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A Class of ⋄ f -consistencies for Qualitative Constraint Networks

In this paper, we introduce a new class of local consistencies, called ⋄ f -consistencies, for qualitative constraint networks. Each consistency of this class is based on weak composition (⋄) and a mapping f that provides a covering for each relation. We study the connections existing between some properties of mappings f and the relative inference strength of ⋄ f -consistencies. The consistency obtained by the usual closure under weak composition is shown to be the weakest element of the class, and new promising perspectives are shown to be opened by ⋄ f -consistencies stronger than weak composition. We also propose a generic algorithm that allows us to compute the closure of qualitative constraint networks under any "well-behaved" consistency of the class. The experimentation that we have conducted on qualitative constraint networks from the Interval Algebra shows the interest of these new local consistencies, in particular for the consistency problem.

Introduction

Qualitative Spatial-Temporal Reasoning (QSTR) is an area of computer science dealing with qualitative information about configurations of spatial/temporal entities. A calculus in QSTR introduces particular elements for representing the entities and a finite set of base relations on these elements. Each base relation is an abstraction of concrete metric information about the relative position of entities. For applications in domains such as e.g. geographic information systems and natural language understanding, a qualitative description can reveal to be far more appropriate than a metric description, in particular when precise information is not necessary or simply not available. In the past twenty years, numerous QSTR formalisms have been proposed and studied; see e.g. [START_REF] Randell | A spatial logic based on regions and connection[END_REF][START_REF] Pujari | INDU: an interval and duration network[END_REF][START_REF] Renz | Qualitative spatial reasoning using constraint calculi[END_REF].

In QSTR, Qualitative Constraint Networks (QCNs) are typically used to express information on spatial/temporal situations. A constraint represents a set of acceptable qualitative configurations between some variables (entities), and is then defined by a set of base relations. Given a QCN, the Copyright c 2010, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved. main problem is to determine whether the information contained in the QCN is consistent. In the general case, this problem is NP-hard. However, because the worst-case only arises within a limited range of situations, many studies have been led to develop efficient practical approaches to solve this problem.

One such approach is backtrack search combined with a constraint propagation mechanism based on tractable subclasses of relations and the closure of QCNs under weak composition, which is an operation denoted by ⋄ and related to path consistency [START_REF] Mackworth | Consistency in networks of relations[END_REF]. More precisely, at each step of search, a constraint is split into relations belonging to a tractable class and closure under weak composition is an inference method applied to filter the search space (i.e. to reduce its size) by removing some inconsistent base relations. This effective approach, initiated by Nebel, has been adopted by most of the qualitative constraint solvers [START_REF] Condotta | A generic toolkit for n-ary qualitative temporal and spatial calculi[END_REF][START_REF] Gantner | GQR a fast reasoner for binary qualitative constraint calculi[END_REF], and in particular by GQR*, which is currently the fastest solver. On the other hand, some recent approaches [START_REF] Pham | Towards an efficient sat encoding for temporal reasoning[END_REF][START_REF] Westphal | Qualitative CSP, finite CSP and SAT: Comparing methods for qualitative constraint-based reasoning[END_REF][START_REF] Li | A divide-andconquer approach for solving interval algebra networks[END_REF] translate the consistency problem of QCNs into CSP (Constraint Satisfaction Problem) or SAT (propositional satisfiability) instances. Published results indicate that these approaches are promising.

Closure under weak composition is at the heart of the various approaches that directly handle qualitative constraint networks. It was the first inference method used to address the consistency problem of the temporal QCNs in the wellknown Interval Algebra [START_REF] Allen | An interval-based representation of temporal knowledge[END_REF]. Weak composition is currently recognized as an operation that offers a good balance between the execution overhead and the filtering benefit. Besides, it has been shown to be a complete approach for most of the identified tractable classes. Nevertheless, for the hardest QCNs it may be worthwhile to consider operations stronger than ⋄, i.e. stronger forms of local consistency.

In this paper, we propose a new class of local consistencies adapted to qualitative calculi. Each of them is defined from ⋄ and a mapping f that associates with every relation r of a qualitative calculus a set of sub-relations of r forming a covering of r. Intuitively, a QCN is ⋄ f -consistent if and only if after substituting any sub-relation defined by f for the relation associated with a constraint of the QCN, the obtained QCN is closed under ⋄. We prove that ⋄ corresponds to the weakest consistency of the class whereas a local consistency similar to SAC, Singleton Arc Consistency [START_REF] Debruyne | Some practical filtering techniques for the constraint satisfaction problem[END_REF] introduced for CSP, is the strongest one. Other consistencies of the class are situated between these two bounds since the class forms a complete lattice. We also characterize an important subset of the class of ⋄ f -consistencies that contains consistencies under which closure of QCNs exists, and we propose a general-purpose algorithm to enforce any of them. A preliminary experimentation carried out using the Interval Algebra shows promising results.

