and promising paths for future research.

CSPs Technical Background

A CSP or Constraint Network CN is a pair X , C where X is a finite set of n variables s.t. each variable X of X is associated with a finite set dom(X) of candidate values for X. C is a finite set of m constraints on variables from X s.t. each constraint C in C is associated with one relation rel(C) indicating the set of tuples of authorized values for the variables occurring in C. An assignment I of CN associates a value I(X) ∈ dom(X) to every variable X ∈ X . We note f alse(X , C, I) the set of variables that appear in at least one falsified constraint under the assignment I. X , C | X=v is the resulting CSP obtained from the CSP X , C by reducing dom(X) to the singleton {v} while X , C | X =v is obtained by deleting the v value in dom(X). We say that the assignment I is a local minimum for CN when no single change of value of any variable leads to a decrease of the total number of falsified constraints of CN .

Solving a constraint network CN consists in checking whether CN admits at least one assignment that satisfies all constraints of CN and in delivering such an assignment in the positive case.

In the following, we consider both binary and non-binary constraints. Most current complete approaches to solve constraints networks are based on algorithms implementing maintaining arc consistency techniques (in short, MAC) [START_REF] Sabin | Contradicting conventional wisdom in constraint satisfaction[END_REF]. Roughly, these techniques perform a depth-first search procedure with backtracking, while maintaining some forms of local (Generalized Arc) Consistency (in short GAC and AC), which are filtering techniques expelling detected forbidden values (see e.g. [START_REF] Mackworth | Consistency in networks of relations[END_REF][START_REF] Bessière | An optimal coarse-grained arc consistency algorithm[END_REF][START_REF] Lecoutre | A study of residual supports in arc consistency[END_REF]).

FAC variables

One key factor of the efficiency of the FAC-SOLVER approach relies on the following FAC (Falsified in All Constraints) variable concept. Definition 1. Let CN be a constraint network under an assignment I. A FAC variable is a variable occurring in every falsified constraint of CN under I.

This concept can be related to the notion of boundary point introduced by Goldberg in the SAT domain [START_REF] Goldberg | Boundary points and resolution[END_REF]. For a CNF formula, a variable is boundary under an assignment of all propositional variables if this variable belongs to all clauses that are falsified by the assignment. This definition is similar to the FAC one, but we have adopted an alternative name for a simple reason: in the CSP context, this kind of variables is not at the so-called "boundary", i.e., a situation where it is sufficient to inverse the truth value of a boundary variable to satisfy all falsified clauses. A FAC variable in the SAT domain thus draws a boundary line between satisfiabiliy and unsatisfiability of a part of the formula. In CSP, changing the value of a FAC variable does not ensure that constraints become satisfied. Accordingly, the notion of boundary as underlied by Goldberg cannot be applied in theCSP domain. For this reason we have decided to not use the same name. Nevertheless some interesting properties of boundary are preserved which can help understand the possible role of FAC variables for solving unsatisfiable CSPs.

Property 1. Any FAC variable X of CN occurs in at least one constraint per MUC of CN when CN is unsatisfiable. Indeed, under any assignment I, any MUC contains at least one falsified constraint. Thus, if a variable occurs within all constraints that are falsified under I, it occurs within at least one constraint per MUC.

Property 2. Unsatisfiable CSPs that exhibit at least two MUCs sharing no variable do not possess any FAC variable.

FAC variables can play a key role in the inconsistency of a CSP since they are involved in all of its unresolvable minimal sets of conflicting constraints. Accordingly, focusing a MAC-based search component first on FAC variables (when they exist) might thus help.

