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Abstract

In this paper, we propose to automatically detect vari-

able symmetries of CSP instances by computing for each

constraint scope a partition exhibiting locally symmetric

variables. From this local information obtained in polyno-

mial time, we can build a so-called lsv-graph whose auto-

morphisms correspond to (global) variable symmetries. In-

terestingly enough, our approach allows us to disregard the

representation (extension, intension, global) of constraints.

Besides, the size of the lsv-graph is linear with respect to

the number of constraints (and their arity).

1. Introduction

Symmetry breaking [3] is an important research topic in

Constraint Programming. By discarding symmetric parts of

a constraint network, one may obtain a dramatic reduction

of the search effort required to find a solution or to prove

unsatisfiability. Different approaches have been proposed

to exploit symmetries: one can a) add symmetry breaking

constraints before search [4], b) break symmetries during

search (SBDS) [2, 10], c) break symmetries via dominance

detection (SBDD) [6, 7]. However, in this line of research,

symmetries are considered to be given by the user. Conse-

quently, to build black-box solvers (i.e. solvers that can be

easily handled by non-experts), one important issue has to

be addressed: automatically discovering symmetries.

In [9], the system CGRASS is proposed to analyze CSP

instances in order to automatically identify symmetries and

implied constraints. At the heart of the system, a syntactic

comparison is performed using the computation of normal

forms. To detect symmetric variables, each pair of variables

is considered, and the set of constraints obtained after swap-

ping them is normalized and compared with the original

form. Unfortunately, this approach is impractical in gen-

eral [9], due to the complexity of computing normal forms

over all pairs of variables and over the full set of constraints.

The automatic detection of symmetries has also been ad-

dressed using software computing graph automorphisms. In

[15], the authors propose to reduce CSP instances into SAT

ones while capturing their symmetrical structure (before re-

duction). A parse graph is built from the predicate expres-

sions associated with the constraint set, and some transfor-

mations (e.g. removing brackets, grouping operators) are

proposed to favor the detection of symmetries. The auto-

morphisms of this graph are then computed using a program

such as Saucy [5]. In this vein, an automatic symmetry de-

tection method has been proposed in [14]: it allows us to

detect value and variable symmetries and non trivial ones

involving both variables and values.

In this paper, we propose to automatically detect variable

symmetries by computing a partition of the scope of each

constraint exhibiting locally symmetric variables. From

this local information computed in polynomial time, we

build a so-called lsv-graph whose automorphisms corre-

spond to (global) variable symmetries. Interestingly, our

approach allows us to disregard the representation of con-

straints: whatever the representation is (extension, inten-

sion, global), one exploits the same notion (kind of nodes)

in the lsv-graph. Besides, both the number of nodes and

edges in the lsv-graph is linear with respect to the number

of constraints (and their arity) of the CSP instance, mak-

ing symmetry detection efficient when using available tools

such as Nauty [13] and Saucy [5] on very large instances.

Using generators of the symmetry group returned by the

graph automorphism identification software, lexicographic

ordering constraints can be posted.

2. Technical Background

A Constraint Network (CN) P is a pair (X , C ) where

X is a finite set of n variables and C a finite set of e con-

straints [12]. Each variable X ∈ X has an associated do-

main, denoted by dom(X), that contains the set of values

allowed for X . Each constraint C ∈ C involves an ordered

subset of variables of X and has an associated relation, de-



noted by rel(C), which is the set of tuples allowed for this

subset of variables. This subset of variables is the scope of

C and is denoted by scp(C). The arity of a constraint is the
number of variables in its scope. A binary constraint has

arity 2. A solution to a CN is an assignment of a value to

each variable such that all the constraints are satisfied.

Given an ordered set {X1, . . . , Xi, . . . , Xk} of k vari-

ables and a k-tuple τ = (a1, . . . , ai, . . . , ak) of values, the
individual value ai will be denoted by τ [Xi]. τXi↔Xj

de-

notes the tuple obtained from τ by swapping τ [Xi] with
τ [Xj ].

