
HAL Id: hal-00865539
https://hal.science/hal-00865539v1

Submitted on 24 Sep 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A CSP solver focusing on FAC variables
Éric Grégoire, Jean-Marie Lagniez, Bertrand Mazure

To cite this version:
Éric Grégoire, Jean-Marie Lagniez, Bertrand Mazure. A CSP solver focusing on FAC variables.
17th International Conference on Principles and Practice of Constraint Programming (CP’11), 2011,
Perugla, Italy. pp.493-507. �hal-00865539�

https://hal.science/hal-00865539v1
https://hal.archives-ouvertes.fr


A CSP solver focusing on FAC variables ⋆

Éric Grégoire, Jean-Marie Lagniez, and Bertrand Mazure

Université Lille-Nord de France

CRIL - CNRS UMR 8188

Artois, F-62307 Lens

{gregoire,lagniez,mazure}@cril.fr

Abstract. The contribution of this paper is twofold. On the one hand, it in-

troduces a concept of FAC variables in discrete Constraint Satisfaction Prob-

lems (CSPs). FAC variables can be discovered by local search techniques and

powerfully exploited by MAC-based methods. On the other hand, a novel syn-

ergetic combination schema between local search paradigms, generalized arc-

consistency and MAC-based algorithms is presented. By orchestrating a multiple-

way flow of information between these various fully integrated search compo-

nents, it often proves more competitive than the usual techniques on most classes

of instances.

1 Introduction

These last decades, many research efforts have been devoted in the Artificial Intelli-

gence community to the design of general algorithms and solvers for discrete Constraint

Satisfaction Problems (in short, CSPs). Tracing back to the seminal work on simulated

annealing by Kirkpatrick et al. [17], stochastic local-search approaches (SLS) were

investigated successfully in early pioneering works, mainly based on the so-called min-

conflicts heuristic developed by Minton et al. [24]. They were considered powerful

paradigms for CSPs -and their specific SAT case- in light of the results by e.g. Gu [12],

Selman et al. [27] and Cheeseman et al. [4].

However, apart from the specific SAT domain and with only a few exceptions (e.g.

[10], [16], [7], [8]), the current mainstream approaches to general CSPs solving rely on

complete methods that do not include SLS components as main tools (e.g., Abscon [23,

19], Choco [29], Mistral [15], Sugar [28], etc.). One reason lies in the fact that SLS is

not an exhaustive search paradigm and does not allow by itself to prove the absence

of any solution for a CSP. Moreover, SLS often entails significant computations and

search-space explorations that advanced complete techniques are expected to attempt to

avoid, at least partially. Finally, it is sometimes (but wrongly) believed that SLS should

merely be devoted to situations where solutions are densely distributed throughout the

state space, justifying some possible random aspects in the search.

⋆ Part of this work was supported by the French Ministry of Higher Education and Research,

Nord/Pas-de-Calais Regional Council and E.C. FEDER program through the ‘Contrat de Pro-

jets État/Région (CPER) 2007-2013’ and by the French National Research Agency (ANR)

through the UNLOC and TUPLES projects.



On the contrary, this paper shows that complete and SLS techniques for solving

CSPs can benefit one another. More precisely, it presents a synergetic combination

of local search and elements of complete techniques that often outperforms the usual

complete, SLS, or basic hybrid approaches involving (generalized) arc-consistency and

SLS, in the following sense. This method is not only complete, it is also robust in the

sense that it solves both satisfiable or unsatisfiable (structured or random) CSPs in-

stances quite indifferently. Actually, our comprehensive experimental studies show that

it solves more instances than the currently existing techniques.

One key issue is that the SLS computation that is guided as much as possible to-

wards the most difficult subparts of the CSP can provide powerful oracles and infor-

mation when some further steps of a complete search are required. Although this latter

idea was already exploited in some previous works in the SAT domain [21], it is re-

fined here thanks to an original concept of FAC variables. FAC variables of a CSP, as

Falsified in All Constraints, are variables occurring in all falsified constraints under

some intrepretation, and thus in at least one constraint per minimal core (also called

MUC, for Minimal Unsatisfiable Core) of the CSP when such cores exist. Interestingly,

SLS often allows FAC variables to be detected efficiently and complete MAC-based

techniques focusing first on FAC variables can have their efficiency boosted on many

instances. Likewise, e.g. powerful heuristics (especially the dom/wdeg [3]) developed

within complete CSP techniques can play an essential role in the SLS computation.

