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Adaptive mesh refinement strategy for a non conservative transport
problem∗

Benjamin Aymard†‡§, Frédérique Clément†, Marie Postel‡§

Abstract

Long time simulations of transport equations raise computational challenges since they require both a large do-
main of calculation and sufficient accuracy. It is therefore advantageous, in terms of computational costs, to use a
time varying adaptive mesh, with small cells in the region of interest and coarser cells where the solution is smooth.
Biological models involving cell dynamics fall for instance within this framework and are often non conservative to
account for cell division. In that case the threshold controlling the spatial adaptivity may have to be time-dependent
in order to keep up with the progression of the solution. In this article we tackle the difficulties arising when applying
a Multiresolution method to a transport equation with discontinuous fluxes modeling localized mitosis. The analysis
of the numerical method is performed on a simplified model and numerical scheme. An original threshold strategy is
proposed and validated thanks to extensive numerical tests. It is then applied to a biological model in both cases of
distributed and localized mitosis.

1 Introduction

When studying phenomena over long periods in the context of transport equations, one has to make simulations
on large computational domains so as to follow the interesting part of the solution throughout the duration of the
experiment. On the other hand it can happen that the solutions of the problem occupy only a bounded and time
varying portion of the domain. Such set-ups can be very costly to simulate numerically with uniform grids. Time-
adaptive mesh refinement methods enable one to minimize the size of the mesh, hence both the memory requirement
and CPU time, by restricting the use of fine discretization to the areas of interest, or more generally to the regions
where the solution varies rapidly. Among these methods, the Multiresolution (MR) method is specially interesting for
hyperbolic systems of PDEs. Firstly, the underlying wavelet theory enables one to control the numerical error induced
by the adaptive scheme with a small parameter ε that is explicitly used as a threshold in the algorithm. Secondly,
MR provides one with a strategy to monitor the evolution in time of the adaptive grid, relying on the hyperbolicity of
the equations to predict the displacement of the singularities. We refer the reader to [5, 15] for a thorough analysis
of the MR method applied to a scalar hyperbolic equation and to [6, 8] and references therein for applications to
more realistic models and set-ups. Although originally designed for and theoretically studied in the case of hyperbolic
equations, Multiresolution is currently used to simulate reaction-diffusion and parabolic equations with interesting
computational performances, as illustrated in [7, 13].

In the current work we deal with non conservative transport equations frequently arising in biological models involving
cell dynamics. In these models, which are most of the time 1D, the space variable plays the role of age and marks
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the progression along the cell cycle. Mitosis is the endpoint of the cell cycle, that gives birth to two daughter cells
from one mother cell. From the modeling viewpoint, mitosis can be distributed over the cell cycle thanks to a positive
linear source term, amounting to doubling the cell density in a time equivalent to the duration of the cell cycle (see
for instance [16]). Another approach treats the mitosis phenomenon more directly, as a localized event at the end of
each cell cycle, corresponding to a doubling transmission condition which must be satisfied by the cell density at the
interface between cell cycles (see for instance [18]). These doubling transmission conditions are handled thanks to
discontinuous flux conditions at the corresponding interfaces. Such conditions are tricky to discretize numerically,
even on a uniform grid, and require a specific scheme in order to achieve high order of accuracy. We refer the
reader to [2] for a complete study of a Finite Volume (FV) scheme well suited to this purpose. We validate our
adaptive strategy on both the localized and distributed mitosis models. The specific application we have in mind is
the numerical calibration of terminal follicular development modeled in [11]. Realistic simulations involve solving
simultaneously about twenty coupled PDEs in two space dimensions, during about one dozen of cell cycles, with an
initial cell population concentrated in the first cell cycle. The weak structure of the coupling is suited to an efficient
implementation on parallel architecture, already described in [1]. Nevertheless one simulation takes several minutes to
run and the extensive simulations required to calibrate the model therefore motivate our search for additional reduction
of computational costs by using a MR adaptive finite volume strategy. In this paper we address the problem arising
from coupling the MR strategy with the FV method designed in [2] in the scalar case and with a single processor
architecture, leaving the vector case with parallel implementation to future works. Actually, the main difficulty arising
from this coupling is already present in the scalar case, where the resulting adaptive scheme (FVMR) unfortunately
exhibits unstable numerical noise. The mesh adaptation is tuned by thresholding the details of the MR analysis, which
introduces oscillations. In the standard conservative set-up, this spurious noise is bounded by a small parameter,
and remains so at future times. In our non conservative situation it is amplified by the discontinuous flux conditions
and becomes apparent only after long time simulations - let us say more than ten cell cycles. This corresponds to a
proliferation ratio of 210 which explains how any numerical error, well within any given tolerance at the beginning of
the simulation, can end up having macroscopic consequences on the solution mesh or even its shape (see Figure 14).
It is a quite specific set-up, obviously not encountered in all PDEs with discontinuous fluxes. Hopefully they do not
all require any particular adaptation of the MR method. This is for instance the case for Multiresolution applied to a
traffic flow model [3] with only one (fixed and a priori known) flux discontinuity. If the discontinuity is well captured
by the initial graded tree, it will remain that way, which explains why no specific strategy is needed. We will show
that the non conservative nature of the equation is indeed the factor responsible for the noise amplification.

The main object of this article is therefore twofold: first to fully document the unstable noise appearance when using
the standard MR method on such an equation with doubling conditions. This is done in section 2 where we introduce
a simple 1D model and detail the elementary numerical steps, showing how they lead to spurious numerical noise.
Secondly, we propose a numerical strategy to stop the noise appearance, and then validate it by extensive numerical
tests. This numerical validation, exposed in section 3, uses the FVMR method that we also use in the latest section 4 to
solve more realistic biological models. Eventually we show that our method correctly handles both types of models -
localized or distributed mitosis - with CPU and memory gain between 10 and 20 for an overall relative error remaining
below 10−3.

2 Investigation of numerical noise appearance

In this section we investigate the circumstances under which numerical noise can appear. For this we consider a
simplified 1D problem with piecewise constant speeds. We compute the approximated solution with a simple first order
FV scheme. This allows us to perform one time step of the algorithm by hand and completely describe the interaction of
the doubling condition with a two-level MR algorithm. We illustrate this example by numerical simulations performed
with a method coupling the 2D FV scheme with a mean value MR adaptive strategy.
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2.1 Description of the simplified set-up

We study the simple case of a 1D transport model with piecewise constant speeds and discontinuous flux conditions{
∂tφ(t, x) + ∂x (g(x)φ(t, x)) = 0, for x ∈ R, t > 0
φ(0, x) = φ0(x), for x ∈ R, (1)

with Nc interfaces numbered from 1 to Nc spaced by xs. The speeds are constant in each subdomain

g(x) = gp−1 for (p− 1)xs ≤ x ≤ pxs, p = 1, . . . , Nc + 1.

Transmission conditions are defined by

gpφ(t, px+
s ) = kpgp−1φ(t, (p− 1)x−s ) (2)

where kp is equal to 2 to model a doubling flux interface, or to 1 to model a continuous flux interface.
For the sake of simplicity we first choose gp = 1 and kp = 2 for all p = 0, . . . , Nc and we apply a doubling condition
on the outer boundary

φ(t, 0+) = 2φ(t,Ncx
−
s ).

This model is a simple prototype for transport equations modeling cell proliferation with localized mitosis at the end of
each cell cycle, which is relevant for the granulosa cells in ovarian follicles [11]. We will also consider an alternative
model frequently encountered in the literature (see for instance [16] chapter 3), which consists in distributing the
mitosis over the cell cycle duration, with a linear source term{

∂tφ(t, x) + ∂x (g(x)φ(t, x)) = Bφ(t, x), for x ∈ R, t > 0,
φ(0, x) = φ0(x), for x ∈ R. (3)

The coefficient B in the source term must be such that the averaged total mass is doubled at the end of a cell cycle,
which leads to

exp(BT ) = 2,

where T is the duration of the cycle.

2.2 Finite volume discretization on a two-level MR hierarchy

We start by discretizing the solution on two dyadically embedded levels ∆x0 = 2∆x where we denote the meshes on
the finer level by

D1,k = [k∆x, (k + 1)∆x],

and the meshes on the coarser level by

D0,k = D1,2k ∪ D1,2k+1 = [k∆x0, (k + 1)∆x0].

In our double index notation `, k, the first number ` indicates the level, ` = 0 for the coarser and ` = 1 for the finer.
We further assume that xs = 2K∆x = K∆x0, meaning that the p-th doubling interface is located between meshes
D0,pK−1 and D0,pK on the coarser level, and between meshes D1,2pK−1 and D1,2pK on the finer level, as illustrated
in Figure 1 for the first interface (p = 1).