Preliminaries

A qualitative calculus is defined from a finite set B of base relations on a domain D. Without any loss of generality, we will only consider binary relations. The elements of D represent temporal or spatial entities, and the elements of B represent all possible configurations between two entities. B is a set that satisfies the following properties [START_REF] Ligozat | What is a qualitative calculus? a general framework[END_REF]): B forms a partition of D × D, B contains the identity relation Id, and B is closed under the converse operation ( -1 ). A (complex) relation is the union of some base relations, but it is customary to represent a relation as the set of base relations contained in it. Hence, the set 2 B will represent the set of relations of the qualitative calculus. The set 2 B is equipped with the weak composition operation, denoted by ⋄ and defined by: ∀a

, b ∈ B, a ⋄ b = {c ∈ B : ∃x, y, z ∈ D | x a z ∧ z b y ∧ x c y}; ∀r, s ∈ 2 B , r ⋄ s = a∈r,b∈s {a ⋄ b}. Note that r ⋄ s is the smallest relation of 2 B including the usual relational compo- sition r • s = {(x, y) ∈ D × D : ∃z ∈ D | x r z ∧ z s y}.
In some qualitative algebras (e.g. the Interval Algebra introduced below), r • s and r ⋄ s are identical.

A well known temporal qualitative formalism is the Interval Algebra, also called Allen's calculus [START_REF] Allen | An interval-based representation of temporal knowledge[END_REF]. The domain D int of this calculus is the set {(x -, x + ) ∈ Q × Q : x -< x + } since temporal entities are intervals of the rational line. The set B int of this calculus is the set {eq, p, pi, m, mi, o, oi, s, si, d, di, f, f i} of thirteen binary relations representing all orderings of the four endpoints of two intervals; see Figure 1.

A Qualitative Constraint Network (QCN) is a pair composed of a set of variables and a set of constraints. Each variable represents a spatial/temporal entity of the system that is modelled. Each constraint represents a set of acceptable qualitative configurations between two variables and is defined by a relation. Formally, a QCN is defined as follows:

Definition 1 A QCN is a pair N = (V, C) where: 

• V = {v 1 , . . . , v n } is a finite set of n variables; • C is a mapping that associates a relation C(v i , v j ) ∈ 2 B , also denoted by C ij or N [i, j], with each pair (v i , v j ) of V × V . C is such that C ii ⊆ {Id} and C ij = C -1 ji . A partial solution of N on V ′ ⊆ V is a mapping σ de- fined from V ′ to D such that for every pair (v i , v j ) of vari- ables in V ′ , (σ(v i ), σ(v j )) satisfies C ij , i.
∈ C ij such that (σ(v i ), σ(v j )) ∈ b. A solu- tion of N is a partial solution of N on V .
N is consistent iff it admits a solution. Two QCNs are equivalent iff they admit the same set of solutions. A subQCN

N ′ of N , denoted by N ′ ⊆ N , is a QCN (V, C ′ ) such that C ′ ij ⊆ C ij , for every pair (v i , v j ) of variables. An atomic QCN is a QCN such that each constraint is defined by a base relation. A scenario S of N is an atomic consistent subQCN of N . A base relation for C ij is inconsistent iff there does not exist any scenario S of N such that S[i, j] = {b}. A QCN N = (V, C) is said to be ⋄-consistent or closed under weak composition if and only if C ij ⊆ C ik ⋄ C kj ∀v i , v j , v k ∈ V .
The closure under weak composition of N , denoted by ⋄(N ), is the greatest (w.r.t. ⊆) ⋄-consistent subQCN of N ; ⋄(N ) is equivalent to N . This (sub)QCN can be obtained by iterating the triangulation operation:

C ij ← C ij ∩ (C ik ⋄ C kj ), ∀v i , v j , v k ∈ V
until a fixed point is reached. This method can be implemented by an algorithm running in O(n 3 ) time. Weak composition admits the following properties:

• ⋄(N ) ⊆ N (⋄ is contracting), • ⋄(⋄(N )) = ⋄(N ) (⋄ is idempotent), • N ⊆ N ′ ⇒ ⋄(N ) ⊆ ⋄(N ′ ) (⋄ is monotonic). N [i,j]/r , with v i , v j ∈ V and r ∈ 2 B , is the QCN (V, C ′ ) defined by C ′ ij = r, C ′ ji = r -1 and C ′ kl = C kl ∀(v k , v l ) ∈ V × V \ {(v i , v j ), (v j , v i )}. The union of two QCNs N = (V, C) and N ′ = (V, C ′ ) is the QCN N ∪ N ′ = (V, C ′′ ) such that ∀(v i , v j ) ∈ V , C ′′ ij = C ij ∪ C ′ ij .
The Class of ⋄ f -consistencies

