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Abstract

In this paper an original dynamic partition of formu-
lae in Conjunctive Normal Form (CNF) is presented. It is
based on the autarky concept first introduced by Monien
and Speckenmeyer and further investigated by Kullmann
and Van Gelder. Intuitively, an autarky is a partial assign-
ment satisfying some clauses while not affecting any literal
in any other clause, leading to a partition of the CNF for-
mula. Autarkies can play a dramatic role in the efficiency of
modern SAT solvers. The approach in this paper aims to dy-
namically extend the current partial assignment to a local
autarky thanks to an inference rule based on unit propaga-
tion. More precisely, at each node of the search tree, it is
checked whether the current decision literal can be made
monotone by subsuming all the clauses where it appears
negatively. The formal framework is detailed and its techni-
cal features discussed.

1. Introduction

The SAT problem, i.e., the problem of checking whether
a set of Boolean clauses is satisfiable or not, is cen-
tral in many computer science and artificial intelligence
domains, including e.g. constraint satisfaction prob-
lems (CSP), planning, non-monotonic reasoning and VLSI
correctness checking. Today, SAT has gained a consid-
erable audience with the advent of a new generation of
SAT solvers able to solve large complex instances en-
coding real-world applications. These solvers also ap-
pear to provide crucial base-building blocks for various
other problem-solving technologies, like SMT solving, the-
orem proving, model finding and QBF solving.

These solvers, called modern SAT solvers [19, 6], are
based on the standard unit propagation technique [4] com-
bined in a smart way with efficient data structures, together
with: (i) restart policies [7, 12], (ii) activity-based variable
selection heuristics (VSIDS-like) [3, 19], and (iii) clause

learning [17, 1, 19]. Modern SAT solvers can be inter-
preted as extended versions of the well-known DPLL-like
(short for Davis, Putnam, Logemann and Loveland) proce-
dure augmented with these various enhancements. Let us
stress that the well-known resolution rule still plays a dra-
matic role in the efficiency of modern SAT solvers which
can be understood as a particular form of general resolu-
tion [2]. These lookback-based SAT solvers are particularly
efficient on SAT instances encoding practical applications.
Other lookahead-based SAT solvers are designed using ef-
ficient local processing techniques and variable branching
heuristics (e.g. Satz [14], kcnfs [5], March-DL [8]). This
last family of solvers are particularly efficient on random
and crafted SAT instances.

The recent dramatic breakthrough in solving complex
industrial SAT instances can often be related to the pres-
ence of hidden structures exploited in a smart way by the
SAT solvers. Indeed, such instances are very suitable for
decomposition-based techniques. However, most of the de-
composition techniques are much time consuming. Light
divide-and-conquer approaches have been proposed previ-
ously, using for example structure-based variable ordering
heuristics to recursively decompose the SAT instances [9].
In [15], a dynamic decomposition method based on hyper-
graph separators is proposed. The authors give a nice in-
tegration of the separator decomposition into variable or-
dering of a modern SAT solver that speedups the search
on real-world SAT instances. Other approaches are based
on the exploitation of autarky assignments originally pro-
posed by Monien and Speckenmeyer [18] and further in-
vestigated by Kullmann [13] and Van Gelder [21]. More
recently, Liffton and Sakallah [16] proposed a novel algo-
rithm that searches for autarkies directly using a standard
satisability solver and explore the potential of trimming au-
tarkies in minimal unsatisable subsets (MUS) and minimal
correction subsets (MCS) extraction flows. Let us stress that
the dynamic exploitation of autarkies assignments in DPLL-
like search procedures actually goes back to Oxusoff’s and
Rauzy’s work [20]. In their paper, these latter authors pro-



posed several variable branching heuristics to dynamically
partition the CNF formula into disjoint sets of clauses. More
precisely, the proposed variable ordering heuristics aim to
partition the formula: the next variable to assign is selected
in such a way that its assignment leads to a new sub-formula
included in previous ones at the same branch of the tree.
The approach that will be presented in this paper follows
this idea but is heuristic-independent. More precisely, let x

be the next variable to assign, the proposed approach tries
to subsume the clauses where¬x appears and then deduce
that such a literal is monotone1. This clearly extends the lo-
cal autarky assignments, using subclause deduction. Indeed,
a partial assignment that is not a local autarky can be trans-
formed into a local autarky.

The paper is organized as follows. After some prelim-
inary definitions and notations, basic and local autarkies,
Oxusoff’s and Rauzy’s dynamic approach are described in
section 3. Then our generalized local autarkies are formally
presented in section 4. Finally, we conclude by introducing
several promising perspectives opened by this framework.

