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Abstract. In this paper, a novel hybrid and complete approach for propositional

satisfiability, called SATHYS (Sat Hybrid Solver), is introduced. It efficiently

combines the strength of both local search and CDCL based SAT solvers. Con-

sidering the consistent partial assignment under construction by the CDCL SAT

solver, local search is used to extend it to a model of the Boolean formula, while

the CDCL component is used by the local search one as a strategy to escape from

a local minimum. Additionally, both solvers heavily cooperate thanks to relevant

information gathered during search. Experimentations on SAT instances taken

from the last competitions demonstrate the efficiency and the robustness of our

hybrid solver with respect to the state-of-the-art CDCL based, local search and

hybrid SAT solvers.

1 Introduction

The SAT problem, namely the issue of checking whether a Boolean formula in Conjunc-

tive Normal Form (CNF) is satisfiable or not, is a central issue in many artificial intel-

ligence and computer science domains, including hardware and software verification,

planning, cryptography and bioinformatics. These last two decades, many approaches

have been proposed to solve large application SAT instances, based on logically com-

plete or incomplete methods. Both stochastic local search (SLS) techniques [34, 33,

20] and elaborate variants of the DPLL procedure [7], commonly named modern SAT

solvers [30, 9], can now solve many families of hard SAT instances. Based on differ-

ent paradigms, these two kinds of approaches admit complementary behavior in terms

of performances. Modern SAT or CDCL (Conflict Driven Clause Learning) solvers are

particularly efficient on application benchmarks while local search performs better on

random SAT instances. Stochastic Local search (Algorithm 2) and modern SAT solvers

(Algorithm 1) are recognized as two important search paradigms. Their differences arise

in the way the search space is explored. In SLS, the algorithm explores the search space

in a non systematic way starting from a complete assignment and moving to another

complete assignment by inverting the truth value of a chosen variable (this is a flip).

After a fixed number of flips, another complete assignment is generated, and the pro-

cess is repeated. Modern SAT solvers explore the search space in a systematic way by

developing a search tree, where at each node the current partial assignment is extended

by assigning a selected variable and propagating unit literals. In SLS, the search process

can lead to a local minimum, in this case several strategies are designed to escape from



such minimum. In modern SAT solvers, the process can lead to a conflict and in this

case several learning strategies are designed for resolving such a conflict [38].

Combining stochastic local search and conflict driven clause learning solvers is

clearly a challenging issue as stated by Selman et al. [35] in 1997 (challenge 7) and

in 2003 [24]. Such a combination might exploit the strength of both approaches and

might result in a new but more efficient hybrid SAT solver. Several attempts have been

made these last years [4] and different hybrid solvers have been designed leading to

real progress towards the resolution of this challenging issue (see section 5). However,

the challenge remains open as the performance of these proposed hybrid solvers is far

from those of the CDCL based solvers particularly on application instances. Our goal

in this paper is to design a hybrid SLS/CDCL solver that outperforms the local search

techniques, while significantly reducing the gap with CDCL based solvers particularly

on application category.

In this paper, we propose a new hybridization of local search and modern SAT solver,

named SATHYS (Sat Hybrid Solver). In our approach, both components heavily coop-

erate through relevant information gathered during search. More precisely, our hybrid

solver alternatively performs the search process using local search and CDCL based SAT

solvers. On the one hand, at each node of the search tree, the local search component

is used to extend to the model, the current (consistent) partial assignment built by the

CDCL based component. On the other hand, the CDCL part is conditionally invoked by

the local search component when a local minimum is encountered. Each solver benefits

from the other in several ways. First, each time a local minimum is reached, the local

search technique updates the activity of the boundary variables [14]. The idea is to di-

rect the CDCL search towards boundary points proven to be important by Goldberg in

[14]. Secondly, the polarities of the literals involved in the best complete assignment

found during local search are exploited by the CDCL component. From the other side,

the CDCL solver shares with local search the current partial assignment together with

the learnt clauses. The originality of our proposed hybrid SAT solver arises in alternating

search of both components while exchanging relevant information.

The rest of the paper is organized as follows. Section 2 introduces some definitions

and notations. Then, we present CDCL and SLS solvers in a unified way. Section 3 de-

scribes our new hybrid solver. In Section 4 we provide some experimental comparison

with different SAT solvers including the CDCL solver MINISAT and several well known

SLS and hybrid solvers. Before concluding, section 5 discusses the related works.

