
HAL Id: hal-00865365
https://hal.science/hal-00865365v1

Submitted on 24 Sep 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning in local search
Gilles Audemard, Jean-Marie Lagniez, Bertrand Mazure, Lakhdar Saïs

To cite this version:
Gilles Audemard, Jean-Marie Lagniez, Bertrand Mazure, Lakhdar Saïs. Learning in local search.
21st International Conference on Tools with Artificial Intelligence (ICTAI’09), 2009, Newark, United
States. pp.417-424. �hal-00865365�

https://hal.science/hal-00865365v1
https://hal.archives-ouvertes.fr

Learning in local search∗

Gilles Audemard Jean-Marie Lagniez Bertrand Mazure LakhdarSäıs
Universit́e Lille-Nord de France

CRIL - CNRS UMR 8188
Artois, F-62307 Lens

{audemard,lagniez,mazure,sais}@cril.fr

Abstract

In this paper a learning based local search approach for
propositional satisfiability is presented. It is based on an
original adaptation of the conflict driven clause learning
(CDCL) scheme to local search. First an extended implica-
tion graph for complete assignments of the set of variables
is proposed. Secondly, a unit propagation based technique
for building and using such implication graph is designed.
Finally, we show how this new learning scheme can be in-
tegrated to the state-of-the-art local search solver WSAT.
Interestingly enough, the obtained local search approach
is able to prove unsatisfiability. Experimental results show
very good performances on many classes of SAT instances
from the last SAT competitions.

1 Introduction

The SAT problem, namely the issue of checking whether
a set of Boolean clauses is satisfiable or not, is a cen-
tral issue in many computer science and artificial intelli-
gence domains, like e.g. theorem proving, planning, non-
monotonic reasoning, VLSI correctness checking. These
last two decades, many approaches have been proposed
to solve large SAT instances, based on logically com-
plete or incomplete. Both local-search techniques (e.g.
[23, 22, 13]) and elaborate variants of the Davis-Putnam-
Loveland-Logemann DPLL procedure [5] (e.g. [19, 7]),
called modern SAT solvers, can now solve many families of
hard SAT instances. These two kinds of approaches present
complementary features and performances. Modern SAT
solvers are particularly efficient on the industrial SAT cate-
gory while local search is better on random SAT instances.
Consequently, enhancing the performances of local search
approaches to the level of modern modern SAT solvers on
the industrial category is really an important challenge. This

∗supported byANR UNLOC projectANR08-BLAN -0289-01

challenge is stated by Bart Selmanet al. in 1997 [24] (chal-
lenge number 6 ”Improve stochastic local search on struc-
tured problems by efficiently handling variable dependen-
cies”). Another important issue (challenge number 5) also
identified in [24], is to design a practical stochastic local
search procedure for proving unsatisfiability. The goal of
this work, is to make a step towards the resolution of these
two challenges. Our aim is to enhance the performances
of SLS techniques on industrial SAT instances and to make
such techniques able to prove unsatisfiability.

Let us first recall that some attempts towards these di-
rections have been made recently. In [20] functional de-
pendencies recognized using Ostrowski et al approach [12]
have been exploited in local search based techniques lead-
ing to interesting improvements particularly on crafted SAT
instances (e.g. parity 32 instances). In [21, 3] new local
search for proving unsatisfiability have been proposed. In
[4], authors propose a stochastic local search solver which
add resolvents between two clauses in order to leave lo-
cal minimum. Such method has been improved by [8, 25].
However, all these different approaches are still premature
and progress is needed for solving both challenges.

To go further in this direction, we propose to integrate
learning from conflict, one of the most important compo-
nent behind the efficiency of modern SAT solvers, to lo-
cal search techniques. However, one of the main differ-
ence between DPLL-like and local search techniques that
make such adaptation very challenging rises in the way
search space is explored by both approaches. In DPLL one
searches among partial assignments whereas in SLS search
is done on complete assignments. Even if such difference
is important, the two search paradigms actually admit many
common features. One can connect for example the activ-
ity based heuristics (VSIDS) with weighting constraint as
done in the break-out local search method [18], restarts in
modern SAT solvers with tries inWSAT like algorithms.

In this paper, we propose to improve the methods pro-
posed in [4, 8, 25] by integrating Conflict Driven Clause
Learning (CDCL) with implication graph [17, 26] to the

1

stochastic local search framework. The goal is twofold.
First, similarly to [4, 8, 25], we exploit such learning com-
ponent as a strategy to escape from local minima. However
our approach is more general as the conflict clause is gener-
ated using an implication graph, whereas in [4, 8, 25], such
a clause is obtained using only one resolution step between
two clauses. Secondly, like previous methods, the addition
of new learnt clauses makes the local search solver able to
prove unsatisfiability.

The rest of this paper is organized as follows. In section
2, after the introduction of some preliminary definitions and
notations, local search algorithms and classical SAT conflict
analysis are presented. In section 3, we describe our exten-
sion of the implication graph to complete assignments and
introduce a unit propagation based approach for building
such graph. Finally, we integrate such conflict analysis in
WSAT-like algorithm [23]. In section 4 experimental results
of our proposed approach are presented before concluding.