2. Technical background

2.1. Preliminary definitions and notations

A CNF formulaΣ is a set (interpreted conjunctively) of
clauses, where a clause is a disjunction ofliterals. A lit-
eral is a positive (x) or negated (¬x) propositional variable.
The two literalsx and¬x are calledcomplementary. We
note byl̄ the complementary literal ofl. For a set of liter-
alsL, L̄ is defined as{l̄ | l ∈ L}. A unit clause is a clause
containing only one literal (calledunit literal), while a bi-
nary clause contains exactly two literals. Theempty clause,
noted⊥, is interpreted asfalse (unsatisfiable), whereas the
empty CNF formula, noted⊤, is interpreted astrue (sat-
isfiable). We define the size|Σ| of a CNF formulaΣ as
∑

c∈Σ
|c|, where|c| is the number of literals inc. The num-

ber of clauses inΣ is denotedCΣ.
The set of variables occurring inΣ is notedVΣ. A set

of literals iscompleteif it contains one literal for each vari-
able inVΣ, andfundamentalif it does not contain comple-
mentary literals. Anassignmentρ of a Boolean formulaΣ
is a function that associates a valueρ(x) ∈ {false, true}
to some of the variablesx ∈ VΣ. ρ is completeif it assigns
a value to everyx ∈ VΣ, andpartial otherwise. An assign-
ment is alternatively represented by a fundamental set of lit-
erals, in the obvious way. Amodelof a formulaΣ is an as-
signmentρ that makes the formulatrue; notedρ � Σ.

The following notations will also be used throughout the
paper:

1 A monotone literal is a literal that occurs either positively or nega-
tively in the CNF formula (but not in both polarities).

• Σ|x will denote the formula obtained fromΣ by as-
signingx the truth-valuetrue. FormallyΣ|x = {c | c ∈
Σ, {x,¬x} ∩ c = ∅} ∪ {c\{¬x} | c ∈ Σ,¬x ∈ c}
(that is: the clauses containingx are removed;
and those containing¬x are simplified). This no-
tation is extended to assignments: given an as-
signment ρ = {x1, . . . , xn}, Σ|ρ is defined as
(. . . ((Σ|x1

)|x2
) . . . |xn

).

• Σ∗ denotes the formulaΣ closed under unit propaga-
tion, defined recursively as follows: (1)Σ∗ = Σ if Σ
does not contain any unit clause, (2)Σ∗ =⊥ if Σ con-
tains two unit-clauses{x} and {¬x}, (3) otherwise,
Σ∗ = (Σ|x)∗ wherex is the literal appearing in a unit
clause ofΣ. A clausec is deduced by unit propaga-
tion fromΣ, notedΣ �

∗ c, if (Σ|c̄)
∗ =⊥.

Let c1 andc2 be two clauses of a formulaΣ. We say that
c1 (respectivelyc2) subsumes (respectively is subsumed by)
c2 (respectively byc1) iff c1 ⊆ c2. If c1 subsumesc2, then
c1 � c2 (the converse is not true). AlsoΣ andΣ − c2 are
equivalent with respect to satisfiability.

2.2. DPLL search

DPLL [4] is a tree-based backtrack search procedure; at
each node of the search tree, the assigned literals (both the
decision literal and the propagated ones) are labeled with
the samedecision levelstarting from 1 and increased at each
decision (or branching). After backtracking, some variables
are unassigned, and the current decision level is decreased
accordingly. At theith level, the current partial assignment
ρ can be represented as a sequence of decision-propagation
steps of the form〈(xi

k), xi
k1

, xi
k2

, . . . , xi
knk
〉 where the first

literal xi
k corresponds to the decision literalxk assigned at

the ith level and eachxi
kj

for 1 ≤ j ≤ nk represents unit
propagated literals at theith level. Letx ∈ ρ, we noteδ(x)
the assignment level ofx.

3. Autarky assignments

The autarky concept has been introduced in [18].

Definition 1 Let Σ be a CNF formula andρ a partial as-
signment.ρ is an autarky ifΣ|ρ ⊆ Σ i.e.∀c ∈ Σ, ρ̄ ∩ c = ∅
or ρ ∩ c 6= ∅.

For a CNF formula, computing an autarky when it exists
is clearly (F)NP-complete. However, autarkies can be used
to improve the efficiency of SAT solvers [21, 13]. Indeed,
the refutation ofΣ|ρ leads to the proof of the unsatisfiabil-
ity of Σ. Following definition 1, the property prop:inclusion
can be obtained.

Property 1 If ρ is an autarky of the CNF formulaΣ then
Σ � Σ|ρ.
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Figure 1. DPLL search tree and local au-
tarkies

In [10, 20] the authors exploit this property to prune the
search tree of DPLL-like procedures. To this end, a local au-
tarky concept is defined and exploited.