In the worst case, checking whether a constraint belongs to at least one MUC, belongs to the Σ p 2 complexity class [START_REF] Eiter | On the complexity of propositional knowledge base revision, updates and counterfactuals[END_REF]. Moreover, a CSP can possess an exponential number of MUCs. Thus, detecting FAC variables by first computing all MUCs is untractable in the worst case. On the contrary, SLS provides a heuristic way to detect FAC variables at low cost. One direct but inefficient way to detect some of them would consist in looking for FAC variables for each assignment crossed by SLS. For efficiency reasons, we will look for FAC variables only for assignments that are local minima w.r.t. the number of currently falsified constraints of the CSP.

Satisfiable CSPs can also exhibit FAC variables. Interestingly, it appears that FAC variables can also be expected to play a positive role for solving those CSPs. Indeed, to some extent, these variables can also be expected to take part in the difficult part of those CSPs since they are involved in all falsified constraints under at least one assignment. Accordingly, it could be also useful to focus on them during a complete search.

Finally, it must be noted that when some variables are instantiated, a new CSP is actually created. FAC variables w.r.t. this new CSP can exist; they are not necessarily FAC variables w.r.t. the initial CSP.

In the FAC-SOLVER method, all FAC variables that can be detected when local minima are reached during a SLS will be collected. When a MAC-based component must be run thereafter, it will focus first on the FAC variables in hope for an improved efficiency.

Using FAC variables in a further systematic search component appears to be a refinement of some heuristics e.g. used in the SAT framework and involving hybrid SLS-DPLL algorithms. For example, [START_REF] Mazure | Boosting complete techniques thanks to local search methods[END_REF] advocates to select the next variables to be assigned in a DPLL-based search for satisfiability among the variables belonging to the most often falsified clauses during a preliminary failed SLS, as those variables probably belong to minimal cores of the instance. Also [START_REF] Gégoire | Local-search extraction of muses[END_REF] recommends the use of critical clauses, i.e., falsified clauses during a failed SLS that are such that any flip of a variable causes at least another clause to be falsified. Critical clauses were also shown to often belong to minimal cores. Branching on variables occurring in them appeared to boost the further complete search process [START_REF] Audemard | Boosting local search thanks to CDCL[END_REF]. FAC variables do not only occur in one minimal core but in all of them. Branching on them might thus increase the efficiency of the search process even more significantly. The FAC-SOLVER method described in the next Section was intended to implement and check these ideas on a large panel of instances.

FAC-SOLVER Approach

The FAC-SOLVER approach deeply integrates three search components in a novel synergetic way: a SLS, a MAC and an hybrid solver, which is itself mixing SLS and GAC. These components interact in several ways and share all information about the current global search process. The global architecture of FAC-SOLVER is described in Figure 1. Roughly, the process starts with a call to one SLS solver, then in the case of failure a hybrid solver is run followed by a limited MAC. Calls between different components depend on dynamical threshold values for two variables that play a strategic role, namely SLSprogress and #conf licts.

Algorithm 1 describes the FAC solver. First, a call to GAC ensures arc-consistency (or delivers a final inconsistency proof) and leads to some possible filterings (lines 4-5). Next, while a solution is not found or the problem is not proved inconsistent, the solver sequentially performs the three components described in the next sections. The number of conflicts maxConf controls the restart associated to the Hybrid and MAC parts. It is initialized to 10 (line 2) and is geometrically increased at each iteration step of the