2 Preliminary definitions and technical back-
ground

2.1 Definitions

Let us give some necessary definitions and notations. Let
V = {x1...xn} be a set of boolean variables, a literalℓ is a
variablexi or its negationxi. A clause is a disjunction of
literalsci = (ℓ1 ∨ ℓ2...∨ ℓni

). A unit clause is a clause with
only one literal. A formulaΣ is in conjunctive normal form
(CNF) if it is a conjunction of clausesΣ = (c1 ∧ c2... ∧
cm). The set of literals appearing inΣ is denotedVΣ. An
interpretationI of a formulaΣ associates a valueI(x) to
variables in the formula. An interpretation iscompleteif it
gives a value to each variablex ∈ VΣ, otherwise it is said
partial. A clause, a CNF formula and an interpretation can
be conveniently represented as sets. Amodelof a formula
Σ, denotedI |= Σ, is an interpretationI which satisfies
the formulaΣ i.e. satisfies each clause ofΣ. Then, we
can define the SAT decision problem as follows: is there
an assignment of values to the variables so that the CNF
formulaΣ is satisfied?
Let us introduce some additional notations.

• An empty clause is represented by⊥ and is unsatisfi-
able;

• the negation of a set of literalsΓ = {ℓ1, ℓ2, . . . , ℓn} is
denotedΓ ans is equal to{ℓ1, ℓ2, . . . , ℓn};

• Σ|ℓ denotes the formulaΣ simplified by the assign-
ment of the literalℓ to true. This notation is extended
to interpretations: LetP = {ℓ1, ..., ℓn} be an interpre-
tation,Σ|P = (...(Σ|ℓ1)...|ℓn

);

• Σ∗ denotes the formulaΣ simplified by unit propaga-
tion;

• |=∗ denotes logic deduction by unit propagation:
Σ |=∗ ℓ means that the literalℓ is deducted by unit
propagation fromΣ i.e. ⊥ ∈ (Σ ∧ ℓ)∗ . One notes
Σ |=∗ ⊥ if the formula is unsatisfiable by unit propa-
gation;

• η[x, ci, cj] denotes theresolventbetween a clauseci

containing the literalx andcj a clause containing the
opposite literalx. In other wordsη[x, ci, cj] = ci ∪
cj\{x, x}. A resolvent is calledtautologicalwhen it
contains opposite literals.

2.2 Local Search Algorithms

Local search algorithms for SAT problems use a stochas-
tic walk over complete interpretations ofΣ. At eachstep(or
flip), they try to reduce the number of unsatisfiable clauses
(usually called a descent). The next complete interpreta-
tion is chosen among the neighbours of the current one
(they differ only on one literal value). A local minimum is
reached when no descent is possible. One of the key point
of stochastic local search algorithms is the method used to
escape from local minimum. For lack of space, we cannot
provide a general algorithm of local search solver. How-
ever, a modified version can be seen in algorithm 1. For
more details, the reader will refer to [14].

2.3 Conflict Analysis and Implication Graph

Now, we introduce a fundamental data structure, called
implication graph, used by complete CDCL solvers (Con-
flict Driven Clause Learning) for conflict analysis, nogood
deduction and backjumping. Some of the following nota-
tions have been introduced in [2].

A typical branch of a CDCL solver can be seen as
sequences of decision-propagation. At decision level
i, the current partial interpretationI is of the form
〈(xi

k), xi
k1

, xi
k2

, . . . , xi
knk
〉 where the first literalxi

k corre-
sponds to the decision literalxk assigned at leveli and each
xi

kj
for 1 ≤ j ≤ nk corresponds to a propagated (unit)

literal. Whenever a literaly is propagated, we keep a ref-
erence to the clause at the origin of the propagation ofy,
which we denote

−→
cla(y). Of course It can exist more than

one such clause, however we are taking into account only
one of them, usually the first encountered one. The clause
−→
cla(y) has, in this case, the form(x1 ∨ · · · ∨ xn ∨ y) where
every literalxi is false under the current partial assignment
(I(xi) = false,∀i ∈ 1 . . . n), while I(y) = true. When
a literal y is not obtained by propagation but comes from
a decision,

−→
cla(y) is undefined, which we note for conve-

nience
−→
cla(y) =⊥. When

−→
cla(y) 6=⊥, we denote byexp(y)

2

the set{x | x ∈
−→
cla(y) \ {y}}, called set ofexplanationsof

y. In other words, if
−→
cla(y) = (x1 ∨ · · · ∨ xn ∨ y), then the

explanations are the literalsxi with which
−→
cla(y) becomes

the unit clause{y}. When
−→
cla(y) is undefined we define

exp(y) as the empty set.
The implication graph is a directed acyclic graph, it al-

lows a representation of decision-propagations sequences.
In such a graph, each vertex is associated to a literal and
incoming edges of a vertex are the set of its explanations.
Formally, we have:

Definition 1 (Implication graph) LetΣ be a CNF formula
and Ip be a partial interpretation. An implication graph

associated toΣ, Ip andexp is GIp

Σ = (N ,A) where:

1. N = {x|x ∈ Ip}, i.e. there is exactly one node for
every literal, decision or implied;

2. A = {(x, y)|x ∈ Ip, y ∈ Ip, x ∈ exp(y)}.

Example 1 Let Σ = {φ1, ..., φ11} be a CNF formula such
that.