Definition 2 A partial assignmentρ = {l0, . . . , li} of a
CNF formulaΣ is a local autarky if∃ρ′ = {l0, . . . , lj} with
j < i such thatΣ|ρ ⊆ Σ|ρ′ .

Property 1 also applies for local autarkies. Indeed, from
Definition 2 and Property 1,Σ|ρ′ � Σ|ρ can be deduced.
This can be used to prune the search tree of the DPLL algo-
rithm. Indeed, ifρ is a local autarky with respect to the par-
tial assignmentρ′ thenΣ|ρ′ is satisfiable if and only ifΣ|ρ
is satisfiable. All branches not explored betweenρ′ andρ

can be pruned ifΣρ is proved unsatisfiable.
The following example illustrates this property.

Example 1 Let Σ = {(l1 ∨ l2 ∨ ¬l4), (¬l1 ∨ l4), (¬l1 ∨
l2 ∨ l3), (¬l2), (l5 ∨ l6), (l5 ∨¬l6), (¬l5 ∨ l6), (¬l5 ∨¬l6)}.

The search tree of the DPLL algorithm represented in
Figure 1 is obtained thanks to the exploitation of local au-
tarkies. This corresponds to the application of the local au-
tarky pruning rule as defined by Jeannicot et al. in [10]. In
the following example, the unit and monotone literals prop-
agated during search are not mentioned for clarity reasons.

From the search tree, the following formulae associated
to the different nodes are obtained:

• Σ|{l1} = {(l4), (l2 ∨ l3), (¬l2), (l5 ∨ l6), (l5 ∨ ¬l6),
(¬l5 ∨ l6), (¬l5 ∨ ¬l6)}

• Σ|{l1,¬l2} = {(l4), (l3), (l5 ∨ l6), (l5 ∨ ¬l6), (¬l5 ∨
l6), (¬l5 ∨ ¬l6)}

• Σ|{l1,¬l2,l3} = {(l4), (l5 ∨ l6), (l5 ∨ ¬l6), (¬l5 ∨
l6), (¬l5 ∨ ¬l6)}

• Σ|{l1,¬l2,l3,l4} = {(l5∨l6), (l5∨¬l6), (¬l5∨l6), (¬l5∨
¬l6)}

• Σ|{l1,¬l2,l3,l4,l5} = {(l6), (¬l6)}

• Σ|{l1,¬l2,l3,l4,¬l5} = {(l6), (¬l6)}

Consequently, the following inclusion holds:

Σ|{l1,¬l2,l3} ⊂ Σ|{l1,¬l2}

Σ|{l1,¬l2,l3} ⊂ Σ|{l1}

) First application of
pruning rules of lo-
cal autarky

Σ|{l1,¬l2,l3,l4} ⊂ Σ|{l1,¬l2,l3}

Σ|{l1,¬l2,l3,l4} ⊂ Σ|{l1,¬l2}

Σ|{l1,¬l2,l3,l4} ⊂ Σ|{l1}

Σ|{l1,¬l2,l3,l4} ⊂ Σ









Second application
of pruning rules of
local autarky

Clearly, the local autarky pruning rule is a generaliza-
tion of the monotone literal pruning one. Indeed, ifl is a
monotone literal, thenΣ|l is the formula obtained fromΣ
where all clauses containingl are removed. In consequence
Σ|l ⊂ Σ and{l} is a local autarky forΣ. Using the prun-
ing rule based on local autarky allows the simplification by
means of the monotone literal rule. Let us note that mono-
tone literals are not exploited in modern SAT solvers that
exploit lazy data structures like watched literals. In other
words, the occurrence number of a given literal at each node
of the search tree is not recorded or updated.

At a given leveli of the search tree, finding the small-
est level j < i such thatΣ|{l0,...,li} is included in
Σ|{x0,x1,...,xj} is computationally hard. However the fol-
lowing property allows an incremental detection that en-
sures the best pruning.

Property 2 ([20]) If Σ|{l0,...,li} ⊆ Σ|{l0,...,lj} with
j < i, thenΣ|{l0,...,li} is also included inΣ|{l0,...,xj+1},
Σ|{l0,...,lj+2}, . . . , andΣ|{l0,...,li−1}.

To avoid useless inclusion tests, it is more convenient to
use the following corollary.

Corollary 1 If Σ|{l0,...,li} 6⊂ Σ|{l0,...,lj}, thenΣ|{l0,...,li}

is not included in all the following formulas:Σ|{l0,...,lj−1},
Σ|{l0,...,lj−2}, . . . , Σ|{l0} andΣ.

The efficiency of the detection of the greatest valuei−j,
called a partition, depends only on the efficiency of the in-
clusion test between two formulas associated to two con-
secutive nodes in the current branch of the search tree. This
test can be performed efficiently using adapted data struc-
tures.