3



0,K

∆

∆

D
0,K−2

D
0,K+1

x

x2

x2

D
1,2K−2

D
1,2K

D
1,2K−1

D
1,2K+1

D
0,K−1

D

Figure 1: Two level discretization with doubling interface located between meshes D0,K−1 and D0,K on the coarser
level, or D1,2K−1 and D1,2K on the finer level.

The FV approximation of the solution is defined on the finer level by

φn1,k ≈
1

∆x

∫
D1,k

φ(n∆t, x)dx,

and the solution on the coarser level is defined as

φn0,k =
1

2

(
φn1,2k + φn1,2k+1

)
. (4)

Knowing the mean values of the solution on the coarser level, approximated mean values on the finer level can be
obtained by local reconstruction. Arbitrary orders of polynomial approximation can be used but we will consider in
the sequel only the zeroth order reconstruction, also known as Haar reconstruction in the wavelet context

φ̂n1,2k = φ̂n1,2k+1 = φn0,k, (5)

and the second order reconstruction

φ̂n1,2k =
1

8
φn0,k−1 + φn0,k −

1

8
φn0,k+1,

φ̂n1,2k+1 = −1

8
φn0,k−1 + φn0,k +

1

8
φn0,k+1. (6)

We use a FV scheme to compute the numerical solution as

φn+1
j = φnj −

∆t

∆xj

(
Fnj+1/2 − F

n
j−1/2

)
, (7)

where Fnj+1/2 is the numerical flux at time tn through the edge between meshes Dj and Dj+1, and ∆xj the size of
mesh Dj . A simple upwind first order scheme on a uniform grid consists, in this case with unit speed, in taking

Fnj+1/2 =

{
φnj if j 6= 0, pK − 1 and 1, 2pK − 1,
2φnj otherwise, (8)

where the factor 2 in bold takes into account the doubling flux condition (2) when kp = 2, for p = 1, . . . , Nc.

We can therefore compute the numerical solution on the finer level as

φn+1
1,k =

{
(1− λ)φn1,k + λφn1,k−1 if k 6= 2pK,

(1− λ)φn1,k + 2λφn1,k−1 if k = 2pK, for p = 1, . . . , Nc,
(9)

with

λ =
∆t

∆x
,
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which must satisfy 0 < λ ≤ 1 in order to ensure the stability of the solution. If the solution is smooth enough - with a
criterion that we will precise below - we can compute it instead on the coarser level, using λ/2 instead of λ

φn+1
0,k =

{
(1− λ

2 )φn0,k + λ
2φ

n
0,k−1 if k 6= pK,

(1− λ
2 )φn0,k + λ

22φ
n
0,k−1 if k = pK, for p = 1, . . . , Nc.

Note that the numerical solution becomes locally small but nonzero, even when starting from a piecewise constant
solution: due to the numerical diffusion of the numerical scheme, the solution rapidly becomes nonzero upstream of
the initial condition. For instance for the simple scheme (9) we have

φn1,k = (1− λ)φn−1
1,k + λφn−1

1,k−1,

= (1− λ)2φn−2
1,k + 2(1− λ)λφn−2

1,k−1 + λ2φn−1
1,k−2,

... =
...

= (1− λ)nφ0
1,k + . . .+ λnφ0

1,k−n. (10)

In the general case with an arbitrary number of levels and arbitrary high dimensions, one time step of the FVMR
scheme consists in a loop over levels starting from the finest. For each level, a first loop computes the numerical fluxes
between meshes active at the current level using (8), possibly requiring local reconstruction if neighboring meshes
entering the flux estimation are coarser than the current level. Then a second loop updates the solution on the meshes
of the current level using (7).

Having in mind this algorithm is necessary to correctly handle the cases of neighboring meshes of different sizes

• if the left hand side neighbor of mesh D1,2k is the coarser mesh D0,k−1, then the solution φ̂n1,2k−1 at time n on
mesh D1,2k−1 must be reconstructed, using (5) or (6), in order to compute Fn(1,2k)−1/2

• if the left hand side neighbor of mesh D0,k is the finer mesh D1,2k−1, then

Fn(0,k)−1/2 = Fn(1,2k−1)+1/2 = φn1,2k−1

has already been computed during the loop on the finer level

• if the right hand side neighbor of mesh D1,2k+1 is the coarser mesh D0,k+1, no reconstruction is required to
compute Fn(1,2k+1)+1/2 for the simple first order scheme (8). In the case of a higher order scheme, φ̂n1,2k+2

would have to be reconstructed

• if the right hand side neighbor of mesh D0,k is the finer mesh D1,2k+2, then

Fn(0,k)+1/2 = Fn(1,2k+2)−1/2 = φ̂n1,2k+1

has already been computed during the loop on the finer level, using reconstructed value φ̂n1,2k+1

The choice between the two levels of discretization on a given mesh D0,k in the domain is made by comparing the
solution on its subdivisions D1,2k ∪D1,2k+1 with the solution reconstructed on the same mesh using the values on the
coarser grid with formulas (5) or (6). The local smoothness of the solution is indeed measured by the detail, defined
by

dn1,k = φn1,2k − φ̂n1,2k (11)
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• In the Haar case, a null detail corresponds to a locally constant function

dn1,k = φn1,2k − φn0,k

=
1

2
(φn1,2k − φn1,2k+1). (12)

• In the quadratic basis, a null detail corresponds to a locally quadratic function

dn1,k = φn1,2k −
(

1

8
φn0,k−1 + φn0,k −

1

8
φn0,k+1

)
= − 1

16
(φn1,2k−2 + φn1,2k−1) +

1

2
(φn1,2k − φn1,2k+1) +

1

16
(φn1,2k+2 + φn1,2k+3). (13)

We refer for instance to [12] for the approximation theory results establishing the link between dn1,k and the local
smoothness of the solution.

In order to monitor the adaptive FV scheme, the absolute value of the details are tested at each time step against a level
dependent threshold ε`

ε` = ε2`−L+1, for ` = 1, . . . , L− 1. (14)

In the numerical simulations, we refer to the MR threshold to indicate the threshold value on the finest MR level
ε = εL−1. The set of indices of the significant details at time tn is designed as

Γnε = {(`, k), ||d`,k|| ≤ ε},

and enlarged into a set Γ̃n+1
ε according a heuristic rule [12], accounting for singularity displacement (and formation

in the nonlinear case) between time tn and tn+1. Here in the two level case, if |dn1,k| ≥ ε1, then not only D0,k but also
the two neighbors D0,k−1 and D0,k+1 should be subdivided to compute the solution at the next time step. The whole
predictive procedure of adaptive grid refinement is summarized in the general case with L MR levels in Algorithm
1. The solution (φn`,k)(`,k)∈§̃n+1 is reconstructed on the adaptive grid at any given time tn with Algorithm 2. It is
then updated to time tn+1 with a FV scheme. Theoretically and practically –although it implies to renounce the MR
computational benefits– it is also possible to compute the reconstructed solution φnε on the finest grid using Algorithm
2 and setting all dnl,k = 0 for (l, k) ∈ Γ̃n+1

0 \Γ̃n+1
ε . In the case of a scalar hyperbolic equation numerically discretized

with a Lipschitz flux, the L1 norm error an between φnε and the FV solution on the finest level φnunif has been shown
in [5] to be bounded

an := ||φnunif − φnε || ≤ C(tn)ε. (15)

The threshold ε should be chosen so that an is of the same order as the estimate of the discretization error en

en := ||φnunif − φnexact|| ≤ C̄(tn)∆xp, (16)

where p is the numerical order of the reference FV scheme on the uniform grid. Of course in realistic set-ups the exact
solution is unavailable and one also wishes to avoid computing the FV reference solution on the fine grid. Estimates
(15) and (16) can be used to calibrate the threshold value on a smaller scale domain in time and space, or for a
simplified model. In our case, we will see in the numerical tests that choosing ε between 10−2 and 10−3 supplies a
good compromise between accuracy and efficiency.

2.3 Explication of the numerical noise appearance

In this paragraph we describe the mechanism for numerical noise appearance due to the coupling of Multiresolution
with doubling fluxes.
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Algorithm 1 Prediction of the set Γ̃n+1
ε of significant details at time tn+1 from the details at time tn. General case

with L MR levels numbered from the coarsest 0 to the finest L− 1

Require: The solution is known by its mean values on the coarsest level and the details {dn`,k}(`,k)∈Γn
ε

Prediction:
for level ` = L− 1↘ 1 do

for k = 0↗ N02`−1 do
if (`, k) ∈ Γnε and |dn`,k| ≥ ε` then

(`, k + i) ∈ Γ̃n+1
ε for |i| ≤ 1

if ` < L− 1 and |dn`,k| ≥ 2ε` then
(`+ 1, 2k) and (`+ 1, 2k + 1) ∈ Γ̃n+1

ε

end if
end if

end for
end for
Gradualness:
for level ` = L− 1↘ 1 do

for k = 0↗ N02`−1 do
if (`, k) ∈ Γ̃n+1

ε then
for |i| ≤ 1 do

(`− 1, bk/2c+ i) ∈ Γ̃n+1
ε

end for
end if

end for
for k = 0↗ N02`−1 do

if (`, k) ∈ Γ̃n+1
ε \Γnε then

dn`,k = 0
end if

end for
end for

Suppose that |dnK−i| < ε, for i ≥ 0 and |dnK+1| ≥ ε. Due to the preceding rule, the meshD0,K = D1,2K ∪D1,2K+1 is
subdivided, to account for possible displacement of the singularity (see Algorithm 1). The mesh D0,K−1 is kept at the
coarser level, but the value of the solution on its right subdivision D1,2K−1, which enters the FV scheme to advance
the solution on D1,2K , is available using the prediction operator (6) in the quadratic case.

