
HAL Id: hal-00865334
https://hal.science/hal-00865334v1

Submitted on 8 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient Combination of Decision Procedure for MUS
Computation

Cédric Piette, Youssef Hamadi, Lakhdar Saïs

To cite this version:
Cédric Piette, Youssef Hamadi, Lakhdar Saïs. Efficient Combination of Decision Procedure for MUS
Computation. 7th International Symposium on Frontiers of Combining Systems (FroCos’09), 2009,
Trento, Italy. pp.335-349. �hal-00865334�

https://hal.science/hal-00865334v1
https://hal.archives-ouvertes.fr


Efficient Combination of Decision

Procedures for MUS Computation

Cédric Piette1, Youssef Hamadi2, and Lakhdar Saïs1

1 Université Lille-Nord de France, Artois
CRIL-CNRS UMR 8188

F-62307 Lens Cedex, France
{piette,sais}@cril.fr

2 Microsoft Research
7 J J Thomson Avenue

Cambridge, United Kingdom
{youssefh}@microsoft.com

Abstract. In recent years, the problem of extracting a MUS (Minimal
Unsatisfiable Subformula) from an unsatisfiable CNF has received much
attention. Indeed, when a Boolean formula is proved unsatisfiable, it does
not necessarily mean that all its clauses take part to the inconsistency; a
small subset of them can be conflicting and make the whole set without
any solution. Localizing a MUS can thus be extremely valuable, since
it enables to circumscribe a minimal set of constraints that represents a
cause for the infeasibility of the CNF. In this paper, we introduce a novel,
original framework for computing a MUS. Whereas most of the existing
approaches are based on complete algorithms, we propose an approach
that makes use of both local and complete searches. Our combination is
empirically evaluated against the current best techniques on a large set
of benchmarks.

1 Introduction

The concept of Minimally Unsatisfiable Subformula (MUS for short) proves more
and more valuable in many applications of SAT, such as bounded model checking
(see e.g. [1, 2]) or knowledge-base validation. Indeed, when a Boolean formula is
proved unsatisfiable, it does not necessarily mean that all its clauses take part to
the inconsistency; a small subset of them can be conflicting and make the whole
set without any solution. Localizing a MUS can thus be extremely valuable, since
it enables to circumscribe a minimal set of constraints that represents a cause
for the infeasibility of a CNF formula. For instance, in [3], an abstraction-based
approach for deciding the satisfiability of finite-precision bit-vector is presented.
Roughly, this method consists in generating an under-approximation such that
if this latter one is satisfiable, so is the original problem. In the opposite case, an
approximation of MUS (also called core) of this CNF formula is computed for
generating an over-approximation whose unsatisfiability proves that the original



problem has no solution. Experimental results clearly show that this way is more
efficient than running a complete DPLL-like procedure on the whole original
formula.

SAT solving has made a wonderful progress in the recent years, and some
problems considered out-of-reach a decade ago can now be solved in a few sec-
onds. A natural consequence of those algorithmic improvements is the modeling
of larger problems whose reasons for unsatisfiability can be very difficult to
catch. One way to explain inconsistency is to extract a Minimally Unsatisfiable
Subformula, which represents an irreducible (w.r.t. the involved clauses) cause
of the unsatisfiability. With the recent increase in formulae sizes, the problem
of extracting one or several MUS has received much attention these last years.
However, the current approaches which are based on complete search algorithms
(DPLLs) often deliver an unsatisfiable subformula, which is not guaranteed to
be minimal. Among these techniques, let us mention AMUSE [4] which consists
in marking clauses during the exploration of a DPLL-related search tree. An-
other technique called zCore [5], the core extractor related to the well-known
solver zChaff, is able to localize an unsatisfiable subformula by analyzing the
resolution graph of a complete search procedure. Indeed, the source clauses from
which is derived the empty one by the resolution process, simulated by modern
solvers, forms a non-minimal core of the CNF formula.

More recently, a new technique called AOMUS [6] has also been introduced.
It makes an original use of local search and relies on a so-called critical clause
concept, to progressively focus on the difficult parts of a problem. This allows
AOMUS to compute the upper-approximation of a MUS. Finally, an approach
based on a serie of redundancy checks is presented in [7]. Let us also note that the
problem of finding a Minimal Unsatisfiable Core (MUC) in the CSP framework
is also the subject of many publications [8, 9].