In this section, we introduce (for qualitative constraint networks) a general class of local consistencies, called ⋄ f -consistencies, where f is a mapping that associates a set of relations of 2 B with each relation of 2 B . Intuitively, a QCN is said to be ⋄ f -consistent iff for any constraint C ij of the QCN, after substituting any element r ′ of f (r) for the relation r associated with C ij and computing the closure under weak composition, the relation r ′ associated with C ij is let unchanged. Before proposing a formal definition of ⋄ fconsistencies, we introduce a set F that exactly contains the mappings f considered hereafter. More precisely, F is the set of mappings f defined from 2 B to 2 2 B associating a set of relations f (r) ∈ 2 2 B with each relation r ∈ 2 B such that f (r) = r, and ∅ ∈ f (r) when r = ∅. Note that f (r) is a covering of r and f ({b}) = {{b}}∀b ∈ B. Moreover, we have f (∅) = {∅}, which will be always implicitly assumed whenever we introduce a mapping later.

Definition 2 Let f be an element of F. A QCN N is ⋄ f - consistent iff for every pair (v i , v j ) of variables of N and for every s ∈ f (N [i, j]), ⋄(N [i,j]/s )[i, j] = s.
We obtain a new class (or family) of local consistencies since each mapping f ∈ F determines a new consistency denoted by ⋄ f . The class (set) of all ⋄ f -consistencies that can be built from elements of F is denoted by ⋄ F . The following result shows the practical interest of the new class of consistencies: when a QCN is not ⋄ f -consistent, some base relations said to be ⋄ f -inconsistent can be identified and safely removed.

Proposition 1 Let f be an element of F, N be a QCN,

(v i , v j ) be a pair of variables of N and s ∈ f (N [i, j]). Any base relation b in s \ ⋄(N [i,j]/s )[i, j] is inconsistent for C ij . Proof. Let S be a scenario of N and b ′ be the base relation in S[i, j]. Either we have b ′ / ∈ s or b ′ ∈ s. If b ′ / ∈ s, necessarily b ′ = b. On the other hand, if b ′ ∈ s then b ′ ∈ ⋄(N [i,j]/s )[i, j] because ⋄ preserves scenarios. By hypothesis, b / ∈ ⋄(N [i,j]/s )[i, j],
which proves that b ′ = b. We conclude that v i b v j cannot be true in any scenario. ⊣

The following mappings will be useful to illustrate our purpose. ∀r ∈ 2 B \ {∅}:

• f B associates the set f B (r) = {{b} : b ∈ r} with r. • f = associates the set f = (r) = {r \ {b} : b ∈ r} with r iff |r| > 1; f = (r) = {r} otherwise. • f ⋄ associates the set f ⋄ (r) = {r} with r.
For example, if r = {p, m, o}, then f B (r) = {{p}, {m}, {o}} and f = (r) = {{p, m}, {p, o}, {m, o}}. Moreover, given a partition P = {r 1 , . . . , r k } of B, the mapping f P is defined as follows: for every relation

r ∈ 2 B , f (r) = {r ∩ r i : i ∈ {1, . . . , k}} \ {∅}. Note that ⋄
f B is a consistency that can be related to SAC (introduced for CSP) but ⋄ f = and partition-based consistencies ⋄ f P (as well as many other ⋄ f -consistencies) have no CSP counterpart. We will consider later the following (representative) partitions of B int :

• P 1 = {{p, m, o, f i, s, d}, {pi, mi, oi, f, si, di, eq}} • P 2 = {{p, m, o}, {f i, s, d}, {pi, mi, oi}, {f, si, di, eq}} • P 3 = {{p}, {m, o}, {f i}, {s, d}, {pi}, {mi, oi}, {f, eq}, {si, di}}
In order to compare the inference capability of different consistencies, we need to introduce a preorder. Let φ and ψ be two consistencies in ⋄ F , φ is stronger than ψ, denoted by φ ψ, iff whenever φ holds on a QCN N (i.e. N is φconsistent), ψ also holds on N ; φ is strictly stronger than ψ, denoted by φ ⊲ ψ, iff φ is stronger than ψ and there exists at least one QCN N such that ψ holds on N but not φ. Finally, φ and ψ are equivalent, denoted by φ ≈ ψ, iff both φ ψ and ψ φ.

First, we can show that a QCN N is ⋄ f⋄ -consistent if, and only if, N is closed under weak composition.