Let us compute the solution at time n+ 1 in the neighborhood of the doubling interface (see Figure 1)

φn+1
0,K−1 = φn0,K−1 −

λ

2

(
φ̂n1,2K−1 − φn0,K−2

)
,

φn+1
1,2K = (1− λ)φn1,2K + 2λφ̂n1,2K−1,

φn+1
1,2K+1 = (1− λ)φn1,2K+1 + λφn1,2K ,

φn+1
1,2K+2 = (1− λ)φn1,2K+2 + λφn1,2K+1,

φn+1
1,2K+3 = (1− λ)φn1,2K+3 + λφn1,2K+2.
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Algorithm 2 Construction of the solution on the adaptive grid S̃n+1 from the set of significant details Γ̃n+1
ε

Require: The solution is known by its mean values on the coarsest grid, and the details for (k, `) ∈ Γ̃n+1
ε

for level ` = 1↗ L− 1 do
for k = 0↗ N02`−1 do

if (`, k) ∈ Γ̃n+1
ε then

{D`,2k,D`,2k+1} ∈ S̃n+1 and D`−1,k /∈ S̃n+1

compute φn`,2k = φ̂n`,2k + dn`,k
and φn`,2k+1 = φ̂n`,2k+1 − dn`,k

end if
end for

end for

We should now check the smoothness of the solution after this update. Using (13) and (4) we can compute dn+1
K as

dn+1
1,K = φn+1

1,2K − φ̂
n+1
1,2K

= φn+1
1,2K −

(
1

8
φn+1

0,K−1 + φn+1
0,K −

1

8
φn+1

0,K+1

)
= −1

8
φn+1

0,K−1 +
1

2
(φn+1

1,2K − φ
n+1
1,2K+1) +

1

16
(φn+1

1,2K+2 + φn+1
1,2K+3).

We plug in the expressions of the solution at time n+ 1 and obtain

dn+1
K = − λ

16
φn0,K−2 +

λ

2
(2φ̂n1,2K−1 − φn1,2K) +

λ

16
(φn1,2K+1 + φn1,2K+2)− 1

8
φn0,K−1

+
λ

16
φ̂n1,2K−1 +

1− λ
2

(φn1,2K − φn1,2K+1) +
1− λ

16
(φn1,2K+2 + φn1,2K+3).

The effect of the doubling flux on the detail is an additional term

dn+1
1,K = d̂n+1

1,K +
λ

2
φ̂n1,2K−1, (17)

compared to the detail d̂n+1
K if no doubling condition is imposed. This means that if the solution is smooth at time

tn, but the solution is large enough before the doubling interface, then the detail may become significant due to the
doubling.

We now explain what happens next, if the detail dn+1
1,K which was negligible at time tn becomes larger than the MR

threshold ε at time n + 1. In the quadratic case, as described in Algorithm 1, the mesh D0,K−1 just upstream of the
doubling interface should be predictively refined using (6){

φ̂n+1
1,2K−2 = 1

8φ
n+1
0,K−2 + φn+1

0,K−1 −
1
8φ

n+1
0,K ,

φ̂n+1
1,2K−1 = − 1

8φ
n+1
0,K−2 + φn+1

0,K−1 + 1
8φ

n+1
0,K ,

where

φn+1
0,K =

1

2
(φn+1

1,2K + φn+1
1,2K+1),

=
1− λ

2
(φn1,2K + φn1,2K+1) +

λ

2
(2φ̂n1,2K−1 + φn1,2K). (18)

Here again the difference between the values of the solution on the subdivisions, which should be small since the
solution is only predictively refined, is enhanced by the value φ̂n1,2K−1 upstream of the interface which contributes
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twice instead of once. We see that in a single time step the doubling condition coupled with the MR, has introduced
an oscillation of the order of φ̂n1,2K−1.

Suppose we start from an initial condition localized in the first slab before the first doubling interface, for instance
φ0
k = δ0,k. Due to the numerical diffusion effects described earlier (see (10)), after M time steps (M depending on ε

and λ), the solution φMk is nonzero and smooth for k = 0, . . . ,M . The MR scheme will therefore coarsen the grid in
this region. As the solution is transported over several slabs, its amplitude is doubled at each interface, and depending
on its local amplitude we can fall in the situation depicted by (17). Furthermore, another factor of noise appearance is
the dependence of the MR threshold level on the discretization level according to the rule (14).

We see from (17) that the decision to refine the mesh after crossing a doubling interface depends not only on the
smoothness but also on the local amplitude. Thanks to (14), the same (small) amplitude discretized on a coarse level
will be more likely to trigger the refinement, and might even trigger the local refinement on two consecutive levels (see
Algorithm 1). We propose an example for such a situation in Appendix B. We describe a situation with three levels
of discretization, where the solution has sensibly the same small amplitude but is refined partly on the intermediate
level, and partly on the coarsest one. We show that refinement rules together with rules (17) and (14) lead to coarsen
the solution wherever it was previously on the intermediate level, and to refine it on the finest level on some locations
where it was before on the coarsest one.

a)

b)

c)

d)

e)

Figure 2: Snapshots of the solution φ(t, x, y) at t = 20 on the whole computational domain and color code from 0 to
107. Panels from top to bottom: a) Zoom on the support of the solution, MR with Haar reconstruction, b) MR with
quadratic reconstruction, c) MR with quadratic reconstruction and doubling threshold strategy (20) d) finer grid no
MR, e) full finer grid no MR. Notice the presence of the spurious noise (refined meshes upstream of and contiguous to
the support of the solution in panel a) and b), as well as isolated upstream refined meshes in panel b)), and the absence
of noise (in panel c)).

At this point we also stress out that the difference between the two wavelets (12) and (13) is quite important, specially
if we solve the 1D test case presented above with the 2D FV code. To illustrate this point we perform a simulation on
a domain consisting of twelve subdomains of unit width and height with vertical doubling interfaces. The (horizontal)
speed is equal to 1. The initial condition is piecewise constant

φ(t = 0, x, y) =

{
10 for 0 ≤ x < 1 and 0.2 ≤ y < 0.3
0 elsewhere

We first use a two level MR hierarchy, with five meshes per subdomain in the x direction on the coarser level. Figure
2 shows the solution computed at time 20 on the uniform finer grid, which counts ten meshes per subdomain in the
x direction, along with the solution computed with the FVMR algorithm and Haar or quadratic reconstruction. Note
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a)

b)

c)

Figure 3: Zoom on the support of the solution at t = 20 and computational grid with color code from 0 to to 10.
From top to bottom a) MR with Haar reconstruction, b) MR with quadratic reconstruction, c) MR with quadratic
reconstruction and doubling threshold (20). The thresholding error is more visible in the Haar case (panel a)) than in
the quadratic reconstruction (panels b) and c)).

that due to the detail amplification (17) the MR solutions with both Haar and quadratic reconstructions exhibit more
refined meshes upstream than downstream of the support of the solution. Figure 3 shows the solution with a color
code from 0 to 10 corresponding to the initial condition; the spurious noise is visible at this scale. Note that in the
Haar case, the upstream amplification (18) does not happen. In the case of the quadratic reconstruction, solving the
1D transport equation (1) with the 2D MR scheme also generates some nonzero solution in the orthogonal direction,
which gets progressively amplified by the doubling interfaces. The difference between the panels corresponding to the
Haar (panel a)) and quadratic predictions (panel b)) highlights the appearance of noise due to the quadratic prediction
operator in 2D: the solution becomes nonzero in the transversal direction above and below the support of the initial
condition. The quadratic prediction performs a better compression of the solution than the Haar one, therefore the
mesh is coarsened faster away from the support of the solution. However in both cases the details are later amplified
by (17) and, in the quadratic case, also by (18), which explains the resurgence of refined meshes upstream of the
support of the solution (panels b)). In this simple set-up isolated cells appear on the finest level only in the quadratic
case, but in more complicated situations the same phenomenon also occurs in the case of the Haar prediction.