2 Technical Background

2.1 Preliminary definitions and notations

Let V = {x1, ..., xn} be a set of propositional variables, a literal ℓ is either a positive xi

or a negative variable xi. The two literals x and x are said complementary. We denote

by ℓ the complementary literal of ℓ. A clause ci = (ℓ1 ∨ . . . ∨ ℓni
) is a disjunction

of literals. A unit clause is a clause with only one literal, called unit literal. A formula

Σ = (c1∧. . .∧cm) is in conjunctive normal form (CNF) as it is a conjunction of clauses.

The set of variables involved in Σ will be noted VΣ . An interpretation I of a Boolean



formula Σ associates a truth value I(x) ∈ {false, true} to some variables x ∈ VΣ . I
is complete if it assigns a truth value to every x ∈ VΣ , and partial otherwise. A complete

(resp. partial) interpretation will be noted Ic (resp. Ip). A clause, a CNF formula and an

interpretation can be represented using sets.

It should say that a clause β is falsified (resp. satisfied) by I if ∀ℓ ∈ β (resp. ∃ℓ ∈ β),

β is falsified (resp. satisfied) by ℓ under I. Σ|ℓ denotes the formula simplified by the

assignment of the literal ℓ to true, that is Σ|ℓ = {α \ {ℓ} such that α ∈ Σ and ℓ 6∈
α}. This notation can be extended to an interpretation. Let I = {ℓ1, ..., ℓn} be an

interpretation, Σ|I = (...(Σ|ℓ1)...|ℓn).
A model of a formula Σ, noted I |= Σ, is an interpretation I such that ∀c ∈ Σ,

c is satisfied by I. On the contrary, an interpretation I is called a nogood of Σ, noted

I 6|= Σ, if ∃c ∈ β such that c is falsified by I.

SAT is the problem of checking whether a CNF formula admits a model or not. If the

answer is positive, then the formula is called satisfiable, else it is called unsatisfiable.

2.2 CDCL solvers

CDCL based SAT solvers (Algorithm 1), generally referred as modern SAT solvers [30],

are based on classical unit propagation (lines 2, 14 and 15) efficiently combined through

incremental data structures, restart policies (line 15) [15], activity-based variable selec-

tion heuristics (VSIDS-like) (line 12) [30], and clause learning (line 6) [36].

A CDCL based SAT solver is a sophisticated variant of the well known DPLL [7]

procedure. At each node of the search tree, the assigned literals (the decision literal

and the propagated ones) are labeled with the same decision level starting from 1 and

increased at each decision (or branching step). After backtracking, some variables are

unassigned and the current decision level is decreased accordingly. At level m, the

current partial interpretation Ip can be represented as an ordered sequence of decision-

propagation steps made at the different levels. We note Ii
p where i ≤ m, the partial

interpretation Ip restricted to the first i sequences of decision-propagation. An asserting

level associated to a falsified clause α = (x ∨ β) under an interpretation Ip (in short

level(α, Ip)) is defined as the level j such that α|Ij
p
= x and x represents the asserting

literal of α under Ip
Algorithm 1 describes the general skeleton of a CDCL based SAT solver. Let us

briefly explain its main components. A more detailed description of modern SAT solvers

can be found in [6]. The algorithm initializes the learnt database Γ as the empty set (line

1), then unit propagation is applied on the original formula Σ (line 2). The function

BCP (Σ) returns the set of propagated literals. The main loop contains several cases.

First, if all variables are assigned then the formula is empty and I is a model of Σ (line

4). If the partial assignment Ip is consistent, then a new decision variable is chosen and

unit propagation is performed (lines 12, 13 and 14). Otherwise, a conflict is reached

and a nogood (or a learnt clause) α is computed (line 6). If α is the empty clause, then

the instance is proven unsatisfiable (line 8). Otherwise, α = (x∨ β) and j the asserting

level of α w.r.t. Ip. After that, the clause α is added to the learnt database (line 9) and

the algorithm backtracks to level j by computing a new partial interpretation Ij
p (line

10). At level j the asserting literal x ∈ α is propagated (line 14). Finally, the algorithm

restarts if the cutoff value in terms of the number of conflicts is reached (line 15).