Finally, to ensure that all inclusions are detected, it is
necessary to remove subsumed clauses during the DPLL
procedure, as illustrated by the following example.

Example 2 LetΣ = {(¬l1 ∨ l3), (l2 ∨ l4), (¬l2 ∨ l3 ∨ l4)},

and
Σ|{l1} = {(l3), (l2 ∨ l4), (¬l2 ∨ l3 ∨ l4)}
Σ|{l1,l2} = {(l3), (l3 ∨ l4)}



In this case no inclusion is detected. But if the sub-
sumed clauses are removed fromΣ|{l1,l2}, thenΣ|{l1,l2} =
{(l3)} ⊂ Σ|{l1}.

The subsumption test can be achieved efficiently using
for example the recent approach by Lintao Zhang [22].

In the next section, a generalization of the (local) autarky
assignments is introduced.

4. Generalized (local) autarky

The generalization is obtained by substituting the syntac-
tical inclusion operation (⊂) by the semantic logical conse-
quence relationship (�) in Definitions 1 and 2.

Proposition 1 (Generalized (local) autarky) Let Σ be a
CNF formula, ρ = {l0, . . . , lj , . . . , li} is a generalized
local autarky if there existsρ′ = {l0, . . . , lj} such that
Σ|ρ′ � Σ|ρ. If ρ′ = ∅ thenρ is a generalized autarky.

This is clearly a generalization of the previous concept,
because ifΩ ⊂ Σ thenΣ � Ω while the converse is false,
as illustrated by the following example.

Example 3 Let Σ = {(a ∨ b ∨ c), (¬a ∨ b)} and Ω =
Σ|¬a = {(b ∨ c)}, clearlyΣ � Ω but Ω 6⊂ Σ.

The most important feature of local autarkies is the in-
cremental detection which ensures the greatest inclusion or
partition (see Property 2). This property is preserved for the
generalized autarky assignments.

Property 3 If Σ|{l0,...,lj} � Σ|{l0,...,lj ,...,li}, then
Σ|{l0,...,lj ,...,li} is a logical consequence of all the fol-
lowing formulae: Σ|{l0,...,lj+1}, Σ|{l0,...,lj+2}, . . . and
Σ|{l0,...,li−1}.

As before, the following corollary avoids useless logi-
cal consequence tests (CoNP-Complete) in order to com-
pute the greatest partition.

Corollary 2 If Σ|{l0,...,lj} 2 Σ|{l0,...,lj ,...,li}, then
Σ|{l0,...,li} is not a logical consequence of the follow-
ing formulae:Σ|{l0,...,lj−1}, Σ|{l0,...,lj−2}, . . . , Σ|{l0} and
Σ.

We have seen that the propagation of monotone literals
is a special case of the local autarky detection. The follow-
ing property shows that the classical unit propagation is also
a special case of the generalized local autarkies.

Property 4 Let Σ be a CNF formula andl a literal occur-
ring in a unit clause ofΣ, we haveΣ � Σ|{l}.

By extension, it can be shown that:

Corollary 3 LetΣ a CNF formula,Σ � Σ∗.

More generally, ifΣ � l with l a literal of the CNF for-
mula Σ, thenΣ � Σ|{l}. This means that the detection of
generalized local autarkies includes the propagation due to
any implied literal.

The use of generalized local autarkies within a DPLL al-
gorithm can be achieved in the same way than for local au-
tarkies. Unfortunately, if the test of inclusion can be com-
puted efficiently for local autarkies, the detection of gener-
alized autarkies requests a CoNP-complete test.

4.1. Generalized (local) autarky modulo unit prop-
agation

In order to pratically exploit the generalized local au-
tarkies, it is necessary to weaken the deductive relation that
is used. Accordingly, the full consequence relationship (�)
is weakened down to the mere unit propagation rule (�

∗),
which can be computed in linear-time.

Definition 3 Let Σ and Ω be two sets of clauses,Ω is a
deductive consequence ofΣ restricted to unit propagation,
notedΣ �

∗ Ω, if and only if∀c ∈ Ω, Σ �
∗ c.

Clearly, ifΣ �
∗ Ω thenΣ � Ω. In consequence, Proposi-

tion 1 can be adapted to introduce the generalized local au-
tarky modulo unit propagation.

Proposition 2 (Generalized (local) autarky mod-
ulo unit propagation) Let Σ be a CNF formula,
ρ = {l0, . . . , lj , . . . , li} is a generalized local autarky mod-
ulo unit propagation if there existsρ′ = {l0, . . . , lj} such
that Σ|ρ′ �

∗ Σ|ρ. If ρ′ = ∅ then ρ is a generalized au-
tarky modulo unit propagation.