2.4 Adaptive doubling strategy

To prevent the formation of this ”numerical noise” several strategies can be implemented :

• Forcibly refining the solution on the finest discretization grid in the vicinity of interfaces, without considering
its local smoothness. This may become quite greedy and altogether compensate the benefits of the MR strategy.

• Adapting the MR threshold to the average amplitude of the solution. This should be done carefully to avoid
rapid changes in the threshold and subsequently rapid coarsening of the solution. We will document later that
the optimal strategy is to adapt the threshold to the total mass of the solution

εt,` = ε`M(t) (19)

where the level dependent ε` is defined by (14), with ε calibrated for a unit mass solution at initial time.

• Modifying the transmission condition (2) with an adaptive strategy consisting in applying the doubling only if
the solution is above a given threshold δ

gpφ(t, px+
s ) =

{
2gp−1φ((p− 1)x−s ) if |φ(t, (p− 1)x−s )| ≥ δ,
gp−1φ((p− 1)x−s ) otherwise. (20)

In practice δ should be chosen close to ε, and we will study the relationship more closely in paragraph 3.3.
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We also assume that the support of the initial condition is entirely located in the first slab before the first doubling
interface. We have actually exemplified in Appendix B that a small and smooth solution lying on both sides of an
interface, could right away generate spurious oscillations. Restricting the initial support ensures that no additional
oscillations will be created by coupling the MR with the doubling condition. The bottom panels of Figures 2 and 3
display the effect of the adaptive doubling strategy in the case of second order reconstruction, setting the parameter δ
equal to ε = 10−2. The numerical noise has completely disappeared.

2.5 Formalization and generalization of the doubling strategy

The result (17) also applies to Haar reconstruction (12). This means that the appearance of the spurious noise is due
not only to the discontinuities in the solution induced by the localized doubling, but also to the enhancement of the
thresholding error. In particular, even if we modified the prediction scheme in the vicinity of interfaces in order to
account for the doubling of the solution, this would not stop the increase of noise.

To formalize this remark, we generalize the MR scheme introduced in Paragraph 2.2 to an arbitrary number of levels
L. We introduce the linear prediction operator P `−1

` such that formula (6) can be expressed generically as

φ̂n` = P `−1
` φn`−1,

and the reconstruction formulas in Algorithm 2 as

φn` = P `−1
` φn`−1 + d`. (21)

Operator P `−1
` is a 2`N0 × 2`−1N0 matrix, that is zero everywhere except at three consecutive coefficients per row

(P `−1
` )2k,k−1 = 1/8, (P `−1

` )2k,k = 1, (P `−1
` )2k,k+1 = −1/8,

(P `−1
` )2k+1,k−1 = −1/8, (P `−1

` )2k+1,k = 1, (P `−1
` )2k−1,k+1 = 1/8,

with periodic boundary conditions

(P `−1
` )0,2`−1N0−1 = 1/8, (P `−1

` )2`N0−2,0 = −1/8,

(P `−1
` )1,2`−1N0−1 = −1/8, (P `−1

` )2`N0−1,0 = 1/8. (22)

Note that other types of boundary conditions can be designed but periodic ones are coherent with the boundary condi-
tions used in the application to the biological model. Formula (21) can be applied recursively, leading to

φnL−1 =

L−1∏
`=1

P `−1
` φn0 +

L−1∑
`=1

L−1∏
j=`+1

P j−1
j dn` . (23)

The adaptive solution after thresholding with the MR threshold ε can be expressed as

φn,εL−1 =

L−1∏
`=1

P `−1
` φn0 +

L−1∑
`=1

L−1∏
j=`+1

P j−1
j dn`,ε, (24)

where dn`,ε is the vector of thresholded details on level `

(dn`,ε)`,k =

{
dn`,k if ||dn`,k|| ≥ ε`,
0 otherwise.

From (23) and (24) it is straightforward to obtain an O(ε) estimate of the error between the unthresholded solution
φnL−1 and the thresholded one φn,εL−1. In [5], a strategy was introduced to enlarge the tree of significant details (with

11



respect to the threshold ε), ensuring that the adaptive solution on the corresponding mesh satisfies the same error
estimate at the next time step time n + 1. We also recall a useful result from [9] showing that the reconstructed
solution on any intermediate level is vitiated by an O(ε) perturbation due to MR thresholding and reconstruction,
which we can summarize as

φn,ε`,k = φn`,k +O(ε). (25)

We apply the adaptive doubling strategy (20) along with the elementary FV scheme (9) generalized to an L level MR
hierarchy with λ` = 2`−L+1λ

φn+1,ε
`,k =

{
(1− λ`)φn,ε`,k + λ`φ

n,ε
`,k−1 if k 6= pK or |φn,ε`,k−1| ≤ δ

(1− λ`)φn,ε`,k + λ`2φ
n,ε
`,k−1 if k = pK and |φn,ε`,k−1| > δ,

with p = 1, . . . , Nc. We see that we have a conditional maximum principle in the sense that

if φn,ε`,k ≤ δ and φn,ε`,k−1 ≤ δ then φn+1,ε
`,k ≤ δ. (26)

Relations (25) and (26) together show that parameter δ should be correctly calibrated in relation with the MR threshold
ε, to prevent the MR perturbation in (25) from being amplified and becoming the unwanted spurious noise.

3 Numerical validation of the adaptive thresholds strategies

In this paragraph we perform numerical tests to validate the adaptive strategies (19) and (20). We then study the
relationship between the two thresholds δ and ε.

3.1 Effect of the adaptive doubling strategy on the solution

To justify the doubling strategy designed to tackle the spurious noise introduced by the MR we show the influence of
applying (20) instead of (2), independently of the MR, and even of any numerical scheme, by computing the exact
solution of the 1D problem (1). As shown in [2], the exact solution for a single interface located at x = xs with
condition (2) is

φ1(t, x) =


φ0(x− g0t) for x < xs,

φ̃1(ts) for (xs − g1t) ≤ (x− g1t) < xs,

φ0(x− g1t) for (x− g1t) ≥ xs,

where φ̃1 is the trace of the solution on the right of the interface, defined by

φ̃1(t) =
1

g1
k1(g0φ0(xs − g0t)), (27)

and ts is the delay after which the effect of interface xs is felt at position x and time t defined by

ts = t− (x− xs)
g1

. (28)

We now show how the exact solution for a sequence of Nc interfaces can be defined recursively. Let us denote by
φp−1(t, x) the solution for a sequence of p− 1 interfaces, with p > 1 and add a pth interface at pxs with a coefficient
kp for the transmission condition and a speed gp on the right hand side (see Figure 4). For x < pxs the effect of the
pth interface is not felt and the solution is φp−1(t, x). For x ≥ pxs, depending on time t, the effect of the interface is
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Figure 4: Set-up for the pth interface. The characteristic curves in the right part of the domain transport either the
initial condition if they cross the x-axis or the trace of the solution on the pxs interface, multiplied by the kp coefficient,
if they cross the vertical x = pxs axis

felt or not. If (x− pxs) < gpt, events crossing the pth interface are multiplied by the kp coefficient and transported at
speed gp. The effects of these events are felt at position x after a delay (x− pxs)/gp. If (x− pxs) > gpt, the effect of
the pth interface is not felt yet and the initial condition defined on x > pxs is transported at speed gp. We eventually
have

φp(x, t) =


φp−1(x, t) for x < pxs,

φ̃p(t
p
s) for (pxs − gpt) ≤ (x− gpt) < pxs,

φ0(x− gpt) for x− gpt ≥ pxs,
(29)

where φ̃p is the trace of the solution on the right of the pth interface, defined by

φ̃p(t) =


1

gp
kpgp−1φp−1(pxs, t) if p > 1

1

gp
kpgp−1φ0(xs − gp−1t) otherwise

(30)

and tps is defined by

tps = t− (x− pxs)
gp

.

We mimic set-up (1) by solving equation (29) numerically using recursiveness, with gp = 1 for all p and an initial
condition φ0 defined by

φ0(x) = exp
(
−5(x− 0.5)2

)
. (31)

We also mimic strategy (20), that we plan to apply to our real problem, and use the doubling condition in (30) only
if the solution is larger than the doubling threshold δ. At each time step, we compute the total mass by numerically
integrating the solution over the whole x abscissa range [0, 20]. Figure 5 displays the total mass with respect to time,
for different values of the threshold parameter δ

M δ,n = ∆x
∑
j

φδ(n∆t, j∆x)

along with the exact solution

Mn = ∆x
∑
j

φ(n∆t, j∆x).