Actually, the proposed method, called FAC-SOLVER, is an elaborate imbrication of SLS

and steps of complete techniques that orchestrates a multiple-way flow of information

between various fully integrated search components.

The paper is organized as follows. In the next Section, some basic technical back-

ground about CSPs is provided. Then, the FAC variable concept is presented. In Section

4, the architecture of the FAC-SOLVER method is presented globally, before each com-

ponent is detailed. Comprehensive experimental studies are discussed in Section 5. In

the conclusion, the focus is on perspectives and promising paths for future research.

2 CSPs Technical Background

A CSP or Constraint Network CN is a pair 〈X , C〉 where X is a finite set of n variables

s.t. each variable X of X is associated with a finite set dom(X) of candidate values

for X . C is a finite set of m constraints on variables from X s.t. each constraint C
in C is associated with one relation rel(C) indicating the set of tuples of authorized

values for the variables occurring in C. An assignment I of CN associates a value

I(X) ∈ dom(X) to every variable X ∈ X . We note false(X , C, I) the set of variables

that appear in at least one falsified constraint under the assignment I. 〈X , C〉|X=v is the

resulting CSP obtained from the CSP 〈X , C〉 by reducing dom(X) to the singleton

{v} while 〈X , C〉|X 6=v is obtained by deleting the v value in dom(X). We say that

the assignment I is a local minimum for CN when no single change of value of any

variable leads to a decrease of the total number of falsified constraints of CN .

Solving a constraint network CN consists in checking whether CN admits at least

one assignment that satisfies all constraints of CN and in delivering such an assignment

in the positive case.



In the following, we consider both binary and non-binary constraints. Most cur-

rent complete approaches to solve constraints networks are based on algorithms imple-

menting maintaining arc consistency techniques (in short, MAC) [25]. Roughly, these

techniques perform a depth-first search procedure with backtracking, while maintaining

some forms of local (Generalized Arc) Consistency (in short GAC and AC), which are

filtering techniques expelling detected forbidden values (see e.g. [20, 2, 18]).

3 FAC variables

One key factor of the efficiency of the FAC-SOLVER approach relies on the following

FAC (Falsified in All Constraints) variable concept.

Definition 1. Let CN be a constraint network under an assignment I. A FAC variable

is a variable occurring in every falsified constraint of CN under I.

This concept can be related to the notion of boundary point introduced by Goldberg

in the SAT domain [11]. For a CNF formula, a variable is boundary under an assignment

of all propositional variables if this variable belongs to all clauses that are falsified

by the assignment. This definition is similar to the FAC one, but we have adopted an

alternative name for a simple reason: in the CSP context, this kind of variables is not at

the so-called “boundary”, i.e., a situation where it is sufficient to inverse the truth value

of a boundary variable to satisfy all falsified clauses. A FAC variable in the SAT domain

thus draws a boundary line between satisfiabiliy and unsatisfiability of a part of the

formula. In CSP, changing the value of a FAC variable does not ensure that constraints

become satisfied. Accordingly, the notion of boundary as underlied by Goldberg cannot

be applied in theCSP domain. For this reason we have decided to not use the same

name. Nevertheless some interesting properties of boundary are preserved which can

help understand the possible role of FAC variables for solving unsatisfiable CSPs.

Property 1. Any FAC variable X of CN occurs in at least one constraint per MUC of

CN when CN is unsatisfiable.

Indeed, under any assignment I, any MUC contains at least one falsified constraint.

Thus, if a variable occurs within all constraints that are falsified under I, it occurs within

at least one constraint per MUC.

Property 2. Unsatisfiable CSPs that exhibit at least two MUCs sharing no variable do

not possess any FAC variable.

FAC variables can play a key role in the inconsistency of a CSP since they are in-

volved in all of its unresolvable minimal sets of conflicting constraints. Accordingly,

focusing a MAC-based search component first on FAC variables (when they exist) might

thus help.

