N

HAL

open science

Learning in local search

Gilles Audemard, Jean-Marie Lagniez, Bertrand Mazure, Lakhdar Sais

» To cite this version:

Gilles Audemard, Jean-Marie Lagniez, Bertrand Mazure, Lakhdar Sais.
21st International Conference on Tools with Artificial Intelligence (ICTAT’09), 2009, Newark, United

States. pp.417-424. hal-00865365

HAL Id: hal-00865365
https://hal.science/hal-00865365

Submitted on 24 Sep 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Learning in local search.


https://hal.science/hal-00865365
https://hal.archives-ouvertes.fr

Learning in local search*

Gilles Audemard Jean-Marie Lagniez Bertrand Mazure Laksder
Universié Lille-Nord de France
CRIL - CNRS UMR 8188
Artois, F-62307 Lens
{audemard,lagniez,mazure,sa@cril.fr

Abstract challenge is stated by Bart Selmetnal. in 1997 [24] (chal-
lenge number 6 "Improve stochastic local search on struc-
In this paper a learning based local search approach for tured problems by efficiently handling variable dependen-
propositional satisfiability is presented. It is based on an cies”). Another important issue (challenge number 5) also
original adaptation of the conflict driven clause learning identified in [24], is to design a practical stochastic local
(CDCL) scheme to local search. First an extended implica- search procedure for proving unsatisfiability. The goal of
tion graph for complete assignments of the set of variablesthis work, is to make a step towards the resolution of these
is proposed. Secondly, a unit propagation based techniquetwo challenges. Our aim is to enhance the performances
for building and using such implication graph is designed. of SLS techniques on industrial SAT instances and to make
Finally, we show how this new learning scheme can be in- such techniques able to prove unsatisfiability.
tegrated to the state-of-the-art local search solver WSAT.  Let us first recall that some attempts towards these di-
Interestingly enough, the obtained local search approach rections have been made recently. In [20] functional de-
is able to prove unsatisfiability. Experimental resultswho pendencies recognized using Ostrowski et al approach [12]
very good performances on many classes of SAT instancehave been exploited in local search based techniques lead-
from the last SAT competitions. ing to interesting improvements particularly on crafted'SA
instances (e.g. parity 32 instances). In [21, 3] new local
search for proving unsatisfiability have been proposed. In
1 Introduction [4], authors propose a stochastic local search solver which
add resolvents between two clauses in order to leave lo-
. . cal minimum. Such method has been improved by [8, 25].
The SAT problem, ”ame'Y the ISsue of checklng_whether However, all these different approaches are still preneatur
a set of Boolean clauses is safisfiable or not, is a cen-y,q hrogress is needed for solving both challenges.
tral issue in many computer science and artificial intelli- . o .
To go further in this direction, we propose to integrate

gence domains, like e.g. theorem proving, planning, non- . . .
monotonic reasoning, VLSI correctness checking TheseIearnlng from conflict, one of the most important compo-
' ' nent behind the efficiency of modern SAT solvers, to lo-

last two decades, many approaches have been proposed ) T
. . cal search techniques. However, one of the main differ-
to solve large SAT instances, based on logically com-

. : ence between DPLL-like and local search techniques that
plete or incomplete. Both local-search techniques (e.g.

[23, 22, 13]) and elaborate variants of the Davis-Putnam- ;nezl?ihsgcgcs(?:giat:gpe(\j/ebry bcor;ﬂ”aengrlggcgz(sesILn[;EeLLWoari/e
Loveland-Logemann DPLL procedure [5] (e.g.- [19, 7]), P P y bp i

. searches among partial assignments whereas in SLS search
called modern SAT solvers, can now solve many families of is done on complete assianments. Even if such difference
hard SAT instances. These two kinds of approaches presentS : P 9 )

complementary features and performances. Modern SAT> important, the two search paradigms actually admit many

. - . . common features. One can connect for example the activ-
solvers are particularly efficient on the industrial SATezat . o : I .
. ; . ity based heuristics (VSIDS) with weighting constraint as
gory while local search is better on random SAT instances.