Algorithm 1: CDCL solver

Input: a CNF formula Σ

Output: SAT or UNSAT

Γ ← ∅;1

Ip ← BCP (Σ);2

while (true) do3

if (Σ|Ip
= ∅) then return SAT;4

if (∅ ∈ Σ|Ip
) then5

α=(x ∨ β)← analyzeConflict(Σ ∪ Γ, Ip);6

j ← level(α, Ip);7

if (α = ∅) then return UNSAT;8

Γ ← Γ ∪ {α};9

Ip ← I
j
p;10

else11

x← chooseDecisionLiteral(Σ|Ip
);12

Ip ← Ip ∪ {x};13

Ip ← Ip ∪BCP ((Σ ∪ Γ )|Ip
);14

if (restart()) then Ip ← BCP (Σ ∪ Γ );15

2.3 Local search solvers

Algorithm 2 gives the general scheme of a local search solver. It uses a stochastic walk

over complete interpretations of Σ. At each step (or flip), it tries to reduce the number of

falsified clauses (this step is usually called a descent). The next complete interpretation

is chosen among the neighbors (interpretations that differ only by the truth value of one

variable) of the current one (line 7). A local minimum is reached when no descent is

possible. In such a case, a strategy is used in order to escape from this minimum (line

5). Like in CDCL solvers, sometimes a restart (called a try in SLS) is performed and

a new complete interpretation is generated. However restarts in CDCL and SLS solvers

have not exactly the same role. In the CDCL case, it is now well admitted that restarts

are used to reorder variables, directing the solver to the same part of the search space

using a different branch. On the other hand, restarts in SLS solvers are used in order to

diversify the search by generating a new complete interpretation.

3 SATHYS: A novel Hybrid Approach

In this section, we present SATHYS, our hybrid solver for SAT which is available at

http://www.cril.fr/˜lagniez/sathys. Before giving its formal descrip-

tion, we provide some intuitions and motivations behind the design of SATHYS.

3.1 Motivations

Recently, several works have shown that local search techniques provide relevant infor-

mation for locating unsatisfiable cores [16, 17]. Motivated by these results, we propose



Algorithm 2: Local Search solver

Input: a CNF formula Σ

Output: SAT

Ic ← completeInterpretation(Σ) ;1

while (true) do2

if (Σ|Ic
= ∅) then return SAT;3

if a local minimum is reached then4

x← chooseLitteralToEscapeMinima(Σ, Ic);5

else6

x← chooseLitteralToF lip(Σ, Ic);7

flip(Ic, x);8

if (restart()) then Ic ← completeInterpretation(Σ);9

a new hybridization scheme of SLS and CDCL solvers. In our hybrid approach, the two

methods heavily interact and play complementary roles :

1. SLS directs the CDCL search towards the proof of unsatisfiability ;

2. CDCL directs the SLS search towards a model if it exists.

Let us briefly summarize these bidirectional interactions.

SLS → CDCL: The SLS affects the CDCL solver at two different levels known to be

important for the efficiency of satisfiability solvers. First, the activity of the variables

usually maintained by CDCL are dynamically refined by the SLS component. This local

search refinement of the activity-based heuristic (VSIDS) is achieved using the notion

of boundary points introduced recently by E. Goldberg in [14]. A boundary point is a

complete interpretation (point) I such that there exists at least one literal ℓ belonging

to all clauses falsified by I. In [14], it was shown that focusing resolution on such kind

of literals ℓ improves the proof quality by reducing the length of the refutation. From

the recent work by Grégoire et al. [17], we can also deduce that if the boundary point

corresponds to a local minimum, then the literal ℓ belongs to at least one unsatisfiable

core. Considering these two interesting features of boundary points, we exploit this no-

tion to refine the activity of the clauses. When a local minimum is reached, updating the

activity of the variables associated to literals appearing in all the falsified clauses by the

boundary point might guide CDCL towards the most important part of the search space.

Indeed, favoring the assignment of such literals aims to direct the search to unsatisfiable

cores and might reduce the length of the resolution proof.