φ1 : (x1 ∨ x2 ∨ x3) φ2 : (x1 ∨ x4 ∨ x5)
φ3 : (x2 ∨ x1) φ4 : (x4 ∨ x7 ∨ x6)
φ5 : (x3 ∨ x5) φ6 : (x5 ∨ x7)
φ7 : (x6 ∨ x8) φ8 : (x7 ∨ x8)
φ9 : (x8 ∨ x4) φ10 : (x1 ∨ x8)
φ11 : (x7 ∨ x9)

Let Ip be the following partial interpretationIp =

{〈(x1
2)〉〈(x

2
6)〉〈(x

3
9) x3

7 x3
4 x3

5 x3
3 x3

1 x3
1〉}. The Current de-

cision level is3 and Σ|Ip
|=∗ ⊥. Figure 1 represents the

implication graphGIp

Σ associated toΣ, Ip andexp (the set
of explanations).

nx2
6

nx3
9

nx1
2

x3
7

x3
4

x3
5

x3
3

x3
1

x3
1

⊥

φ4

φ11

φ1

φ5

φ6

φ2

Figure 1. Implication graph (example 1)

As mentioned above, an implication graph allows no-
goods extraction. These nogoods are built by a traversal
of the implication graph starting from the top (the falsified
clause). Different kinds of nogoods can be generated. One
of the most used and efficient learning scheme is the first
UIP (Unique Implication Point). In the following example,
we show a construction of a first UIP. For more details and
a formal presentation, the reader can refer to [17, 26].

Example 2 Consider again example 1 and the same im-
plication graph (Figure 1) associated to interpretationIp.
To generate the first UIP, we perform resolution (starting
from the conflict) between clauses encoded in the implica-
tion graph (implications):

• β1 = η(x3
1, φ1, φ2) = x1

2 ∨ x3
3 ∨ x3

4 ∨ x3
5

• β2 = η(x3
3, β1, φ5) = x1

2 ∨ x3
4 ∨ x3

5

• β3 = η(x3
5, β2, φ6) = x1

2 ∨ x3
4 ∨ x3

7

• β = η(x3
4, β3, φ4) = x1

2 ∨ x2
6 ∨ x3

7

The clauseβ contains only one literal from the last de-
cision level (here level3). Then, the process ends with the
clauseβ, usually called an asserting clause. The literalx3

7

is an asserting literal, and the nodex7 in the implication
graph (see figure 1) is the first UIP.

3 Local search and conflict analysis

3.1 Conflict graph definition

In section 2.2, we mentioned that one of the key points
behind the efficiency of local search algorithms is undoubt-
edly the strategy used to escape from local minima. In
[4, 8, 25], authors proposed to add clauses obtained by res-
olution in order to leave such minimum. We propose to
improve such a strategy by exploiting the implication graph
built from a complete interpretation to generate and add no-
goods to the clauses data base.

However, in local search framework, one has to deal with
complete interpretations. Defining an implication graph in
this case is clearly challenging. Indeed, there is no no-
tion of levels or unit propagated literals. Furthermore, a
complete interpretation can falsify more than one clause.
In this section, we propose a new definition of implication
graphs in stochastic local search framework. Before, we
give some necessary definitions. Let us consider a CNF for-
mula Σ and a complete interpretationIc. We say that the
literal ℓ satisfies (resp. falsifies) a clauseβ ∈ Σ underIc if
ℓ ∈ Ic ∩{x | x ∈ β} (resp.ℓ ∈ Ic ∩{x | x ∈ β}). We note
L+
Ic

(β) (resp. L−
Ic

(β)), the set of literals satisfying (resp.
falsifying) a clauseβ underIc. The following definitions
were introduced in [11].

Definition 2 (once-satisfied clause)A clause β is said
once-satisfiedby an interpretationIc on literal z if
L+
Ic

(β) = {z}.

Definition 3 (critical and linked clauses) Let Ic be a
complete interpretation. A clauseα is critical w.r.t. Ic if
|L+

Ic
(α)| = 0 (α is falsified) and∀ℓ ∈ α, ∃α′ ∈ Σ with

3

ℓ ∈ α′ and α′ is an once-satisfied clause. Clausesα′ are
linked toα for the interpretationIc.

Example 3 LetΣ = (a∨b∨c)∧(a∨b)∧(b∨c)∧(c∨a) be
a formula andIc = {a, b, c} an interpretation. The clause
α1 = (a ∨ b ∨ c) is critical. The other clauses ofΣ are
linked toα1 for Ic.