Even if mathematically it is useful to consider a con-

straint C defined by a relation, in practice it can be defined

extensionally by a table (i.e. an explicit list of allowed tu-

ples) or intensionally by a predicate expression denoted by

pre(C). The size of a table and an expression corresponds

to the number of its elements and its tokens (operators, con-

stants and variables), respectively.

In the domain of constraint satisfaction, many definitions

(see [3]) of symmetry have been proposed. Roughly speak-

ing, a symmetry is a bijection which, when applied, lets

unchanged a given object (for example, a graph). In this

paper, we restrict our attention to variable symmetries:

Definition 1 Let P = (X , C ) be a CN with X =
{X1, . . . , Xn}. A variable symmetry σ of P is a permuta-

tion onX such that {X1 = a1, . . . , Xn = an} is a solution
of P iff {σ(X1) = a1, . . . , σ(Xn) = an} is a solution of P .

The set of (variable) symmetries of a given CN forms

a group. For example, the inverse of a symmetry, as well

as the composition of two symmetries, are symmetries. A

group can be represented by means of a subset of its ele-

ments called generators. Generators allow compact repre-

sentations of sets of symmetries. Every symmetry can be

expressed using a composition of these generators. Finally,

every variable symmetry can be described by a set of cy-

cles of the form (Xi1 , Xi2 , . . . , Xik
) which means that the

variable Xij
is mapped to Xij+1

for j ∈ 1..k − 1, and
the variable Xik

is mapped to Xi1 . For example, σ =
{(X1, X3), (X2, X4, X5)} contains two cycles and repre-

sents σ(X1) = X3, σ(X2) = X4, σ(X3) = X1, σ(X4) =
X5, σ(X5) = X2.

Interchangeability is an important property [8] defined

on values that corresponds to a particular form of (value)

symmetry. However, this property can also be defined on

variables (see e.g. [11]). A variable X is (fully) inter-

changeable with a variable Y (on a CN P ) iff for every solu-

tion S of P , SX↔Y is also a solution of P where SX↔Y is

obtained from S by swapping the values of the variables X

and Y . Variable and value interchangeability is sometimes

called pairwise or piecewise variable and value symmetry.

To break variable symmetries, lexicographic ordering

constraints, which are defined on two vectors of variables,

can be posted [4]. When variables correspond to letters, the

two vectors represent words and we obtain the classical or-

der used by dictionaries.

As an illustration, let us consider the 4-queens instance

(modelled as a binary CN): we have to put four queens on

a 4 × 4 board such that no two queens attack each other.

There is one variable per queen (column) and the values

are row numbers. Denoting the variables by Xa, Xb, Xc

and Xd, to clarify the correspondence with columns, Fig-

ure 1 shows the two solutions for this instance. The first

is {Xa = 2, Xb = 4, Xc = 1, Xd = 3} and the second

is {Xa = 3, Xb = 1, Xc = 4, Xd = 2}. If we disregard

the identity permutation, only fh is a variable symmetry

defined in cyclic form by fh = {(Xa, Xd), (Xb, Xc)}.
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(b) Second Solution

Figure 1. Solutions of the 4-queens instance.

3. Detecting Variable Symmetries

In order to automatically detect variable symmetries, we

propose an original representation of any CN by a so-called

lsv-graph (lsv stands for locally symmetric variables) which

outlines many variable symmetries of the network. To sum-

marize our approach, we proceed in three steps. The first

one corresponds to a local analysis of each constraint in

order to identify locally symmetric variables. The second

one corresponds to the construction of a lsv-graph, and in

the third one, generators for the symmetry group are com-

puted using a graph automorphism identification algorithm,

as proposed in [4, 15, 14].

3.1. Locally Symmetric Variables

Two variables involved in a constraintC are locally sym-

metric iff it is possible to permute both variables without

modifying the set of allowed tuples.

Definition 2 Two variables X and Y are locally symmet-

ric for a constraint C iff {X, Y } ⊆ scp(C) and ∀τ ∈
rel(C), τXi↔Xj

∈ rel(C).