Although these approaches are based on different algorithmic principles, they
are destructive by nature, in the sense that they consider the whole formula to
remove parts which have been shown useless in a particular proof of unsatisfiabil-
ity. In this paper, we are concerned with a new constructive framework. Indeed,
this approach starts without any clause and builds a core by adding some partic-
ular clauses regularly, until an unsatisfiable set of clauses (which represents an
approximated MUS) has been obtained. This framework makes an incomplete
search – in charge of delivering sets of models – and an exhaustive technique
act together. This can be opposed to destructive approaches which often imply
the ability to prove a CNF unsat before starting a core extraction process. For
applications like MaxSat solving through detection of cores [10], this could be
an issue, though. Our constructive method does not suffer from this drawback,
as it only requires to check the unsatisfiability of the discovered core instead of
repetitively proving the whole CNF and some of its suformulae inconsistent.

To reduce the number of calls to a complete DPLL solver, our combina-
tion exploits the power of stochastic local search (SLS) for both finding models
(proving the consistency of the current subformula) and for selecting the set
of relevant clauses that might be added to the current subformula. A call to



a complete solver is only done when the SLS method is not able to prove the
consistency of the formula.

The paper is organized as follows. After some preliminary definitions and
notations about SAT and MUS, we describe in section 3 the constructive frame-
work. In section 4, an implementation of the framework is presented and exper-
imented in section 5. Finally, we conclude by providing some interesting future
lines of research.

2 Technical Beackground

Let L be the propositional language of formulas defined in the usual inductive
way from a set P of propositional symbols (represented using plain letters like
a, b, c, etc.), the Boolean constants ⊤ and ⊥, and the standard connectives ¬, ∧,
∨, ⇒ and ⇔. A SAT instance is a propositional formula in conjunctive normal
form (CNF for short), i.e. a conjunction of clauses, where a clause is a disjunction
of literals, a literal being a possibly negated propositional variable.

An interpretation is a function that assigns values from {true, false} to ev-
ery Boolean variable. An interpretation is called model w.r.t. a particular CNF
if it satisfies this formula, namely if this interpretation makes it true. SAT is
the well-known NP-complete problem that consists in deciding whether a propo-
sitional CNF is satisfiable or not, i.e. whether the formula admits at least one
model. In this paper, CNF formulae are represented using a set (interpreted as
a conjunction) of clauses, where a clause is a set (interpreted as a disjunction)
of literals.

When a CNF is satisfiable, most of the current approaches are able to pro-
vide a model, which is a certificate of its satisfiability. By opposite, in case of
inconsistency, these approaches only ensure that no satisfying interpretation ex-
ists. However, this is not very informing. The user might prefer to localize, if
there exists, a small part of the CNF which triggers the inconsistency of the
whole problem. In this respect, the concept of MUS (Minimally Unsatisfiable
Subformula) is extremely valuable.

Definition 1. Let Σ be a CNF formula. Γ is a MUS (Minimally Unsatisfiable
Subformula) of Σ iff:

1. Γ ⊆ Σ;
2. Γ is unsatisfiable;
3. for each Γ ′ ⊂ Γ , Γ ′ is satisfiable.

Extracting of MUS from an unsatisfiable CNF is a highly complex problem.
For instance, checking if a CNF is a MUS is DP-complete [11] (where DP is the
class composed of the union of a language in NP and another one in CoNP), while
checking whether a set of clauses belongs to at least one MUS of an unsatisfiable
CNF is Σp

2
-hard [12].

Despite these not encouraging complexity results, many approaches for ex-
tracting a core (i.e. an approximated MUS) have already been proposed. In the



next section, we propose a new constructive framework to extract cores from
unsatisfiable formulae.

3 A Constructive Framework

3.1 Presentation

Most of the current approaches are destructive, in the sense that they consider
the whole formula to progressively reduce it toward a core. In order to present the
ideas of this new framework in comparison to the destructive one, we introduce
here some notations that will be used in the remaining of this paper. First
of all, let us denote Σ the CNF from which a MUS (or an approximation) is
to be extracted. We also denote Γ another set of clauses which will contain
the computed core. This set contains at any step of the procedure a subset of
original formula Σ. Generally, the algorithms for computing a MUS are based
on the iteration of the same function. So, let f be a function that takes Σ and
Γ as input to produce a subformula ΓN .