In the worst case, checking whether a constraint belongs to at least one MUC, be-

longs to the Σp
2

complexity class [9]. Moreover, a CSP can possess an exponential

number of MUCs. Thus, detecting FAC variables by first computing all MUCs is un-

tractable in the worst case. On the contrary, SLS provides a heuristic way to detect FAC



variables at low cost. One direct but inefficient way to detect some of them would con-

sist in looking for FAC variables for each assignment crossed by SLS. For efficiency

reasons, we will look for FAC variables only for assignments that are local minima w.r.t.

the number of currently falsified constraints of the CSP.

Satisfiable CSPs can also exhibit FAC variables. Interestingly, it appears that FAC

variables can also be expected to play a positive role for solving those CSPs. Indeed, to

some extent, these variables can also be expected to take part in the difficult part of those

CSPs since they are involved in all falsified constraints under at least one assignment.

Accordingly, it could be also useful to focus on them during a complete search.

Finally, it must be noted that when some variables are instantiated, a new CSP is

actually created. FAC variables w.r.t. this new CSP can exist; they are not necessarily

FAC variables w.r.t. the initial CSP.

In the FAC-SOLVER method, all FAC variables that can be detected when local min-

ima are reached during a SLS will be collected. When a MAC-based component must be

run thereafter, it will focus first on the FAC variables in hope for an improved efficiency.

Using FAC variables in a further systematic search component appears to be a re-

finement of some heuristics e.g. used in the SAT framework and involving hybrid SLS-

DPLL algorithms. For example, [21] advocates to select the next variables to be as-

signed in a DPLL-based search for satisfiability among the variables belonging to the

most often falsified clauses during a preliminary failed SLS, as those variables proba-

bly belong to minimal cores of the instance. Also [13] recommends the use of critical

clauses, i.e., falsified clauses during a failed SLS that are such that any flip of a variable

causes at least another clause to be falsified. Critical clauses were also shown to often

belong to minimal cores. Branching on variables occurring in them appeared to boost

the further complete search process [1]. FAC variables do not only occur in one minimal

core but in all of them. Branching on them might thus increase the efficiency of the

search process even more significantly. The FAC-SOLVER method described in the next

Section was intended to implement and check these ideas on a large panel of instances.

4 FAC-SOLVER Approach

The FAC-SOLVER approach deeply integrates three search components in a novel syn-

ergetic way: a SLS, a MAC and an hybrid solver, which is itself mixing SLS and GAC.

These components interact in several ways and share all information about the current

global search process. The global architecture of FAC-SOLVER is described in Figure

1. Roughly, the process starts with a call to one SLS solver, then in the case of failure

a hybrid solver is run followed by a limited MAC. Calls between different compo-

nents depend on dynamical threshold values for two variables that play a strategic role,

namely SLSprogress and #conflicts.

Algorithm 1 describes the FAC solver. First, a call to GAC ensures arc-consistency

(or delivers a final inconsistency proof) and leads to some possible filterings (lines 4-5).

Next, while a solution is not found or the problem is not proved inconsistent, the solver

sequentially performs the three components described in the next sections. The number

of conflicts maxConf controls the restart associated to the Hybrid and MAC parts. It

is initialized to 10 (line 2) and is geometrically increased at each iteration step of the



SLS solver
SLS

GAC

MAC

SLSprogress

#conflicts

#conflicts

fix

one

value

filter-

ing

Hybrid solver

CSP

SAT

UNSAT

Fig. 1. Interactions between FAC-SOLVER basic search components.

main loop (line 16). The complete assignment used by the local search is initialized

randomly. The CSP 〈X , C〉 is shared by all components. It is simplified by successive

assignments and refutations. At each new iteration, this CSP is reinitialized (only the

filtering computed at level 0 are kept (line 9)). The SLSprogress variable controls the

duration of the SLS component run. It is initialized to maxConf×8. This variable will

be increased and decreased by the SLS component. All components are detailed in the

next sections.