Proposition 2 The consistency ⋄ f⋄ is equivalent to ⋄. Proof. N is ⋄-consistent ⇔ ⋄(N ) = N ⇔ for every pair (v i , v j ) of variables of N , ⋄(N )[i, j] = N [i, j] ⇔ for every pair (v i , v j ) of variables of N and for every s ∈ f ⋄ (N [i, j]), ⋄(N [i,j]/s )[i, j] = s (because f ⋄ (r) = {r} for each relation r ∈ 2 B ) ⇔ N is ⋄ f⋄ -consistent ⊣
The finer the coverings of relations by an element f of F are, the stronger the consistency ⋄ f is. In particular, to relate ⋄ f -consistencies, we have the following result: Proposition 3 Let f, f ′ be two elements of F. If for every r ∈ 2 B and for every s ′ ∈ f ′ (r), there exists a set of relations

S ⊆ f (r) such that s ′ = S, then ⋄ f ⋄ f ′ . Proof. We suppose that we have a QCN N that is ⋄ f -consistent. Let v i , v j be two variables of N , r = N [i, j]
and s ′ be an element of f ′ (r). By hypothesis, there exists a set of relations S ⊆ f (r) such that s ′ = S. For every relation s ∈ S we have s ⊆ s ′ , and because

N [i,j]/s ⊆ N [i,j]/s ′ and ⋄ is monotonic, we have ⋄(N [i,j]/s )[i, j] ⊆ ⋄(N [i,j]/s ′ )[i, j]. We can deduce that {⋄(N [i,j]/s )[i, j] : s ∈ S} ⊆ ⋄(N [i,j]/s ′ )[i, j]. Since N is ⋄ f -consistent (by hypothesis), for every relation s ∈ S, we have ⋄(N [i,j]/s )[i, j] = s. Hence, S ⊆ ⋄(N [i,j]/s ′ )[i, j],
and as s ′ = S, we obtain

s ′ ⊆ ⋄(N [i,j]/s ′ )[i, j].
On the other hand, we also know that

⋄(N [i,j]/s ′ )[i, j] ⊆ s ′ because ⋄ is contracting. We can conclude that s ′ = ⋄(N [i,j]/s ′ )[i, j] and consequently that N is ⋄ f ′ -consistent. ⊣
For example, for the Interval Algebra, we have ⋄

f B ⋄ f P 3 ⋄ f P 2 ⋄ f P 1 ⋄ f⋄ . The following corollary stipulates that ⋄ f B is the strongest consistency (of ⋄ F ) and ⋄ f⋄ is the weakest one. Corollary 1 For every element f ∈ F, ⋄ f B ⋄ f ⋄ f⋄ . From this result, we can deduce in particular that ⋄ f B ⋄ f = ⋄
f⋄ . Now, let us consider the three QCNs of the Interval Algebra depicted in Figure 2. On each of these graphs, a variable is represented by a node, and a constraint by an arc labelled with the associated relation; note that, for simplicity, there is no arc going from v i to v j when either there is already an arc going from v j to v i or i = j. We can check that

N 1 is ⋄ f⋄ -consistent but not ⋄ f = -consistent because di / ∈ ⋄(N 1[0,1]/{di,m} )[0, 1], N 2 is ⋄ f = -consistent but not ⋄ f B - consistent because ⋄(N 2[1,3]/{f i} )[1, 3] = ∅, and N 3 is ⋄ f B - consistent.
From Corollary 1 and QCNs N 1 and N 2 , we deduce that (for the Interval Algebra)

⋄ f B ⊲ ⋄ f = ⊲ ⋄ f⋄ (note the strict order). v 0 v 2 v 3 v 1 {di, m, s} { o , o i} { o , f } { m , s , f i } {d, o, f i} { e q , d i, s , f i} (a) N1 v 0 v 2 v 3 v 1 { o , o i} { o , f } { m , s , f i } {d, o, f i} { e q , d i, s , f i} {m, s} (b) N2 v 0 v 2 v 3 v 1 {m, s} { o , o i} { o , f } {d, o, f i} { e q , d i, s } { m , s , f i } (c) N3 Figure 2: N 3 ⊂ N 2 ⊂ N 1 .
The equivalence classes of ≈ form a partition of ⋄ F ; the set of all equivalence classes is denoted by ⋄ 

F | ≈ . Note that ⋄ F | ≈ is a finite set since the set B of base relations is considered to be finite. The relation ≈ defined on ⋄ F | ≈ by ∀[φ], [ψ] ∈ ⋄ F | ≈ , [φ] ≈ [ψ] iff φ ψ
f as ∀r ∈ 2 B , f (r) = f 1 (r) ∪ f 2 (r).
First, we can observe that f ∈ F by construction. From Proposition 3, we deduce that

⋄ f ⋄ f1 and ⋄ f ⋄ f2 . Now, suppose that there exists f ′ ∈ F such that ⋄ f ′ ⋄ f1 and ⋄ f ′ ⋄ f2 . By definition, any ⋄ f ′ -consistent QCN N is ⋄ f1 - consistent and ⋄ f2 -consistent. Hence, for every pair (v i , v j ) of variables of N , s ∈ f 1 (N [i, j]) ⇒ ⋄(N [i,j]/s )[i, j] = s and s ∈ f 2 (N [i, j]) ⇒ ⋄(N [i,j]/s )[i, j] = s. So, for every s ∈ f 1 (N [i, j]) ∪ f 2 (N [i, j]), ⋄(N [i,j]/s )[i, j] = s. We deduce that N is ⋄ f -consistent, and ⋄ f ′ ⋄ f . [ ⋄ f ] is the least upper bound of [ ⋄ f1 ] and [ ⋄ f2
]. (Existence of binary meets) Let ⋄ f1 and ⋄ f2 be two elements of ⋄ F , and let us define the set 

