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Abstract. In this article we discus a probability problem applied in the

code based cryptography. It is related to the shape of the polynomials

with exactly t different roots. We will show that the structure is very

dense and the probability that this type of polynomials has at least

one coefficient equal to zero is extremelly low. We treated this issue in

our research of natural countermeasures to a timing attack against the

polynomial evaluation.
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Introduction

One of the main threats in modern cryptography is the arrival of the quantum
computers, it was shown that cryptosystems based on factorisation of large
numbers would be compromised [19]. Therefore, new concepts like hash-based
cryptography, code-based cryptography, lattice-based cryptography, and multi-
variate cryptography were proposed as possible solutions. The new aspects of the
post-quantum cryptography are well illustrated in [2].

Even though code-based cryptosystems exist since 1978, being introduced by
Robert J. McEliece in [16], they weren’t used in real life because of the key length
problem. Nowadays, these problems are partially solved as new variants of the
classical McEliece using shorter keys, without compromising the security, were
proposed in [7,5,6,17] and more recently in [3]. The latest proposal for embedded
devices proposed in [13] is based on QC-MDPC codes.

Here we will focus our attention on the last step in the decoding algorithm.
If Patterson algorithm [18] or Berlekamp-Massey algorithm [15] is used, the
last step is the same : finding the roots of the error locator polynomial. This
polynomial has a particular form and it will be detailed in Section 1.
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McBits [3] is the latest implementation and uses some new algorithms in order
to provide a fast constant-time decoding. Other existing implementations like:
HyMes [7], CCA2-secure variant of McEliece [8], QD for embedded devices [11],
Low-reiter [12], CFS [14], MicroEliece [10] use the mentioned decoding algorithms
and manipulate the type of polynomials treated in this paper.

Our contribution

We will provide an answer the following problem :
What is the probability that all the coefficients of a monic polynomial P (X)

of degree t with t distinct roots over F2m are different from zero ?
Thefinal probability will be bounded by theoretical and experimental results.

We will show how this result can be used in the context of side-channel attacks
against the McEliece cryptosystem.

As shown, this problem has a direct application in code-based cryptography
but it could be also usefull in many other scientific fields e.g. those where error
correcting codes are used.

Organization of the paper

In Section 1, we give the required notations and some definitions and properties
for the Goppa codes. The Section 2 details the simple roots problem and give the
theoretical approach. We provide in Section 3 the experimental results. Section 4
shows how to apply this result and we wonclude in Section 5.

1 Preliminaries

1.1 Notations

We will use the following notations :

• The partial permutations Ak
n = n(n− 1) . . . (n− k + 1).

• The Galois field L : F2m = {0, 1, α, α2, . . . , αn−2}
• Let P (x) be a monic polynomial of degree t over L with t distinct roots ai :

P (x) = xt + St
t−1xt−1 + St

t−2xt−2 + ... + St
2x2 + St

1x + St
0

where the coefficients Si ∈ F
m
q correspond to :

St
t−1 =

t
∑

i=1

ai, St
t−2 =

t
∑

i=1,j=1
i6=j

aiaj , . . .

. . . St
1 =

t
∑

j=1

t
∏

i=1
i6=j

ai, St
0 =

t
∏

i=1

ai.

• The subset of all roots for a given polynomial Rf(x) = { ai | f(ai) = 0}.
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1.2 Goppa codes

Definition :

The Goppa code Γ (L, g) consists of all vectors c = (c0, c1, ..cn−1) over Fq

such that Sc(x) ≡ 0 mod g(x). Here g(x) is a polynomial over F2m and L =
{α0, α1, .., αn−1} a subset so that g(αi) 6= 0 for all i = 0 . . . n − 1. Sc(x) =
n−1
∑

i=0

ci

x−αi
is called the syndrome of c and L the support of the Goppa code.

The syndrome polynomial Sc(x) satisfies the following property :

Sc(x) = ω(x)
σ(x) mod g(x)

σ(x) is called the error locator polynomial : σ(x) =
t

∏

i=1

(x + ai).

ω(x) = σ′(x) for binary Goppa codes.

2 Simple roots problem

Problem : Let P (x) be a monic polynomial of degree t with t distinct roots
over F2m .
What is the probability that all its coefficients are different from zero ?

Proposition 1 : This probability is independent of the primitive generator
polynomial G(x) of degree m where F2m = F2[x]/G(x).

Proof. This is due to:

F2[x]/G1(x) ∼= F2[x]/G2(x) ∼= F2[x]/G3(x) ∼= . . .F2[x]/GN (x)

where Gi(x) are primitive polynomials ∀i ∈ {1, 2, ..,N} of degree = m. ⊓⊔

2.1 General properties

Let n = 2m.