Now, we can define conflict graph for complete interpre-
tations.

Definition 4 (Conflict graph on z) Let Σ be a CNF for-
mula,Ic a complete interpretation falsifyingΣ. Consider
two clauses ofΣ, β = {β1, . . . , βk, z} falsified byIc and
γ = {γ1, . . . , γl, z} once-satisfied onz, the conflict graph
Gz

Σ,Ic
= (N ,A) is constructed in the following way:

1. • {z, z,⊥} ⊆ N ;

• {γ1, . . . , γl} ⊆ N ;

• {β1, . . . , βk} ⊆ N ;

2. • {(z,⊥), (z,⊥)} ⊆ A ;

• {(β1, z), . . . , (βk, z)} ⊆ A ;

• {(γ1, z), . . . , (γk, z)} ⊆ A ;

3. ∀x ∈ N , if x 6= z and α =
∧
{y ∈ N | (y, x) ∈

A} 6|= ⊥ thenα ∨ x ∈ Σ is once-satisfied onx.

Since for a given literalz, clauses likeβ andγ are not
unique, then the conflict graph is not unique too.

Example 4 Consider again example 1. LetIc be a com-
plete interpretation such thatIc = {x1, . . . , x9}. Figure 2
represents the conflict graphGx1

Σ,Ic
constructed on variable

x1.

x1

x1

⊥

x3

x5

x4

x6

x7

x8

φ8

φ7

φ9

φ4

φ6

φ2

x2

φ5

φ1

Figure 2. Conflict graph constructed on vari-
able x1 (example 4)

It is important to note that the existence of such a graph
is not ensured. The following proposition gives necessary
and sufficient conditions for the construction of the conflict
graph.

Proposition 1 Let Σ be a CNF formula,Ic a complete in-
terpretation. The conflict graphGx

Σ,Ic
exists if and only if

x and x appear respectively in a falsified clause and in a
once-satisfied one.

Proof The proof of this proposition follows directly from
the definition of the conflict graph.

Corollary 1 Let α ∈ Σ be a critical clause.∀x ∈ α, it is
possible to construct a conflict graph onx.

Proof By definition of a critical clauseα ∈ Σ, we have
∀x ∈ α, ∃β ∈ Σ once-satisfied onx. From Proposition 1, it
is obvious that∀x ∈ α, it exists a conflict graph onx.

As shown in [11], in a local minima all falsified clauses
are necessarily critical. The corollary 1 ensures that, in this
case, it is always possible to build a conflict graph. Then,
we can use it in order to leave such local minimum. How-
ever, generating such nogoods is not obvious. Indeed, there
is not notion of levels, the classical notion of conflict analy-
sis and first UIP can not be extended. Furthermore, conflict
graphs can contain cycles. In this case, the resolution step
can produce tautological clauses which are obviously use-
less. To overcome these problems, we propose to transform
conflict graph of a complete interpretation into a classical
implication graph and then use classical learning to gener-
ate relevant nogoods.

3.2 Building Conflict Graph

To overcome problems introduced in previous section,
we propose a first method, based on unit propagation. Start-
ing from a complete interpretationIc, we build a partial in-
terpretationI ′ by unit propagation where decision variables
have the same value as inIc. This partial interpretation in-
troduced formally in the following definition will help us to
build the conflict graph.

Definition 5 (Derived partial interpretation) Let Σ be a
CNF formula,Ic a complete interpretation. The derived
partial interpretation ofIc, denotedI ′, is incrementally
build as follows:

• I ′0 = ∅ ;

• I ′i+1 = I ′i ∪{(xi+1), x
1
i+1, ..., x

k
i+1} such thatxi+1 ∈

VΣ \ I ′i and∀j, 1 6 j 6 k one hasΣ|I′
i
∪{xi+1}

|=∗

xj
i+1 with xj

i+1 ∈ Ic ;

• I ′ = I ′i ∪ {(xi+1), x
1
i+1, ..., x

l
i+1} such thatxi+1 ∈

VΣ\I
′
i and∀j, 1 6 j 6 l one hasΣ|I′

i
∪{xi+1}

|=∗ xj
i+1

with xj
i+1 ∈ Ic for j 6= l andxl

i+1 /∈ Ic.

4

The set of variables associated to the decision literals is
called a conflict set. Furthermore, we call conflict variable
the one associated to the literalx ∈ I ′ \ I. The literalx is
also called a conflict literal.

Of course, the choice of the conflict set of variables is
a heuristic choice and can lead to different derived partial
interpretations.

Example 5 Let us consider again the CNFΣ of example 1
and the complete interpretationIc = {x1, . . . x9}.
First, considering the decision variables in lexicographic
ordering. We have:

• I ′0 = ∅

• I ′1 = {(x1), x
1
2, x

1
3}

Then, the conflict variable isx3 and the conflict set is lim-
ited to{x1}.
Now, considering the inverse lexicographic ordering, the
partial interpretation is:

• I ′0 = ∅

• I ′1 = {(x1
9), x

1
7, x

1
5, x

3
1}

• I ′2 = {(x1
9), x

1
7, x

1
5, x

3
1, (x

2
8), x

2
6, x

2
4, x

2
1, x

2
2, x

2
2}

the conflict variable isx2 and the conflict set is{x9, x8}.

