
HAL Id: hal-00865417
https://hal.science/hal-00865417v1

Submitted on 8 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Diversification and Intensification in Parallel SAT
Solving

Long Guo, Youssef Hamadi, Said Jabbour, Lakhdar Saïs

To cite this version:
Long Guo, Youssef Hamadi, Said Jabbour, Lakhdar Saïs. Diversification and Intensification in Parallel
SAT Solving. 16th International Conference on Principles and Practice of Constraint Programming
(CP’10), 2010, United Kingdom. pp.252-265. �hal-00865417�

https://hal.science/hal-00865417v1
https://hal.archives-ouvertes.fr

Diversification and Intensification in Parallel SAT

Solving

Long Guo1, Youssef Hamadi2, Said Jabbour3, and Lakhdar Sais1

1 Université Lille-Nord de France

CRIL - CNRS UMR 8188

Artois, F-62307 Lens

{guo,sais}@cril.fr

2 Microsoft Research

7 J J Thomson Avenue

Cambridge, United Kingdom

youssefh@microsoft.com

3 INRIA-Microsoft Joint Centre

28 rue Jean Rostand

91893 Orsay Cedex, France

said.jabbour@inria.fr

Abstract. In this paper, we explore the two well-known principles of diversifica-

tion and intensification in portfolio-based parallel SAT solving. These dual con-

cepts play an important role in several search algorithms including local search,

and appear to be a key point in modern parallel SAT solvers. To study their trade-

off, we define two roles for the computational units. Some of them classified as

Masters perform an original search strategy, ensuring diversification. The remain-

ing units, classified as Slaves are there to intensify their master’s strategy. Several

important questions have to be answered. The first one is what information should

be given to a slave in order to intensify a given search effort? The second one is,

how often, a subordinated unit has to receive such information? Finally, the ques-

tion of finding the number of subordinated units along their connections with the

search efforts has to be answered. Our results lead to an original intensification

strategy which outperforms the best parallel SAT solver, and solves some open

SAT instances.

Keywords: Satisfiability, SAT and CSP, Search

1 Introduction

In addition to the traditional hardware and software verification fields, SAT solvers are

gaining popularity in new domains. For instance they are also used for general theorem

proving and computational biology. This widespread adoption is the result of the effi-

ciency gains made during the last decade [1]. Indeed, industrial instances with hundred

of thousand of variables and millions of clauses are now solved within a few minutes.

This impressive progress can be related to both the algorithmic improvements and to the

ability of SAT solvers to exploit the hidden structures1 of such instances. However, new

applications are always more challenging with instances of increasing size and com-

plexity, while the gains traditionally given by low level algorithmic adjustments are now

stalling. As a result, a large number of industrial instances from the last competitions

remain challenging for all the available SAT solvers. Fortunately, the previous comes

1 By structure, we understand the dependencies between variables, which can often appear

through Boolean functions. One particular example being the well known notion of backdoors.

2

at a time where the generalization of multicore hardware gives parallel processing ca-

pabilities to standard PCs. While in general it is important for existing applications to

exploit these new hardwares, for SAT solvers, this becomes crucial.

Many parallel SAT solvers have been previously proposed. Most of them are based

on the divide-and-conquer principle. They either divide the search space using for ex-

ample guiding-paths or the formula itself using decomposition techniques. The main

problem behind these approaches rises in the difficulty to get workload balanced be-

tween the different processing units. Portfolio-based parallel SAT solving has been re-

cently introduced [2]. It avoids the previous problem by letting several DPLL engines

compete and cooperate to be the first to solve a given instance. Each solver works on

the original formula, and search spaces are not split or decomposed anymore. To be

efficient, the portfolio has to use diversified search engines. This maximizes the chance

of having one of them solving the problem. However, when clause sharing is added,

diversification has to be restricted in order to maximize the impact of a foreign clause

whose relevance is more important in a similar or related search effort.

Therefore, a challenging question is to maintain a good and relevant ”distance”

between the parts of the search space explored by the different search efforts which

is equivalent to the finding of a good diversification and intensification tradeoff. This

question heavily depends on the problem instance. On hard ones it might be more con-

venient to direct the search towards building the same and common proof (intensifica-

tion), whereas on easy ones diversifying it might be the way towards finding a short

proof.