Earlier in the paper, it has been shown that the propa-
gations of monotone, unit and more generally implied lit-
erals are special cases of local autarky detection. Likewise,
the detection of local autarky modulo unit propagation auto-
matically computes the propagations of monotone and unit
literals, too. The following property proves useful in thatre-
spect:

Property 5 Let Σ andΩ be two CNF formulae. IfΩ ⊆ Σ,
thenΣ �

∗ Ω.

This property is easily proved. Indeed, each clausec of Ω
is present inΣ, also(Σ|c̄)

∗ = ⊥ because the clausec of Σ is
reduced to an empty clause by the propagation ofc̄. In con-
sequence, for each clausec of Ω Σ �

∗ c and by definition
Σ �

∗ Ω. The converse is false, as illustrated by the follow-
ing example.

Example 4 Let Σ = {(a ∨ b ∨ c), (a ∨ ¬b), (b ∨ ¬c), (c ∨
¬a)} andΩ = Σ|b = {(a), (c ∨ ¬a)}, we haveΣ �

∗ Ω but
Ω 6⊂ Σ.



So, Property 5 ensures that all classical local autarkies
are also detected by generalized local autarkies modulo unit
propagation. In consequence, the simplification of mono-
tone literals is implicitly included during the detection of
generalized local autarkies modulo unit propagation. Sim-
ilarly, the simplification by unit propagation is a special
case of generalized local autarkies modulo unit propaga-
tions (Property 6).

Property 6 For any set of clausesΣ, Σ �
∗ Σ∗.

Compared with generalized autarkies, only the simplifi-
cation by the implied literals are not included in the gener-
alized autarkies modulo unit propagation, as illustrated by
the following example:

Example 5 Let Σ = {(a ∨ b ∨ c), (a ∨ b ∨ ¬c), (a ∨ ¬b ∨
¬c), (¬a ∨ b ∨ ¬c), (¬a ∨ ¬b ∨ c), (a ∨ ¬b ∨ c)}. We have
Σ � a butΣ 2

∗ a.

However, the restriction has been introduced to ensure
that generalized (local) autarkies modulo unit propagation
can be computed in polynomial time. Its implementation in
a DPLL-like procedure is discussed in the next section.

4.2. Some useful properties and implementation

In this section, some practical properties about the gen-
eralized (local) autarkies modulo unit propagation are pre-
sented. More precisely, it is shown how the detection of
these kinds of autarkies can be computed efficiently dur-
ing the computation of a DPLL-like algorithm.

The first property is about the time complexity of deduc-
tion restricted to unit propagation.

Property 7 Let Σ andΩ be two sets of clauses. Checking
Σ �

∗ Ω is in O(CΩ × (|Σ| + |c|)) wherec is the longest
clause ofΩ.

Unfortunately a polynomial-time complexity does not
guarantee practical efficiency. In this respect, we also re-
duce in a significant way the number of unit propagations
that are needed to detect local autarkies modulo unit propa-
gation.

Property 8 LetΣ a set of clauses andl a literal. Σ �
∗ Σ|l

if and only if∀c ∈ Σ such that̄l ∈ c, Σ �
∗ c.

The above property suggests that after the assignment of
a literall, clauses containing¬l need to be checked, only.

From properties 7 and 8, the following corollary is easily
obtained:

Corollary 4 LetΣ be a set of clauses andl a literal. Check-
ingΣ �

∗ Σ|l is inO(Occ(l̄)×CΣ) whereOcc(l̄) is the num-
ber of occurrences of̄l in Σ.

Algorithm 1 : DPLL-autark
input : A CNF formulaΣ
output: true if Σ is satisfiable,false otherwise
Σ∗←UnitPropagation(Σ);1.1

if Σ∗ = ⊥ then return false;1.2

else ifΣ∗ = ∅ then return true;1.3

else1.4

l←DecisionHeuristic(Σ∗);1.5

if DPLL-autark(Σ∗ ∧ (l)) then return true;1.6

else returnAutarkyModuloUP(Σ∗,l);1.7

end1.8

This corollary shows that detecting a generalized local
autarky modulo unit propagation between two consecutive
nodes of a DPLL-like algorithm is a simple task that is very
cheap w.r.t. time-complexity. However, there can exist gen-
eralized local autarkies modulo unit propagation between
two non-consecutive nodes. The following property and its
corollary show how useless tests can be avoided and that an
incremental detection is possible.

Property 9 Let Σ be a set of clauses and
{l0, . . . , lj , . . . , li} a set of literals. If Σ|{l0,...,lj} �

∗

Σ|{l0,...,lj ,...,li}, then Σ|{l0,...,lj ,lj+1} �
∗ Σ|{l0,...,lj ,...,li},

Σ|{l0,...,lj ,lj+1,lj+2} �
∗ Σ|{l0,...,lj ,...,li}, . . . and

Σ|{l0,...,lj ,...,li−1} �
∗ Σ|{l0,...,lj ,...,li}.