With destructive methods, Γ is initially set to Σ. In addition, f is a function
that takes Σ and Γ as input to produce a subformula ΓN of Γ , the most often
by analyzing a proof of unsatisfiability. The resulting CNF ΓN is then a subset
of Γ . This new CNF is then used as Γ with respect to f , to obtain a potentially
even smaller CNF. This iteration is performed until the delivered formula is Γ
itself, namely until a fix point is reached.

For the constructive method, we propose to start the computation consid-
ering Γ as the empty set, and to progressively add clauses from Σ in Γ . So, a
core is built thanks to f which returns a superset ΓN of Γ which contains new
clauses from Σ\Γ . This operation is repeated until Γ becomes unsatisfiable and
represents a core for Σ. The following table summarizes the main differences
between those general frameworks.

Constructive Destructive

Initial Γ ∅ Σ

f(Σ,Γ )=ΓN Γ ⊆ ΓN and
ΓN ⊆ Σ

ΓN ⊆ Γ

Stopping
Condition

Γ is UNSAT f(Σ,Γ )=Γ

Actually, constructive procedures have already been studied for the problem
of minimizing an unsatisfiable system toward a minimal one, in order to extract
an exact cause of its infeasibility. For example, this approach is known for a long
time in the mathematical programming [13] and CSP [14] communities. However,
it is not used in practice any more, because of its complexity in the worst case.
Indeed, by considering the number of calls to a complete procedure and denoting
n the number of constraints of the CNF, and cn the number of constraints of
the biggest MUS (in number of constraints), the constructive approach exhibits



a worst case complexity in O(n × cn), whereas the worst case complexities of
destructive and dichotomic approaches are only O(n) and O(log(n) × cn) [8],
respectively.

Fortunately, this is only true for systematic complete procedures that aim at
returning a minimal set of clauses; in this paper, we focus on approaches that
aim at approximating a MUS (delivering an upper set of clauses). Consequently,
they do not suffer from this bad complexity result. In the next section, we discuss
about particular clauses that can be safely added to Γ without discarding any
MUS of the formula.

3.2 The role of necessary clauses

In a recent study which aims at categorizing the clauses of a formula w.r.t. their
role in its unsatisfiability [15], different classes of clauses have been established.
Roughly, a clause is called necessary if it belongs to all MUS of a formula. Clearly,
those clauses participate to any proof of inconsistency, and removing any one of
them makes the CNF recover satisfiability. A clause is potentially necessary if it
is not a necessary clause but the removal of some particular clause(s) can make
it necessary. Those clauses appear in at least one MUS of the formula. Finally,
a clause which is neither necessary nor potentially necessary is never necessary
and does not belong to any MUS. They can be used in a proof of unsatisfiability,
but all of them can be removed from the CNF keeping it unsatisfiable.

Necessary clauses are computationally hard to be extracted: indeed, for an
unsatisfiable CNFΣ and a clause c ∈ Σ, ifΣ\{c} is satisfiable, then c is necessary
with respect to Σ. A linear number of calls of a complete algorithm is thus
needed to exhaustively extract all necessary clauses of a given CNF. Fortunately,
an inexpensive technique [6] can find them in an incomplete way. During the
exploration of a local search for the satisfiability ofΣ, if all its clauses are satisfied
except one, the falsified clause is clearly necessary and is marked as protected. As
necessary clauses represent global minima for the objective function of the local
search, this notion proves really efficient for most of benchmarks, in an empirical
point of view. Actually, most of the necessary clauses can be computed through
the protected clause concept on many instances, but the approach cannot ensure
they have all been delivered.

Nevertheless, an unsatisfiable CNF can exhibit no necessary clause. Indeed,
containing two independent causes of unsatisfiability, namely two MUS with
an empty intersection, is a sufficient condition for not exhibiting such clauses.
However, most of realistic CNF which are expected to be satisfiable are not of
this form. As said previously, a necessary clause of a formula belongs to any of
its MUS and can therefore be safely added to Γ , in our constructive framework.

The main difference between destructive procedures is the strategy used to
select the subset of clauses of Γ (represented previously by the function f). With
respect to a constructive policy, a lot of possible techniques can also be imag-
ined for augmenting Γ . However, when f only considers particular clauses to be
added, interesting properties can be established. The interest of such particular
functions are described in the next section.