Taking this in mind, we propose to study the diversification/intensification tradeoff

in a parallel SAT portfolio. We define two roles for the computational units. Some of

them classified as Masters perform an original search strategy, ensuring diversification.

The remaining ones, classified as Slaves are there to intensify their master’s strategy.

Doing so, several important questions have to be answered. The first one is what in-

formation should be given to a unit in order to intensify a given search effort? The

second one is, how often, a subordinated unit has to receive such information? Finally,

the question of finding the number of subordinated units along their connections with

original search efforts has to be answered.

In the following, Section two describes the internals of modern SAT solvers, and

the architecture of a portfolio-based parallel SAT engine. Section three studies the best

way to intensify a given search strategy. Section four, considers the different diversi-

fication/intensification tradeoffs in a portfolio. Section five, presents our experimental

results. Finally, before the general conclusion, section six presents the related works.

2 Technical Background

In this section, we first introduce the most salient computational features of modern

SAT solvers. Then, we describe a typical portfolio based parallel SAT solver.

2.1 Modern SAT Solvers

Modern SAT solvers [3, 4], are based on classical DPLL search procedure [5] combined

with (i) restart policies [6, 7], (ii) activity-based variable selection heuristics (VSIDS-

3

like) [3], and (iii) clause learning [8]. The interaction of these three components being

performed through efficient data structures (e.g., Watched literals [3]).

Modern SAT solvers are especially efficient with ”structured” SAT instances com-

ing from industrial applications. On these problems, Selman et al. [9] have identified a

heavy tailed phenomenon, i.e., different variable orderings often lead to dramatic differ-

ences in solving time. This explains the introduction of restart policies in modern SAT

solvers, which attempt to discover a good variable ordering. VSIDS and other variants

of activity-based heuristics [10], on the other hand, were introduced to avoid thrashing

and to focus the search: when dealing with instances of large size, these heuristics di-

rect the search to the most constrained parts of the formula. Restarts and VSIDS play

complementary roles since the first component reorders assumptions and compacts the

assumptions stack while the second allows for more intensification. Conflict Driven

Clause Learning (CDCL) is the third component, leading to non-chronological back-

tracking. In CDCL a central data-structure is the implication graph, which records the

partial assignment under construction made of the successive decision literals (chosen

variable with either positive or negative polarity) with their propagations [8]. Each time

a conflict is encountered (say at level i) a conflict clause or nogood is learnt thanks to a

bottom up traversal of the implication graph. Such a traversal can be seen as a resolu-

tion derivation starting from the two implications of the conflicting variable. The next

resolvent is generated, from the previous one and another clause from the implication

graph. Such linear resolution derivation stops when the current resolvent (α ∨ a), con-

tains only one literal a from the current conflict level, called an asserting literal. The

node in the graph labeled with ¬a is called the first Unique Implication Point (first-

UIP). This traversal or resolution process is also used to update the activity of related

variables, allowing VSIDS to always select the most active variable as the new decision

point. The learnt conflict clause (α ∨ a), called asserting clause, is added to the learnt

data base and the algorithm backtracks non chronologically to level j < i.

Modern SAT solvers can now handle propositional satisfiability problems with hun-

dreds of thousands of variables or more. However, it is now recognized (see the re-

cent SAT competitions) that the performances of the modern SAT solvers evolve in

a marginal way. More precisely, on the industrial benchmarks category usually pro-

posed to the annual SAT Races and/or SAT Competitions, many instances remain open

(not solved by any solver within a reasonable amount of time). Consequently, new ap-

proaches are clearly needed to solve these challenging industrial problems.

2.2 ManySAT: a Parallel SAT Solver

ManySAT is a DPLL-engine which includes all the classical features like two-watched-

literal, unit propagation, activity-based decision heuristics, lemma deletion strategies,

and clause learning. In addition to the classical first-UIP scheme [11], it incorporates

a new technique which extends the implication graph used during conflict-analysis

to exploit the satisfied clauses of a formula [12]. Unlike others parallel SAT solvers,

ManySAT does not implement a divide-and-conquer strategy based on some dynamic

partitioning of the search space. At contrary, it uses a portfolio philosophy which lets

several sequential DPLLs compete and cooperate to be the first to solve the common

4

instance. These DPLLs are differentiated in many ways. They use different and com-

plementary restart strategies, VSIDS, polarity heuristics, and learning schemes. Addi-

tionally, all the DPLLs are exchanging learnt clauses up to some size limit.