13



 0

 500

 1000

 1500

 2000

 2500

 0  2  4  6  8  10  12

M
(t

)

t

exact
0.1

0.01
0.001

 400

 500

 600

 700

 800

 900

 1000

 1100

 9  9.2  9.4  9.6  9.8  10

M
(t

)

t

exact
0.1

0.01
0.001

Figure 5: Mass with respect to time computed with the recursive definition (29), without and with the doubling strategy
(20) for different values of the parameter δ. Full time range on the left and zoom on the final region on the right.

Figure 6 displays the L1 norm over the time interval of the error between the thresholded and exact masses, normalized
by the L1 norm of the mass of the exact solution

Err(δ) =

∑
n

∣∣Mδ,n −Mn
∣∣∑

n |Mn|
, (32)

where φδ (respectively φ) is computed on the discrete time-space grid ∆t × ∆x with (29) and with (respectively
without) the adaptive doubling strategy (20). The error is displayed as a function of the threshold parameter δ, in
logarithmic axes, which highlights its linear dependence onto the threshold. In Figure 6 we also display the error
behavior for the same simulation in the case when the parameter δ changes with time, which would happen if the MR
threshold ε followed the time-dependent rule (19). We choose in fact

δt = δM(t), (33)

where M(t) is the mass of the solution integrated over the whole spatial range, at time t

M(t) =

∫ Nxs

0

φ(t, x)dx.

These numerical experiments show that whichever the selected thresholding strategy for the MR method, the influence
of the adaptive doubling strategy (20) is well controlled by parameter δ. Except for the unreasonably large value of
δ = 0.1, the mass behavior computed with the adaptive doubling strategy is undistinguishable from the exact solution.
Both error curves in Figure 6 exhibit a better behavior than the asymptotic O(δ).

In Figure 7 we check that the numerical scheme FVMR described in the previous section correctly reproduces this
macroscopic mass behavior. We run a 2D simulation of the 1D simple model (1) and we compare it to case (3) where
the doubling is uniformly distributed over the cycle, with a linear birth term amounting to the same overall doubling.
In Figure 8 snapshots of solutions at t = 7.48 and t = 8 are displayed, allowing one to compare at the microscopic level
the effect of either applying a doubling condition locally at the end of interface or smoothly distributing proliferation
over all the cycle. At both times the solutions sensibly have the same mass, we have selected the snapshot at times
when the red and dashed green curves intersect in Figure 7. The top panel, at t = 7.48, corresponds to a time when
the support of the solution is equally distributed on one side and the other of an interface between cell cycles and the
induced discontinuity in the solution is clearly visible on the left panel. The bottom panel, at t = 8 corresponds to a
time when the support of the solution is well within the same cell cycle, and both solutions do not substantially differ.
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Figure 7: Mass over eleven cycles as a function of time for localized and distributed doubling. Third order scheme,
four MR levels, ε = 10−3. The exact solution (29) is superimposed on the FVMR solution.
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Localized doubling at t = 7.48 Distributed doubling at t = 7.48

Localized doubling at t = 8 Distributed doubling at t = 8

Figure 8: Snapshot of the density φ(t, x, y) at time t = 7.48 (top panels) and t = 8 (bottom panels). Left panels:
localized doubling, right panels : distributed gain over the cell cycle. The color bar giving the amplitude of the density
(between 0 and 7000) is the same for all panels. The initial solution, given by (31), has a unit mass.

3.2 Time adaptation of the MR threshold εt

To study the influence of the time adaptation of the MR threshold εt (19), we perform different simulations of simple
test case (1) with smooth initial condition (31), the third order FV scheme and a 4 level MR hierarchy with the
quadratic reconstruction. We test by turns, the time adaptation of the MR threshold (19), and another adaptation of the
MR threshold based on the maximum value of the solution

εt,` = ε` max
x,y
|φ(t, x, y)|. (34)

In each case we perform the simulation with or without the adaptive doubling strategy (20). The six possible cases are
referred in the graphs with the following legends

Unconditional doubling (2) Adaptive doubling (20)
Constant MR threshold δ = 0 × δ = ε +

Adaptive MR threshold (19) δ = 0, εt = εM(t) � δ = εt = εM(t) ∗
Adaptive MR threshold (34) δ = 0, εt = εSup|Φ|(t) • δ = εt = εSup|Φ|(t) �

Table 1: Legend codes for Figures 9 and 15

The L1-norm of the relative error at a given time tn = n∆t is defined as

||E||L1 =

∑
i,j

∣∣∣φε,nL−1;i,j − φnL−1;i,j

∣∣∣∑
i,j

∣∣∣φnL−1;i,j

∣∣∣ , (35)

where φnL−1;i,j is the FV solution at time tn = n∆t on the finest MR level L− 1 of discretization, with index i in the
x direction and j in the y direction, and φε,nL−1;i,j is the adaptive scheme solution, reconstructed at time tn on the finest
level L− 1.

This error is computed at five different times and displayed in Figure 9 against the MR threshold level ε on the left
panels, the CPU gain on the center panels, and the memory gain on the right panels. The CPU gain is the ratio of the
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CPU time for the simulation on the uniform finest grid to the CPU time for the FVMR simulation. The memory gain
is the ratio of the number of meshes in the uniform finest grid to the maximum number of meshes in the adaptive grid
during the FVMR simulation.

The left panels show that, whichever the thresholding strategy, the expected asymptotic behavior in O(ε) is satisfied
(see equation (15)). Nevertheless, as time increases, the normalization factors in the adaptive strategies (19) and (34)
increase, resulting in more and more distinct curves. In practice, this type of curve is computed for a reduced version
of the full scale simulation in order to select a threshold value ε ensuring a correct balance between the MR (15) and
discretization (16) errors. In our case we will use the optimal values of the thresholds δ and ε calibrated from this
simple 1D set-up in future 2D and vector simulations of the biological model. In other situations, one could calibrate
the MR threshold in 2D tests before addressing the 3D cases where the reference solution is beyond reach. We have
represented the error inL1 norm in space at various times during the simulation, which gives more detailed information
than the global L1 error over the whole timespan, and allows us in particular to see the variation in the error as the
time adaptive threshold increases. For a constant threshold (red and green lines) the error remains almost unchanged
with time. This is not a surprise since we have already observed in [5] that the theoretical estimate (15) predicting a
linear growth in time was very pessimistic. Also quite expectedly, the difference between the error curves increases
with time in the case of time adaptive thresholding with increasing value of ε. Note that the MR error at a given time
has built up progressively and does not entirely depend on the current value of ε(t): at time t = 10 there is a factor
of order 10 between the red and dark blue curves, which correspond respectively to the constant and mass dependent
threshold (Eq. (19)and (33)), although at that time the mass, and therefore ε(t), has already been multiplied by 103.
At the end of the simulation (at t = 20) the error ratio between both curves is still about 10, although ε(t) has been
multiplied by 106.

The center and right panels allow one to assess the performance of the thresholding strategies with respect to compu-
tational costs, in terms of CPU time as well as memory requirement. For early times all strategies seem equivalent,
but after ten cycles, the simulations corresponding to constant MR thresholding start having worse performances than
those using either of adaptive strategies (19) and (34), which remain basically undistinguishable. The simulation with
constant MR thresholding and no doubling adaptation, displayed with green ×, has the worst performances, because
at large times, spurious noise has started to develop, requiring fine mesh discretization and therefore, more memory
and more CPU time.

We now validate the adaptive doubling strategy (20) by extensive numerical tests. We compare its efficiency when
it is coupled with one or another method of MR thresholding. We also estimate the optimal value for the threshold
parameter δ.

3.3 Link between the MR and the doubling thresholds

In this paragraph we study the relation between the MR threshold parameter ε and the threshold δ in the adaptive
doubling interface (20). Still for 1D test case (1) with the piecewise constant initial condition, we run extensive tests
for different values of both thresholds. We also study the influence of the number of levels in the MR hierarchy, the
precision of the FV algorithm, and the effect of normalizing the MR threshold by the overall mass of the solution, as
it increases with time (see Eq. (19)).

Figure 10 displays the L1 norm of error at final time t = 20, between the adaptive solution and the solution computed
on the uniform finest grid. The adaptive solution is computed with different values of the MR threshold ε, fixed once
for all times, and for values of the threshold δ varying between ε/100 and 10ε. For two, three and four levels in the
MR hierarchy we display the results in two different fashions : The standard error visualization is shown in the left
panels, where the interesting feature is the linear trend of the error with ε which is preserved by the adaptive doubling
strategy. However normalizing by ε both the error on the vertical axis and δ on the horizontal axis highlights the
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Figure 9: L1 norm of relative error (35) at different times, with respect to the MR threshold ε (left panel), the CPU
gain (center panel) and the memory gain (right panel). Effect of adaptive MR threshold εt and doubling threshold δ
in the case of the simple 1D test case, 4 MR levels, third order FV scheme. The line labelled O(ε) in the left panel
graphs indicates the theoretical asymptotic behavior of the error as a function of ε, which is a straight line of slope one
in logarithmic axes. The complete legend code is described in Table 1.
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correlation between ε and δ since the minimum of the error is observed for a similar ratio range for each set of curves.