The second interaction level where SLS influences with CDCL is on the assignment

polarity (false, true) of the chosen variable. More precisely, when the next variable

to assign is chosen by CDCL, its polarity is taken from the best complete interpretation

(in terms of the number of satisfied clauses) found by the SLS solver. Usually, in CDCL

solvers such as Rsat [32], the assignment polarity (or phase) follows a progress saving

scheme. Each time a variable is assigned, its truth value is saved, and used as the polarity

of the variable when such a variable is selected again.



CDCL → SLS: From CDCL to SLS, the current CDCL branch made of the set of de-

cisions and propagations is provided to SLS. Using such a partial interpretation, the

SLS solver tries to extend it into a model by focusing search on the remaining unas-

signed variables. In this way, local search exploits variable dependencies provided by

the decisions and propagations of the CDCL solver. Let us recall that exploiting vari-

able dependencies is identified as an important issue for the efficiency of local search

based techniques [35, 24, 31]. On the other hand, as the CDCL solver is called when

SLS reaches a local minimum, the new partial interpretation revised by CDCL contains

several flipped variables. Consequently, from the local search side CDCL can be seen as

a strategy that helps local search to escape from local minima.

3.2 Formal description

Even if the main core of the SATHYS hybrid solver is a local search based algorithm,

the integration of the CDCL part leads to a complete hybrid solver able to prove both

satisfiability and unsatisfiability. In this section, we give a detailed description of our

approach as depicted by the Algorithm 3.

First of all, the algorithm starts with an empty set of learnt clauses (Γ ) and a com-

plete interpretation Ic built by randomly extending the current partial interpretation Ip
obtained by propagating unit literals on the original formula (lines 2–3). Note that func-

tion BCP (Boolean Constraint Propagation) returns the set of propagated unit literals.

After this initialization step local search process is performed. If there exists a neigh-

boring interpretation (an interpretation that differs from Ic by only the truth value of

one variable x), that reduces the number of falsified clauses (descent phase), then the

variable x is flipped, i.e. its truth value is reversed (lines 22-23). It is important to note

that only variables out of Ip can be flipped. Indeed, the variables involved in Ip are

considered tabu during the local search step. This partial interpretation evolves during

the search and is modified in the CDCL part of the algorithm (lines 11–19). However at

each iteration of the loop (line 4), we have Ip ⊆ Ic.

When a local minimum is reached (line 6), we select one of the two following

strategies : (1) call the CDCL component of the solver (lines 11–19) or (2) apply any

other repair strategy, like novelty [29] or rsaps [22], to escape from such local minima

(lines 8–9). The selection between the two strategies is done using a condition based on

the search progress SLSprogress that will be explained later.

Each time the CDCL part of the solver is called (lines 11-20), a decision literal

ℓ is chosen (line 11). Then unit propagation is performed (line 12). If it leads to a

contradiction (line 13), a classical analysis is performed, the learnt clause γ is added to

the learnt database Γ before back-jumping to the level j. If the learnt clause is empty,

then the the formula is proven unsatisfiable (line 16). As long as the current partial

interpretation Ip is not consistent, the process continues (see the loop line 13). At the

end of this process, the consistent partial interpretation Ip is extended to a complete one

Ic (line 20) and the local search component continues the search process. After each

CDCL part, the partial interpretation Ip is modified (line 19). Consequently, the fixed

part of the complete interpretation Ic is also modified. In this way, we derive a new

strategy based on CDCL to escape from local minima.