3.3 The non-redundancy property

Our technique is based on the following proposition, which is a straight conse-
quence of the definition of MUS itself:

Proposition 1. Let Σ be a CNF formula, and ω an interpretation of Σ. ∀M ∈
Σ s.t. M is a MUS, ∃c ∈M s.t. ω 2 c.

Clearly enough, as a MUS is an irreductible unsatisfiable set of clauses, any
interpretation of a formula falsifies at least one clause from each of its MUSes.
Accordingly, when considering a large number of interpretations, the most often
falsified clauses are heuristically a good approximation of clauses belonging to
MUSes. The highest score clauses are then added to the growing core. Thus, we
associate a score (initialized to 0) to each clause, and while a large number of
interpretations are considered, the score of each falsified clause is increased by
1.

A lot of different constructive algorithms can be created, choosing various
strategies to enumerate interpretations. Those ones can be randomly generated,
but it appears reasonable to attempt to reduce the number of clauses falsified
by the explored interpretations. Indeed, some falsified clauses may not appear in
any MUS and are just “noise” for the heuristic. Attempting to reduce the number
of falsified clauses limits this phenomenon. Hence, meta-heuristics designed for
optimisation problems (simulated annealing, genetic algorithms, etc.) can be
used in this context.

Moreover, if the scoring function only considers falsified clauses of Σ with
respect to models of Γ , then the following proposition ensures that no clause
redundant with Γ can be added to this set of clauses. Those redundant clauses
are clearly superfluous when considering the growing core.

Proposition 2. Let us consider the CNF formulae Σ, Γ and the function fSω
defined previously in the constructive context. fSω depends on a set of explored
interpretations Sω. The following proposition holds:

if fSω (Σ, Γ ) ⊆ Γ ∪ {c ∈ Σ\Γ | ∃ω ∈ Sω s.t. ω � Γ and ω 2 c}
then ∄c ∈ (f(Σ,Γ )\Γ ) such that Γ � c.

Thus, within this condition, it is not possible for our constructive policy to
add to the built core, the clauses which are redundant with Γ , namely clauses
which “cover” the same part of the search space. This feature is obviously not
shared by destructive methods. However, if f enables to add several clauses at
the same time, a subset of them can clearly be redundant with another one in
conjunction of Γ . Nevertheless, this is only possible for clauses added at the same
time. The number of added clauses after each iteration can be tuned through
the definition of f itself. If it is small, a bigger number of iterations would be
necessary to construct a core, but this one would exhibit a good quality. In the
opposite, with a big number of clauses added, only a few iterations are sufficient
to obtain a core, but it will probably not be fine-grained. This property makes



the constructive approaches very flexible, since it provides a parameter that
represents a trade off between the quality of the obtained core and the time
spent for its computation. Destructive approaches cannot propose to the user
such a parameter. Let us illustrate the non-redundancy property through an
example.

Example 1. Let Σ be a CNF formula made of 13 clauses, involving 4 variables
such that:

Σ =







































c1 : (¬a ∨ c ∨ d) c2 : (a ∨ b ∨ c)
c3 : (¬a ∨ ¬b ∨ c) c4 : (c ∨ ¬d)
c5 : (¬a ∨ ¬c ∨ d) c6 : (¬b ∨ d)
c7 : (a ∨ ¬c ∨ d) c8 : (a ∨ ¬b ∨ ¬c)
c9 : (b ∨ ¬c) c10 : (¬b ∨ ¬c ∨ ¬d)
c11 : (a ∨ ¬c ∨ ¬d) c12 : (a ∨ c ∨ d)
c13 : (¬a ∨ b ∨ ¬d)

The search space induced by those 4 variables is represented through a Kar-
naugh map in Figure 1a, together with each clause of Σ falsified by the different
possible interpretations. Let us note that Σ is clearly unsatisfiable, since every
interpretation is falsified by at least one clause of the CNF. As an example,
ω1 = {¬a, b, c, d} falsifies the clauses c8 and c10.

Let us note that some interpretations are only falsified by a unique clause.
For instance, ω2 = {¬a, b,¬c, d} is only violated by c4. Accordingly, this clause
is necessary [15], since without it, ω2 would become a model of Σ. c4 thus
participates to all sources of inconsistency of Σ and belongs to all its MUS. Σ
exhibits two other necessary clauses, which are c1 and c9. Indeed, we can observe
in Figure 1a that there exists at least one interpretation which is only “covered”
(i.e. falsified) by one of these clauses.