This solver finished first in the parallel tracks of the 2008 and 2009 SAT Race and

Competition (industrial categories).

3 Towards a Good Intensification Strategy

In this section, we first determine the relevant knowledge to be passed from a Master

to a Slave in order to intensify the search. Secondly, we address the frequency of such

directed intensification.

To this end, we consider a simple system with two computing units, respectively

a Master (M) and a Slave (S) (see Figure 1). The role of the Master is to invoke the

Slave for search intensification (dotted blue arrow in the Figure 1). By intensification

we mean that the slave would explore ”differently” around the search space explored

by the Master. Consequently, the clauses learnt by the Master and the Slave are relevant

to each other and shared in both direction (plain line in the Figure 1).

clause sharing

intensification
M S

Fig. 1. Intensification topology

To explore differently around a given search effort, several kind of knowledge can be

considered. Suppose that the Master is currently at a given state SM = (F ,DM , ΓM),
where F is the original SAT instance, DM the set of decision literals, and ΓM the learnt

database. In the following, from a given state SM , we derive three different characteri-

zations of the Master search effort.

We use the Figure 2, to illustrate such characterizations. It represents a current state

SM corresponding to the branch leading to the last conflict k. The decisions made in the

last branch are x1, x2,. . ., xnk
. The boxes give a partial view of the implication graph

obtained on the last k conflicts derived after the assignment of the last decisions xnk
,

xnk−1
, . . ., and x1. The learnt clauses are (αnk

∨ ak), (αnk−1
∨ ak−1), . . ., (αn1

∨ a1)
where ak, ak−1, . . ., and a1 are the asserting literals corresponding to the first-UIP ¬ak,

¬ak−1, . . ., and ¬a1.

The first characterization of the Master search effort uses the current set of decisions

DM (in short decision list). Using such decisions, the Slave can build the whole or

a subset of the current partial assignment of the Master depending if all the asserting

clauses generated by M are passed to S. Since the activity of the variables are not passed

to the Slave, it shall explore the same area in a different way.

The second one, uses the sequence AM =< ak, ak−1, . . . , a2, a1 > (in short

asserting set) of the Master asserting literals associated to the clauses learnt before

5

¬ak

sksk−1

x2

x1

¬a1 ¬ak−1

xi

xnk
xn1

xnk−1

s1

⊥ ⊥

(αk−1 ∨ ak−1) (αk ∨ ak)

ak−1

(α1 ∨ a1)

⊥

Fig. 2. A partial view of the Master search tree

the current state SM . The sequence is ordered from the latest to the oldest conflict. By

branching on the ordered sequence AM using the same polarity, the Slave is able to con-

struct a partial assignment involving the most recent asserting literals learnt from the

Master unit. Let us recall that an asserting literal ai is part of the Master learnt clause

(α∨ ai). As the Slave branches on ai, future conflicts analysis involving ai, might lead

to learnt clauses containing ¬ai. More generally, invoking the Slave using AM pushes

it to learn more relevant clauses, connected by resolution (contains complementary lit-

erals) to the most recent clauses learned by M . This is clearly an intensification process,

as the clauses learnt by S involve the most important literals of M , and lead in some

way to a more constructive resolution proof thanks to the complementary shared literals

between M ’s learnt clauses, and the future clauses that will be learnt by S.

The last one, uses the sequence of ordered sets CM =< sk, sk−1, . . . , s2, s1 > of

literals collected during the Master conflict analysis (in short conflict sets). The set sk

represents the set of literals collected during the last conflict analysis. More precisely,

the literals in sk correspond to the nodes of the implication graph located between the

conflict side and the the first-UIP node ¬ak (see the Figure 2). Moreover, the set sk

includes a literal of the conflicting variable and the literal labeling the first-UIP node

¬ak. It can be defined as sk =< yk1
, yk2

, . . . , ykm
>, where yk1

corresponds to the

literal of the first-UIP node ¬ak and ykm
to the literal of the conflict variable as it

appears in the partial interpretation. The aim of considering this sequence of sets is to

intensify the search by directing S around the same conflicts.