. done in the break-out local search method [18], restarts in
Consequently, enhancing the performances of local search

approaches to the level of modern modern SAT solvers Onmodern SAT solvers with tries iwsAT like algorithms.

the industrial category is really an important challengeisT In th.is paper, we propose tq improvg the methods pro-
posed in [4, 8, 25] by integrating Conflict Driven Clause

*supported byANR UNLOC projectANRO8-BLAN-0289-01 Learning (CDCL) with implication graph [17, 26] to the




stochastic local search framework. The goal is twofold.
First, similarly to [4, 8, 25], we exploit such learning com-
ponent as a strategy to escape from local minima. However
our approach is more general as the conflict clause is gener-
ated using an implication graph, whereas in [4, 8, 25], such
a clause is obtained using only one resolution step between
two clauses. Secondly, like previous methods, the addition
of new learnt clauses makes the local search solver able to
prove unsatisfiability.

The rest of this paper is organized as follows. In section
2, after the introduction of some preliminary definitionglan
notations, local search algorithms and classical SAT anfli
analysis are presented. In section 3, we describe our exten-

e Y* denotes the formul& simplified by unit propaga-

tion;

e =. denotes logic deduction by unit propagation:

Y E. £ means that the literal is deducted by unit
propagation from: i.e. L € (X A £)* . One notes
¥ . L if the formula is unsatisfiable by unit propa-
gation;

N[z, ¢;, c;| denotes theesolventbetween a clause;
containing the literak andc; a clause containing the
opposite literalz. In other wordsy[z, ¢;, ¢;] = ¢; U
c;\{z,Z}. A resolvent is calledautologicalwhen it
contains opposite literals.

sion of the implication graph to complete assignments and

introduce a unit propagation based approach for building2.2 Local Search Algorithms

such graph. Finally, we integrate such conflict analysis in

WSAT-like algorithm [23]. In section 4 experimental results Local search algorithms for SAT problems use a stochas-

of our proposed approach are presented before concludingtic walk over complete interpretations Bf At eachstep(or

flip), they try to reduce the number of unsatisfiable clauses

(usually called a descent). The next complete interpreta-

tion is chosen among the neighbours of the current one

(they differ only on one literal value). A local minimum is

reached when no descent is possible. One of the key point

of stochastic local search algorithms is the method used to

escape from local minimum. For lack of space, we cannot
Let us give some necessary definitions and notations. Letprovide a general algorithm of local search solver. How-

V = {z;...z,} be a set of boolean variables, a litefa a ever, a modified version can be seen in algorithm 1. For

variablez; or its negatiori;. A clause is a disjunction of —more details, the reader will refer to [14].

literalsc; = (¢1 V ¢5...V £,,). A unit clause is a clause with

only one literal. A formulgX is in conjunctive normal form

(CNF) if it is a conjunction of clauseE = (c¢; A ¢a... A

2 Preliminary definitions and technical back-
ground

2.1 Definitions

2.3 Conflict Analysis and Implication Graph

¢m). The set of literals appearing i is denotedVs.. An
interpretationZ of a formulaX associates a valug(z) to
variables in the formula. An interpretationégempletef it
gives a value to each variahlee Vs, otherwise it is said

Now, we introduce a fundamental data structure, called
implication graph, used by complete CDCL solve@o(-
flict Driven Clause Learningfor conflict analysis, nogood
deduction and backjumping. Some of the following nota-

partial. A clause, a CNF formula and an interpretation can tions have been introduced in [2].

be conveniently represented as setsmédelof a formula
¥, denotedZ = %, is an interpretatiolY which satisfies
the formulaX i.e. satisfies each clause Bf Then, we

A typical branch of a CDCL solver can be seen as
sequences of decision-propagation. At decision level
i, the current partial interpretatiod is of the form

can define the SAT decision problem as follows: is there ((%},), ¥}, %, - -, @, ) Where the first literal}, corre-
an assignment of values to the variables so that the CNFsponds to the decision litera), assigned at leveland each

formulaX is satisfied?
Let us introduce some additional notations.