1. P (St
0 = 0) = t

n

Proof. If St
0 = 0 then 0 ∈ RP (x). There are t different positions for any

possible root. We can choose any of those t positions for zero. ⊓⊔

2. P(St
1 = 0 ∩ St

0 = 0) = 0

Proof. If St
0 = 0 then 0 ∈ RP (x). So St

1 =
t−1
∏

i=1

ai = 0. It means that zero is a

root of order 2 of P (x) and that’s impossible. ⊓⊔
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3. P(St
i ∈ F2m ∩ St

1 6= 0 ∩ St
0 = 0) = P(St−2

i ∈ F2m ∩ ai 6= 0)× P(St
0 = 0)

Proof. If St
0 = 0 then 0 ∈ RP (x) This implies that the two following events

are equivalent :

{St
1 6= 0 ∩ St

0 = 0} ⇔ {St−1
0 6= 0 ∩ at = 0}.

The only information we obtain with this event is that at = 0 then :

P(St
1 6= 0 ∩ St

0 = 0) = P(St
0 = 0).

⊓⊔

4. If St
i = 0 then St−1

i−1 = atS
t−1
i ∀ 0 < i < t

Proof. The proof can easily be done by induction.
Suppose that St

t−1 = 0. It means that we can express at as :

at =
t−1
∑

i=1

ai ⇒ at = St−1
t−2 .

If St
t−2 = 0⇒ at

t−1
∑

i=1

ai =
t−1
∑

i 6=j,1

aiaj ⇒ atS
t−1
t−2 = St−1

t−3 .

If St
t−3 = 0⇒ at

t−1
∑

i 6=j,1

aiaj =
t−1
∑

i 6=j 6=k,1

aiajak ⇒ atS
t−1
t−3 = St−1

t−4

By induction, we obtain St
1 = 0⇒ atS

t−1
1 = St−1

0 . ⊓⊔

In the following paragraph we will give two bounds for the probability. The lower
bound is very close to our experimental results (see Section 3).

2.2 The bounds

We propose a lemma concerning the last coefficient (the sum) and we observe
that the probability can be bounded. We consider for ∀i ≥ 3 the probability
P(Si

i−1 = 0). We give a general formula with the following consideration :

Lemma 1 :

Even i : P(Si
i−1 = 0) =

⌊ i−1

2
⌋

∑

k=1

(−1)k−1 1
n+2k−i

+ (−1)⌊ i−1

2
⌋−1( 1

n−3 −
1

n−2 )

Odd i : P(Si
i−1 = 0) =

⌊ i−1

2
⌋

∑

k=1

(−1)k−1 1
n+2k−i

+ (−1)⌊ i−1

2
⌋−1( 1

n
− 1

n−1 )

We will give some simple examples and observe that the general behavior of the
sum suits the formula given above. We will use induction in order to prove it.
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Main idea :

• Let i = 3. The probability associated to this event is P =
A2

n−1

A3
n

= 1
n

. Consider

(a1, a2, a3) so that ∀i ∈ {1, 2, 3} ai ∈ RP (x).
The number of all posible combinations is : A3

n = n(n− 1)(n− 2).
The number of good cases is :

#{((a1, a2, a3) | a1 + a2 + a3 = 0} = #{((a1, a2, a3) | a1 + a2 = a3} = A2
(n−1) =

(n− 1)(n− 2).

• Let i = 4. The probability is P =
A3

n

A4
n

= 1
n−3 .

Consider (a1, a2, a3, a4) so that ∀i ∈ {1, 2, 3, 4} ai ∈ RP (x).
The number of all posible combinations is : A4

n = n(n− 1)(n− 2)(n− 3).
The number of good cases is :

#{((a1, a2, a3, a4) | a1 + a2 + a3 + a4 = 0} = #{((a1, a2, a3, a4) | a1 + a2 + a3 =
a4} = A3

n = n(n− 1)(n− 2).

Is it possible that for a given (a1, a2, a3, a4) solution, the choice of a4 might
cause repetitions? We know that a4 is fixed as a4 = a1 + a2 + a3 and all the
elements are different (because P (X) has 4 distincts roots).
Example: If a4 = a1 then a2 = a3. But a2 and a3 must be different. So it is
impossible that a4 = a1. Therefore we have the exact probability P = 1

n−3
• Let i = 5
If a2 6= a3 6= a4 6= a2 then the event related to a1 + · · ·+ a5 = 0 has the following
form:

¶ {s =
5

∑

i=1

ai = 0} = {s = 0 ∩ a1 = a5} ∪ {s = 0 ∩ a1 6= a5}

The event {s = 0 ∩ a5 = a1} was treated in the case i = 3. So P({s = 0 ∩ a5 =
a1}) = 1

n
.