E as E = {f ′ ∈ F : ⋄ f1 ⋄ f ′ ∧ ⋄ f2 ⋄ f ′ }. Note that E = ∅ since f ⋄ ∈ E. Next, let us define f as ∀r ∈ 2 B , f (r) = {f ′ (r) : f ′ ∈ E}.
⋄ f1 -consistent QCN N that is not ⋄ f -consistent. Hence, there exist two variables v i , v j of N such that ⋄(N [i,j]/s )[i, j] = s with s ∈ f (N [i, j]).
From construction of f , we know that there exists a mapping

f ′ ∈ E such that s ∈ f ′ (N [i, j]). Hence, N is not ⋄ f ′ -consistent. On the other hand, as f ′ ∈ E we have ⋄ f1 ⋄ f ′ , and N ⋄ f ′ -consistent since N is ⋄ f1 -consistent. This is a contradiction, so ⋄ f1 ⋄ f does hold. Similarly, we can show that ⋄ f2 ⋄ f . [ ⋄ f ] is the greatest lower bound of [ ⋄ f1 ] and [ ⋄ f2 ]. ⊣
To conclude this section, let us prove the following result for atomic QCNs.

Proposition 5 Let f be an element of F, and N be an atomic QCN.

If N is consistent then N is ⋄ f -consistent. Proof.
For any element f of F and any base relation b, we know that f ({b}) = {{b}}. It means that all consistencies in ⋄ F are equivalent when restricted to atomic QCNs. As ⋄ f⋄ is equivalent to ⋄ (see Proposition 2) and as it is known that an atomic consistent QCN is necessarily closed under weak composition (i.e. ⋄-consistent), we deduce that an atomic consistent QCN is necessarily ⋄ f -consistent, whatever f is. ⊣

Closure of QCNs under ⋄ f -consistencies

A consistency φ is well-behaved iff for any QCN N , there exists a (unique) largest φ-consistent QCN N ′ smaller than or equal to N (w.r.t. ⊆). N ′ is called the φ-closure of N , and denoted by φ(N ). In this section, we are concerned with the closure of QCNs under ⋄ f -consistencies. Are ⋄ f -consistencies well-behaved? In other words, given a QCN N and a consistency ⋄ f in ⋄ F , does the ⋄ f -closure of N exist? We first show that this is not always the case with an example taken from the Interval Algebra. We consider f ∈ F such that f ({p, eq, m}) = {{p, eq, m}, {eq}} and f (r) = {r} for every relation r ∈ 2 B int \ {{p, eq, m}}. Figure 3 shows three distinct QCNs. The first QCN N 4 is not ⋄ f -consistent because ⋄(N 4[0,3]/{eq} )[0, 3] = ∅. Now let us turn to the two distinct QCNs N 5 and N 6 : both QCNs are ⋄ f -consistent and (strictly) smaller than N 4 . Observing that there does not exist any ⋄ fconsistent QCN strictly greater than N 5 and N 6 and smaller than N 4 , we have just proved that ⋄ f is not well-behaved. Nevertheless, there exist some mappings f for which the consistencies ⋄ f are guaranteed to be well-behaved. This is the case for the elements of the set F * introduced below. Roughly speaking, for every relation r, f (r) cannot be finer than the set of f (r ′ ) with r ′ contained in r.

Definition 3 F * is the set of mappings f in F such that for every r, r ′ ∈ 2 B with r ′ ⊂ r and for every s ∈ f (r), we have

s ∩ r ′ = ∅ ⇒ ∃S ⊆ f (r ′ ) such that s ∩ r ′ = S.
For example, all mappings mentioned in our previous illustrations belong to F * , except the last one that has been introduced above to prove that some ⋄ f -consistencies are not well-behaved. We first show the following result.

Proposition 6 Let f be a mapping of F * . If N 1 and N 2 are two ⋄ f -consistent QCNs defined on the same set of variables, then Proof. Let v i , v j be two variables of N (and consequently of N 1 and N 2 ), r = N [i, j] and s ∈ f (r). We have to show that ⋄(N

N = N 1 ∪ N 2 is a ⋄ f -consistent QCN. v 0 v 3 v 1 v 2 {p,
[i,j]/s )[i, j] = s. Let r 1 = N 1 [i, j], r 2 = N 2 [i, j]
and let s 1 and s 2 be the two relations defined as s 1 = s ∩ r 1 and s 2 = s ∩ r 2 . As s ∈ f (r), we have s ⊆ r and as