Complete interpretation is conflicting, so the derived par-
tial interpretation will differ on, at least, one conflict literal.
The following proposition asserts that it exists at least one
conflict clause containing this literal. The conflict graph is
then built on this literal.

Proposition 2 Let Σ be a CNF formula,Ic a conflicting
complete interpretation andI ′ a derived partial interpreta-
tion of Ic. Let x be the conflict literal, thenexp(x) ⊆ Ic

and the clause
−→
cla(x) is falsified byIc.

Proof First, by construction ofI ′, it is obvious that
exp(x) ⊆ Ic. Indeed, suppose thatexp(x) 6⊆ Ic then
∃y ∈ exp(x) such thaty 6∈ Ic. By definitionexp(x) ⊆ I ′,
soy ∈ I ′, consequently the literaly is also a conflict literal.
By construction ofI ′, it exists only one conflict literal, then
y = x. This is impossible, because a propagated literal can
not be included in its explanation.

Secondly, we have to prove thatIc 6|=
−→
cla(x). Suppose

−→
cla(x) is satisfied byIc. Note thatx is a propagated literal,

then it exists an explanationexp(x) and a clause
−→
cla(x) ∈ Σ

such that
−→
cla(x) = exp(x)∨x. We know thatexp(x) ⊆ Ic,

thenexp(x) 6⊆ Ic. Since
−→
cla(x) is satisfied byIc, it can be

only satisfied byx. This is not possible becausex 6∈ Ic.

The following proposition expresses the fact that all
clauses (expect the falsified one) which are used to construct
the graph are once-satisfied clauses.

Proposition 3 LetΣ be a CNF formula,Ic a complete con-
flicting interpretation,I ′ a derived partial interpretation
andx the conflict literal associated toI ′. Consider the im-
plication graphGI

′

Σ = (N ,A), then∀y ∈ N \ {x} one has
−→
cla(y) = ⊥ where

−→
cla(y) is once-satisfied byI ′ onx.

Proof One need to consider two cases:

1. y is a decision literal, then
−→
cla(y) = ⊥ ;

2. y is a propagated literal. It exists
−→
cla(y) ∈ Σ such

that
−→
cla(y) = exp(y) ∨ y. By construction ofI ′, one

hasx 6∈ exp(y) andI ′ \ {x} ⊂ Ic. Sincey 6= x,
one has{exp(y), y} ⊆ I ′. By transitivity, one obtain

{exp(y), y} ⊆ Ic \ {x}. Then, the clause
−→
cla(y) is

once-satisfied byIc ony.

In the proposition 4, we show that the implication graph
obtained with the partial derived interpretation can be ex-
tended in a conflict graph on the conflict literal. Then, with
the help of this implication graph, it is possible to generate
nogoods similarly to classical CDCL solvers [7]. Of course,
these nogoods will be added to the clauses database.

Proposition 4 Let Σ be a CNF formula,Ic a complete in-
terpretation onΣ, I ′ a partial derived interpretation and
x the conflict literal associated toI ′. If ∃α ∈ Σ once-
satisfied byIc on x, then it is possible to extend the impli-
cation graphGI

′

Σ = (N ,A) associated toI ′ to a conflict
graphGx

Σ,Ic
= (N ′,A′) as follows:

• N ′ = N ∪ {y ∈ α \ x} ∪ {x,⊥} ;

• A′ = A ∪ {(y, x)|y ∈ α \ x} ∪ {(x,⊥), (x,⊥)}.

Proof Before proving thatGx
Σ,Ic

is a valid conflict graph,
one has to identify clausesβ = {β1, . . . , βk, z} ∈ Σ falsi-
fied byIc andγ = {γ1, . . . , γl, z} ∈ Σ once-satisfied on
z for Ic. By hypothesis, clauseα is once-satisfied byIc

on x. Obviously,γ = α. By proposition 2, one can take
β =

−→
cla(x). Indeed,x ∈

−→
cla(x) and the clause

−→
cla(x)

is falsified byIc. The both clauses used for the construc-
tion of the conflict graph are now identified. To prove that
Gx

Σ,Ic
= (N ′,A′) is a conflict graph, one has to verify the

following properties (see definition 4):

1. • {x, x,⊥} ⊆ N ′. By hypothesis, one has
{x,⊥} ⊆ N ′, We only need to prove thatx ∈
N ′. We know thatx ∈ I ′, by construction of
GI

′

Σ , then we havex ⊆ N . SinceN ⊆ N ′, then
x ∈ N ′ ;

5

• {γ1, . . . , γl} ⊆ N
′. We have{y ∈ α \ x} ⊆ N ′

andγ = α. Then{y ∈ γ \ x} ⊆ N ′ ;