As symmetry is transitive, one can compute for each con-

straint a partition of its scope, each element of this parti-

tion being a set of pairwise symmetric variables. Function



Algorithm 1: computeSymmetricVariables(C: Constraint):

Partition

∆← ∅ ; S ← scp(C)1

while S 6= ∅ do2

pick X from S3

T ← {X}4

foreach Y 6= X ∈ S do5

if isLocallySymmetric(C, X, Y ) then6

T ← T ∪ {Y }

S ← S \ T ; ∆← ∆ ∪ T7

return ∆8

computeSymmetricV ariables (Algorithm 1), identifies

locally symmetric variables for any extensional, intensional

or global1 constraint C. A set S is first initialized with all

variables involved in C. At each turn of the main loop, the

algorithm picks a variable X from S, and computes the set

T of variables symmetric with X . Next, T is subtracted

from S and added to the partition ∆ currently built.

At the heart of Algorithm 1, there is a call to function

isLocallySymmetric (Algorithm 2). For a given con-

straint C and two variables X and Y involved in C, it sim-

ply determines whether X and Y are locally symmetric for

C or not. Generally speaking, three cases have to be con-

sidered depending on the representation of C:

1. If C is extensional (lines 1 to 4), the algorithm builds

for each tuple in the table associated with C, a new one

by swapping the values of the variables X and Y and

then checks if it belongs to rel(C).

2. If C is intensional (lines 5 to 7), the algorithm

builds a canonical tree representation of the predi-

cate expression pre(C) associated with C by a call to

the function buildCanonicalT ree (see Section 3.2).

A second canonical tree representation is built after

swapping variables X and Y in pre(C), denoted by

pre(C)X↔Y . Both canonical representations are then

compared, and X and Y are identified as being locally

symmetric for C iff they are identical.

3. IfC is a global constraint (line 8 to 11), a specific treat-
ment must be performed. For example, any two vari-

ables involved in an “allDifferent” constraint are lo-

cally symmetric. Two variables involved in a “weight-

edSum” constraint are locally symmetric if they have

the same attached coefficient.

A partition of the scope of a constraint (defined in ex-

tension or intension) can be computed in polynomial time.

Indeed, we have the following complexity result:

1We illustrate our purpose with two global constraints, namely, allDif-

ferent and weightedSum.

Algorithm 2: isLocallySymmetric(C: Constraint, X, Y :

V ariable): Boolean

if C is defined in extension then1

foreach τ ∈ rel(C) do2

if τX↔Y 6∈ rel(C) then return false3

return true4

if C is defined in intension then5

t← buildCanonicalT ree(pre(C))6

return t = buildCanonicalT ree(pre(C)X↔Y )7

if C is a global constraint then8

if C is AllDifferent then return true9

if C is WeightedSum then return10

coefficient(X) = coefficient(Y )
. . .11

Theorem 1 The worst-case time complexity of

computeSymmetricV ariables for a constraint C of

arity r is:

• O(r2tγ) if C is extensional with t being the size of

the table associated with C and γ the complexity of

performing a constraint check ;

• O(r2p2log(p)) if C is intensional with p being the size

of pre(C).

In practice, one may even expect a better behavior than

the ones predicted in the worst case. First, the number

of calls to isLocallySymmetric is only r − 1 when the

constraint is fully symmetric (i.e. all variables are locally

symmetric), due to transitivity. Second, for an intensional

constraint, buildCanonicalT ree is reduced to O(p2) when
operators are binary. Finally, for an extensional constraint,

when two variables are not symmetric, one may quickly exit

the foreach loop of Algorithm 2.

3.2. Computing Normal Forms of Predicates

As previously mentioned, normal forms have already

been proposed [9] to identify symmetric variables of a CN.

However, this approach was applied globally to the set of

constraints, making it impractical in practice (except for

small instances). Here, we propose to apply a similar ap-

proach on each constraint individually. It can so be applied

quite efficiently, except for some very specific cases where

predicate expressions or constraint arities are very large.