Corollary 5 Let Σ be a set of clauses and
{l0, . . . , lj , . . . , li} a set of literals. If Σ|{l0,...,lj} 2

∗

Σ|{l0,...,lj ,...,li}, then Σ|{l0,...,lj−1} 2
∗ Σ|{l0,...,lj ,...,li},

Σ|{l0,...,lj−2} 2
∗ Σ|{l0,...,lj ,...,li}, . . . and Σ 2

∗

Σ|{l0,...,lj ,...,li}.

Detecting generalized local autarkies modulo unit propa-
gation between two non-consecutive nodes of a DPLL-like
algorithm depends on such a detection between two con-
secutive nodes. Accordingly, we insert this detection pro-
cess within a DPLL-like procedure. It is performed during
the backtrack step. Compared with a forward detection, this
method avoids the useless unit propagations when the de-
veloped branch is proved unsatisfiable. The following al-
gorithms describe this detection process (see Algorithm 2)
and its integration within a DPLL-like procedure (see Algo-
rithm 1).

Algorithm 1 details the DPLL-autark function
which is a DPLL-like algorithm using the simplifica-
tion by the generalized (local) autarkies modulo unit prop-
agation. In this algorithm, theUnitPropagation and
DecisionHeuristic functions are the DPLL-like
solvers usual ones. All kinds of decision heuristics (MOMS
[11], VSIDS [19], etc.) can be used withinDPLL-autark.
When a call to theAutarkyModuloUP function is made,
theΣ|l branch has been already explored and proved unsat-
isfiable. IfΣ �

∗ Σ|l then theΣ|l̄ branch can be pruned since



Algorithm 2 : AutarkyModuloUP

input : a set of clausesΣ and a literall such thatΣ|l
has been proved unsatisfiable

output: true if Σ|l̄ is satisfiable,false otherwise
(Σ|l̄)

∗←UnitPropagation(Σ ∧ (l̄));2.1

if (Σ|l̄)
∗ = ⊥ then return false;2.2

else if(Σ|l̄)
∗ = ∅ then return true;2.3

else2.4

autarkyFound←true;2.5

// Σ �
∗ Σ|l iff ∀c = (l̄ ∨ c′) ∈ Σ, Σ �

∗ c′

foreach c ∈ Σ s.t.c = (l̄ ∨ l1 ∨ l2 ∨ · · · ∨ ln) do2.6

if UnitPropagation((Σ|l̄)
∗ ∧ (l̄1) ∧2.7

(l̄2) ∧ · · · ∧ (l̄n))= ⊥ then
(Σ|l̄)

∗←(Σ|l̄)
∗ ∧ (l1 ∨ l2 ∨ · · · ∨ ln);2.8

end2.9

elseautarkyFound←false;2.10

end2.11

if autarkyFound then return true;2.12

else returnDPLL-autark((Σ|l̄)
∗);2.13

end2.14

an autarky is detected. TheAutrakyModuloUP func-
tion computes this test and, depending on the result, it
either explores or prune the branch. This function is de-
tailed in Algorithm 2.

For efficiency reasons, Algorithm 2 begins with the unit
propagation of̄l. Indeed, each clause tested during the ver-
ification of Σ �

∗ Σl implies the unit literal̄l. In order to
avoid several propagations ofl̄, the propagation of̄l is done
once at the beginning of the procedure (see line 2.1).

When a clausec′ = (l1 ∨ l2 ∨ · · · ∨ ln) is proved to be
a logical consequence through unit propagation of(Σ|l̄)

∗,
it is added to(Σ|l̄)

∗ (see line 2.8). These additional clauses
speed up the computation of all unit propagations done dur-
ing the rest of the procedure and reduce the size of the sub-
tree built during the exploration of the branchΣ|l̄ when no
autarky has been detected. Note that these additions are per-
formed in constant space. Indeed, thec′ clause is obtained
from a c clause ofΣ that contains̄l. This c clause is satis-
fied during the unit propagation ofl̄ at the beginning of the
procedure. The addition ofc′ can be done with a simple re-
moval of thel̄ literal from c. This process can be achieved
in constant time and space with an adequate data structure.