• {β1, . . . , βk} ⊆ N ′. By hypothesis,β =
−→
cla(x) = β1 ∨ · · · ∨ βk ∨ x = exp(x)∨ x. Then,
exp(x) = {β1, . . . , βk}. By proposition 2, one
hasexp(x) ⊆ I ′, so exp(x) ⊆ N (see defini-
tion 1). SinceN ⊆ N ′, by transitivity, one has
exp(x) ⊆ N ′ ;

2. • {(x,⊥), (x,⊥)} ⊆ A′. By construction ;

• {(γ1, x), . . . , (γk, x)} ⊆ A′. By construction ;

• {(β1, x), . . . , (βk, x)} ⊆ A′. One knows that
exp(x) = {β1, . . . , βk} and{exp(x), x} ⊆ I ′.
By construction ofA′ and by definition 1, one
has{(β1, x), . . . , (βk, x)} ⊆ A ⊆ A′ ;

3. ∀x ∈ N , if x 6= z andα =
∧
{y ∈ N | (y, x) ∈

A} 6|= ⊥ then α ∨ x ∈ Σ and is once-satisfied on
x. By proposition 3,∀y ∈ N such thaty 6= x and
−→
cla(y) 6= ⊥, one has

−→
cla(y) once-satisfied byIc on y.

By construction ofGI
′

Σ andGx
Σ,Ic

the previous property
is verified.

Example 6 Let us take again example 1 and partial derived
interpretations obtained in example 5. We can extend im-
plication graphs associated to these interpretations in two
conflict graphs depicted in Figures 3.a (lexicographic or-
der) and 3.b (inverse lexicographic order).

nx1
1

x1
2

x1
3

nx2
5

x2
3

⊥
φ3

φ1

φ5

a. lexicographic order

nx1
9 x1

7 x1
5 x1

3

x2
4

x2
6

x2
1

x2
2

x2
2nx1

8

⊥

φ11 φ6 φ5

φ4

φ1

φ7
φ10

φ3

b. inverse lexicographic order

Figure 3. Conflict graph constructed with unit
propagation (example 6)

3.3 Implementation

We propose to incorporate the conflict graph defined in
previous section inside aWSAT like solver [23]. This is done
when a local minima is reached. We name this method
CDLS. During the construction of the partial derived in-
terpretation, two cases might occur: Either a conflict is
reached during unit propagation (see Figure 3.b) or not (see
Figure 3.a). In the former, one uses the resulting implica-
tion graph, analyzes the conflict and extracts an assertive
clause associated to the first UIP. In the latter, one extends
the implication graph of the derived partial interpretation to
a conflict graph and, in a similar way, an assertive clause
is extracted. In both cases, assertive clauses are added to
the clauses database of the formula. And, if the assertive
clause is the empty one, the unsatisfiability of the formula is
proved. Contrary to classicalWSAT algorithm, one can flip
a set of variables when a local minima is reached. These are
variables whose values differ between complete interpreta-
tion and derived partial interpretation.

It is important to note thatCDLS is not an hybrid al-
gorithm like [9, 10]. It is a simple stochastic local search
method. Unit propagation is only used to build the conflict
graph, to analyze conflict graph and to extract nogoods.

Algorithm 1 : CDLS
Input : Σ a CNF formula
Output : SAT if Σ is satisfiable,UNSAT if Σ is

unsatisfiable, elseUNKNOWN
for i← 1 to MaxTries do1

Ic ← completePUInterpretation(Σ);2

for j ← 1 to MaxFlips do3

if Ic |= Σ then4

return SAT ;5

Γ = {α ∈ Σ| Ic 6|= α};6

while Γ 6= ∅ do7

α ∈ Γ;8

if ∃x ∈ α allowing a descentthen9

flip(x);10

break;11

else12

Γ← Γ \ {α};13

if Γ = ∅ then / * local minimum * /14

α ∈ Σ such thatIc 6|= α;15

β ← conflictAnalysisRL(Σ, Ic, α);16

if β = ⊥ then17

return UNSAT;18

Σ← Σ ∪ {β};19

return UNKNOWN ;20

6

Algorithm 2 : completePUInterpretation
Input : Σ a CNF formula
Output : Ic a complete interpretation ofΣ
Σ′ ← Σ; Ic ← ∅;1

while Σ′ 6= ∅ do2

x ∈ lit(Σ′);3

P ← {x} ∪ {y| Σ|x |=∗ y};4

foreachy ∈ P do5

if y ∈ P then6

P ← P \ {y};7

Σ′ ← Σ′
|P

;8

Ic ← Ic ∪ P;9

return Ic;10

Algorithm 3 : conflictSet
Input : Σ a CNF;Ic a complete interpretation;α ∈ Σ

a critical clause forIc.
Output : C a conflict literals set
C ← ∅;1

forall x ∈ α do2

β ∈ Σ once-satisfied onx;3

C ← C ∪ {β \ {x}};4

return C;5

Algorithm CDLS (see Algorithm 1) takes a CNF for-
mula Σ as input and returns three different values (SAT ,
UNSAT or UNKNOWN). It is based on WSAT algo-
rithm. Note that initial complete interpretations are gener-
ated using unit propagation (line 2 of Algorithm 1 and Al-
gorithm 2). In this way, local minimas are quickly reached
and variables dependencies are taken into account i.e using
unit propagation. Whenever a descent is possible, one flips
a variable allowing it. When a local minima is reached, we
analyze the conflict as explained previously. A nogoodβ is
generated and added to the clause database.