The event {s =
5

∑

i=1

ai = 0} has the following probability:

P({s =
5

∑

i=1

ai = 0}) = n(n−1)(n−2)(n−3)
n(n−1)(n−2)(n−3)(n−3) = 1

n−3

Finally we obtain the probabillity P = 1
n−3 −

1
n

.
For i ∈ 6, 7, 8 we will only give the final result. The idea and the calculus are

the same as for the explained cases.
• Let i = 6 the probabillity is : P = 1

n−4 −
1

n−3 .

• Let i = 7 the probabillity is : P = 1
n−5 − ( 1

n−3 −
1
n

).

• Let i = 8 the probabillity is : P = 1
n−6 − ( 1

n−4 −
1

n−3 ).

Proof. By induction :
• For the even case : The hypothesis is satisfied for
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i = 4 as we have P(S4
3 = 0) = 1

n−3 .

Suppose that i = 2p and

P(S2p
2p−1 = 0) =

⌊ 2p−1

2
⌋

∑

k=1

(−1)k−1 1

n + 2k − 2p
+ (−1)⌊ 2p−1

2
⌋−1(

1

n− 3
−

1

n− 2
).

We will search the P(S2p+2
2p+1 = 0)

As before we distinguish the case where a2p = a1 and the case where a2p 6= a1

( the general case in ¶).
So we have P(S2p+2

2p+1 = 0) + P(S2p
2p−1 = 0) = 1

n−2p

We finally obtain :

P = 1
n−2p

−

[

⌊ 2p−1

2
⌋

∑

k=1

(−1)k−1 1
n+2k−2p

+ (−1)⌊ 2p−1

2
⌋−1( 1

n−3 −
1

n−2 )

]

=

⌊ 2p+1

2
⌋

∑

k=1

(−1)k−1 1
n+2k−(2p+2) + (−1)⌊ 2p+1

2
⌋−1( 1

n−3 −
1

n−2 )

• For the odd case on can easilly use the same proof.
Asymptotically, P ≈ 1

n−i+2 . ⊓⊔

Lemma 2 :
P(St

i = 0) ≈ P(St
t−1 = 0) ∀i ∈ {1, 2, .., t− 2}

Proof. Using properties 3 and 4 from 2.1 we get :

St
i = 0⇒ St−1

i−1 = atS
t−1
i ∀ 0 < i < t

So we have all the possible choices on the first t− 1 elements, as for the last one
it has to be defined as in the formula above. We get the same number of possible
choices for (a1, a2, ..., at) as in the case St

t−1 = 0. ⊓⊔
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Proposition 2 : For a given polynomial with t different roots the probability
that all coefficients are different from zero can be bouded by the two following
quantities :

The two bounds:

1 + f(n, t)−

[

t

n
+ (t− 1)ub

]

≤ P(

t−1
⋂

i=0

St
i 6= 0) ≤ 1 + f(n, t)−

[

t

n
+ (t− 1)lb

]

Proof From Lemma 1 we have :

P(St
t−1 = 0) =

1

n− t + 2
−

1

n− t + 4
+

1

n− t + 6
−

1

n− t + 8
+

1

n− t + 10
+ . . .

So :

lb ≤ P(St
t−1 = 0) ≤ ub

where

lb =
1

n− t + 2
−

1

n− t + 4

and

ub =
1

n− t + 2
−

1

n− t + 4
+

1

n− t + 6

Using property 1 from 2.1 we have P(St
0 = 0) = t

n
.

From Lemma 2 we can approach

P(St
i = 0) ≈ P(St

t−1 = 0) ∀i ∈ {1, 2, .., t− 2}

We will be able to approach the sum :

t−1
∑

i=0

P(St
i = 0) ≈ P(St

0 = 0) + (t− 1)P(St
t−1 = 0)

Givind the bounds for the sum it becomes a simple task :

t

n
+ (t− 1)× lb ≤

t−1
∑

i=0

P(St
i = 0) ≤

t

n
+ (t− 1)× ub

Finally :

P(

t−1
⋂

i=0

{St
i 6= 0}) = 1− P(∃i St

i = 0)

Notation : f(n, t) represents the sum of the probabilities associated to all
the possible intersections between St

i ∀i so that at least two coefficients equal
zero.

7



Example for t = 3 :

{S3
0 = 0} =

⋃

{S3
0 = 0, S3

1 ∈ {0, 6=}, S3
2 ∈ {0, 6=}}

We have the same relation for S3
1 and S3

2 . So all the possible combinations
where at least two members equal zero will constitute the function.

f(n, 3) = 2× P(S3
0 = S3

1 = S3
2 = 0)

+P(S3
0 = S3

1 = 0, S3
2 6= 0)

+P(S3
0 = S3

2 = 0, S3
1 6= 0)

+P(S3
1 = S3

2 = 0, S3
0 6= 0)

We use the following relation in order to finalize our proof :

t−1
∑

i=0

P(St
i = 0) = P(∃i St

i = 0) + f(n, t)