Figure 10 displays results computed with the first order upwind FV scheme (7-8). The value of δ which minimizes
the error lies between 0.2ε and 2ε and increases with both ε and the number of levels. We also made the same test
for four levels and the third order FV scheme. The results are displayed in the top panels of Figure 11; the value of δ
minimizing the error is shifted from about ε in the first order case to about 2ε.

We then couple the adaptive doubling strategy (20) with the adaptation of the MR threshold to the increasing size of
the solution. The same error study as previously is performed, for four MR levels and the third order FV scheme. The
results, displayed in the bottom panels of Figure 11, still exhibit that there is an optimal value for δ. It seems to be
roughly around 1.5ε.

After these extensive numerical tests, we are confident that coupling both adaptive thresholds (19) and (20) enables
the FVMR strategy to robustly handle doubling flux conditions of type (2). We will adopt in the sequel the value δ = ε
which is close to the optimal value in all cases.

4 Application to a biological model

4.1 Model and numerical method

In this section we apply the strategy presented above to the numerical simulation of a biological model dedicated to
the cell dynamics in ovarian follicular development introduced in Echenim et al. [10] and references therein. The
model is multiscale to account for the selection process of ovulatory follicles which involves the cellular, follicular
and ovarian levels. At the microscopic level, the granulosa cell population is structured according to the cell age
(position within the cell cycle) and the cell maturity (level of sensitivity towards hormonal control). In each ovarian
follicle, the granulosa cell population is described by a density function whose changes are ruled by conservation laws.
The multiscale structure arises from the formulation of a hierarchical control operating on the aging and maturation
velocities as well on the source terms of the conservation law; this control depends on the first moment in the maturity
variable of the density. Diagrams summarizing the main features of the model are depicted in Figure 12. The functional
space in cell age × cell maturity is subdivided into subdomains corresponding to different cell states: proliferation
(Ωp1 ∪ Ωp2) or differentiation (Ω3), and also with respect to the cell sensitivity towards the hormonal control exerted
by the pituitary gland (sensitive phase Ωp1 ∪ Ω3, insensitive phase Ωp2). The mitosis is the endpoint of the cell cycle
which is completed when the two daughter cells are separated from each other. In our set-up the mitosis happens at
values xs = p for p = 1, . . . , Nc − 1, on the internal boundaries between Ωp2 and Ωp+1

1 , and between ΩNc
2 and Ω1

1

when the density reaches the right side of the domain due to the periodic boundary condition at this point. On the
intermediate internal boundaries between Ωp1 and Ωp2, at values xs = p+ 1/2 for p = 1, . . . , Nc, the flux condition is
continuous. The vertical component of the velocity is positive in Ωp1 and consequently all cells eventually enter Ω3.
In the differentiation phase Ω3, cells do not proliferate any more and cannot overcome an asymptotical maturity level,
corresponding to a null vertical velocity (see [14]). The position of the zero of h(γ, u) (see Eq (40)) varies with the
control term u but the properties of function h ensure that it remains in Ω3. We can thus apply periodic boundary
conditions to the density –which are easy to implement in our adaptive mesh context– on boundaries y = 0 and y = 1.
We refer the interested reader to [2] for a detailed exposition of the motivation underlying the choice of a localized
transmission condition of type (2), and to [19, 17] for biological evidence of localized mitotic phenomenon). We
also refer the reader to Appendix A for the description of the model in the single follicle case and to [2] for a more
general presentation, including a description of the third order numerical scheme designed to handle the discontinuous
flux conditions. Here we solely address the coupling of the MR with the FV scheme in the context of a localized
or distributed mitosis. Actually we even neglect at this stage the macroscopic scale where the different follicles are
coupled through the interaction between the ovaries and the hypothalamus/pituitary complex, formerly exposed in [1],
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Figure 10: Relation between the MR threshold parameter ε and the threshold δ in the adaptive doubling interface (20).
L1 norm of the error with the solution computed on the uniform finest grid at final time. Simple 1D test case (1) with
first order FV scheme. Left panels: error as a function of δ. Right panels: error/ε as a function of δ/ε, for different
numbers of MR levels (top panels: L = 2, middle panels: L = 3, bottom panels: L = 4).
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Figure 11: Relation between the MR threshold parameter ε and the threshold δ in the adaptive doubling interface (20).
L1 norm of the error with the solution computed on the uniform finest grid at final time. Simple 1D test case (1), four
MR levels, third order FV scheme. Left panels: error as a function of δ. Right panels: error/ε as a function of δ/ε.
Top panels: constant MR threshold ε, bottom panels: adaptive MR threshold εt.
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and only consider the case of a single follicle.
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Figure 12: Computational domain for the biological model of follicular development. In panel a) the cell cycles
Ωp1 ∪Ωp2, p = 1, . . . , Nc of unit width are periodically reproduced. Ωp1 corresponds to phase G1, while Ωp2 aggregates
phases S, G2 and M of the pth cell cycle. Ω3 is the differentiation phase, where the cells do not proliferate anymore.
Panel b) is a zoom on the first cell cycle. The source term is active in the zone between the horizontal dash lines, where
cells are subject to apoptosis. The arrows indicate the possible directions of the transport in the cell phases.

We use the third order FV scheme designed in [2] and we couple it with the MR strategy on four levels. The domain
consists of eight cell cycles with ten meshes in each cycle at the coarsest level in the x direction, and ten meshes in
the y direction. The CFL number ensuring the stability of the scheme is set to 0.4. Note that the velocity coefficients
depend on the solution (see equations (39-44) in Appendix A). The time step value is therefore time-dependent and
computed at each time iteration. We adapt the stability rule designed in [1] to the adaptive case so that

∆tn := min

(
CFL min

D`,(i,j)∈S̃n

∆x`
max(|gn`,(i,j)|, |h

n
`,(i,j)|)

,
1

maxD`,(i,j)∈S̃n |Λn`,(i,j)|

)
(36)

where gn`,(i,j) (respectively hn`,(i,j)) is the discrete value of the speed g given by (39) (resp. h given by (40)) and Λn`,(i,j)
is the discrete value of the source term Λ(x, y, U(t)) given by (41) on the mesh D`,(i,j) ∈ S̃n. A simpler condition
would consist in using the uniform case definition with the space step corresponding to the finest MR level

∆tn := min

(
CFL

∆xL−1

maxD`,(i,j)∈S̃n(|gn`,(i,j)|, |h
n
`,(i,j)|)

,
1

maxD`,(i,j)∈S̃n |Λn`,(i,j)|

)

but since the speed and source coefficients are space dependent, the mesh has to be fully surveyed at each time iteration
in any cases and formula (36) is more accurate and possibly less stringent. The numerical value of the biological
constants appearing in definitions (39), (40) and (44) are gathered in Table 2. In the following paragraph we detail a
set of numerical experiments which highlight the robustness of our numerical method in this biological set-up. We
show in particular, that for this standard set of parameters spurious noise will appear at late times of the simulation
unless the adaptive strategies presented earlier are used.
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Parameter Description Value
FSH plasma level (eq. (43))

Umin minimum level 0.075
Umax minimum level 0.15
c slope parameter 2.0
M abscissa of the inflection point 4.5

Apoptosis source term (eq. (41))
Λ̄ intensity factor 1

Λw half width 0.05
γ̄ scaling factor 0.1
ys cellular maturity threshold 0.3

intrafollicular FSH level (eq. (44))
b1 basal level 0.08
b2 exponential rate 2.2482
b3 scaling factor 1450.

Aging function (eq. (39))
γ1 rate 0.2
γ2 origin 1.0
c1

Maturation function (eq. (40))

0.68
c2 0.08
ū 0.02
τh 0.3

Table 2: Values of the parameters for the biological model simulations

4.2 Numerical performances

The reference solution is computed on the finest level of resolution, comprising 51200 meshes and it takes 540 seconds
on a mono processor Apple laptop to reach the final time t = 20. Snapshots of the solution at representative times
are displayed in Figure 13, along with the adaptive mesh corresponding to ε = 0.01. Noticeably, at initial time (top
panel), due to the periodicity of the MR reconstruction operator (see Eq. (22)), the mesh is refined near the right edge
of the domain although the density is zero in this area.

As in the simple test case, we perform simulations with or without time adaptation of the MR threshold (19) and (34),
and with or without the adaptive doubling strategy (20). Figure 14 dedicated to snapshots of the solution at t = 20
shows the influence of adaptive thresholds on the spurious noise removal. A zoom of the density computed with the
different methods is displayed in the left panels. Both solutions look very similar although if we let the simulation
run longer the solution in the bottom panel eventually deteriorates. In the right panels we display the adaptive grid
superimposed to the density with a color code adapted to the amplitude of the spurious noise.