6

We can remark that, the sequence AM and CM might contain redundant literals (the

same literal occurs several times). As the Slave S assign such literals according to the

defined ordering, S chooses the next unassigned literal in the ordering.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 120 140 160 180 200 220 240

tim
e

(s
ec

on
ds

)

#solved instances

decision list
asserting set
conflict sets

Fig. 3. Three intensification strategies

To compare the relevance of the previously defined intensification strategies, we

conducted the following experiments on the 2009 SAT Competition industrial category.

We use ManySAT with two computing units (see figure 1) sharing clauses of size less

or equal to 8. The Master S invokes the Slave S at each restart and transmits at the same

time the intensification knowledge. For the Master M we used a rapid restart strategy.

It is widely admitted that rapid restarts lead to better learning [13] or to learnt clauses

of small width [14]. Additionally, rapid restarts provide frequent intensification of the

Slave leading to a tight synchronization of the search efforts.

Let us note that, the Slave do not implement any restart strategy. It restarts when

invoked by the Master.

The Figure 3, shows the experimental comparison using the above three intensifica-

tion strategies (decision list, asserting set, and conflict sets). As we can observe,

directing the search using conflict sets gives the best results. The number of solved

instances using the decision list, asserting set and conflict sets are 201, 207 and

212 respectively. In the rest of this paper, we use conflict sets as the intensification

strategy.

7

4 Towards a Good Search Tradeoff

This section explores the diversification and intensification tradeoff. We are using the

ManySAT architecture which is represented by a clique of four computational units in-

teracting through clause sharing [2] up to size 8. These units represent a fully diversified

set of strategies. In order to add some intensification, we propose to extend this archi-

tecture and to partition the units between Masters and Slaves. If we allow a Slave to

intensify its own search effort through another Slave, we have a total of seven possible

configurations. They are presented in Figure 4. In this Figure, dotted lines represents

the Master/Slave relationships. Remark that when a unit has to provide intensification

directives to several Slaves, it alternates its guidance between them, i.e., round-table.

Moreover, when a configuration contains chain(s) of Slaves, (see (d), (f), and (g) in the

Figure), the intensification of a Slave of level i is triggered by the Slave of level i − 1.

(f)

M

S S

S

(e)

M S

S S

clause sharing

intensification

M M

M

(b) (c) (a)

M M M M

SS

S S S

M M

S S

(d)

M

S S

S

(g)

Fig. 4. Diversification/Intensification topologies

These configurations represent all the possible diversification and intensification

tradeoffs which can be implemented on top of the ManySAT architecture. The follow-

8

ing section explores their respective performances and compare them to the original

ManySAT solver.

5 Experiments

Our tests were done on Intel Xeon quadcore machines with 32GB of RAM running at

2.66 Ghz. For each instance, we used a timeout of 4 hours of CPU time which corre-

sponds to a 1 hour timeout per computational unit (core). Our Master/Slave roles and

their different configurations were implemented on top of the original ManySAT. This

solver was also used as a baseline for comparison. We used the conflict sets intensifi-

cation strategy.

We used the 292 industrial instances of the 2009 SAT competition to compare our

different algorithms.

Method # SAT # UNSAT Total Tot. time Avg. time

ManySAT 87 125 212 329338 1127

Topo. (a) 86 (7) 133 (49) 219 (56) 311545 1066

Topo. (b) 84 (28) 130 (73) 214 (101) 324900 1112

Topo. (c) 89 (23) 132 (74) 221 (97) 307419 1052

Topo. (d) 87 (25) 132 (67) 219 (92) 315795 1081

Topo. (e) 86 (45) 131 (109) 217 (154) 323501 1107

Topo. (f) 82 (44) 128 (102) 210 (146) 339640 1163

Topo. (g) 80 (45) 126 (107) 206 (152) 343233 1175

Table 1. 2009 SAT Competition, Industrials: overall results

The Table 1 summarizes our results. The first column presents the method, i.e., the

original ManySAT (first line) or ManySAT extended with one of our seven diversifi-

cation/intensification topology (see Figure 4). In the second column, the first number

represents the overall number of SAT instances solved by the associated method, the

second number (in parenthesis) gives the number of instances found SAT by a Slave.