Finally, even if the generalized local autarky modulo unit
propagation is not detected, this approach is able to produce
several sub-clauses. It is also possible to stop the detection
as soon asΣ 2

∗ Σ|l is proved (at the line 2.10). We be-
lieve that the spent time to produce sub-clauses is offset by
the time saved to explore a smaller sub-tree. Two versions
can be derived, one that only checks for generalized local
autarkies modulo unit propagation and an other one that ad-
ditionally produces sub-clauses. In the future, we plan to
implement these two versions in order to measure and com-
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Figure 2. Levels of literals in DPLL

CNF
Formula

Levels of literals
δ(a) δ(ā) δ(b) δ(b̄) δ(c) δ(c̄) δ(d) δ(d̄) δ(e) δ(ē) δ(f) δ(f̄)

Σ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
Σ|{a} 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
Σ|{a,b} 0 ∞ 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
Σ|{a,b,c} 0 ∞ 0 ∞ 1 ∞ ∞ ∞ ∞ ∞ ∞ ∞
Σ|{a,b,c̄} 0 ∞ 0 ∞ ∞ 0 ∞ ∞ ∞ ∞ ∞ ∞
Σ|{a,b,c,d} 0 ∞ 0 ∞ 1 ∞ 1 ∞ ∞ ∞ ∞ ∞
Σ|{a,b,c,d,e} 0 ∞ 0 ∞ 1 ∞ 1 ∞ 2 ∞ ∞ ∞
Σ|{a,b,c,d,e,f} 0 ∞ 0 ∞ 1 ∞ 1 ∞ 2 ∞ 3 ∞
Σ|{a,b,c,d,e,f̄} 0 ∞ 0 ∞ 1 ∞ 1 ∞ 2 ∞ ∞ 2
Σ|{a,b,c,d,ē} 0 ∞ 0 ∞ 1 ∞ 1 ∞ ∞ 1 ∞ ∞
Σ|{a,b,c,d,ē,f} 0 ∞ 0 ∞ 1 ∞ 1 ∞ ∞ 1 2 ∞
Σ|{a,b,c,d,ē,f̄} 0 ∞ 0 ∞ 1 ∞ 1 ∞ ∞ 1 ∞ 1

Table 1. Levels of literals of the search tree
depicted in Fig. 2.

pare their practical strengths.

4.3. Local autarkies and implication levels

In the previous algorithm, only the current branch
of DPLL can be cut when an autarky is found. It could
be interesting to cut several branches to process a non-
chronological backtracking like it is done in modern imple-
mentations of DPLL. In this section, it is shown that this
goal can be reached by computing the largest jump with re-
spect to an order of unit propagations. The standard
concepts of level for a literal (section 2.2) and implica-
tion graph (Definition 5) are used in that respect.

We recall thatδ(l) the level of a given literall is given by
the number of branches not explored before its assignment.

All assigned literals between two calls of the decision
heuristics have the same level, as illustrated in the next ex-
ample. An unassigned literal has an infinite level. In Table
1, the level of all literals at each node of the search tree de-
picted in Figure 2 is detailed.



Definition 4 Let Σ be a CNF formula,{l1, l2, . . . , li} a
partial assignment ofΣ andc a clause ofΣ|{l1,l2,...,li}. The
level ofc, notedδ(c), is defined in the following way:

• If c ∈ Σ, δ(c) = 0 ;

• Elseδ(c) = max{δ(l) s.t.l ∈ c et l̄ ∈ {l1, l2, . . . , li}}

The clause level matches the level of the last literal of the
clause assigned to false.

The fundamental process to detect a generalized autarky
modulo unit propagation consists in checking whether a
clause is implied by unit propagation. The sequence of
generated implications can be depicted by an acyclic ori-
ented graph, called implication graph. Usually such a graph
is used in all CDCL (conflict-driven clauses learning) ap-
proaches to learn clauses. It was first introduced in [17].

Definition 5 An implication graph, notedG = (V,A) is a
graph such that:

1. V is the set of vertices where each vertex, noteds(l), is
an assigned literal during unit propagation;

2. A is the set of edges. For a vertexs(li) the
set of predecessors is defined by the vertices
{s(l1), . . . , s(li−1), s(li+1), . . . , s(ln)} if there ex-
ists a clause c = (l̄1, . . . , ¯li−1, li, ¯li+1, . . . , l̄n)
and a current partial assignmentρ such that
{l1, . . . , li−1, li+1, . . . , ln} ⊆ ρ. Each arc
〈s(lj), s(li)〉 is labeled byc.

The roots of the implication graph representing the im-
plication of a given clause by unit propagation are the ver-
tices labelled by the negation of each literal of the clause.By
construction, it is straightforward that this graph is acyclic.

Example 6 Let Σ be the CNF formula built on the follow-
ing 14 clauses:
c1 : (¬a ∨ c) c6 : (¬b ∨ e) c11 : (¬i ∨ l ∨ ¬k)
c2 : (¬a ∨ d) c7 : (¬e ∨ i) c12 : (¬i ∨ ¬l)
c3 : (¬b ∨ d) c8 : (¬e ∨ h) c13 : (¬k ∨ ¬l)
c4 : (¬d ∨ f) c9 : (¬g ∨ h ∨ ¬f) c14 : (c ∨ e)
c5 : (¬d ∨ g) c10 : (¬h ∨ k)

The implication graph corresponding to the implication by
unit propagation of the clause(ā ∨ b̄) is depicted in Fig. 3.