e An empty clause is represented hyand is unsatisfi-
able;

e the negation of a set of literals = {41, 6o,
denoted” ans is equal td/¢y, ¢s, ..., ¢, };

e ¥, denotes the formula simplified by the assign-
ment of the literal to true. This notation is extended
to interpretations: LeP = {/,, ..., ¢, } be an interpre-
tation, X, = (...(X[¢,)--le, )s

Sl }is

:r:zj for 1 < j < ny corresponds to a propagated (unit)
literal. Whenever a literaj is propagated, we keep a ref-
erence to the clause at the origin of the propagatiop, of
which we denotefz(y). Of course It can exist more than
one such clause, however we are taking into account only
one of them, usually the first encountered one. The clause
&?z(y) has, in this case, the for(m; Vv - - - V x,, V y) where
every literalz; is false under the current partial assignment
(Z(x;) = false,¥i € 1...n), while Z(y) = true. When

a literal y is not obtained by propagation but comes from
a decision,c%;(y) is undefined, which we note for conve-
niencea?z(y) =1. When%(y) #1, we denote byzp(y)



the set{z | z € %(y) \ {y}}, called set obxplanationsof Example 2 Consider again example 1 and the same im-

y. In other words, icha(y) = (2, V---Vz, Vy), thenthe plication graph (F@gure 1) associated to interp_retatid’g. .

explanations are the literai§ with which cl‘a(y) becomes To generate the first UIP, we perform resolu.tlon (S.ta”'.”g
. — . . from the conflict) between clauses encoded in the implica-

the unit clause{y}. Whencla(y) is undefined we define tion graph (implications):

exp(y) as the empty set. |

The implication graph is a directed acyclic graph, ital- o 3, = n(azd, b1, d2) = gv?g V. E\/?g
lows a representation of decision-propagations sequences -
In such a graph, each vertex is associated to a literal and e (35 = n(z3, 41, ¢5) = 3 V 23 V 23
incoming edges of a vertex are the set of its explanations.

Formally, we have: o Bs = n(at, Bz, ¢6) = xh V af v}
(3 _TIyZva
Definition 1 (Implication graph) LetX be a CNF formula o B =n(zy, B3 d1) = 23 VgV zy
and Z, be a partial interpretation. An implication graph  Te clauses contains only one literal from the last de-

associated t&, Z, andexp is Gy = (N.A) where: cision level (here leved). Then, the process ends with the
clauseg, usually called an asserting clause. The litezgl

is an asserting literal, and the node; in the implication
graph (see figure 1) is the first UIP.

1. N = {z|z € Z,}, i.e. there is exactly one node for
every literal, decision or implied;

2. A={(z,y)lx € Tp,y € Ip,x € exp(y)}-

3 Local search and conflict analysis
Example 1 LetYX = {¢1, ..., ¢11 } be a CNF formula such

that. 3.1 Conflict graph definition
¢1: (T VT2V T3) ¢2: (x1VTgV Ts)
¢3 : (z2 V T1) b4 i (T4 V T7 V Tg) In section 2.2, we mentioned that one of the key points
¢5 1 (23 V T5) b6 : (x5 V T7) behind the efficiency of local search algorithms is undoubt-
¢7 1 (T6 V Ts) ¢s : (v7V Tg) edly the strategy used to escape from local minima. In
¢ : (v8 V T1) $10 : (71 V Ts) [4, 8, 25], authors proposed to add clauses obtained by res-
$11 : (27 V T) olution in order to leave such minimum. We propose to

improve such a strategy by exploiting the implication graph

Let Z, be the following partial interpretatioriZ, = ! . )
P gp P P built from a complete interpretation to generate and add no-

{{(2) (@) ((2) 23 o] 2§ f 2? 2)}. The Current de- goods to the clauses data base.

cision level is3 andIEgp =« L. Figure 1 represents the However, in local search framework, one has to deal with
implication graphGs” associated ta, Z,, andexp (the set  complete interpretations. Defining an implication graph in
of explanations). this case is clearly challenging. Indeed, there is no no-
tion of levels or unit propagated literals. Furthermore, a
complete interpretation can falsify more than one clause.