The SLS Component

Let us detail the SLS procedure first which is described in a simplified way in the algorithm named Procedure SLS. It is a random-walk local search procedure à la walksat [START_REF] Selman | Noise strategies for improving local search[END_REF] with a novelty escape strategy [START_REF] Mcallester | Evidence for invariants in local search[END_REF]. In parallel, this SLS also tries to detect FAC variables each time a local minimum is reached. The variable controlling the progress of the SLS is SLSprogress, which is increased in two situations: when the number of falsified constraints reaches a new minimum value (line 13) and when FAC variables are discovered (line 5). It is decreased when no FAC variable is discovered in a local minimum (line 6). This variable is intialized to 10.000 if the CSP is binary and to 1.000 otherwise. This way to estimate the progress of the SLS is inspired from the adaptative noise introduced by Hoos et al. in [START_REF] Hoos | An adaptive noise mechanism for walksat[END_REF]. When the SLS fails to prove the consistency of the CSP but seems rather stuck in its exploration, the SLSprogress < 0 test (line 7) allows the so-called Hybrid component to be activated, which will exploit in its turn all the information collected so-far. Intuitively, in addition to looking for an assignment satisfying the CSP, the SLS solver collects information about FAC variables. Due to the larger increment of the SLSprogress control variable when FAC variables are discovered, it focuses its exploration on assignments that are close to local minima involving FAC variables. The SLS procedure is also used by the hybrid component. When this procedure is called by the hybrid component, the SLS works on a sub-CSP that is downsized by the various calls to the FIX procedure which is described in the next section. At the opposite, during the initial local search, SLS is handling the full CSP.

Hybrid SLS-GAC Component

The hybrid component allows to focus on expected difficult subparts of the instance. This allows to get FAC variables that are linked to the (expected) most difficult subparts to satisfy. This component is described in Procedure Hybrid. Roughly, starting with the current assignment A provided by the SLS component, a variable in a violated constraint is selected and is assigned according to A (lines 4-5). The dom/wdeg heuristic [START_REF] Boussemart | Boosting systematic search by weighting constraints[END_REF] is used as a tiebreaker amongst the set of variables of a violated constraint. A call is made to the FIX procedure (line 6), which operates and propagates GAC (Generalized Arc-Consistency) filtering steps. This procedure detects also conflicts (i.e., empty domains for variables in X) which trigger a backtrack on the last fixed variables (line [START_REF] Cheeseman | Where the really hard problems are[END_REF][START_REF]Third international CSP solver competition[END_REF][START_REF]Fourth international CSP solver competition[END_REF][START_REF] Eisenberg | Making the breakout algorithm complete using systematic search[END_REF][START_REF] Eisenberg | Using the breakout algorithm to identify hard and unsolvable subproblems[END_REF][START_REF] Eiter | On the complexity of propositional knowledge base revision, updates and counterfactuals[END_REF][START_REF] Galinier | Tabu search for maximal constraint satisfaction problems[END_REF][START_REF] Goldberg | Boundary points and resolution[END_REF]. The GAC version used in the solver is based on AC3 [START_REF] Mackworth | Consistency in networks of relations[END_REF]. The FIX procedure reduces the domain variables of X which is shared by all components. In fact, during the Hybrid procedure, SLS is still running but waits for decisions and does neither revise them nor the propagations done by the FIX procedure. The assignment A, used by SLS, is thus in part fixed by this hybridization. In some sense, those fixed variables are tabu for SLS.

The variable #conf measures the number of encountered conflicts. After the FIX procedure and when this number has become strictly larger than the dynamical max-Conf threshold, it is estimated that the hydrid component is stuck and a call to MAC is

Procedure SLS while ∃C ∈ C s.t. C is violated by A do 1 if a local minimum is reached then 2 if ∃ FAC variables then

MAC-based Component

The MAC-based component starts with the initial CSP with the exception of filterings computed at level 0 during the SLS and the calls to FIX (line 1). This procedure is a standard MAC algorithm except that the focus is on collected FAC variables. The heuristic used to selected variable is dom/wdeg. For the first choices (lines 8-9), the variable is selected amongst the FAC variables collected during the SLS procedure. The next choices (line 11) are made within all variables. The use of FAC variables only for the first choices can be explained by the fact that the dom/wdeg heuristics allows to focus on the same inconsistent part (i.e., on the same core) whereas fixing another FAC