4.1 The SLS Component

Let us detail the SLS procedure first which is described in a simplified way in the algo-

rithm named Procedure SLS. It is a random-walk local search procedure à la walksat

[26] with a novelty escape strategy [22]. In parallel, this SLS also tries to detect FAC

variables each time a local minimum is reached. The variable controlling the progress

of the SLS is SLSprogress, which is increased in two situations: when the number

of falsified constraints reaches a new minimum value (line 13) and when FAC variables

are discovered (line 5). It is decreased when no FAC variable is discovered in a local

minimum (line 6). This variable is intialized to 10.000 if the CSP is binary and to 1.000

otherwise. This way to estimate the progress of the SLS is inspired from the adaptative

noise introduced by Hoos et al. in [14]. When the SLS fails to prove the consistency

of the CSP but seems rather stuck in its exploration, the SLSprogress < 0 test (line

7) allows the so-called Hybrid component to be activated, which will exploit in its turn

all the information collected so-far. Intuitively, in addition to looking for an assignment

satisfying the CSP, the SLS solver collects information about FAC variables. Due to the

larger increment of the SLSprogress control variable when FAC variables are discov-

ered, it focuses its exploration on assignments that are close to local minima involving

FAC variables.



Algorithm 1: FAC-solver

Data: A CSP 〈X , C〉
Result: true if the CSP is satisfiable, false otherwise

result←− unknown ;1

maxConf ←− 10 ;2

Se ←− ∅ ; //Set of FAC var. found with their FAC values3

GAC() ;4

if ∃X ∈ X s.t. dom(X) = ∅ then return false ;5

A ←− a random assignment of X ;6

while (result = unknown) do7

initialize SLSprogress variable ;8

Backjump(0) ; // backjump to level 09

SLS() ;10

if (result 6= unknown) then return true ;11

Hybrid() ;12

if (result 6= unknown) then return result ;13

MAC() ;14

if (result 6= unknown) then return result ;15

maxConf ←− maxConf × 1.5 ;16

The SLS procedure is also used by the hybrid component. When this procedure is

called by the hybrid component, the SLS works on a sub-CSP that is downsized by

the various calls to the FIX procedure which is described in the next section. At the

opposite, during the initial local search, SLS is handling the full CSP.

4.2 Hybrid SLS-GAC Component

The hybrid component allows to focus on expected difficult subparts of the instance.

This allows to get FAC variables that are linked to the (expected) most difficult subparts

to satisfy. This component is described in Procedure Hybrid. Roughly, starting with

the current assignment A provided by the SLS component, a variable in a violated con-

straint is selected and is assigned according to A (lines 4-5). The dom/wdeg heuristic

[3] is used as a tiebreaker amongst the set of variables of a violated constraint. A call

is made to the FIX procedure (line 6), which operates and propagates GAC (General-

ized Arc-Consistency) filtering steps. This procedure detects also conflicts (i.e., empty

domains for variables in X ) which trigger a backtrack on the last fixed variables (line

4-11). The GAC version used in the solver is based on AC3 [20]. The FIX procedure

reduces the domain variables of X which is shared by all components. In fact, during

the Hybrid procedure, SLS is still running but waits for decisions and does neither

revise them nor the propagations done by the FIX procedure. The assignment A, used

by SLS, is thus in part fixed by this hybridization. In some sense, those fixed variables

are tabu for SLS.

The variable #conf measures the number of encountered conflicts. After the FIX

procedure and when this number has become strictly larger than the dynamical max-

Conf threshold, it is estimated that the hydrid component is stuck and a call to MAC is



Procedure SLS

while ∃C ∈ C s.t. C is violated by A do1

if a local minimum is reached then2

if ∃ FAC variables then3

add new FAC variables to Se;4

SLSprogress←− SLSprogress+ 1000 ;5

else SLSprogress←− SLSprogress− 1 ;6

if SLSprogress < 0 then return;7

else8

Change the value in A of one var. of X according to the novelty escape9

strategy ;

else10

Change the value in A of one var. of X s.t. the number of violated constraints11

decreases ;

if A new best configuration is obtained then12

SLSprogress←− SLSprogress+ 1000 ;13

result←− true ;14

made. When this threshold is not reached the search goes back to the SLS component,

the collected filtering information being preserved.