Algorithm 3: SATHYS

Input: a CNF formula Σ

Output: SAT or UNSAT

Γ ← ∅;1

Ip ← BCP (Σ);2

Ic ← Ip ∪ completeInterpretation(Σ|Ip
);3

while (true) do4

if (Σ|Ic
= ∅) then return SAT;5

if a local minimum is reached then6

if (SLSprogress > 0) then7

ℓ← chooseLitteralToEscapeLocalMinima(Σ|Ip
, Ic);8

flip(Ic, ℓ);9

else10

Ip ← Ip ∪ {ℓ} with ℓ 6∈ Ip;11

Ip ← Ip ∪BCP ((Σ ∪ Γ )|Ip
);12

while (∅ ∈ (Σ ∪ Γ )|Ip
) do13

γ=(ℓ ∨ β)← analyzeConflict(Σ ∪ Γ, Ip);14

j ← level(γ, Ip);15

if (γ = ∅) then return UNSAT;16

Γ ← Γ ∪ {γ};17

Ip ← I
j
p;18

Ip ← Ip ∪BCP ((Σ ∪ Γ )|Ip
);19

Ic ← Ip ∪ (Ic \ Ip);20

else21

x← chooseLitteralToF lip(Σ|Ip
, Ic);22

flip(Ic, ℓ);23

if (restart()) then24

Ip ← BCP (Σ ∪ Γ );25

Ic ← Ip ∪ completeInterpretation(Σ|Ip
) ;26

This process is repeated until the next restart (line 24). As long as a model is not

found or the unsatisfiability of the formula is not proven the solver restarts the previous

process with a new initial complete interpretation (lines 25-26).

In the following, we introduce some improvements embedded in our solver SATHYS.

Calling the CDCL oracle. The behavior of our hybrid method heavily depends on the

value of the variable SLSprogress (see Algorithm 3, line 7). We use a similar mech-

anism as it is done in [21]. When the local search engine reduces the MAXSAT value

found in the current restart, this variable SLSprogress is increased. Our reasoning is

that as long as SLS allows improvements i.e. increases the number of satisfied clauses,

the execution of SLS is favored. Each time a local minimum is reached, the value of

SLSprogress is decreased. By getting frequently stuck in local minima, it seems

that the local search engine has a real difficulty to improve the current interpretation. In

this case, we need to call the CDCL engine in order to escape from these local minima.



Activity based heuristic for CDCL. The heuristic used in the CDCL part of the Al-

gorithm 3 is a slightly modified version of VSIDS [30]. Indeed, as usual, all weights

of the variables are increased during the conflict analysis. Furthermore, when a local

minimum is reached, we look for a boundary point and we increase the activity of the

variable with one of its literals appearing in all the falsified clauses. In this way, and as

explained above, our aim is to generate shorter resolution proofs.

Polarity of the decision literals. The polarity of the decision variable is known to be

very important for the efficiency of SAT solvers. We propose here to use both engines

in order to choose the best polarity for a given variable. At each restart, we store the

interpretation associated to the current MAXSAT value and we modify it using progress

saving [32]. Then when a given decision variable is chosen by CDCL, its polarity is

taken from the last memorized complete interpretation with the best MAXSAT value.

Indeed, we focus the search near the MAXSAT value, so near a solution by taking into

account dependencies between variables.

4 Experimental validation

In this section, we provide an experimental validation of our hybrid solver SATHYS.

Like most other solvers, we use SatElite in a preprocessing step [8]. Instances from

the SAT’09 competition are used as a test set. They are divided into three different

categories: crafted (281 instances), application (292) and random (570).

Let us note that these instances are carefully selected for the SAT competition be-

cause of their relevance. From the results of the last SAT competitions, one can have

in mind that most of the state-of-the-art SAT solvers present very close performance in

terms of the number of solved instances. For example, PRECOSAT [3] and GLUCOSE [1]

were ex-aequo in terms of the number of solved instances in the application category

SAT +UNSAT).

The experimentation has been conducted on the same cluster as for last SAT 2009

competition (Intel Xeon 3GHz under Linux with a RAM memory size of 2GB). The

time limit (time-out) has been set to 1200 CPU seconds.

4.1 Effectiveness of the collaboration

First of all, our goal is to highlight that our hybrid scheme is really relevant. To measure

the relevance of the different improvements introduced to SATHYS (described in the

previous sections), we compared SATHYS with the following variants:

– SATHYSnb: the VSIDS heuristic is not updated when a boundary point is discov-

ered.

– SATHYScdclAtEachLM : instead of using the variable SLSprogress we call the

CDCL solver at each local minimum.

– SATHYSnoPolarity: Literal polarity are not updated with the MAXSAT interpreta-

tion.



solver Crafted Application Random total

SATHYS 104 148 189 441

SATHYSnb 103 144 191 438

SATHYScdclAtEachLM 101 141 8 250

SATHYSnoPolarity 106 142 188 436

Table 1. Comparison of different versions of the SATHYS solver. For each category, we provide

the number of solved instances. The total number of solved instances on all categories is also

given.