N = N 1 ∪ N 2 , we have r = r 1 ∪ r 2 . We can deduce s = s 1 ∪ s 2 , and also N 1[i,j]/s 1 ⊆ N [i,j]/s and N 2[i,j]/s 2 ⊆ N [i,j]/s . Because ⋄ is monotonic, we have ⋄(N 1[i,j]/s 1 ) ⊆ ⋄(N [i,j]/s ) and ⋄(N 2[i,j]/s 2 ) ⊆ ⋄(N [i,j]/s ).
On the other hand, as f ∈ F * there exist S 1 ⊆ f (r 1 ) and S 2 ⊆ f (r 2 ) such that S 1 = s 1 and S 2 = s 2 (if we assume that s 1 = ∅ and s 2 = ∅). From N 1 and N 2 being ⋄ f -consistent, we deduce that ⋄(N

1[i,j]/s ′ 1 )[i, j] = s ′ 1 , ∀s ′ 1 ∈ S 1 and ⋄(N 2[i,j]/s ′ 2 )[i, j] = s ′ 2 , ∀s ′ 2 ∈ S 2 . More- over, because ⋄ is monotonic, we have ⋄(N 1[i,j]/s ′ 1 )[i, j] ⊆ ⋄(N 1[i,j]/s 1 )[i, j], ∀s ′ 1 ∈ S 1 and ⋄(N 2[i,j]/s ′ 2 )[i, j] ⊆ ⋄(N 2[i,j]/s 2 )[i, j], ∀s ′ 2 ∈ S 2 . From this, we obtain s ′ 1 ⊆ ⋄(N 1[i,j]/s 1 )[i, j], ∀s ′ 1 ∈ S 1 and s ′ 2 ⊆ ⋄(N 2[i,j]/s 2 )[i, j], ∀s ′ 2 ∈ S 2 . Consequently, s 1 ⊆ ⋄(N 1[i,j]/s 1 )[i, j] and s 2 ⊆ ⋄(N 2[i,j]/s 2 )[i, j]. As ⋄ is contracting, we also have ⋄(N 1[i,j]/s 1 )[i, j] ⊆ s 1 and ⋄(N 2[i,j]/s 2 )[i, j] ⊆ s 2 . Finally, ⋄(N 1[i,j]/s 1 )[i, j] = s 1 and ⋄(N 2[i,j]/s 2 )[i, j] = s 2 .
From what precedes, we obtain

s 1 ⊆ ⋄(N [i,j]/s )[i, j] and s 2 ⊆ ⋄(N [i,j]/s )[i, j]. So, s = s 1 ∪ s 2 ⊆ ⋄(N [i,j]/s )[i, j].
The same result can be obtained when s 1 = ∅ or s 2 = ∅. Moreover, we also know that ⋄(N

[i,j]/s )[i, j] ⊆ s because ⋄ is contracting. We can conclude that ⋄(N [i,j]/s )[i, j] = s, and consequently that N is ⋄ f -consistent. ⊣
From the previous result, we can show that for every QCN N and every f in F * , the QCN {N ′ :

N ′ ⊆ N and N ′ is ⋄ f -consistent} is the largest ⋄ f -consistent subQCN of N , i.e. the ⋄ f -closure of N . Corollary 2 If ⋄ f is a consistency in ⋄ F * , then ⋄ f is well- behaved.
Observing that f = and f B do belong to F * , we can show that the QCNs from Figure 2 are such that ⋄ f = (N 1 ) = N 2 and ⋄ f B (N 2 ) = N 3 . Importantly, every consistency in ⋄ F * preserves the set of scenarios (the proof is omitted due to lack of space). This is not very surprising since Proposition 1 already indicates that identified base ⋄ f -inconsistent relations can be safely discarded.

Proposition 7 Let f be an element of F * . For every QCN N , ⋄ f (N ) is equivalent to N . Proof. Suppose that there exist two variables

(v i , v j ) of N and a base relation b ∈ B such that b ∈ N [i, j], b / ∈ ⋄ f (N )[i, j]
and a scenario S of N with S[i, j] = {b}. From Proposition 5, we know that S is ⋄ f -consistent, and from S being a scenario of N , we know that S ⊆ N . Hence, by closure definition, we have S ⊆ ⋄ f (N ). This leads to a contradiction since

S[i, j] = {b} and b / ∈ ⋄ f (N )[i, j]. ⊣

Generic Algorithm

In this section, we present a basic ⋄ f -algorithm, that is to say an algorithm that allows us to compute the ⋄ f -closure ⋄ f (N ) of any given QCN N . Such a closure is guaranteed to exist since f is assumed to belong to F * ; see Corollary 2. We introduce a constraint-oriented propagation scheme for enforcing the consistency ⋄ f . The constraint-oriented propagation scheme is characterized by revision of constraints that are successively picked from a dedicated set Q called the queue of the propagation.