P(
t−1
⋂

i=0

{St
i 6= 0}) = 1 + f(n, t)−

t−1
∑

i=0

P(St
i = 0)

So :

1+f(n, t)−

[

t

n
+ (t− 1)× ub

]

≤ P(

t−1
⋂

i=0

{St
i 6= 0}) ≤ 1+f(n, t)−

[

t

n
+ (t− 1)× lb

]

That sets the two bounds but doesn’t allow having a graphic representation since
the quantity f(n, t) is unknown. ⊓⊔

One of the ideas was to consider the following result :

1−

[

t

n
+ (t− 1)× ub

]

≤ 1 + f(n, t)−

[

t

n
+ (t− 1)× ub

]

≤ P(

t−1
⋂

i=0

{St
i 6= 0})

We represented in Section 3 the lower bound 1 −
[

t
n

+ (t− 1)× ub
]

and the
experimental values using the Monte Carlo method. As expected the quantity
represented by f(n, t) could be neglected in the formula. Therefore we used two
following bounds in Section 3 :

LB = 1−

[

t

n
+ (t− 1)× ub

]

and UB = 1−

[

t

n
+ (t− 1)× lb

]

8



3 Experiments

Simulations were made using PariGP, a free software used especially for its abillity
to generate finite fields in the Galois field theory.

For the experimental approach we used the Monte-Carlo method. It uses
the Central Limit Theorem and applied in our case to estimate the number
of coefficients equal to zero for a given polynomial. We will detail in the next
paragraph the procedure used in order to obtain the results. After that we will
give the graphical representation of the simulated variables and the theoretical
bounds. We will see that the possible distribution is very close to one of the
bounds.

Fig. 1. Experimental and theoretical bounds for n = 2048

First of all we simulated for a given number t of roots the corresponding
polynomial. Then we counted the number of coefficients that equal zero. We
repeated the simulation 3.000.000 times for each t. In our case the Monte Carlo
method was applied to the variable : number of coefficients that equal zero.
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Results : The figure illustrates the importance of the lower bound. Since we
are interested in having less coefficients equal to zero the lower bound gives the
folowing values :

classical parameters n = 2048 and t ≤ 50 we obtain P ≥ 0.95;

128-bit security [2960; 2288] Goppa code (t = 56) we obtain P ≥ 0.9622;

256-bit security [6624; 5129] Goppa code (t = 115) we obtain P ≥ 0.9651.

4 Applications

4.1 The McEliece Cryptosystem [16]

KeyGen : The first step is to generate the support L and the Goppa polynomial
g(x). Once this step is achieved, we can build the parity check matrix and bring
it into systematic form pk = (m, t, RT ,L). The permutation Π and the Goppa
polynomial g(x) form the secret key sk = (g(x), Π).

Encrypt :

• Input : message m ∈ F
k
2 , public key pk = (m, t, RT ,L)

• Output : ciphertext z ∈ F
n
2

1. Expand public key RT to G = [RT |Ik];
2. Choose a random n-bit error-vector with wt(e) = t;
3. Encode z = mG ⊕ e;
4. Return z.

Decrypt :

• Input : ciphertext z ∈ F
n
2 , secret key sk = (g(x), Π)

• Output : message m ∈ F
k
2

1. Find e′ using Decode(z, sk)
2. m← the first k bits of z⊕ e′

3. Return m.

Decode(., .) is a decoding algorithm used for the Goppa codes.

4.2 Side-channel attacks

The most important side-channel attacks treated in the scientific literature are
timing attacks. They operate on the software implementation of the McEliece
PKC and can be classified by their goal:

1. Recover the secret message ( in [23,1])
2. Recover the secret key, fully or partially ( in [22,21,20])
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The type of attacks aiming to recover the secret message exploit timing
differences between deg(σ1) = t and deg(σ2) = t − 1. The countermeasures
proposed manipulate σ(x) so that if deg(σ) < t the designer should either

1. deterministicaly add coefficients so that deg(σ) = t and all coefficients are
non zero

2. use coefficents from the non-support so that deg(σ) = t and all coefficients
are non zero

Countermeasure Our idea is that the second part of the statement make sure

that all coefficients are non zero is already verified by 2. So we should only
manipulate the degree of σ. Then the probability of having at least one coefficient
equal to zero in σ is extremely low.

4.3 CFS signature scheme

In the CFS signature scheme, a small number t is used due to the density of the
Goppa codes. It was proven in [9] that the decoding algorithm must be repeated
in average t! times. Decoding Goppa Codes for CFS with the recommended values
gives the following result :

for n = 216 and t ≤ 10 we obtain P > 0.999.

5 Conclusion

In this article, we have treated the simple roots polynomial problem. We have
shown that the structure is such that timing attacks are difficult to be applied,
since most of the σ-coefficient are different from 0. The security comes directly
from the structure of the Galois field and the form of the error-locator polynomial.
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