3
Ty
qb/(‘ \ In this section, we propose a new definition of implication

b1 . P2 43 graphs in stochastic local search framework. Before, we
. T T 3 \/7 \ N give some necessary definitions. Let us consider a CNF for-
b5 23 / mula¥ and a complete interpretatidh. We say that the
3

ME literal ¢ satisfies (resp. falsifies) a clause= X underZ. if
teI.n{x|xzep}(respleI.Nn{x]|ZT e F}). Wenote

Lz (B) (resp. L7 (B)), the set of literals satisfying (resp.

falsifying) a clauses underZ,. The following definitions

were introduced in [11].

As mentioned above, an implication graph allows no-

goods extraction. These nogoods are built by a traversalDefinition 2 (once-satisfied clause)A clause 5 is said

of the implication graph starting from the top (the falsified once-satisfiedby an interpretationZ. on literal z if

clause). Different kinds of nogoods can be generated. Onec}c (B) ={z}.

of the most used and efficient learning scheme is the first

UIP (Unique Implication Point). In the following example, Definition 3 (critical and linked clauses) Let Z. be a

we show a construction of a first UIP. For more details and complete interpretation. A clause is critical w.r.t. Z. if

a formal presentation, the reader can refer to [17, 26]. |££ ()] = 0 (« is falsified) andv/ € «, 3o’ € X with

Figure 1. Implication graph (example 1)



¢ € o and’ is an once-satisfied clause. Claus€sare
linked to« for the interpretatioriZ,.

Example 3 LetY = (@VbVve)A(aVb)A(bVE)A(cVa) be
a formula andZ, = {a, b, ¢} an interpretation. The clause
a; = (aVbVe) is critical. The other clauses of are
linked too; for Z..

Now, we can define conflict graph for complete interpre-
tations.

Definition 4 (Conflict graph on z) Let ¥ be a CNF for-
mula,Z, a complete interpretation falsifying. Consider
two clauses ok, g = {64,..., Ok, z} falsified byZ. and
v = {mn,...,v,z} once-satisfied o, the conflict graph
G 7. = (N, A) is constructed in the following way:

1. {2,2, L} CN;
- M SN
{Br,.. . B} SN
{(z, 1),z L)} cA;
{(Br,2), - (B, 2)} C A;
{O1,2),.--. (O, D)} € A;

3.V e N,ifz # zanda = \N{y € N | (y,2) €
A} £ L thena v z € ¥ is once-satisfied on.

Since for a given literak, clauses like5 and~ are not
unique, then the conflict graph is not unique too.

Example 4 Consider again example 1. L&t be a com-
plete interpretation such th&t. = {xz1,...,z9}. Figure 2
represents the conflict graght,'; constructed on variable
xIq.

Z6
8

AN
T

e

Figure 2. Conflict graph constructed on vari-
able z; (example 4)

%

4

X7

It is important to note that the existence of such a graph
is not ensured. The following proposition gives necessary
and sufficient conditions for the construction of the conflic
graph.

Proposition 1 Let 3 be a CNF formulaZ. a complete in-
terpretation. The conflict grapbs: 7 exists if and only if

z and T appear respectively in a falsified clause and in a
once-satisfied one.

Proof The proof of this proposition follows directly from
the definition of the conflict graph.

Corollary 1 Leta € X be a critical clauseVz € q, itis
possible to construct a conflict graph an

Proof By definition of a critical clausex € X, we have
Yz € a, 30 € X once-satisfied om. From Proposition 1, it
is obvious that/z € «, it exists a conflict graph on.