The revision of a constraint C ij removes from C ij some base relations that are ⋄ f -inconsistent (if any). A revision is said to be effective if it removes at least one base relation. This is the role of function df-revise. For each element s of f (C ij ), a ⋄ f -check on s is performed, that is to say, N ′ = ⋄(N [i,j]/s ) is computed (line 3), which enables the identification of ⋄ f -inconsistent base relations, those in s \ N ′ [i, j] (line 4). The variable r collects ⋄ f -inconsistent base relations from C ij , and if r is not empty, C ij is updated (line 7) and true is returned.

The main function, called df-closure, performs one or several turns (passes) of the main loop. At each pass, all constraints are revised in turn: constraints are iteratively selected from Q (line 7) and df-revise is called to perform revisions (line 8). When an inference is performed (i.e. a revision is effective), the Boolean variable modif ied is set to true, which determines that a next pass is necessary. The algorithm stops when no inference is performed during a pass, or when an inconsistency is detected (lines 2 and 10). Note that when a QCN N is trivially inconsistent because there exists an empty constraint in N , we note N = ⊥. Initially (line 1), and after each effective revision (line 9), ⋄ (closure under weak composition) is applied on N . This We can prove that the algorithm df-closure is correct, i.e. enforce ⋄ f . Indeed, the algorithm is sound because every base relation removed in df-revise is ⋄ f -inconsistent. On the other hand, the algorithm is complete because, as soon as an inference is performed, a new pass is run (and all constraints are revised). However, it is important to note that the function df-revise removes at least one ⋄ f -inconsistent base relation from a given ⋄ f -inconsistent constraint. Consequently, this guarantess completeness although the function df-revise does not systematically render the given constraint ⋄ f -consistent.

Function df-revise(C ij ): Boolean in/out : C ij , a constraint of the QCN N output: true iff the revision of C ij is effective r ← ∅ 1 foreach relation s ∈ f (C ij ) do 2 N ′ ← ⋄(N [i,j]/s ) // ⋄ f -check on s 3 r ← r ∪ (s \ N ′ [i, j]) // ⋄ f -inconsistent 4 base relations are collected if r = ∅ then 5 r ′ ← N [i,j] \ r 6 N ← N [i,j]/r ′ // C ij becomes r ′ 7 return true 8 else return false 9 Function df-closure(N ,f ): Boolean in/out : N = (V, C), a QCN in : f , an element of F * output: true iff ⋄ f (N ) = ⊥ N ← ⋄(N ) // ⋄ enforced 1 if N = ⊥ then return false 2 repeat 3 modif ied ← f alse 4 Q ← {C ij ∈ C | i < j ∧ |f (C ij )| > 1} 5 while Q = ∅ do 6 select and remove a constraint C ij from Q 7 if df-revise(C ij ) then 8 N ← ⋄(N ) // ⋄ maintained 9 if N = ⊥ then
The worst-case time complexity of the function df-revise is O(sλ) where s is the greatest size (cardinality) of sets in {f (r) : r ∈ 2 B } and λ the worst-case time complexity of enforcing ⋄, i.e. O(n 3 ) for binary relations. Indeed, at most s ⋄ f -checks are performed. At each pass of the function df-closure, the number of calls to df-revise is O(n 2 ), so the worst-case time complexity of one pass of df-closure is O(sλn 2 ). Although the number of passes is bounded by O(|B|n 2 ) (only one base relation removed at each pass), we think that it is a small number in practice (this will be confirmed in our experimentations). Besides, we believe that the basic algoritm presented here can be refined so as to make it incremental (similarly to what is done for SAC [START_REF] Bessiere | Theoretical analysis of singleton arc consistency and its extensions[END_REF]).

Experiments

In our experimentation, we have focused on qualitative constraint networks from the Interval Algebra, randomly generated following Model A [START_REF] Nebel | Solving hard qualitative temporal reasoning problems: Evaluating the efficienty of using the ORD-Horn class[END_REF]. This model involves the generation of QCNs according to three parameters: n the number of variables, d the density and s the average number of base relations in each constraint. The set (or series) of QCNs that can be generated from n, d and s is denoted by A(n, d, s). The experimental results presented in this section concern QCN instances from series A(75, d, 6.5) and A(100, d, 6.5) for d varying from 2 to 24 with a step of 0.25. For these series, the hardest instances are located in a region where the density ranges from 8 to 11. For each series, we generated 100 instances.

The main objective of our experimental study is to compare both the filtering strength and the time efficiency of some ⋄ f -algorithms (those based on consistencies introduced in previous sections). The first criterion used for our comparisons is the number of QCNs detected as inconsistent, within the phase transition. This informs us about the relative filtering strength1 of different consistencies. Note that the exact number of inconsistent QCNs will be computed using a complete solving method: this represents the ideal filtering capability for a consistency. This method, called solver afterwards, is the solver proposed in [START_REF] Nebel | Solving hard qualitative temporal reasoning problems: Evaluating the efficienty of using the ORD-Horn class[END_REF]. Basically, it performs search by successively reducing each constraint relation to a tractable one (using a splitting of the initial relations) and maintaining the QCN closed under weak composition. In our context, we used the tractable sets of the Ord-Horn relations as split elements, and sought the best control parameters of solver to solve our instances. The second criterion used for our comparisons is the CPU time (given in seconds) taken by ⋄ f -algorithms (and solver).