Assume that those necessary clauses are first computed, as presented previ-
ously. Γ is then set to Γ = {c1, c4, c9}. Consequently, only the models of this
latter CNF are now considered for selecting the other clauses of Σ. The set of
models of Γ = {c1, c4, c9} is represented in Figure 1b using white cells, the in-
terpretations that falsify this CNF being in gray. For instance, the clauses c3
and c13 cannot be added to Γ any more, since they are falsified iff at least one
necessary clause is also falsified. Hence, they do not belongs to any MUS of Σ.
With destructive methods, proofs of inconsistency can use these clauses which
can then be present in the delivered core.

Thus, if f only considers the falsified clauses of Σ with respect to models of Γ ,
then c12 would be candidate to the built core and in this case would also prevent
c2 and c6 from being added in the future, since these latter clauses cannot be
falsified w.r.t. a model of Γ ∪ {c12}.

However, if f enables to add simultaneously several clauses, c2 and c12 could
be both added to Γ , whereas c2 is a logical consequence of Γ ∪ {c12} (c2 covers
an underset of interpretations covered by Γ ∪ {c12} in Figure 1a).



00 01 11 10

00

01

11

10

AB

CD

1

1

2 2

3 3

4

4

4

4

5

5

6

6

6

6

7

7

8 8

9 9

9 9

10

10

11

11

12

12

1313

(a) Karnaugh map of Example 1

(b) Models of the CNF composed of
necessary clauses of Σ

Fig. 1: Graphical representation of example 1

Moreover, the traditional approaches aiming at extracting a MUS, or an
approximation, from an unsatisfiable CNF delivers an arbitrary one, based on the
refutation proof obtained. However, a propositional formula can contain several
MUS (actually an exponential number of MUS in the worst case), and the user



might prefer to extract a core that contains specific information, or clauses. Such
a computation can be very useful: as an example, in FPGA routing task, in order
to check if a particular part of the circuit is involved in the inroutability of the
layout. Classical approaches cannot perform such a computation, and the only
way to do this until now was to use a complete procedure, namely an approach
that computes the exhaustive set of MUS, like [16] does, for instance.

The constructive policy which respects the non-redundancy property offers
such a choice to the user by guiding a search toward a specific core. To this
purpose, instead of starting the computation with the empty formula, it suffices
to begin with the chosen clauses. Let us denote ∆ the set of clauses selected by
the user to build a core. As shown previously, some clauses can be redundant
w.r.t. the rest of the formula, and the constructive approach ensures that none
of them can be added by the algorithm. Hence, by setting the first set of clauses
to ∆, no other constraint redundant with it can be considered by the procedure.
The following example shows the interest and the limitation of this kind of
approach.

Example 2. Let us consider the CNF presented in the Example 1. Assume the
user wants to compute a core involving the set of clauses {c1, c3, c8, c12}.

First, c1 is a necessary clause, and thus belongs to all MUS/cores ofΣ anyway.
On the opposite, c3 is a never necessary clause (w.r.t. the terminology of [15])
and does not belongs to any MUS. Consequently, the user’s choice implies a non-
optimal construction of core. c8 and c12 are potentially necessary clauses, and
belong to at least one MUS of the CNF. By adding those clauses before the first
iteration, assuming that the 3 necessary clauses are first detected, Γ contains
the clauses {c1, c3, c4, c8, c9, c12}. Using this “partial core”, the only clauses that
can be falsified with respect to these models are c5, c6, c10 and c11, and some
of them will then be added to Γ to construct a core. If c5 and c11 are selected,
the resulting core can only be minimized by removing c3 and all the clauses
chosen by the user (except this last one) do participate to the computed MUS.
Unfortunately, the potential choice of c6 and c10 to start the core construction
would make c8 redundant, and not belong to all its MUS.

This example shows the constructive approach’s flexibility. It enables the end-
user to guide the computation toward a specific core, and might be driven by the
user’s expertise on the problem. Clearly, the proposed process is not limited to
the initial core, and different user-interactions during the construction of the core
can be imagined. However, this is done without ensuring that the chosen clauses
will actually be a part of all MUS of this core. We believe that this incomplete
computation is a good tradeoff in front of the very high complexity of such a
problem. Indeed, assuming P 6= NP , we cannot expect the development of an
efficient complete procedure, since checking whether a formula belongs to the set
of MUS of an unsatisfiable SAT instance is in Σp

2
(a consequence of theorem 8.2

of [12]). In the next section, we present a first implementation of this constructive
approach which uses local search for adding new clauses to Γ .