As shown in [11], in a local minima all falsified clauses
are necessarily critical. The corollary 1 ensures thatis t
case, it is always possible to build a conflict graph. Then,
we can use it in order to leave such local minimum. How-
ever, generating such nogoods is not obvious. Indeed, there
is not notion of levels, the classical notion of conflict anal
sis and first UIP can not be extended. Furthermore, conflict
graphs can contain cycles. In this case, the resolution step
can produce tautological clauses which are obviously use-
less. To overcome these problems, we propose to transform
conflict graph of a complete interpretation into a classical
implication graph and then use classical learning to gener-
ate relevant nogoods.

3.2 Building Conflict Graph

To overcome problems introduced in previous section,
we propose a first method, based on unit propagation. Start-
ing from a complete interpretaticf., we build a partial in-
terpretatioriZ’ by unit propagation where decision variables
have the same value asdp. This partial interpretation in-
troduced formally in the following definition will help us to
build the conflict graph.

Definition 5 (Derived partial interpretation) Let > be a
CNF formula,Z. a complete interpretation. The derived
partial interpretation ofZ., denotedZ’, is incrementally
build as follows:

o I\ =10;
o z{—i-l :IZ{U{(.’Ei+1),"E}+1,...,"L'i-c_,'_l}SUCh thatxiﬂ €
Ve \Z/ andVj,1 < j < k one hasE|I,_U{wi+1} E.

J i J
xy . With

1 €2,
'=TI;U {(JU7;+1),.13Z-1+1,
Ve\Z; andVj,1 < j < lonehas ,

iU{Tip1}

withz?, | € Z, for j # l andz! | ¢ ..

,ai,1} such thate; 1, €

o



The set of variables associated to the decision literals is
called a conflict set. Furthermore, we call conflict variable
the one associated to the literale Z' \ Z. The literalz is
also called a conflict literal.

Of course, the choice of the conflict set of variables is
a heuristic choice and can lead to different derived partial
interpretations.

Example 5 Let us consider again the CNE of example 1
and the complete interpretatidf) = {z1,...z9}.

First, considering the decision variables in lexicographi
ordering. We have:

QI('):@

d :Z-i = {(Tl)arévg}

Then, the conflict variable is3 and the conflict set is lim-
ited to{x1}.

Now, considering the inverse lexicographic ordering, the
partial interpretation is:

° Ié =0
b Ii = {($é),$%,l‘%,$‘f}

3

i Ié = {(x},),x%7x},7m1, 2

(xS 2 .2

2,2 .2
),xG,x4,x1,x27x2}

the conflict variable is:; and the conflict set i§xg, 25 }.

Complete interpretation is conflicting, so the derived par-
tial interpretation will differ on, at least, one conflictdral.
The following proposition asserts that it exists at least on
conflict clause containing this literal. The conflict gragh i
then built on this literal.

Proposition 2 Let 3 be a CNF formulaZ. a conflicting
complete interpretation an@’ a derived partial interpreta-
tion of Z.. Letx be the conflict literal, therap(xz) C Z.

and the clausel_cZ(x) is falsified byZ..

Proof First, by construction ofZ’, it is obvious that
exp(z) € Z.. Indeed, suppose thatp(x) ¢ Z. then
Jy € exp(x) such thaty &€ Z... By definitionexp(x) C 77,
soy € Z’, consequently the literglis also a conflict literal.
By construction ofZ’, it exists only one conflict literal, then

The following proposition expresses the fact that all
clauses (expect the falsified one) which are used to construc
the graph are once-satisfied clauses.

Proposition 3 LetY be a CNF formulaZ. a complete con-
flicting interpretation,Z’ a derived partial interpretation
andz the conflict literal associated t&’. Consider the im-
plication graphGZ’ = (N, A), thenvy € A\ {z} one has
— —

cla(y) = L wherecla(y) is once-satisfied by’ on x.

Proof One need to consider two cases:

1. yis a decision literal, thet%(y) =1;

2. y is a propagated literal. It exist;z(y) € ¥ such
that%(y) = exp(y) V y. By construction ofZ’, one
hasxz & exp(y) andZ’ \ {z} C Z.. Sincey # «z,
one has{exp(y),y} C Z'. By transitivity, one obtain
{eap(y),y} C T.\ {z}. Then, the clausela(y) is
once-satisfied bg,. ony.