We then compute the L1 norm of the relative error (35) as a function of ε at different times, corresponding to the
snapshots displayed in Figures 13 and 14, with respect to the solution obtained using the uniform finest grid.

In Figure 15 we display the error curves against the MR threshold ε (left panel), the CPU gain (center panel) and the
memory gain (right panel). The same legend as in Figure 9 is used, and described in Table 1. As in the simple 1D test
case, the asymptotic behavior of the error in O(ε) is verified, except for extreme values of the threshold parameter ε.
In the left panels, the error curves corresponding to simulations with the adaptive doubling strategy (20) (with red +,
blue ∗ and cyan �) lie lower than their counterparts without the adaptive doubling strategy (with green ×, pink � and
black •).
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Figure 13: Snapshots of the density of granulosa cells computed with the FVMR strategy, adaptive doubling (20)
and MR threshold (19), four MR levels, third order scheme, ε = 10−2, and biological constants from Table 2. For
each time, the adaptive grid is shown below the density, displayed with a time-dependent color code. The boundaries
between biological cell cycles are marked with white lines.
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a) b)

c) d)

Figure 14: Snapshots of the density at final time t = 20. a-b) with the adaptive doubling (20) and MR threshold
strategy (19), c-d) : unconditional doubling and constant MR threshold. b-d) The color code adapted to the initial
condition is used in order to highlight the spurious noise. Without the adaptive doubling strategy, the spurious noise
appears and triggers additional refinement (bottom part of panel d)).

In the center and right panels, the performances of the different algorithms in terms of CPU time and memory require-
ments are displayed for a given accuracy measured by the relative error (35). The differences between the different
strategies are not as spectacular as is the simple test case. Due to the differentiation phenomenon and the associated
cell cycle exit, the overall proliferation rate is around 37 at the final time t = 20, much smaller -by a factor of 200- than
in the 1D test case, so that the spurious noise is less important. Nonetheless, for late times, the curves corresponding to
the simulation without MR nor doubling threshold adaptation (with green ×) clearly exhibit worse performances than
the others. It is also noticeable that as time increases, the range of memory gain shifts to the left. Indeed, the size of
the adaptive grid increases, because the density spreads out when it crosses the boundary between the proliferation and
differentiation phase. The range of CPU gain also shifts accordingly to the left, since the computing time is directly
and almost linearly related to the size of the grid.

The relation between the MR threshold ε and the adaptive doubling threshold δ is studied in Figure 16, where the
relative error with the uniform grid solution is displayed against δ for different values of ε. Here again an optimal
value is clearly visible. The curves in the right panel, where the product εE(δ, ε) is displayed against δ/ε are almost
all superimposed, except for the two extreme values of ε. This corroborates the asymptotic behavior of the MR error
in O(ε), which is always verified except if ε is too large (= 0.1) or too small (in that case the numerical accuracy of
the computer penalizes the asymptotic behavior).

4.3 Comparison of the numerical performances for both models of mitosis

As previously explained in the Introduction and the beginning of Paragraph 4, the mitosis is an almost punctual event
in time. Nevertheless cell proliferation is commonly modeled by a distributed gain term [16]. In this paragraph we
study the influence of treating the mitosis in either a localized or distributed manner on the convergence of the MR
algorithm with ε. In contrast with the simple model illustrated in Figure 7, we are now in a realistic biological context
including the 2D dependence of the cell density on age and maturity variables. However, to make the comparison
meaningful, the aging velocity is left constant in time and piecewise constant in age and maturity

g(x, y, u) =

{
γ2 = 1.2 for (x, y) ∈ Θ1,
1 for (x, y) ∈ Θ2 ∪ Ω3,

(37)
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Figure 15: L1 norm of relative error (35) at different times, with respect to the MR threshold ε (left panel), the CPU
gain (center panel) and the memory gain (right panel). Effect of adaptive MR threshold εt and doubling threshold δ in
the case of the biological model. The line labeled O(ε) in the left panels indicates the theoretical asymptotic behavior
of the error as a function of ε which is a straight line of slope one in logarithmic axes. The complete legend code is
described in Table 1.
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Figure 16: Relation between the MR threshold parameter ε and the threshold δ in the adaptive doubling interface (20).
L1 norm of the error with the solution computed on the uniform finest grid at final time. Biological model, four MR
levels, third order FV scheme. Error as a function of δ (left), error as a function of δ/ε, error/ε as a function of δ/ε,
for different values of ε. Constant MR threshold ε.

instead of using its general closed-loop model formulation (39). We can compute the equivalent distributed linear
source term B, which results in doubling the cell mass after one cell cycle has elapsed

B =
2 ln(2)γ2

1 + γ2
.

In order to reach a realistic mass gain before all cells have left the proliferation stage, we also reduce the time constant
of the maturation velocity τh = 0.2. Figure 17 displays the dependence of the relative error between the adaptive and
uniform solutions with respect to the threshold ε, the CPU and the memory requirement. The left panels in Figure
17 show that the theoretical behavior in O(ε) is observed except for very small values of ε where the error estimates
reaches the numerical accuracy. The reference solution on the uniform finest grid with 51200 meshes requires 535
seconds of CPU time. The center and right panels show that an average gain of 10 in CPU can be achieved, for a relative
error of 10−3, while reducing the memory by a factor of six. Comparison of the top and bottom panels corresponding
respectively to the localized and distributed models shows that the adaptive scheme exhibits comparable characteristics
in both cases.

Conclusion

We have adapted a MR procedure to FV in order to simulate numerically non conservative transport equations with
specific discontinuous flux conditions on interfaces between subdomains. In the absence of any specific care, we
almost systematically observe the appearance of spurious numerical noise in long time simulations.

In this paper we have explained on a simple but generic model the reasons underlying this artifact and proposed a
strategy to avoid it. We show that the doubling condition should be applied according to an adaptive rule only when
the solution is above some threshold δ, to be taken of the order of the MR threshold ε. This stops the spurious noise
appearance, while preserving all the robust characteristics of the MR method, namely its O(ε) asymptotic behavior,
and interesting gains in CPU time and memory requirements. Accessorily, we have also qualitatively compared the
modeling of biological mitosis by a discontinuous flux condition, to the distributed birth term often encountered in the
literature, and shown that the later is also well handled by our FVMR scheme. This method will next be applied to
real case simulations involving large dimension vector systems.
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Figure 17: L1 norm of relative error (35) with respect to the threshold parameter ε (left panels), CPU gain (center
panels) and memory gain (right panels). Top panels: Localized doubling with uncontrolled aging velocity (37), bottom
panels: equivalent distributed doubling. The complete legend code is described in Table 1.
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A Description of the model for follicular development

This paragraph presents the details of the biological model illustrated by the numerical simulations commented in
Paragraph 4. It is meant to make the paper self-contained and introduce the notations. Details on the biological bases
of the model can be found in the founding paper [11] and the review [4]. Since our goal here is to design the coupling
of MR with adaptive doubling strategy, the vector nature of the model is not relevant, so that we only present its scalar
version, referring the reader to [1, 2] for a more general presentation of the numerical scheme. Let us denote φ(t, x, y)
the density of granulosa cells at time t, age x and cell maturity y. It satisfies the following equation :

∂φ(x, y, t)

∂t
+
∂(g(x, y, u(t))φ(x, y, t))

∂x
+
∂(h(x, y, u(t))φ(x, y, t))

∂y
=

−Λ(x, y, U(t))φ(x, y, t), (38)

set in the computing domain Ω in the (x, y) plane,

Ω = {(x, y), 0 ≤ x ≤ Nc ×Dc, 0 ≤ y ≤ 1}

where Nc is the number of cell cycles and Dc is the duration of one cycle. The domain Ω is divided in 2Nc + 1 zones:
Ωp1, Ωp2, for p = 1, . . . , Nc and Ω3, corresponding to different cell states illustrated in Figure 12 and hence different
definitions of the speeds and source terms. Phase Ωp2 in the model aggregates the three latest phases (S, G2, M) of the
pth cell cycle