Procedure Hybrid

level←− 0;1

#conf ←− 0 ;2

while (#conf < maxConf ) do3

X ←− pick a variable according to dom/wdeg s.t. X appears in violated constraint4

by A ;

v ←− the value of X in A ;5

FIX(X, v) ;6

if (result = false) then return ;7

SLS() ;8

4.3 MAC-based Component

The MAC-based component starts with the initial CSP with the exception of filterings

computed at level 0 during the SLS and the calls to FIX (line 1). This procedure is

a standard MAC algorithm except that the focus is on collected FAC variables. The

heuristic used to selected variable is dom/wdeg. For the first choices (lines 8-9), the

variable is selected amongst the FAC variables collected during the SLS procedure. The

next choices (line 11) are made within all variables. The use of FAC variables only for

the first choices can be explained by the fact that the dom/wdeg heuristics allows to

focus on the same inconsistent part (i.e., on the same core) whereas fixing another FAC



Procedure FIX(X, v)

dom(X)←− {v} ;1

level←− level + 1;2

GAC() ;3

while ∃X ′ ∈ X s.t. dom(X ′) = ∅ do4

if level = 0 then5

result←− false ;6

return;7

Backtrack() ;8

level←− level − 1;9

#conf ←− #conf + 1 ;10

dom(X)←− dom(X) \ {v};11

GAC() ;12

variable can lead the search to be dispersed and slowing down the discovery of a small

proof of inconsistency.

The weights used by the dom/wdeg heuristic are preserved from one iteration to

the next one in Algorithm 1, and are shared by all search components.

Moreover, this MAC procedure does not necessarily perform a complete search

since if the number of conflicts #conf becomes larger than the maxConf before a

final decision is obtained, then the process goes back to the SLS component. In this

latter case, the maxConf control variable is increased in a geometric manner.

As maxConf is increased whenever the MAC component fails, this component

will eventually give a final result when this boundary becomes larger than the number

of conflicts needed by MAC to solve the CSP. Accordingly, FAC-SOLVER is complete.

Procedure MAC

Backjump(0) ; // backjump to level 01

level←− 0;2

#conf ←− 0 ;3

while (#conf < maxConf ) do4

if X = ∅ then5

result←− true ;6

return ;7

if (#conf = 0) and (∃X ∈ Se ∩ X ) then8

X ←− pick a variable in Se ;9

else10

X ←− pick a variable according to dom/wdeg ;11

v ←− pick randomly a value in dom(X) ;12

FIX(X, v) ;13

if (result = false) then return ;14



5 Experimental Results

In order to assess the efficiency of FAC-SOLVER, we have considered benchmarks from

the last CSP competitions [5, 6], which include binary vs. non-binary, random vs. real-

life, satisfiable vs. unsatisfiable CSP instances. They were classified according to four

types: 635 CSPs made of binary constraints in extension (BIN-EXT), 696 CSPs made of

binary constraints in intension (BIN-INT), 704 CSPs involving n-ary constraints in ex-

tension (N-EXT) and 716 instances of CSPs of n-ary constraints in intention (N-INT).

We have run four methods on all those instances: namely, our own implementation of

SLS Walksat+Novelty, of an hybrid method combining SLS and GAC, of MAC and

FAC-SOLVER. All tests have been conducted on a Xeon 3.2 GHz (2 G RAM) under

Linux 2.6. Time-out has been set to 1200 seconds while a space limit has been set to

900 Mbytes. Note that the MAC version used in the experimentations makes use of

a geometric restart policy that is similar way to our solver. Similarly, the SLS solver

(Walksat+Novelty) used in our experimental comparison uses the same novelty heuris-

tic than our solver. Note that, the solved unsatisfiable instances by novelty have been

solved by GAC on the initial instance.

Table 1 summarizes the results in terms of the numbers of satisfiable and unsatisfi-

able instances that were solved. In each horizontal “total”-line, the solver that solves the

most instances has been emphasized in gray. The main result is that FAC-SOLVER man-

aged to solve more instances than any of the other methods globally for either satisfiable

(SAT) or unsatisfiable (UNSAT) instances, and considering the subclasses of instances

separately, for three types of CSPs. For the last type (binary CSP in extension), let us

stress that the best solver is different in each of the three columns (SAT, UNS(AT) and

TOT(AL)) and in each case, the number of solved instances by FAC-SOLVER is very

close to the best one.