In the proposition 4, we show that the implication graph
obtained with the partial derived interpretation can be ex-
tended in a conflict graph on the conflict literal. Then, with
the help of this implication graph, it is possible to generat
nogoods similarly to classical CDCL solvers [7]. Of course,
these nogoods will be added to the clauses database.

Proposition 4 Let 3 be a CNF formulaZ. a complete in-
terpretation onX, Z’ a partial derived interpretation and
x the conflict literal associated t@’. If 3o € X once-
satisfied byZ. on x, then it is possible to extend the impli-
cation graphgg = (N, A) associated td@’ to a conflict
graphGs ; = (NV', A’) as follows:

e NV=NU{yea\z}u{z, L};
o A =AU{(y, D)y ca\z}U{(z, 1), (z, L)}

Proof Before proving thatis; 7 is a valid conflict graph,

one has to identify clauses= {f1,..., 0k, 2} € ¥ falsi-

fied byZ. andy = {v1,...,%,Z} € X once-satisfied on

z for Z.. By hypothesis, clause is once-satisfied by,

on z. Obviously,y = a. By proposition 2, one can take
— — —

B = cda(x). Indeed,x € cla(z) and the clausela(x)

is falsified byZ.. The both clauses used for the construc-

y = x. This is impossible, because a propagated literal cantion of the conflict graph are now identified. To prove that

not be included in its explanation.

Secondly, we have to prove that = &Z(x). Suppose
cl—c;(x) is satisfied byZ.. Note thatz is a propagated literal,
then it exists an explanatiemp(z) and a clauseﬁ(:z:) ey
such tha%(ac) = exp(zx)Vx. We know thakap(z) C Z,

thenexp(x) € Z.. Sincecﬂz(x) is satisfied byZ,., it can be
only satisfied byc. This is not possible becauseZ 7.

G& 7. = (W', A') is a conflict graph, one has to verify the
following properties (see definition 4):

e {z,7,1} C WN’. By hypothesis, one has
{z, L} € N’, We only need to prove that €
N’. We know thatr € Z’, by construction of
GZ', then we haver C V. SinceN C A7, then
xeN';

1.



{7,...,m} SN’ We have{y € @\ } C N’
andy = . Then{y € ¥\ 2} C N’ ;

{B1,--.,Br} € N’. By hypothesis,
a?z(x) =01 V-V G, Vo =exp(x) V. Then,
exp(z) = {B,...,B}. By proposition 2, one
hasexp(x) C 7', soexp(z) C N (see defini-
tion 1). SinceN C N7, by transitivity, one has
exp() CN';

{(z,1),(z, L)} € A’. By construction ;

{(?1,%),..., (7, %)} C A’. By construction ;

{(B1,2),...,(Br,x)} € A’. One knows that
exp(r) = {p1,..., 0} and{exp(z),z} C I'.
By construction ofA’” and by definition 1, one
has{(51,2)...., (B, 2)} CAC A';

3.Vz € N,ifz # zanda = N{y e N | (y,2) €

A} = L thena Vv z € ¥ and is once-satisfied on

x. By proposition 3,Vy € N such thaty # = and

—
cla(y

) # L, one has%(y) once-satisfied b¢. ony.

By construction ogg andgs; 7. the previous property
is verified.

Example 6 Let us take again example 1 and partial derived

3.3 Implementation

We propose to incorporate the conflict graph defined in
previous section insidevasAT like solver [23]. This is done
when a local minima is reached. We name this method
cboLs. During the construction of the partial derived in-
terpretation, two cases might occur: Either a conflict is
reached during unit propagation (see Figure 3.b) or not (see
Figure 3.a). In the former, one uses the resulting implica-
tion graph, analyzes the conflict and extracts an assertive
clause associated to the first UIP. In the latter, one extends
the implication graph of the derived partial interpretatto
a conflict graph and, in a similar way, an assertive clause
is extracted. In both cases, assertive clauses are added to
the clauses database of the formula. And, if the assertive
clause is the empty one, the unsatisfiability of the formsila i
proved. Contrary to classicalsAT algorithm, one can flip
a set of variables when a local minima is reached. These are
variables whose values differ between complete interpreta
tion and derived partial interpretation.