Experimental Results

In order to assess the efficiency of FAC-SOLVER, we have considered benchmarks from the last CSP competitions [START_REF]Third international CSP solver competition[END_REF][START_REF]Fourth international CSP solver competition[END_REF], which include binary vs. non-binary, random vs. reallife, satisfiable vs. unsatisfiable CSP instances. They were classified according to four types: 635 CSPs made of binary constraints in extension (BIN-EXT), 696 CSPs made of binary constraints in intension (BIN-INT), 704 CSPs involving n-ary constraints in extension (N-EXT) and 716 instances of CSPs of n-ary constraints in intention (N-INT). We have run four methods on all those instances: namely, our own implementation of SLS Walksat+Novelty, of an hybrid method combining SLS and GAC, of MAC and FAC-SOLVER. All tests have been conducted on a Xeon 3.2 GHz (2 G RAM) under Linux 2.6. Time-out has been set to 1200 seconds while a space limit has been set to 900 Mbytes. Note that the MAC version used in the experimentations makes use of a geometric restart policy that is similar way to our solver. Similarly, the SLS solver (Walksat+Novelty) used in our experimental comparison uses the same novelty heuristic than our solver. Note that, the solved unsatisfiable instances by novelty have been solved by GAC on the initial instance.

Table 1 summarizes the results in terms of the numbers of satisfiable and unsatisfiable instances that were solved. In each horizontal "total"-line, the solver that solves the most instances has been emphasized in gray. The main result is that FAC-SOLVER managed to solve more instances than any of the other methods globally for either satisfiable (SAT) or unsatisfiable (UNSAT) instances, and considering the subclasses of instances separately, for three types of CSPs. For the last type (binary CSP in extension), let us stress that the best solver is different in each of the three columns (SAT, UNS(AT) and TOT(AL)) and in each case, the number of solved instances by FAC-SOLVER is very close to the best one.

In Figure 2, five scatter points diagrams are given for a more detailed analysis. In each of them, two of the methods are pairwise compared w.r.t. instances that were solved by at least one of them. The X-axis represents the computing times in seconds by FAC-SOLVER whereas the Y-axis provides the performance of the second method. Results are expressed in seconds and represented according to a logarithmic scale. Instances were divided within the four classes detailed above. We provide separate diagrams for SAT and UNSAT instances. FAC-SOLVER is not compared with Walk-sat+Novelty on UNSAT instances since these instances are out of scope for the latter technique. The main information that can be drawn from these diagrams is as follows.

-More instances are located on the Y=1200 line than on the X=1200 one. This shows, as Table 1 summarizes it, that FAC-SOLVER solves more instances than any of the other considered methods. -With the exceptions of UNSAT instances for MAC, there are more points located above the diagonals showing that FAC-SOLVER is generally more efficient than the other methods. Also, for UNSAT instances, the difference of time performance between pairs of methods is globally smaller than for SAT instances (points are less dispersed and are closer to the diagonal). FAC-SOLVER is generally more efficient than a mere combination of SLS and GAC. It is also more efficient than MAC on SAT instances (mainly due to the power of SLS). But there is no free lunch, the time spent on SLS by FAC-SOLVER on UNSAT instances leads to some small and very acceptable time overheads, compared with MAC. This is perhaps the price to pay to solve more unsatisfiable instances than MAC within the same price constraints, thanks to the collected information by SLS.

An important issue is the way according to which the efficiency of FAC-SOLVER might depend on the specific initial assignment selected by its SLS component. Actually, it appears that, on average, this dependency is weak and is not a serious troubling factor affecting the results. To show this robustness, we have selected 96 instances within the above benchmarks in a random fashion but according to their relative importance in each of the four classes of instances. For each of these instances, 50 successive runs of FAC-SOLVER have been conducted with a different initial (randomly generated) assignment. When an instance was solved by at least one run, it was also solved by the 49 other runs in 97 % of the situations, with a very low 2.52 seconds average deviation.

To show the importance of FAC variables, we have run our solver with and without computing and using the FAC variables. Table 2 provides typical results. The use of FAC variables allows more instances to be solved. Most of the time, the use of FAC variables can solve benchmarks more quickly. In rare cases, the use of FAC variables wastes time. This is because the solver wastes time to compute FAC variables that are not used when the instance is solved directly by the SLS solver or when the benchmarks is globally inconsistent. In this case, all variables are potentially FAC variables and their computation also wastes time.