In Figure 2, five scatter points diagrams are given for a more detailed analysis.

In each of them, two of the methods are pairwise compared w.r.t. instances that were

solved by at least one of them. The X-axis represents the computing times in seconds

by FAC-SOLVER whereas the Y-axis provides the performance of the second method.

Results are expressed in seconds and represented according to a logarithmic scale.

Instances were divided within the four classes detailed above. We provide separate

diagrams for SAT and UNSAT instances. FAC-SOLVER is not compared with Walk-

sat+Novelty on UNSAT instances since these instances are out of scope for the latter

technique. The main information that can be drawn from these diagrams is as follows.

– More instances are located on the Y=1200 line than on the X=1200 one. This

shows, as Table 1 summarizes it, that FAC-SOLVER solves more instances than any

of the other considered methods.

– With the exceptions of UNSAT instances for MAC, there are more points located

above the diagonals showing that FAC-SOLVER is generally more efficient than

the other methods. Also, for UNSAT instances, the difference of time performance

between pairs of methods is globally smaller than for SAT instances (points are less

dispersed and are closer to the diagonal). FAC-SOLVER is generally more efficient

than a mere combination of SLS and GAC. It is also more efficient than MAC on

SAT instances (mainly due to the power of SLS). But there is no free lunch, the time



NOVELTY SLS+GAC MAC FAC-SOLVER

SAT UNS TOT SAT UNS TOT SAT UNS TOT SAT UNS TOT

2
-E

X
T

ACAD 7 0 7 7 2 9 7 2 9 7 2 9

PATT 106 0 106 100 38 138 83 38 121 99 39 138

QRND 24 0 24 24 51 75 24 51 75 24 51 75

RAND 206 0 206 197 105 302 194 110 304 193 106 299

REAL 6 0 6 7 0 7 7 0 7 7 0 7

TOTAL 349 0 349 335 196 531 315 201 516 330 198 528

2
-I

N
T

ACAD 38 7 45 37 40 77 37 40 77 38 40 78

BOOL 0 1 1 0 1 1 0 1 1 0 1 1

PATT 112 0 112 150 60 210 146 62 208 152 62 214

REAL 47 74 121 74 102 176 75 103 178 75 103 178

TOTAL 197 82 279 261 203 464 258 206 464 265 206 471

N
-E

X
T

BOOL 70 1 71 74 75 149 74 70 144 74 74 148

PATT 6 0 6 30 0 30 29 0 29 30 0 30

QRND 43 0 43 40 40 80 33 40 73 45 40 85

RAND 70 0 70 68 32 100 72 34 106 70 34 104

REAL 41 29 70 45 114 159 47 115 162 47 115 162

TOTAL 230 30 260 257 261 518 255 259 514 266 263 529

N
-I

N
T

ACAD 40 0 40 39 23 62 36 23 59 40 23 63

BOOL 145 1 146 156 12 168 146 12 158 162 13 175

PATT 88 5 93 103 19 122 95 20 115 102 18 120

REAL 85 2 87 152 3 155 150 3 153 152 3 155

TOTAL 358 8 366 450 57 507 427 58 485 456 57 513

TOTAL 1134 113 1247 1293 717 2010 1255 724 1979 1317 724 2041

Table 1. Experimental results.

spent on SLS by FAC-SOLVER on UNSAT instances leads to some small and very

acceptable time overheads, compared with MAC. This is perhaps the price to pay

to solve more unsatisfiable instances than MAC within the same price constraints,

thanks to the collected information by SLS.

An important issue is the way according to which the efficiency of FAC-SOLVER

might depend on the specific initial assignment selected by its SLS component. Ac-

tually, it appears that, on average, this dependency is weak and is not a serious trou-

bling factor affecting the results. To show this robustness, we have selected 96 instances

within the above benchmarks in a random fashion but according to their relative impor-

tance in each of the four classes of instances. For each of these instances, 50 successive

runs of FAC-SOLVER have been conducted with a different initial (randomly generated)

assignment. When an instance was solved by at least one run, it was also solved by the

49 other runs in 97 % of the situations, with a very low 2.52 seconds average deviation.