The Table 1 summarizes the results obtained by the four versions of SATHYS solver.

Not surprisingly, we can note that SATHYSnb is the best one on random instances.

Indeed, random instances are globally unsatisfiable i.e. the unsatisfiable core tends to

include all the clauses of the original formula. As the role of the activities (VSIDS) is to

focus the search on the most important part of formula, this is clearly not relevant in case

of random instances. Also, the boundary points are useless for this kind of instances.

Concerning SATHYScdclAtEachLM , this version is the worst one. Indeed, too many

calls of CDCL consumes clearly too much time. Moreover, as CDCL approaches are not

well suited for random instances, calling CDCL penalizes SATHYS. We can note that

the number of calls to the CDCL engine has an important impact on the performances

of SATHYS. Consequently, fine-tuning the local search progress (SLSprogress) is

crucial for the efficiency of our hybrid approach.

Concerning SATHYSnoPolarity , this version obtains good performance on the crafted

category. However, literals polarity seems to be a relevant criteria for application in-

stances considered as the most important category by the SAT community.

In summary, the cooperation scheme designed in SATHYS and described in the

previous section improves the robustness and the efficiency of our hybrid solver.

4.2 Comparison

In this section, we compare our solver against some of the well known SAT solvers.

Many of them are considered as the state-of-the-art SAT solvers in at least one category

of instances. We can note that four solvers considered in our comparative experiments

have obtained a gold medal at the SAT competition in 2009 in different categories.

– Two SLS methods: WSAT [34] with rnovelty strategy and ADAPTG2 [27].

– Two hybrid approaches: HYBRIDGM [2] and HINOTOS[26].

– Five complete approaches: MINISAT [9], GLUCOSE [1], PRECOSAT [3], RSAT [32],

and CLASP [13].

– A portfolio solver : SATZILLA I [37].

Table 2 summarizes the obtained results. Let us start this comparison with local

search solvers. We can note that they perform better than SATHYS only in the random

category of instances. This is not surprising since they are particularly suited to this kind

of instances. On the other categories of instances, local search based techniques obtain

bad results. As underlined during the SAT’09 competition, the main weak point of local

search based solvers resides in their inefficiency on the application category. Improving

local search based techniques on application category remains a very challenging issue.



Crafted Application Random

total (sat unsat) total (sat unsat) total (sat unsat) total

ADAPTG2 68 (68 0) 8 (8 0) 294 (294 0) 375

GNOVELTY+ 54 (54 0) 7 (7 0) 281 (281 0) 342

SATHYS 104 (71 33) 148 (63 85) 189 (189 0) 441

HYBRIDGM 51 (51 5) 0 (5 0) 294 (294 0) 350

HINOTOS 105 (69 36) 107 (39 68) 77 (65 11) 288

MINISAT 99 (72 27) 152 (59 93) 3 (3 0) 254

GLUCOSE 114 (75 39) 152 (54 98) 17 (17 0 ) 266

PRECOSAT 122 (81 41) 164 (65 99) 2 (2 0) 288

RSAT 105 (71 34) 143 (53 90) 5 (5 0) 253

CLASP 131 (78 53) 138 (53 85) 84 (66 18) 353

SATZILLA I 128 (86 42) 142 (60 82) 145 (90 55) 415

Table 2. SATHYS vs. some other SAT solvers. For each category and each solver, the number of

solved instances is provided.

As the skeleton of our solver is an SLS technique, where the CDCL component can be

considered as a strategy for escaping from local minima, the good performances of our

hybrid solver provides real advances on this important issue.

Comparatively with other hybrid solvers, SATHYS is the best one w.r.t. in the appli-

cation category. HYBRIDGM seems to be tuned for random instances whereas HINOTOS

and SATHYS are comparable on crafted category. The results show clearly that our hy-

brid solver outperforms all the hybrid approaches.

SATHYS is very competitive with respect to the sate-of-the-art CDCL solvers in both

crafted and application categories. To our best knowledge, it is the first time that an

hybrid solver is able to obtain such promising results. On random instances, classical

CDCL solvers present a very bad behavior. On this last category, clause learning and

back-jumping are useless.

Interestingly enough, SATHYS is also very competitive with respect to the portfolio

based solver SATZILLA. This portfolio uses CDCL, local search and lookahead solvers.