To make our presentation concrete, we consider here the

grammar2 used in CSP solver competitions to build predi-

cate expressions. Many operators on which expressions are

built are both commutative and associative: add (+), mul

2http://cpai.ucc.ie/08/XCSP2_1.pdf



(*), min, max, and, or, xor, iff, eq (=), ne ( 6=). Here are

some simple rewriting rules that we propose to apply:

• group associative operators using n-ary equivalent op-

erators [15]. For example, replace add(X, add(Y, Z))
by add(X, Y, Z).

• replace all occurrences of ge (≥) and gt (>) by le

(≤) and lt (<) [9]. For example, replace ge(X, Y ) by
le(Y, X).

• replace the sequence ’abs sub’ with a new commuta-

tive operator ’abssub’ combining both operators. For

example, replace abs(sub(X, Y )) by abssub(X, Y ).

Interestingly, it is possible to build a parse tree (each

node is labelled with a token of the expression) in one pass

while taking into account all rules indicated above. Even if

some additional sophisticated rules may be imagined (e.g.

one may adopt specific rules for linear and non-linear equa-

tions), we believe that this simple set of rules is sufficient

to capture symmetric variables of many constraints. Also,

notice the importance of the new operator ’abssub’ as it

occurs in various series of instances (e.g. frequency as-

signment problems). This new operator being commuta-

tive, we can identify symmetries undetected when the (non-

commutative) operator sub is present.

To obtain a canonical form from an initial parse tree, it

suffices to render canonical the root of the tree. A node is

made canonical as follows: first, all children (if any) are

made canonical, and sorted if the label associated with the

node corresponds to a commutative operator. To obtain a

normal form, it is necessary to define a total order over the

set of operators, integers and variables. This order can be

built rather naturally [9].

Except when the size of the predicate expression is very

large, computing a tree in canonical form is cheap. Indeed,

we have the following complexity result:

Theorem 2 The worst-case time complexity of building a

tree in canonical form, from a predicate expression expr, is

O(p2log(p)) where p denotes the size of expr.

3.3. Constructing lsv-graphs

Once locally symmetric variables have been identified

for each constraint (through partitioning), one can build a

colored graph dedicated to the search of variable symme-

tries for the given CN. Each automorphism in the graph

corresponds to a variable symmetry in the network. This

is an approach introduced in [4] and exploited, for example,

in [1, 15, 14]. Typically, all automorphisms can be obtained

by composition from a subset of automorphisms called gen-

erators. We show here that the colored graphs we build are

of limited size while capturing many variable symmetries.

The construction of colored graphs, denoted by lsv-

graphs from now, we propose is as follows. Each variable

of the given CN P is represented with a node, denoted by

”variable-node”. For each constraint of arity r, we add a

”constraint-node” and r ”binding-nodes”, one for each vari-

able involved in the constraint. Binding-nodes allow to con-

nect constraint-nodes with variable-nodes: if C is a con-

straint involving X then we have a connection between the

constraint-node corresponding to C and the variable-node

corresponding to X though a binding-node.

A color is associated with each node of the graph (per-

mutations are only allowed between nodes of the same

color). First variables with the same domain have the same

color. Similar constraints (i.e. constraints defined by the

same relation) have the same color. For each constraint,

the binding-nodes corresponding to locally symmetric vari-

ables have the same color. The same coloring schema of

binding-nodes is used for similar constraints. In all other

cases, colors must be different.

We can show that the above construction is correct: any

automorphism in the lsv-graph corresponds to a variable

symmetry in the CN. Indeed, any element (domains, con-

straints) constraining the search space of the CN is taken

into account when building the structure of the graph and

assigning colors.