Algorithm 4 is the core or our proposed framework. It
starts by selecting conflict variables set which allows to
build the derived partial interpretation. This is done by Al-
gorithm 3. It chooses variables in linked clauses to the fal-
sified clauseα in order to make the generated partial inter-
pretation nearest toα. Then, this partial interpretationIp

is constructed (line 4-7). Two cases might occur. In the
former, a conflict is reached, classical conflict analysis is
applied (line 9) and an assertive literal is flipped. In the
latter, one can extracts the partial derived interpretation of
Ip and generates the associated conflict graph (line 12-14
and proposition 4). At this point, conflict analysis can be
achieved. All variables with different values in both inter-
pretations are then flipped.

Algorithm 4 : conflictAnalysisRL
Input : Σ a CNF;Ic a complete interpretation;α ∈ Σ

a critical clause forIc.
Output : β a clause built onVΣ

E ← conflictSet(Σ, Ic, α); γ ← ∅; Ip ← ∅;1

while (γ = ∅) and(Ip ⊂ Ic) do2

E ← E \ Ip; Ip ← Ip ∪ {x} such that3

x ∈ E ; γ ← BCP ();

if γ 6= ∅ then / * CASE 1 * /4

β ← firstUIP (G
Ip

Σ);5

flip(x) with x assertive literal ;6

else / * CASE 2 * /7

I ′ ← partial interpretation associated toIp;8

y ← conflict literal ofI ′;9

Gy

(Σ,I′) ← extended conflict graphGI
′

Σ ;10

β ← firstUIP (Gy

(Σ,I′));11

forall x ∈ Ip \ Ic do flip(x);12

return β;13

Crafted Industrial Random
sat unsat sat unsat sat unsat

ADAPTG2 326 0 232 0 1111 0
RSAPS 339 0 226 0 1071 0
WSAT 259 0 206 0 1012 0
CDLS 331 146 412 232 943 0
CLS 235 75 227 102 690 0
MINISAT 402 369 588 414 609 315

Table 1. CDLS versus some other SAT solvers

4 Experimental results

Experimental results reported in this section were ob-
tained on a Xeon 3.2 GHz with 2 GByte of RAM. CPU time
is limited to 1200 seconds. We compareCDLS to three clas-
sical incomplete local search methods,WSAT [23], RSAPS

[15] and ADAPTG2 [16] ; we also addCLS the complete
local search solver proposed by [8] andMINISAT [7] one of
state-of-the-art CDCL solver. Instances used are taken from
the last SAT competitions. They are divided into different
categories: crafted (1439 instances), industrial (1305) and
random (2172). All instances are preprocessed wih SatElite
[6]. Indeed, it is well known resolution based preprocessors
help, in a lot of cases, local search and complete ones [1].

Table 4 summarizes the obtained results on this large
number of instances. For more details on this experimen-
tal part, the reader can refer tohttp://www.cril.fr/

˜ lagniez/cdls . For each category and for each solver
we report the number of solved instances. Of course,MIN -

7

ISAT a state-of-the-art CDCL based complete solver is con-
sidered here, only to mention the gap between local search
based techniques and complete modern SAT solvers on in-
dustrial and crafted instances. On random satisfiable in-
stances, local search techniques generally outperform com-
plete techniques.

Let us start to analyze the results obtained on the crafted
category. Except forMINISAT , CDLS is very competitive
and solves approximately the same number of instances
than RSAPS and ADAPTG2. Furthermore,CDLS solves
much more instances thanWSAT, its built-in solver. Com-
paring toCLS, our solver is better, it solves more SAT and
UNSAT instances. For industrial instances,CDLS solves
two times more instances than other stochastic local search
solvers and 232 unsatisfiable instances. It outperformsCLS,
the other complete local search solver. So, conflict analysis
allows to solve efficiently structured SAT and UNSAT in-
stances. Finally, for the random category, we can note that
CDLS and CLS are unable to solve unsatisfiable problems.
As pointed byMINISAT results, learning is not the good ap-
proach to solve random instances.

A summary, our solverCDLS is much more efficient
than other local search algorithms. It significantly improves
WSAT, its built-in solver andCLS another complete local
search approach. Even ifMINISAT is the best solver on
crafted and industrial instances, these first results are very
encouraging and reduce the gap between local search based
techniques and DPPL-like complete solvers.