Ωp1 = {(x, y) ∈ Ω, pDc ≤ x ≤ (p+ 1/2)Dc, 0 ≤ y ≤ ys}, p = 0, . . . , Nc − 1,

Θ1 = ∪Nc
p=1Ωp1

Ωp2 = {(x, y) ∈ Ω, (p+ 1/2)Dc ≤ x ≤ (p+ 1)Dc, 0 ≤ y ≤ ys},
p = 0, . . . , Nc − 1, Θ2 = ∪Nc

p=1Ωp2
Ω3 = {(x, y) ∈ Ω, ys ≤ y}.
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Each cell cycle consists of the Ωp1 ∪ Ωp2 subdomain and Θi for i = 1, 2 denotes the disconnected union of the Nc
corresponding phases Ωip, for p = 1, . . . , Nc.
The aging function g appearing in (38) is defined by

g(x, y, u) =

{
γ1u+ γ2 for (x, y) ∈ Θ1

1 for (x, y) ∈ Θ2 ∪ Ω3
(39)

where γ1, γ2 are real positive constants.
The maturation function h is defined by

h(x, y, u) =

{
τh(−y2 + (c1y + c2)(1− exp(

−u
ū

))) for (x, y) ∈ Θ1 ∪ Ω3

0 for (x, y) ∈ Θ2

(40)

where τh, c1, c2 and ū are real positive constants.
The source term, that represents cell loss through apoptosis, is defined by

Λ(x, y, U) =

 Λ̄ exp(−(
(y − ys)2

γ̄
))(1− U)χ{|y−γs|≤Λw}(y) for (x, y) ∈ Θ1 ∪ Ω3

0 for (x, y) ∈ Θ2

(41)

where Λ̄, ys and γ̄ are real positive constants, and χE(y) is the characteristic function of subset E.
The equations in the PDE system (38) are linked together through the argument u(t) appearing in the speeds g(x, y, u)
and h(x, y, u) and the argument U(t) appearing in the source term Λ(x, y, U). U(t) and u(t) represent respectively
the plasma FSH level and the locally bioavailable FSH level and depend on the first maturity moment of the density

M(t) =

∫ 1

0

∫ NcDc

0

yφ(x, y, t)dxdy. (42)

The plasma FSH level U(t) showing up in the arguments of the source term in (38) is defined by

U(t) = Umin +
Umax − Umin

1 + exp(c(M(t)−M))
, (43)

where Umin, c and M are real positive constants. The locally bioavailable FSH level u(t) showing up in the arguments
of the speeds in (38) is defined by

u(t) = min

(
b1 +

exp(b2M(t))

b3
, 1

)
U(t) (44)

where b1, b2 and b3 are real positive constants.
The precise definition of the required transmission conditions along the successive cell cycles of the domain has been
formulated in [18]. For each cycle p = 1, . . . , Nc,

• the flux on the x-axis is continuous on the interface between Ωp1 and Ωp2

φ(t, x+, y) = (γ1u+ γ2)φ(t, x−, y), x = (p− 1/2)Dc, 0 ≤ y ≤ ys. (45)

• The flux is doubling on the interface between Ωp2 and Ωp+1
1 , which accounts for the birth of two daughter cells

from one mother cell at the end of each cell cycle

(γ1u+ γ2)φ(t, x+, y) = 2φ(t, x−, y), x = pDc, 0 ≤ y ≤ ys. (46)

• A homogeneous Dirichlet condition holds to the north of the interface between Ωp2 and Ω3

φ(t, x, y+
s ) = 0, (p− 1/2)Dc ≤ x ≤ pDc. (47)

30



1,2K+3

D
0,K−2

D
0,K+1

x2

D
0,K−1

D
0,K

D
0,K+2

a

α

Φ
n

D
1,2K+2

D

Figure 18: Set-up for Appendix B. Three level discretization with doubling interface located between meshes D0,K−1

and D0,K on the coarsest level. At time tn the solution is piecewise constant with a discontinuity of size α located
between meshes D1,2K+2 and D1,2K+3, resulting in a gradually adaptive grid.

B Example of spurious numerical noise appearance

We show on a simple example that spurious noise can appear due to doubling transitions and requires refinement on
the finest model, while the real discontinuities get smoothed out by the numerical scheme diffusion.
Suppose for instance that at time tn the solution is locally almost piecewise constant, with a small discontinuity in the
mesh D0,K+1 requiring both this mesh and its immediate neighbors to be subdivided, as in Figure 18. To fix ideas,
denote by α = 4ε/3 the size of the discontinuity

φn0,K−i = a, for i ≥ 1

φn1,2K = φn1,2K+1 = φn1,2K+2 = a

φn1,2K+3 = φn1,2K+4 = φn1,2K+5 = a+ α

φn0,K+i = a+ α, for i ≥ 3

The details at time n can be computed

dn1,K = φn1,2K −
(

1

8
φn0,K−1 + φn0,K −

1

8
φn0,K+1

)
= a−

(
1

8
a+ a− 1

8

a+ a+ α

2

)
=

α

16

dn1,K+1 = φn1,2K+2 −
(

1

8
φn0,K + φn0,K+1 −

1

8
φn0,K+2

)
= a−

(
1

8
a+

a+ a+ α

2
− 1

8
(a+ α)

)
=

3

8
α

dn1,K+2 = φn1,2K+4 −
(

1

8
φn0,K+1 + φn0,K+2 −

1

8
φn0,K+3

)
= a+ α−

(
1

8

a+ a+ α

2
+ a+ α− 1

8
(a+ α)

)
=
−α
16

We have tested these details against the level dependent threshold (14) and we have found

|dn1,K | = |dn1,K+2| < ε1,

ε1 ≤ |dn1,K+1| < ε2,
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Figure 19: Discrete solution in example B. Top panel: updated solution at time tn+1 with formula (48). Bottom panel:
solution computed with detail thresholding (49) according to Algorithms 1 and 2.

justifying the discretization on the coarsest and intermediate levels. Let us now update the solution at the next time
step, using λ/2 = ∆t/∆x1 on the intermediate level and λ/4 = ∆t/∆x0 on the coarsest one (note that to update
the solution on mesh (1, 2K) we will need to reconstruct the solution on its neighbor φ̂n1,2K−1 = a). We obtain the
following values, also sketched out in the top panel of Figure 19

φn+1
0,K−i = φn+1

0,K−1 = φn0,K−1 − λ
4 (φn0,K−1 − φn0,K−2) = a

φn+1
1,2K = φn1,2K − λ

2 (φn1,2K − 2φn1,2K−1) = a+ λa

φn+1
1,2K+1 = φn1,2K+1 − λ

2 (φn1,2K+1 − φn1,2K) = a

φn+1
1,2K+2 = φn1,2K+2 − λ

2 (φn1,2K+2 − φn1,2K+1) = a

φn+1
1,2K+3 = φn1,2K+3 − λ

2 (φn1,2K+3 − φn1,2K+2) = a+ α(1− λ
2 )

φn+1
1,2K+5 = φn+1

1,2K+4 = φn1,2K+4 − λ
2 (φn1,2K+4 − φn1,2K+3) = a+ α

φn+1
0,K+i = φn+1

0,K+3 = φn0,K+3 − λ
4 (φn0,K+3 − φn0,K+2) = a+ α

(48)

From these updated values we compute the averaged values on the coarsest level

φn+1
0,K =

a+ λa+ a

2
= a+ a

λ

2

φn+1
0,K+1 =

a+ a+ α(1− λ
2 )

2
= a+

α

2

λ

2

φn+1
0,K+2 = a+ α

and the details at time n+ 1

dn+1
1,K = φn+1

1,2K −
(

1

8
φn+1

0,K−1 + φn+1
0,K −

1

8
φn+1

0,K+1

)
= a+ λa−

(
1

8
a+ a+ a

λ

2
− 1

8
(a+

α

2

λ

2
)

)
=
λa

2
+
αλ
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dn+1
1,K+1 = φn+1

1,2K+2 −
(

1

8
φn+1

0,K + φn+1
0,K+1 −

1

8
φn+1

0,K+2

)
= a−

(
1

8
(a+ a

λ

2
) + a+

α

2

λ

2
− 1

8
(a+ α)

)
= −aλ

16
− αλ

4
+
α

8
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dn+1
1,K+2 = φn+1

1,2K+4 −
(

1

8
φn+1

0,K+1 + φn+1
0,K+2 −

1

8
φn+1

0,K+3

)
= a+ α−

(
1

8
(a+

α

2

λ

2
) + a+ α− 1

8
(a+ α)

)
=
−αλ
32

+
α

8

If we use λ = 1/2 and the value α = 4ε/3 we obtain

dn+1
1,K =

−a
32

dn+1
1,K+1 =

a

4
+

ε

48

dn+1
1,K+2 =

7ε

48

we see that as soon as

4
47

48
ε ≤ a < 16ε

for instance say a = 4ε we have 
ε2 ≤ |dn+1

1,K |,
|dn+1

1,K+1| < ε1,

|dn+1
1,K+2| < ε1,

(49)

meaning that meshes D1,2K and D1,2K+1 have to be subdivided on the finest level while subdivisions D0,K+1 and
D0,K+2 have to be aggregated again. The resulting reconstructed solution, obtained after applying Algorithms 1 and
2, is sketched out in bottom panel of Figure 19. This is of course a theoretical situation but it shows nevertheless
how some spurious structure requiring fine meshes may appear in an upstream region and be well detached from the
support of the genuine solution.
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