As an illustration, let us consider a CN P involving a set

of four variables {X0 . . .X3} and a set of four intensional

constraints {C0 . . . C3}. The associated predicate of both

C0 and C1 is |$1− $0| = 56 while it is |$1− $0| > 42 for

C2 and C3, where $i denotes the ith formal parameter of

the predicate. Figure 2 depicts the lsv-graph built from P :

the four white nodes correspond to variable-nodes (as we

assume here that they have the same domain) and two grey

nodes and two black nodes correspond to constraint-nodes

(grey ones for C0 and C1 and black ones for C2 and C3).

Each constraint is linked to two variable-nodes through two

binding-nodes since constraints are binary.

Running Algorithm 1 on C0, variables X0 and X1 are

detected as locally symmetric for C0. As a consequence,

the two binding-nodes introduced for C0 receive the same
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Figure 2. Illustration of lsv-graph



color: it is represented here with a right-hatched pattern. On

our example, C1 is similar to C0 (the underlying relation is

the same since both constraints are represented by the same

predicate expression). This is why the same set of colors

is used for C0 and for C1. The same principle applies to

constraintsC2 and C3: all binding-nodes for these two con-

straints are assigned the same color, represented here by a

left-hatched pattern. Using Saucy, a generator for the sym-

metry group is identified: it maps X1 into X3, and vice-

versa. This is what can be observed in Figure 2.

An advantage of lightweight detection of variable sym-

metries is the controlled size of lsv-graphs.

Theorem 3 Let P be a CN. The number of nodes and edges

of the lsv-graph built from P is O(er) where r denotes the

greatest constraint arity.

Although some variable symmetries correspond to inter-

changeable variables, locally symmetric variables are not

necessarily interchangeable. Moreover, variable symme-

tries identified via lsv-graphs cannot always be expressed

in terms of interchangeable variables. For the 4-queens

instance, there is only one variable symmetry (other than

identity). This is fh = {(Xa, Xd), (Xb, Xc)} which is

obtained automatically from the lsv-graph generated for 4-
queens. The reader can check that there is no pair of inter-

changeable variables for this instance.

It is important to relate this approach to that described in

[14] when restricted to the identification of variable symme-

tries. The size of generated lsv-graphs is O(er) whereas the
size of Puget’s graphs (and of full assignments graphs in

[11]) grows exponentially with the arity of the constraints

when constraints are defined in extension and when the size

of the tables is not bounded, i.e. is O(edr) where d de-

notes the greatest domain size. For example, let us consider

the non-binary instance steiner-7 [11]. On the one hand,

the generated Puget’s graph contains 347, 760 nodes and

1, 032, 689 edges and the full assignments graph contains

154, 294 nodes and 459, 557 edges. On the other hand, the

lsv-graph only contains 231 nodes and 336 edges while al-

lowing us to detect the full set of interchangeable variables.

Recall here that we only focus on the detection of variable

symmetries. However, the size of generated lsv-graphs ren-

ders our approach practical on very large instances.

When constraints are binary, these different approaches

detect the same groups of variable symmetries, but this is

not always true for non-binary constraints. For example,

the constraintC such that scp(C) = {X1, X2, X3, X4} and
rel(C) = {(4, 3, 2, 1), (1, 2, 3, 4)} admits a variable sym-

metry σ such that σ(X1) = X4, σ(X2) = X3, σ(X3) =
X2 and σ(X4) = X1, but no locally symmetrical variables.

This is a symmetry composed of two cycles, similar to that

found for 4-queens. At the level of a single constraint, an

lsv-graph cannot handle this. It would be worthwhile to

extend lightweight detection of symmetries to deal with lo-

cally symmetrical groups of variables (that is, a generaliza-

tion of locally symmetrical variables), while controlling the

time complexity of local symmetry detection and the space

complexity of generated lsv-graphs.

4. Conclusion

In this paper, we have introduced a new graph represen-

tation of CNs based on the identification of locally symmet-

ric variables. This representation is made homogeneous by

disregarding the representation of constraints, and the size

of the obtained lsv-graphs is linear w.r.t. the number of con-

straints (and their arity). Inspired from both transformation

rules [9] and graph automorphism identifications [4, 15, 14],

our approach automatically detects variable symmetries.
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