It is important to note thatbLs is not an hybrid al-
gorithm like [9, 10]. It is a simple stochastic local search
method. Unit propagation is only used to build the conflict
graph, to analyze conflict graph and to extract nogoods.

interpretations obtained in example 5. We can extend im- Algorithm 1: CDLS

plication graphs associated to these interpretations io tw
conflict graphs depicted in Figures 3.a (lexicographic or-

der) and 3.b (inverse lexicographic order).

b. inverse lexicographic order

Figure 3. Conflict graph constructed with unit
propagation (example 6)

Input: X a CNF formula

Output: SAT if ¥ is satisfiable U NSAT if ¥ is
unsatisfiable, elsE§ NK NOW N

for i < 1to MaxTries do

1

2 | Z. + completePUlInterpretatioR(;

3 | for j « 1to MaxFlips do

4 if Z. = X then

5 | retun SAT;

6 I={ae€X|Z [~ a};

7 while T # ( do

8 acel;

9 if 3z € a allowing a descenthen

10 flip(x);

1 break;

12 else

13 LF — I\ {a};

14 if ' = (0 then /= local minimum  */
15 a € Y such thatZ, £ «;

16 8« conflictAnalysisRL(3, T., );
17 if 6= 1 then

18 | return UNSAT;

19 Y —XuU{s}

20 return UNKNOW N




Algorithm 2: completePUInterpretation Algorithm 4 : conflictAnalysisRL

Input: ¥ a CNF formula Input: ¥ a CNF;Z. a complete interpretation; € ¥
Output: 7. a complete interpretation &f a critical clause fofZ...
1Y — %I, « 0 Output: 3 a clause built oV
2 while ¥’ # () do 1 € « conflictSet(X, L., o0); vy «— 0; I, — 0;
3 | xelit(X); 2 while (y = 0) and(Z, C Z.) do
4 | P—{z}U{yl |, F«yh 3 | E—EN\T, I, — I,U{z}suchthat
5 | foreachy € P do | z €&, v+ BCP();
6 if y € P then 4 if v # 0 then /* CASE 1%/
! LPHP\{y}; 5 ﬂHfirstUIP(gg’));
g | Y — 21 : 6 | flip(x) with z assertive literal ;
o | T, <—ICZ7?' 7 else | * CASE 2 */
- ' 8 | I’ «— partial interpretation associatedp;
10 return 7, 9 | y « conflict literal of Z’;
10 | G 1) — extended conflict grapfZ ;
Algorithm 3 conflictSet u | B firstUIP(Gs 1));
Input: X a CNF;Z, a complete interpretation; € X 12 | forall x € 7, \ Z. do flip(z);
a critical clause fofZ... 13 return g,
Output: C a conflict literals set
1 C «— 0 .
» forall = € @ do Crafted Industrial Random
3 | 3 € ¥ once-satisfied on: sat unsaff sat unsat sat unsat
4 LC —Cculp\ {z}}; ADAPTG2 | 326 0| 232 0| 1111 0
RSAPS 339 0| 226 0| 1071 0
5 retum WSAT 259 0| 206 0| 1012 0
CDLS 331  146| 412  232| 943 0
CLS 235 75| 227  102| 690 0
Algorithm cpLs (see Algorithm 1) takes a CNF for- MINISAT | 402 369| 588 414| 609 315