Perspectives and Conclusions

In this paper a FAC variables concept has been introduced and investigated w.r.t. CSP solving. One goal of this study was to develop a CSP solving method that would at least match the efficiency of each best current approach on each class of traditional CSPs instances. In this respect, our experimental results show the extent to which this goal has been met.

One question that naturally arises is the extent to which the various findings and components implemented in FAC-SOLVER do actually take part in the increased efficiency. Actually, it appears that each finding and search component (FAC variables, use of dom/wdeg heuristic in SLS, hybrid method involving SLS and filtering techniques) were necessary to ensure the supremacy of the method. Especially, we have e.g. measured that FAC variables were detected in 56 % of the instances and that they play a crucial role even in consistent instances.

FAC-SOLVER remains a basic algorithm and could be fine-tuned in several ways. Especially, comprehensive experimental studies could allow to optimize its various control variables and factors, which we fixed quite arbitrarily. Moreover, our implementation does not include usual CSP simplification techniques like the exploitation of symmetries or global constraints. We believe that the integration of these techniques could also dramatically improve FAC-SOLVER. Also, it would be interesting to explore the relaxation of the FAC variable concept to encompass also variables that occur in most or some preferred falsified contraints (instead of all of them). This could prove useful for e.g. CSP instances containing non-overlapping MUCs. Finally, we believe that the FAC variable concept is a good trade-off between the effective computational cost spent by SLS to find some of them, and what would be the theoretically best branching variable for MAC-based algorithm giving rise to the shortest proofs. FAC variables are variables taking part in all unsatisfiable minimal subsets of constraints, which often appear to be the difficult parts of unsatisfiable CSPs. However, it is easy to find out unsatisfiable CSPs where FAC variables do not conceptually take part in the real causes of unsatisfiability but rather simply appear as variables occurring in all MUCs while, at the same time, they are not related to the actual conflicting information. Refining the FAC variable concept to better capture the essence of unsatisfiability while keeping efficient heuristics that can help finding them remains an exciting challenge.

Fig. 1 .

 1 Fig. 1. Interactions between FAC-SOLVER basic search components.

3 5 else 6 if 7 else 8 9 strategy ; else 10 Change 1 # 3 X

 567891013 add new FAC variables to Se; 4 SLSprogress ←-SLSprogress + 1000 ; SLSprogress ←-SLSprogress -1 ; SLSprogress < 0 then return; Change the value in A of one var. of X according to the novelty escape the value in A of one var. of X s.t. the number of violated constraints 11 decreases ; if A new best configuration is obtained then 12 SLSprogress ←-SLSprogress + 1000 ; 13 result ←true ; 14 made. When this threshold is not reached the search goes back to the SLS component, the collected filtering information being preserved. Procedure Hybrid level ←-0; conf ←-0 ; 2 while (#conf < maxConf) do ←pick a variable according to dom/wdeg s.t. X appears in violated constraint 4 by A ; v ←the value of X in A ; 5 FIX(X, v) ; 6 if (result = f alse) then return ; 7 SLS() ;

8

 8

 (a) FAC-SOLVER vs. NOVELTY (b) FAC-SOLVER vs. SLS+GAC

Fig. 2 .

 2 Fig. 2. Pairwise comparisons between FAC-SOLVER and classical solvers: (a) (b) (c) satisfiable instances/(d) (e) unsatisfiable instances.

Fig. 2 .

 2 Fig. 2. Pairwise comparisons between FAC-SOLVER and classical solvers: (a) (b) (c) satisfiable instances/(d) (e) unsatisfiable instances (con't).

Fig. 2 .

 2 Fig. 2. Pairwise comparisons between FAC-SOLVER and classical solvers: (d) (e) unsatisfiable instances (con't).

Table 1 .