To show the importance of FAC variables, we have run our solver with and without

computing and using the FAC variables. Table 2 provides typical results. The use of

FAC variables allows more instances to be solved. Most of the time, the use of FAC

variables can solve benchmarks more quickly. In rare cases, the use of FAC variables



(a) FAC-SOLVER vs. NOVELTY

(b) FAC-SOLVER vs. SLS+GAC

Fig. 2. Pairwise comparisons between FAC-SOLVER and classical solvers: (a) (b) (c) satisfiable

instances/(d) (e) unsatisfiable instances.



(c) FAC-SOLVER vs. MAC

(d) FAC-SOLVER vs. SLS+GAC

Fig. 2. Pairwise comparisons between FAC-SOLVER and classical solvers: (a) (b) (c) satisfiable

instances/(d) (e) unsatisfiable instances (con’t).



(e) FAC-SOLVER vs. MAC

Fig. 2. Pairwise comparisons between FAC-SOLVER and classical solvers: (d) (e) unsatisfiable

instances (con’t).

wastes time. This is because the solver wastes time to compute FAC variables that are

not used when the instance is solved directly by the SLS solver or when the benchmarks

is globally inconsistent. In this case, all variables are potentially FAC variables and their

computation also wastes time.

6 Perspectives and Conclusions

In this paper a FAC variables concept has been introduced and investigated w.r.t. CSP

solving. One goal of this study was to develop a CSP solving method that would at least

match the efficiency of each best current approach on each class of traditional CSPs

instances. In this respect, our experimental results show the extent to which this goal

has been met.

One question that naturally arises is the extent to which the various findings and

components implemented in FAC-SOLVER do actually take part in the increased effi-

ciency. Actually, it appears that each finding and search component (FAC variables, use

of dom/wdeg heuristic in SLS, hybrid method involving SLS and filtering techniques)

were necessary to ensure the supremacy of the method. Especially, we have e.g. mea-

sured that FAC variables were detected in 56 % of the instances and that they play a

crucial role even in consistent instances.

FAC-SOLVER remains a basic algorithm and could be fine-tuned in several ways. Es-

pecially, comprehensive experimental studies could allow to optimize its various control



Instance SAT/UNSAT? time (FAC-SOLVER) time (FAC-SOLVER without

FAC variables)

uclid-elf-rf8 UNSAT 305.15 time out

uclid-37s-smv UNSAT 387.50 659.58

par-16-5 SAT 168.87 329.06

primes-10-40-2-7 SAT 891.01 time out

primes-20-20-2-7 SAT 976.68 313.31

queensKnights-100-5-add UNSAT 1,120.18 time out

queensKnights-100-5-mul UNSAT 1,165.81 time out

queensKnights-80-5-mul UNSAT 343.68 time out

rand-2-40-18 UNSAT 41.47 1.61

Table 2. Using or not FAC variables in FAC-SOLVER: typical results.

variables and factors, which we fixed quite arbitrarily. Moreover, our implementation

does not include usual CSP simplification techniques like the exploitation of symme-

tries or global constraints. We believe that the integration of these techniques could also

dramatically improve FAC-SOLVER. Also, it would be interesting to explore the relax-

ation of the FAC variable concept to encompass also variables that occur in most or some

preferred falsified contraints (instead of all of them). This could prove useful for e.g.

CSP instances containing non-overlapping MUCs.

Finally, we believe that the FAC variable concept is a good trade-off between the

effective computational cost spent by SLS to find some of them, and what would be

the theoretically best branching variable for MAC-based algorithm giving rise to the

shortest proofs. FAC variables are variables taking part in all unsatisfiable minimal sub-

sets of constraints, which often appear to be the difficult parts of unsatisfiable CSPs.

However, it is easy to find out unsatisfiable CSPs where FAC variables do not conceptu-

ally take part in the real causes of unsatisfiability but rather simply appear as variables

occurring in all MUCs while, at the same time, they are not related to the actual con-

flicting information. Refining the FAC variable concept to better capture the essence of

unsatisfiability while keeping efficient heuristics that can help finding them remains an

exciting challenge.

References

1. G. Audemard, J.M. Lagniez, B. Mazure, and L. Saı̈s. Boosting local search thanks to CDCL.

In LPAR’10, pages 474–488, 2010.