The third column gives similar information for UNSAT problems. The column four,

gives the overall number of instances solved, again the parenthesis gives the number

solved by one of the Slaves. Finally, the last two columns give respectively, the total

time (cumulated), and the average time in seconds. The average is calculated over the

overall set of 292 instances, using the 1 hour timeout when an instance is not solved.

This Table shows that the vast majority of our topology-based extensions are su-

perior to the original ManySAT. This algorithm solves 212 problems whereas the best

topology (c) solves 221. Remarkably, all the topologies are able to solve more UN-

SAT problems than ManySAT. This unsurprisingly shows that adding intensification, is

more beneficial on this last category of problems. Indeed, our intensification strategy

increases the relevance of the learnt clauses exchanged between masters and slaves,

since unsatisfiable instances are mainly solved by resolution, improving the quality of

the learnt clauses increases the performances on UNSAT problems.

9

When we compare the results achieved by our different topologies. It seems that

balancing the tradeoff between 2 Slaves and 2 Masters works better (topo. b, c, and d).

Among them, balancing the slaves to the masters gives the most efficient results i.e.,

topology c.

Instance Status ManySAT Topology (c)

9dlx vliw at b iq1 UNSAT 87.3 7.6

9dlx vliw at b iq2 UNSAT 256.3 31.9

9dlx vliw at b iq3 UNSAT 605.8 103.2

9dlx vliw at b iq4 UNSAT 1106 163.5

9dlx vliw at b iq5 UNSAT 2490 313.1

9dlx vliw at b iq6 UNSAT – 735.6

9dlx vliw at b iq7 UNSAT – 983

9dlx vliw at b iq8 UNSAT – 1807.6

9dlx vliw at b iq9 UNSAT – 2640.9

velev-pipe-sat-1.0-b10 SAT 4.8 3.6

velev-engi-uns-1.0-4nd UNSAT 5 4.8

velev-live-uns-2.0-ebuf UNSAT 6.9 6.8

velev-pipe-sat-1.0-b7 SAT 47.3 5.1

velev-pipe-o-uns-1.1-6 UNSAT 61.9 31.4

velev-pipe-o-uns-1.0-7 UNSAT 159.9 110.2

velev-pipe-uns-1.0-8 UNSAT 262.2 88.9

velev-vliw-uns-4.0-9C1 UNSAT 314.6 236.6

velev-vliw-uns-4.0-9-i1 UNSAT – 1307.8

goldb-heqc-term1mul UNSAT 21.8 4.8

goldb-heqc-i10mul UNSAT 39.5 24.1

goldb-heqc-alu4mul UNSAT 46.2 42.6

goldb-heqc-dalumul UNSAT 380.3 36.2

goldb-heqc-frg1mul UNSAT 2566 63.8

goldb-heqc-x1mul UNSAT – 226.9

Table 2. 2009 SAT Competition, Industrials: time (s) results on three families

The Table 2 highlights the results achieved by our best topology (c) against ManySAT

on three complete families of problems. We can see that our best topology outperforms

ManySAT on all these problems. Even more importantly, our algorithm allowed the

resolution of two open instances (9dlx vliw at b iq8, and 9dlx vliw at b iq9), proved

UNSAT for the first time.

The Figure 5, presents cumulated time results for ManySAT and for our best topol-

ogy on the whole set of problems. On easy and medium problems, (solved in less than

10 minutes), the algorithms have the same behavior. On the other hand, when the prob-

lems become more difficult, the new technique exhibits an important improvement, and

solves 9 more instances.

10

 0

 500

 1000

 1500

 2000

 2500

 3000

 120 140 160 180 200 220 240

ti
m

e
 (

s
e
c
o
n
d
s
)

#solved instances

ManySAT
Topology C

Fig. 5. 2009 SAT Competition, Industrials: cumulated time

6 Previous Work

We present here the most noticeable approaches related to parallel SAT solving.