In this approach, the different solvers are called independently.

To summarize, SATHYS is the first competitive solver on all the three categories

of SAT instances (crafted, application and random). It is also the most robust one: it

obtains the best overall results in terms of the total number of solved instances and it is

often close to the first rank on each category.

The previous table provides information about the number of solved instances in

the considered time limit. Also, we present the classical scatter plot in order to compare

SATHYS with one of the best known hybrid solver HINOTOS, PRECOSAT (the state-

of-the-art solver on application category), CLASP (the best solver on crafted category)

and SATZILLA (it obtains the second best overall results behind SATHYS). In these

curves, the y-axis represents the time (in log scale) of SATHYS and the x-axis the time

of the other solver. So, a dot below the diagonal represents an instance where SATHYS

is faster than the other solver. This is shown in Figure 1.

Analyzing these figures, we can conclude that SATHYS outperforms HINOTOS.

However our approach is slightly slower than PRECOSAT, which is one of the best CDCL

solvers. However, SATHYS solves more instances than PRECOSAT. Comparatively with

CLASP, we can observe that our method obtains similar performance on application and



crafted instances, but SATHYS is better on random instances. Finally, it is impossible

to differentiate SATZILLA and SATHYS in terms of CPU time.
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Fig. 1. Scatter plot: SATHYS vs. {PRECOSAT,HINOTOS,CLASP,SATZILLA }

Finally, we also want to hightlight that our solver is competitive on difficult hard

SAT and UNSAT instances from crafted and application categories. Table 3 provides

results on a selection of instances. Because of lack of space we do not report the results

for each solver. However, to be as fair as possible, we also report the best result obtained

in the competition over the 50 submitted solvers (BEST column). SATHYS is efficient

on SAT as well as UNSAT instances.

In conclusion of this experimental comparison, SATHYS is a very efficient solver

in three categories (crafted, application and random) and consequently, it is the most



SAT BEST SATHYS HINOTOS GLUCOSE PRECOSAT CLASP SATZILLA

q query 3 L100 coli N 183 677 – 577 414 780 –

post-c32s-col400-16 N 66 247 380 714 141 66 125

countbitsarray02 32 N 926 1100 – 926 – – –

maxxororand032 N 579 768 – – – – –

minand128 N 16 71 219 26 26 23 212

rpoc xits 08 UNSAT N 154 1036 1115 398 159 – 589

gt-ordering-unsat-gt-060 N 15 171 – – 149 – –

9dlx vliw at b iq3 N 430 1137 – – – 1095 430

gss-19-s100 Y 38 641 – 611 – – 38

UCG-20-5p1 Y 413 835 – – 537 – –

UTI-15-10p1 Y 392 935 – 392 – – 1140

gt-ordering-sat-gt-040 Y 15 6 – – 149 – –

em 9 3 5 exp Y 18 288 209 51 181 140 276

ndhf xits 20 Y 1.6 180 – – 249 – 75

partial-10-15-s Y 228 1092 – – – – –

vmpc 30 Y 18 825 – – 292 159 551

velev-pipe-sat-1.0-b7 Y 14 294 – – 343 – 87

new-difficult-21-168-19-90 Y 0.1 141 – – – 370 416

mod3block 3vars 9gates. . . Y 5.7 4.8 – 126 63 26 24

rbsat-v945c61409g10 Y 21 362 – 898 147 150 933

instance n8 i9 pp Y 41 115 454 1117 800 – 421

Table 3. Highlight results on a selection of instances. Results are reported in seconds.

robust solver. From the above results, we can consider SATHYS as the first hybrid solver

that brings real advances to three of the ten challenges proposed in [35, 24]:

– Challenge 5: Design a practical stochastic local search procedure for proving un-

satisfiability;

– Challenge 6: Improve stochastic local search on structured problems by efficiently

handling variable dependencies;

– Challenge 7: Demonstrate the successful combination of stochastic search and sys-

tematic search techniques, by the creation of a new algorithm that outperforms the

best previous examples of both approaches.

5 Related work

We presents here the most noticeable approaches combining local search and DPLL

based ones. They can be classified in three different categories depending on which of

the two solvers is considered as the main core of the hybrid solver.