5 Conclusion

In this paper, we propose a new approach to keep out
local minimum when dealing with a stochastic local search
solver. Our approach extends conflict analysis used by mod-
ern SAT solvers. With this extension, we significantly im-
proved stochastic local search solvers. More interestingly,
our approach is able to prove inconsistency of many SAT
instances, and then it can be seen as an important step to the
resolution of the challenge number 5 proposed by Selman
et al. at IJCAI 1997. These first results are very promis-
ing. Our solver is able to solve a lot of unsatisfiable in-
stances and it achieves interesting improvements of local
search based techniques on structured SAT instances. In
future works, we plan to improve heuristic choice for the
conflict set. We also want to analyze and extract nogoods
without the help of unit propagation. Finally, we plan to
study other schemes for extracting relevant nogoods.

References

[1] Anbulagan, D.N. Pham, J. Slaney, and A. Sattar. Boosting sls perfor-
mance by incorporating resolution-based preprocessor. Inproceed-
ings of the workshop LSCS (in conjonction to CP), 2006.

[2] G. Audemard, L. Bordeaux, Y. Hamadi, S. Jabbour, and L. Saı̈s. A
generalized framework for conflict analysis. Inproceedings of SAT,
pages 21–27, 2008.

[3] G. Audemard and L.Simon. Gunsat: A greedy local search algorithm
for unsatisfiability. InProceedings of IJCAI, pages 2256–2261, 2007.

[4] B. Cha and K. Iwama. Adding new clauses for faster local search. In
proceedings of AAAI, pages 332–337, 1996.

[5] M. Davis, G. Logemann, and D. Loveland. A machine program for
theorem-proving.Communication of ACM, 5(7):394–397, 1962.

[6] N. Eén and A. Biere. Effective preprocessing in SAT through variable
and clause elimination. Inproceedings of SAT, pages 61–75, 2005.

[7] N. Een and N. S̈orensson. An extensible SAT-solver. Inproceedings
of SAT, pages 502–518, 2003.

[8] H. Fang and W. Ruml. Complete local search for propositional satis-
fiability. In proceedings of AAAI, pages 161–166, 2004.

[9] L. Fang and M. Hsiao. A new hybrid solution to boost SAT solver
performance. Inproceedings of DATE, pages 1307–1313, 2007.

[10] E. Goldberg. A decision-making procedure for resolution-based
SAT-solvers. Inproceedings of SAT, pages 119–132, 2008.

[11] É. Gŕegoire, B. Mazure, and C. Piette. Extracting MUSes. Inpro-
ceedings of ECAI, pages 387–391, 2006.

[12] É. Gŕegoire, R. Ostrowski, B. Mazure, and L. Saı̈s. Automatic ex-
traction of functional dependencies. Inproceedings of SAT, pages
122–132, 2004.

[13] E.A. Hirsch and A. Kojevnikov. Unitwalk: A new SAT solver that
uses local search guided by unit clause elimination.Annals of Math-
ematical and Artificial Intelligence, 43(1):91–111, 2005.

[14] H.H. Hoos and T. Sẗutzle.Stochastic Local Search: Foundations and
Applications. Morgan Kaufmann / Elsevier, 2004.

[15] F. Hutter, D. Tompkins, and H. Hoos. Scaling and probabilistic
smoothing: Efficient dynamic local search for SAT. Inproceedings
of CP, pages 233–248, 2002.

[16] Chu Min Li, Wanxia Wei, and Harry Zhang. Combining adaptive
noise and look-ahead in local search for sat. Inproceedings of SAT,
pages 121–133, 2007.

[17] J. Marques-Silva and K. Sakallah. GRASP - A New Search Algo-
rithm for Satisfiability. Inproceedings of ICCAD, pages 220–227,
1996.

[18] P. Morris. The breakout method for escaping from local minima. In
proceedings of AAAI, pages 40–45, 1993.

[19] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik.Chaff:
Engineering an efficient SAT solver. Inproceedings of DAC, pages
530–535, 2001.

[20] D. N. Pham, J. Thornton, and A. Sattar. Building structure into local
search for SAT. InProceedings of IJCAI, pages 2359–2364, 2007.

[21] S. Prestwich and I. Lynce. Local search for unsatisfiability. In pro-
ceedings of SAT, pages 283–296, 2006.

[22] B. Selman and H. Kautz. An empirical study of greedy local search
for satisfiability testing. Inproceedings of AAAI, pages 46–51, 1993.

[23] B. Selman, H. Kautz, and B. Cohen. Noise strategies for improving
local search. Inproceedings of AAAI, pages 337–343, 1994.

[24] B. Selman, H. Kautz, and D. McAllester. Ten challenges inproposi-
tional reasoning and search. Inproceedings of IJCAI, pages 50–54,
1997.

[25] H. Shen and H. Zhang. Another complete local search methodfor
SAT. In proceedings of LPAR, pages 595–605, 2005.

[26] L. Zhang, C.F. Madigan, M.W. Moskewicz, and S. Malik. Efficient
conflict driven learning in boolean satisfiability solver. In proceed-
ings of ICCAD, pages 279–285, 2001.

8