 1 Experimental results.

			NOVELTY	SLS+GAC		MAC		FAC-SOLVER
			SAT UNS TOT	SAT UNS TOT	SAT UNS TOT	SAT UNS TOT
		ACAD	7	0	7	7	2	9	7	2	9	7	2	9
	2-EXT	PATT 106 QRND 24 RAND 206	0 0 0	106 100 38 138 24 24 51 75 206 197 105 302 194 110 304 83 38 121 24 51 75	99 24 193 106 299 39 138 51 75
		REAL	6	0	6	7	0	7	7	0	7	7	0	7
		TOTAL 349 0	349 335 196 531 315 201 516	330 198 528
	2-INT	ACAD 38 BOOL 0 PATT 112	7 1 0	45 1 112 150 60 210 146 62 208 37 40 77 37 40 77 0 1 1 0 1 1	38 0 152 62 214 40 78 1 1
		REAL	47	74 121	74 102 176	75 103 178	75 103 178
		TOTAL 197 82 279 261 203 464 258 206 464	265 206 471
		BOOL	70	1	71	74	75 149	74	70 144	74	74 148
	N-EXT	PATT QRND 43 6 RAND 70	0 0 0	6 43 70	30 40 68	0 40 32 100 30 80	29 33 72	0 40 34 106 29 73	30 45 70	0 40 34 104 30 85
		REAL	41	29	70	45 114 159	47 115 162	47 115 162
		TOTAL 230 30 260 257 261 518 255 259 514	266 263 529
	N-INT	ACAD 40 BOOL 145 PATT 88	0 1 5	40 146 156 12 168 146 12 158 39 23 62 36 23 59 93 103 19 122 95 20 115	40 162 13 175 23 63 102 18 120
		REAL	85	2	87	152	3	155 150	3	153	152	3	155
		TOTAL 358	8	366 450 57 507 427 58 485	456 57	513
		TOTAL 1134 113 1247 1293 717 2010 1255 724 1979 1317 724 2041

Table 2 .

 2 Using or not FAC variables in FAC-SOLVER: typical results.

	Instance	SAT/UNSAT? time (FAC-SOLVER) time (FAC-SOLVER without
				FAC variables)
	uclid-elf-rf8	UNSAT	305.15	time out
	uclid-37s-smv	UNSAT	387.50	659.58
	par-16-5	SAT	168.87	329.06
	primes-10-40-2-7	SAT	891.01	time out
	primes-20-20-2-7	SAT	976.68	313.31
	queensKnights-100-5-add	UNSAT	1,120.18	time out
	queensKnights-100-5-mul	UNSAT	1,165.81	time out
	queensKnights-80-5-mul	UNSAT	343.68	time out
	rand-2-40-18	UNSAT	41.47	1.61

⋆ Part of this work was supported by the French Ministry of Higher Education and Research, Nord/Pas-de-Calais Regional Council and E.C. FEDER program through the 'Contrat de Projets État/Région (CPER) 2007-2013' and by the French National Research Agency (ANR) through the UNLOC and TUPLES projects.

Procedure FIX(X, v) dom(X) ←-{v} ;

12 variable can lead the search to be dispersed and slowing down the discovery of a small proof of inconsistency.

The weights used by the dom/wdeg heuristic are preserved from one iteration to the next one in Algorithm 1, and are shared by all search components.

Moreover, this MAC procedure does not necessarily perform a complete search since if the number of conflicts #conf becomes larger than the maxConf before a final decision is obtained, then the process goes back to the SLS component. In this latter case, the maxConf control variable is increased in a geometric manner.

As maxConf is increased whenever the MAC component fails, this component will eventually give a final result when this boundary becomes larger than the number of conflicts needed by MAC to solve the CSP. Accordingly, FAC-SOLVER is complete.

Procedure MAC Backjump(0) ; // backjump to level 0