The first category includes those using DPLL as the main solver and SLS as an or-

acle. In [5], SLS is used in a preprocessing step to derive a static variable ordering for

DPLL. Weights representing the number of times each clause is falsified during the lo-

cal search pretreatment is computed. The variable occurring most often in clauses with

higher weights is selected first. The approach proposed in [28] extends the previous

one, while invoking SLS at each node of the search tree. The SLS oracle is used to

both extend the current partial assignment to a model or to select the next variable to

assign according to similar clause weighting process. Similarly to [28], in [11], the au-

thors introduce some conditions to reduce the number of calls to SLS. The variables are



dynamically ordered according to local-search statistics. In [19], an hybrid constraint

solving schema which retains some systematicity of constructive search while incorpo-

rating the heuristic guidance and lack of commitment to variable assignment of local

search. The proposed method backtracks through a space of complete but possibly in-

consistent solutions while supporting the freedom to move arbitrarily under heuristic

guidance. hybridGM is an incomplete SAT solver proposed in [2] focusses the DPLL-

search around local minima with only one unsatisfied clause.

If a formula is satisfiable, chances are to find a satisfying assignment around such

minima. hybridGM’s DPLL component then completely checks these areas of the search

space. SATUN [12] an extension of hybridGM performs local search as it is done by

hybridGM, but for a limited amount of time. The limit is set in a way that gives local

search a reasonable chance to find a satisfying assignment. In case the formula is satisfi-

able, this will result in a performance competitive with the hybrid’s SLS component. As

soon as the limit is reached, the formula is expected to be unsatisfiable. SATUN’s DPLL

component will then perform a search on the complete search space of the formula to

confirm that assumption.

The second category considers SLS as the main core of the hybrid solver. Among

these approaches, we can cite the approach proposed in [18], where DPLL is used to

derive implications between literals. These implications are used to both simplify the

formula and to compute dependency relations between literals used during the local

search phase.

In [23] the algorithm starts with a partial or complete interpretation. At each step

constraint propagation is applied. In case of conflict, a nogood is learnt and local search

is applied to repair the current partial interpretation. Otherwise, the current consistent

interpretation is extended in a classical way. In [25], the authors propose an hybrid

strategy based on shared memory, ideally suited for multi-core processor architectures.

They particularly show that DPLL can provide highly effective guidance for a local

search style solver for the MAXSAT problem. More precisely, DPLL shares its current

partial assignment with SLS and a flip is not allowed if the variable is assigned with the

same polarity by DPLL. The two solvers are run simultaneously on two different cores.

Finally, the last category contains hybrid solvers where both engines play an equal

role. The hybrid solver HBISAT [10] and its extended and improved version hinotos

[26] belong to this category. In both approaches, a local search is used to identify a

subset of clauses to be passed to a DPLL SAT solver through an incremental interface. In

other words, the guided local search identifies incremental sets of clauses that are hard,

and these clauses are subsequently added to the clause database of the DPLL-based

solver. In addition, the solution obtained by the DPLL solver on the subset of clauses is

fed back to the local search solver to jump over any locally optimal points.

6 Conclusion

In this paper a novel integration of SLS and CDCL based SAT solvers is introduced. This

hybrid solver represents an original combination of both engines. The two components

heavily cooperate towards proving the satisfiability or unsatisfiability of the SAT for-



mula. Such strong cooperation lies in the exploitation of SLS for directing CDCL search

towards unsatisfiability proof; and CDCL for escaping from SLS local minima. SATHYS,

the resulting method, obtains very good results on a wide range of instances taken from

the last competitions. These results show important performance improvements of the

state-of-the-art SLS and hybrid SLS solvers particularly on crafted and application cat-

egory. More interestingly, SATHYS significantly reduces the performance gap between

SLS and CDCL solvers while becoming extremely competitive with most of the state-of-

the arts CDCL solvers on application instances. Consequently, SATHYS can be consid-

ered as the first successful hybrid SAT solver. A future work, we first plan to investigate

how conflict driven clause learning can be adapted to local search based techniques.

Secondly, as the cooperation scheme between the two solvers integrated in SATHYS is

proven to be efficient, we plan to design a new parallel version of SATHYS in order to

benefit from the computational resources of multicore based architectures.
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