In [15] a parallelization scheme for a class of SAT solvers based on the DPLL

procedure is presented. The scheme uses a dynamic load-balancing mechanism based

on work-stealing techniques to deal with the irregularity of SAT problems. PSatz is the

parallel version of the well known Satz solver. Gradsat [16] is based on zChaff. It uses

a master-slave model and the notion of guiding-paths to split the search space and to

dynamically spread the load between clients. Learned clauses are exchanged between

all clients if they are smaller than a predefined limit on the number of literals. A client

incorporates a foreign clause when it backtracks to level 1 (top-level).

[17] uses an architecture similar to Gradsat. However, a client incorporates a foreign

clause if it is not subsumed by the current guiding-path constraints. Practically, clause

sharing is implemented by mobile-agents. This approach is supposed to scale well on

computational grids.

In [18], the input formula is dynamically divided into disjoint subformulas. Each

subformula is solved by a sequential SAT-solver running on a particular processor.

The algorithm uses optimized data structures to modify Boolean formulas. Additionally

workload balancing algorithms are used to achieve a uniform distribution of workload

among the processors.

MiraXT [19], is designed for shared memory multiprocessors systems. It uses a

divide and conquer approach where threads share a unique clause database which rep-

resents the original and the learnt clauses. When a new clause is learnt by a thread, it

uses a lock to safely update the common database. Read access can be done in parallel.

11

PMSat uses a master-slave scenario to implement a classical divide-and-conquer

search [20]. The user of the solver can select among several partitioning heuristics.

Learnt clauses are shared between workers, and can also be used to stop efforts related

to search spaces that have been proven irrelevant. PMSat runs on networks of computer

through an MPI implementation.

[21], uses a standard divide-and-conquer approach based on guiding-paths. How-

ever, it exploits the knowledge on these paths to improve clause sharing. Indeed, clauses

can be large with respect to some static limit, but when considered with the knowledge

of the guiding path of a particular thread, a clause can become small and therefore

highly relevant. This allows pMiniSat to extend the sharing of clauses since a large

clause can become small in another search context.

7 Conclusion

We have explored the two well-known principles of diversification and intensification

in portfolio-based parallel SAT solving. These dual concepts play an important role in

several search algorithms including local search, and appear to be a key point in modern

parallel SAT solvers. To study their tradeoff, we defined two roles for the computational

units. Some of them classified as Masters perform an original search strategy, ensuring

diversification. The remaining units, classified as Slaves are there to intensify their mas-

ter’s strategy.

Several important questions have been addressed. The first one is what information

should be given to a slave in order to intensify a given search effort? It appeared that

passing the set of literals found during previous conflict analysis gives the best results.

This strategy aims at directing the slave towards conflicts highly related to the master’s

conflicts, allowing masters and slaves to share highly relevant clauses.

The second one is, how often, a subordinated unit has to receive such information?

We have decided to exploit the restart policy of a master to refresh the information

given to its slave(s). As shown in other works, rapid restarts lead to better learning

[13] or to learnt clauses of small width [14]. Therefore, a rapid restarts strategy on the

master node reinforces the interests of the clauses shared with its slaves. In our context

it allows frequent intensification of a Slave leading to a tight synchronization of the

search efforts.

Finally, the question of finding the number of subordinated units along their connec-

tions with the search efforts had to be answered. Our tests have shown that balancing

the set of nodes between Masters and Slaves roles, and balancing the slaves to the

masters gives the best results. In particular, our best topology solves 9 more industrial

instances than the actual best solver, ManySAT. The results have also demonstrated the

relative performance of the intensification strategy on UNSAT problems. Remarkably,

our new strategy was able to close the 9dlx vliw at b iq* family by finding the proofs

of unsatisfiability for two open instances.

As future work, we would like to dynamically adapt the topology and roles in a

portfolio based on the perceived hardness of a given instance. This should benefit to

hard UNSAT proofs were several units could be used for intensification, and similarly

help the quick discovery of satisfiable assignments.

12

References

1. Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors. Handbook of Sat-

isfiability, volume 185 of Frontiers in Artificial Intelligence and Applications. IOS Press,

2009.