4 A First Implementation: constructMUS

In this section, we present a particular implementation of the constructive frame-
work that respects the non-redundancy property. The function f is based on local
search for choosing clauses to be added. Initially, this stochastic technique is used
for extracting protected clauses, and initialize Γ [6].

We then perform multiple runs of a local search on Γ and consider the discov-
ered models. We then consider the falsified clauses of Σ and increment a related
score, initially set to 0 for each clause. As at least one clause of each set that
could complement Γ to form a MUS is falsified, it suffices to consider the clauses
that have obtained the highest score and add them to the approximation of the
MUS. Accordingly, at the end of the incomplete procedure, Γ is augmented with
these “high-score clauses” and these operations are repeated, searching models
to the new set of clauses.

This process is iterated until no model can be found to the growing formula
Γ . However, due to the incomplete nature of the local search, this computed set
of clauses is not guaranteed to be unsatisfiable, even if in practice this case occurs
quite often. To ensure the completeness of this algorithm, when the local search
fails to find a model of Γ , we run a DPLL complete method on this formula. If Γ
is proved unsatisfiable, then Γ is returned as the computed MUS approximation.
Otherwise, a model ω which represents a certificate of the satisfiability of Γ , is
discovered by the complete approach; in this case, the model is used by the
local search as its first explored interpretation, ensuring at least one model will
be discovered. Moreover, as local search has not found a model previously, this
means that this part of the search space has probably not been explored by
the incomplete method. Forcing the model as the seed enables to diversify the
search, and to find other “close” models.

With these features, the proposed constructive algorithm is sound for the
problem of extracting an unsatisfiable subformula from any CNF. This approach
is synthesized in the Algorithm 1. As explained previously, the considered “core”
Γ is initially set of the empty formula, and only clauses found necessary (in a
very cheap way) through the protected clause concept (line 4) are added. A flag
call_DPLL is set initially to false, which implies the computation of a sample
of models of Γ by a local search call (line 14). The p most falsified clauses of
the remaining part of the formula are added to Γ (lines 18-19). Let us note that
this parameter plays a role in the quality of the core and in the runtime of the
procedure, since it provides the number of added clauses at each iteration. These
operations are iterated until no model can be found by LS to Γ .

If no model is found by LS, then the flag call_DPLL is set to true (line 16)
and a complete approach is run on Γ (line 8). If Γ is unsatisfiable, it is returned
as the computed core; in the opposite case, a model is found by the procedure
and is used as a “seed” in the next call of the local search (line 11). In the next
section, this first implementation of the constructive framework is empirically
evaluated.



Algorithm 1: construct_MUS

Input: an unsatisfiable CNF: Σ
Output: a core of Σ: Γ
begin1

call_DPLL← false ;2

Γ ← ∅ ;3

Γ ← search_protected_clauses() ;4

Σ ← Σ\Γ ;5

while true do6

if call_DPLL then7

if DPLL(Γ ) = UNSAT then8

return Γ ;9

else10

seed← found_model ;11

call_DPLL← false ;12

else13

seed← random_interpretation() ;14

Sω ← LS_finds_models(Γ ,seed) ;15

if Sω = ∅ then16

call_DPLL← true ;17

else18

Φ← select_most_falsified_clauses(Σ, Sω, p) ;19

Γ ← Γ ∪ Φ ;20

Σ ← Σ\Φ ;21

end22

5 Experiments

In order to assess the ability of the proposed constructive framework to efficiently
extract cores, we have implemented the ideas described in the previous sections,
and compared them to three state-of-the-art approaches on various instances
from SATLIB and the SAT competitions. As a case study, we have used the RSAPS

[17] local search. For the complete approach, Minisat [18] has been chosen, since
it is recognized by the community as one of the best complete solver. Based on
empirical tuning, the parameter p of constructMUS procedure has been set to
(1 + #claΣ × 3%) and the flips limit devoted to the local search runs at each
iteration of the algorithm has been set to ((1 + #claΓ ) × 100), where #claΣ is
the number of clauses of Σ not added to Γ , and #claΓ the number of clauses of
the current sub-formula Γ .