When enforcing ⋄

f -consistencies, we may decide to ignore universal constraints so as to limit the computation effort of the algorithms. This means that when there is a constraint between two variables v i , v j such that C ij = B then no check on C ij is performed by means of f . Pragmatically, for every mapping f , we can introduce a related so-called reduced mapping f -defined as: f save time whereas limiting the loss of inferences due to the universal nature of these constraints.

-(r) = f (r) if r = B,
Figures 4(a) and 5(a) show the filtering capabilities of various ⋄ f -consistencies on series A(75, d, 6.5) and A(100, d, 6.5), respectively. A first observation is that consistencies based on reduced mappings are quite close to unreduced ones. For n = 75 variables, this was so striking that we decided (for clarity reasons) to not plot the curves corresponding to reduced mappings (except for f - B ). For n = 100 variables, a small difference is visible. This means that for a a given mapping f , the mapping f -allows us to detect almost the same number of inconsistent QCNs. However, we conjecture that this is less ans less true when n increases. A second observation is that ⋄ f B (theoretically shown to be the strongest local consistency in ⋄ F ) is very effective as it almost detects all inconsistent QCNs (as identified by solver) from series A(75, d, 6.5), and a lot of them from series A(100, d, 6.5). Other consistencies stronger than ⋄ = ⋄ f⋄ are, in order, P 3 , P 2 , P 1 and ⋄ f = . Interestingly, there is even so a significant gap between ⋄ f = and ⋄, which motivates us to further study each of these new consistencies. Finally, note that the number of passes executed by the function df-closure is very limited (around 3.5 on average).

Figures 4(b) and 5(b) show the CPU time taken by the ⋄ falgorithms on the same series. Note the use of a log scale on the y-axis in order to better distinguish between the behaviour of all algorithms. For n = 75 variables, the use of the strongest consistencies such as ⋄ f B , ⋄

f P 3 and ⋄ f P 2
involve a large overhead with respect to solver, but when reduced mappings are used the ⋄ f algorithms are far faster. For n = 100 variables, solver becomes clearly slower than all other algorithms, but recall that solver performs a complete search whereas ⋄ f -algorithms are incomplete since they can only perform some inferences. However, it is fair to compare solver and ⋄ f -algorithms on instances shown to be inconsistent by both approaches. This is the case for most of the instances of series A(100, d, 6.5) with d around 11.75 or higher; see Figure 5(a). For such instances, algorithms such as ⋄ f P 1 and ⋄ f = (and their reduced variants) are about two orders of magnitude faster than solver. Finally, ⋄ f⋄ = ⋄ is clearly the fastest algorithm as it is usually enforced within 0.1s (we did not plot its CPU curves because this flattens the figures) but remember that it is far weaker than other introduced ⋄ f -consistencies as shown in Figures 4(a To summarize, our (preliminary) experimentation shows how promising ⋄ f -consistencies may be, and in particular those based on reduced mappings that offer a good compromise between time overhead and filtering capability. Maintaining such consistencies during search is a perspective that we envision using a fast solver like GQR*.

Conclusion

In this paper, we have introduced the class of ⋄ f -consistencies for qualitative constraint networks. This class forms a complete lattice and contains original local consistencies (even when considering their CSP counterparts) such as ⋄ f = , all being stronger than weak composition. Looking for the ⋄ fconsistency that is the most appropriate to solve hard instances (from different qualitative algebras) is a pragmatic perspective of this work. On the other hand, we may imagine additional new classes built from coverings where ⋄ is substituted by another local consistency. Studying the connections between all these consistencies and the problems of (global) consistency and minimality of QCNs is an exciting theoretical perspective.
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 1 Figure 1: Base relations of the Interval Algebra.

  From this definition and Proposition 3, we deduce that ⋄ f ⋄ f ′ for every f ′ ∈ E. We now prove by contradiction that ⋄ f1 ⋄ f and ⋄ f2 ⋄ f . Let us suppose that ⋄ f1 ⋄ f does not hold. This means that there exists a
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 3 Figure 3: N 4 = N 5 ∪ N 6 .

  we know that for any f ∈ F * , ⋄ f (N ) ⊆ ⋄ f⋄ (N ) = ⋄(N ). When initializing Q (line 5), a constraint C ji with i < j is ignored because it can be deducted from C ij by means of the inverse operation. Also, a constraintC ij such that |f (C ij )| = 1 is ignored because it is necessarily ⋄f -consistent (recall that closure under weak composition is maintained during search).
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 45 Figure 4: Experimental results for series A(75, d, 6.5).

We could also assess the filtering strength of a given local consistency φ in terms of the number of base relations deleted when applying φ, but this information is closely related to our first criterion.