2. Y. Hamadi, S. Jabbour, and L. Sais. ManySAT: a parallel SAT solver. Journal on Satisfiabil-

ity, Boolean Modeling and Computation, 6:245–262, 2009.

3. M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering an

efficient SAT solver. In Proceedings of the 38th Design Automation Conference (DAC’01),

pages 530–535, 2001.

4. Niklas Eén and Niklas Sörensson. An extensible sat-solver. In Theory and Applications

of Satisfiability Testing, 6th International Conference, SAT 2003. Santa Margherita Ligure,

Italy, May 5-8, 2003 Selected Revised Papers, pages 502–518, 2003.

5. M. Davis, G. Logemann, and D. W. Loveland. A machine program for theorem-proving.

Communications of the ACM, 5(7):394–397, 1962.

6. Carla P. Gomes, Bart Selman, and Henry Kautz. Boosting combinatorial search through

randomization. In Proceedings of the Fifteenth National Conference on Artificial Intelligence

(AAAI’98), pages 431–437, Madison, Wisconsin, 1998.

7. H. Kautz, E. Horvitz, Y. Ruan, C. Gomes, and B. Selman. Dynamic restart policies. In Pro-

ceedings of the Eighteenth National Conference on Artificial Intelligence (AAAI’02), pages

674–682, 2002.

8. Joao P. Marques-Silva and Karem A. Sakallah. GRASP - A New Search Algorithm for

Satisfiability. In Proceedings of IEEE/ACM International Conference on Computer-Aided

Design, pages 220–227, November 1996.

9. C. P. Gomes, B. Selman, N. Crato, and H. Kautz. Heavy-tail phenomena in satisfiability and

constraint satisfaction. Journal of Automated Reasoning, pages 67 – 100, 2000.

10. Laure Brisoux, Éric Grégoire, and Lakhdar Sais. Improving backtrack search for SAT by

means of redundancy. In Foundations of Intelligent Systems, 11th International Symposium,

ISMIS ’99, volume 1609 of Lecture Notes in Computer Science, pages 301–309. Springer,

1999.

11. Lintao Zhang, Conor F. Madigan, Matthew W. Moskewicz, and Sharad Malik. Efficient

conflict driven learning in boolean satisfiability solver. In ICCAD, pages 279–285, 2001.

12. Gilles Audemard, Lucas Bordeaux, Youssef Hamadi, Said Jabbour, and Lakhdar Sais. A

generalized framework for conflict analysis. In Theory and Applications of Satisfiability

Testing, SAT’2008, pages 21–27, 2008.

13. A. Biere. Adaptive restart strategies for conflict driven sat solvers. In SAT, pages 28–33,

2008.

14. Knot Pipatsrisawat and Adnan Darwiche. Width-based restart policies for clause-learning

satisfiability solvers. In Proceedings of the Tenth International Conference on Theory and

Applications of Satisfiability Testing (SAT’09), pages 341–355, June 2009.

15. Bernard Jurkowiak, Chu Min Li, and Gil Utard. A parallelization scheme based on work

stealing for a class of sat solvers. Journal of Automated Reasoning, 34(1):73–101, 2005.

16. Wahid Chrabakh and Rich Wolski. GrADSAT: A parallel sat solver for the grid. Technical

report, UCSB Computer Science Technical Report Number 2003-05, 2003.

17. W. Blochinger, C. Sinz, and W. Küchlin. Parallel propositional satisfiability checking with

distributed dynamic learning. Parallel Computing, 29(7):969–994, 2003.

18. Max Böhm and Ewald Speckenmeyer. A fast parallel sat-solver - efficient workload balanc-

ing. Annals of Mathematics and Artificial Intelligence, 17(3-4):381–400, 1996.

19. M. Lewis, T. Schubert, and B. Becker. Multithreaded sat solving. In 12th Asia and South

Pacific Design Automation Conference, 2007.

13

20. Luis Gil, Paulo Flores, and Luis Miguel Silveira. PMSat: a parallel version of minisat.

Journal on Satisfiability, Boolean Modeling and Computation, 6:71–98, 2008.

21. G. Chu and P. J. Stuckey. Pminisat: a parallelization of minisat 2.0. Technical report, Sat-race

2008, solver description, 2008.