mula X as input and returns three different valugsA(,
UNSAT or UNKNOWN). Itis based on WSAT algo- Table 1. cDLS versus some other SAT solvers
rithm. Note that initial complete interpretations are gene
ated using unit propagation (line 2 of Algorithm 1 and Al-
gorithm 2). In this way, local minimas are quickly reached .
and variables dependencies are taken into account i.e usiné‘ Experimental results
unit propagation. Whenever a descent is possible, one flips
a variable allowing it. When a local minima is reached, we  Experimental results reported in this section were ob-
analyze the conflict as explained previously. A noggdd tained on a Xeon 3.2 GHz with 2 GByte of RAM. CPU time
generated and added to the clause database. is limited to 1200 seconds. We compameLs to three clas-
Algorithm 4 is the core or our proposed framework. It sical incomplete local search methodgsAT [23], RSAPS
starts by selecting conflict variables set which allows to [15] and ADAPTG2 [16] ; we also addcLs the complete
build the derived partial interpretation. This is done by Al local search solver proposed by [8] amdNISAT [7] one of
gorithm 3. It chooses variables in linked clauses to the fal- state-of-the-art CDCL solver. Instances used are taken fro
sified clausey in order to make the generated partial inter- the last SAT competitions. They are divided into different
pretation nearest ta. Then, this partial interpretatian, categories: crafted (1439 instances), industrial (130%) a
is constructed (line 4-7). Two cases might occur. In the random (2172). All instances are preprocessed wih SatElite
former, a conflict is reached, classical conflict analysis is [6]. Indeed, it is well known resolution based preprocessor
applied (line 9) and an assertive literal is flipped. In the help, in a lot of cases, local search and complete ones [1].
latter, one can extracts the partial derived interpretatib Table 4 summarizes the obtained results on this large
7, and generates the associated conflict graph (line 12-14number of instances. For more details on this experimen-
and proposition 4). At this point, conflict analysis can be tal part, the reader can refertttp://www.cril.fr/
achieved. All variables with different values in both inter ~lagniez/cdls . For each category and for each solver
pretations are then flipped. we report the number of solved instances. Of couvs® -



ISAT a state-of-the-art CDCL based complete solver is con- [2]
sidered here, only to mention the gap between local search
based techniques and complete modern SAT solvers on in-
dustrial and crafted instances. On random satisfiable in-
stances, local search techniques generally outperformra com ]
plete techniques.

Let us start to analyze the results obtained on the crafted 5
category. Except fOMINISAT, CDLS is very competitive
and solves approximately the same number of instances g
than RsAPs and ADAPTG2. Furthermore,cDLS solves
much more instances thamsAT, its built-in solver. Com-
paring tocLs, our solver is better, it solves more SAT and
UNSAT instances. For industrial instanceshLs solves
two times more instances than other stochastic local search
solvers and 232 unsatisfiable instances. It outperfanss
the other complete local search solver. So, conflict analysi
allows to solve efficiently structured SAT and UNSAT in-
stances. Finally, for the random category, we can note tha

(3]

(7]
(8]
(9]
(10]

cDLS andcCLs are unable to solve unsatisfiable problems. H
As pointed bymINISAT results, learning is not the good ap- 12
proach to solve random instances.

A summary, our solvercbLs is much more efficient
than other local search algorithms. It significantly imgev ~ [13]
WSAT, its built-in solver andcLs another complete local
search approach. Even ifINISAT is the best solver on [14]

crafted and industrial instances, these first results ane ve
encouraging and reduce the gap between local search baquS]
techniques and DPPL-like complete solvers.

5 Conclusion [16]

In this paper, we propose a new approach to keep out[17]
local minimum when dealing with a stochastic local search
solver. Our approach extends conflict analysis used by mod-
ern SAT solvers. With this extension, we significantly im-
proved stochastic local search solvers. More interestingl
our approach is able to prove inconsistency of many SAT
instances, and then it can be seen as an important step to the
resolution of the challenge number 5 proposed by Selman[2o]
et al. at IJCAI 1997. These first results are very promis-
ing. Our solver is able to solve a lot of unsatisfiable in- [21]
stances and it achieves interesting improvements of local
search based techniques on structured SAT instances. [f¢2]
future works, we plan to improve heuristic choice for the
conflict set. We also want to analyze and extract nogoods[
without the help of unit propagation. Finally, we plan to

[19]

; 24

study other schemes for extracting relevant nogoods. [24]
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