The goal is to compute the minimum levels of implica-
tion of the clauses that are used during the detection of the
generalized local autarkies modulo unit propagation. So a
value, notedη(l), is associated to each vertex of the graph
in the following way:

• Roots vertices have a null value;

• Let a vertexs(l) and{s(l1,1), . . . , s(l1,m), s(l2,1), . . . ,
s(l2,n), . . . , s(lk,1), . . . , s(lk,p)} its set of predeces-
sors such that〈s(l1,1), s(l)〉, . . . , 〈s(l1,m), s(l)〉 are la-
belled byc1, 〈s(l2,1), s(l)〉, . . . , 〈s(l2,n), s(l)〉 are la-
belled byc2, . . . , and〈s(lk,1), s(l)〉, . . . , 〈s(lk,p), s(l)〉
are labelled byck, then

ca

cb

cc

cd

ce

cf

cg

ci

ch

c̄l

ck

c̄k

c1

c2

c3

c6

c4

c5

c8

c7

c9

c9

c12

c11

c10

c11

Figure 3. Implication graph representing an
implication of a clause by unit propagation

η(s(l))=min[max(δ(c1), η(s(l1,1)), . . . , η(s(l1,m))),
. . . ,

max(δ(ck), η(s(lk,1)), . . . , η(s(lk,p)))].
Example 7 Let us consider the same CNF formula as in ex-
ample 6 together with the following clause levels:

δ(c1) = 8 δ(c5) = 6 δ(c9) = 12 δ(c13) = 7
δ(c2) = 3 δ(c6) = 0 δ(c10) = 2 δ(c14) = 5
δ(c3) = 7 δ(c7) = 3 δ(c11) = 1
δ(c4) = 9 δ(c8) = 3 δ(c12) = 4

For each vertex of the implication graph depicted in Fig. 3,
the following values are obtained:
η(s(a)) = 0 η(s(b)) = 0 η(s(c)) = 8 η(s(d)) = 3
η(s(e)) = 0 η(s(f)) = 9 η(s(g)) = 6 η(s(i)) = 3
η(s(h)) = 3 η(s(l̄)) = 4 η(s(k)) = 3 η(s(k̄)) = 4

So, the implication level of the clause(ā, b̄) is equal to
max(η(s(k)), η(s(k̄))) = 4.

Thus, it is possible to compute an implication level for
all the clauses used in the detection of generalized local au-
tarkies modulo unit propagation. A level can be assigned to
the detected autarky. It is defined as the greatest implication
level computed for each implied clause. In consequence, if
the level of the autarky isj, it is possible to backjump safely
up to this decision level. Indeed, for a sub-formulaΣi ob-
tained fromΣ and a partial assignment{l0, . . . , lj , . . . , li},
if all the clauses ofΣi are implied modulo unit propaga-
tion at levelk ≤ j, thenΣj �

∗ Σi. All branches betweenj
and the current leveli are pruned.

Furthermore, even when no autarky is found, we have
seen that the clauses that are proved to be implied during the
autarky detection, are added to the formula. These clauses
are added only until the current decision level is achieved.
Since its minimal implication level has been computed, it
is possible to keep the implied clauses until backtracking
to their corresponding levels. This will reduce the size of
search tree even more.

5. Conclusion

This paper presents aformal frameworkfor the detec-
tion and use of autarky assignments, with the goal to im-



prove the efficiency of SAT solvers. Several contributions
about the generalization of classical autarkies have been
provided. The first one introduces the concept of autarky
modulo unit propagation, which extends the usual defini-
tion by substituting the syntactical inclusion operation by a
semantic-one based on unit propagation. It has also been
proved that propagating unit literals are special cases of
this generalization. A second extension introduces the con-
cept of implication level, aiming at detecting larger parti-
tions. Interestingly enough, when no generalized local au-
tarky can be found, the approach is able to produce sev-
eral sub-clauses from the formula. Each implied clause can
be exploited in order to reduce the search space until back-
tracking to its corresponding implication level. Finally,it is
shown how these different approaches could be integrated
in DPLL-like SAT solvers.

As future works, we plan to investigate how to integrate
and implement the approach in modern SAT solvers. This
might prove very succesful for efficiently solving industrial-
related SAT instances. It is well-known that many of these
instances can be partitioned into several disconnected com-
ponents after assigning a small set of variables. Another
interesting path of research would be to design powerful
clauses ordering heuristics for searching for local autarkies
modulo unit propagation.
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