2. C. Bessière, J.C. Régin, R. Yap, and Y. Zhang. An optimal coarse-grained arc consistency

algorithm. Artificial Intelligence, 165(2):165–185, 2005.

3. F. Boussemart, F. Hemery, C. Lecoutre, and L. Saı̈s. Boosting systematic search by weighting

constraints. In ECAI’04, pages 146–150, 2004.

4. P. Cheeseman, B. Kanefsky, and W. Taylor. Where the really hard problems are. In IJCAI’91,

pages 331–340, 1991.

5. Third international CSP solver competition, 2008. http://cpai.ucc.ie/08/.

6. Fourth international CSP solver competition, 2009. http://cpai.ucc.ie/09/.



7. C. Eisenberg and B. Faltings. Making the breakout algorithm complete using systematic

search. In IJCAI’2003, pages 1374–1375, 2003.

8. Carlos Eisenberg and Boi Faltings. Using the breakout algorithm to identify hard and un-

solvable subproblems. In CP’2003, pages 822–826, 2003.

9. T. Eiter and G. Gottlob. On the complexity of propositional knowledge base revision, updates

and counterfactuals. Artificial Intelligence, 57:227–270, 1992.

10. P. Galinier and J.K. Hao. Tabu search for maximal constraint satisfaction problems. In

CP’97, pages 196–208, 1997.

11. E. Goldberg. Boundary points and resolution. In SAT’09, pages 147–160, 2009.

12. J. Gu. Design efficient local search algorithms. In IEA/AIE’92, pages 651–654, 1992.

13. É. Gégoire, B. Mazure, and C. Piette. Local-search extraction of muses. Constraints,

12(3):325–344, 2007.

14. H.Hoos. An adaptive noise mechanism for walksat. In AAAI’02, pages 655–660, 2002.

15. E. Hébrard. Mistral 1.529, 2006. http://4c.ucc.ie/˜ehebrard/mistral/

doxygen/html/main.html.

16. N. Jussien and O. Lhomme. Combining constraint programming and local search to design

new powerful heuristics. In MIC’2003, 2003.

17. S. Kirkpatrick, D. Gelatt Jr., and M. Vecchi. Optimization by simulated annealing. Science,

220(4598):671–680, 1983.

18. C. Lecoutre and F. Hemery. A study of residual supports in arc consistency. In IJCAI’2007,

pages 125–130, 2007.

19. C. Lecoutre and S. Tabary. Abscon 112: towards more robustness. In CSC’08, pages 41–48,

2008.

20. A. Mackworth. Consistency in networks of relations. Artificial Intelligence, 8(1):99–118,

1977.

21. B. Mazure, L. Saı̈s, and É. Grégoire. Boosting complete techniques thanks to local search

methods. Annals of Mathematics and Artificial Intelligence, 22(3-4):319–331, 1998.

22. D. McAllester, B. Selman, and H. Kautz. Evidence for invariants in local search. In AAAI’97,

pages 321–326, 1997.

23. S. Merchez, C. Lecoutre, and F. Boussemart. Abscon: A prototype to solve CSPs with

abstraction. In CP’01, pages 730–744, 2001.

24. S. Minton, M. Johnston, A. Philips, and Philip Laird. Minimizing conflicts: A heuristic

repair method for constraint satisfaction and scheduling problems. Artificial Intelligence,

58(1-3):161–205, 1992.

25. D. Sabin and E. Freuder. Contradicting conventional wisdom in constraint satisfaction. In

ECAI’94, pages 125–129, 1994.

26. B. Selman, H. Kautz, and B. Cohen. Noise strategies for improving local search. In AAAI’94,

pages 337–343, 1994.

27. B. Selman, H. Levesque, and D. Mitchell. A new method for solving hard satisfiability

problems. In AAAI’92, pages 440–446, 1992.

28. N. Tamura, A. Taga, S. Kitagawa, and M. Banbara. Compiling finite linear CSP into SAT.

Constraints, 14(2):254–272, 2009.

29. Choco Team. Choco: an open source Java constraint programming library. Research report

10-02-INFO, Ecole des Mines de Nantes, 2010.