We compare constructMUS to 3 state-of-the-art approaches: zCore [5], AMUSE

[4] and AOMUS [6]. The Table 1 reports these experiments. For each result, the
size (in terms of number of clauses) of the delivered approximation of MUS is
reported together with the time needed for the computation. Moreover, for those
two values, the best obtained one is given in bold. All experiments have been



Instances zCore constructMUS AMUSE AOMUS

Name #var #cla #cla time #cla time #cla time #cla time

23.shuffled 198 474 221 0.05 221 4.83 230 0.04 221 2.05
42.shuffled 378 904 421 0.08 421 5.00 434 0.09 421 3.80

3col20_5_5 40 176 46 0.04 42 19.6 60 0.06 46 13.8
3col20_5_6 40 176 43 0.07 40 18.3 46 0.06 66 7.15
3col20_5_7 40 176 40 0.05 40 18.5 60 0.06 40 9.39
3col20_5_8 40 176 52 0.05 40 18.6 46 0.06 55 8.96
4col100_9_5 200 1806 time out 1462 335 1566 56.4 1512 1550
4col100_9_6 200 1806 1458 7030 1451 351 1505 79.9 1506 5222
4col100_9_7 200 1806 1596 3165 1461 352 1472 38.7 time out
4col100_9_8 200 1806 1618 6694 1455 356 1510 71.5 1502 2638
4col100_9_9 200 1806 1556 5202 1458 377 1527 45.1 1484 2973
5cnf. . . 30f4 30 419 316 0.65 237 127 369 0.13 340 26.7
5cnf. . . 40f1 40 608 601 0.86 397 189 593 0.34 418 39.5

am_4_4 433 1458 929 6.3 944 25.6 902 3.95 929 29.2
am_5_5 1076 3677 2046 7614 2244 62.5 2046 765 2140 76.4

ca008 130 370 276 0.17 255 4.83 283 0.08 255 1.93
ca016 272 780 584 0.72 559 8.73 646 0.30 559 5.33
ca032 558 1606 1176 2.66 1230 14.4 1316 3.46 1281 52.9
ca064 1132 3264 2421 4.29 2793 20.2 2687 22.9 2613 141

ezfact16_1 193 1113 41 0.19 169 20.4 100 0.10 41 383
ezfact16_2 193 1113 47 0.07 169 20.8 55 0.09 41 382

gt-012 144 1398 1356 7.4 1124 171 1219 1.40 1205 162
gt-014 196 2289 2113 53.4 1940 301 1713 5.27 1989 581

hanoi4u 1312 16856 time out 7605 300 6434 9670 time out
homer06 180 830 415 14.2 461 50.2 415 38.1 415 9.66

homer07 198 1012 506 19.2 531 62.3 506 38.6 415 13.9

homer08 216 1212 606 39.5 650 79.0 506 54.4 415 20.3

hwb-n20-01 134 630 624 1248 624 93.6 627 58.8 624 351
hwb-n20-02 134 630 625 1270 624 142 628 50.6 625 508
hwb-n20-03 134 630 626 272 622 58.6 626 180 625 191

linvrinv2 24 61 51 0.05 50 6.03 51 0.05 53 0.10
linvrinv3 90 262 250 0.15 239 16.9 253 0.09 244 0.30
linvrinv4 224 689 689 16.4 653 42.3 689 4.46 657 14.2

mm-2x2-5-5-s.1 324 2064 1290 136 1857 152 1791 40.4 2064 259

Table 1: Experimental evaluation of a constructive implementation

conducted on Pentium IV, 3 Ghz with 1 GB of memory, and for each tested
benchmark, a 10,000 seconds timeout has been respected.

First of all, only AMUSE cannot succeed to precisely localize in a few sec-
onds the single MUS of the {23,42}.shuffled benchmarks, which come from
bounded model checking. These ones actually encode formal verification of the
open-source Sun PicoJava II microprocessor, and as emphasized in [19], the dis-
covered MUS enables to identify the relevant components of the system for the
checked property. We also have performed some experimental tests on various



benchmarks from the graph coloring problem ({3,4}col-*). On those CNFs, the
finding of a core enables to localize a sub-graph that cannot be colored with the
given number of colors, and make the whole problem infeasible. The construc-
tive approach appears to be the best when we consider the size of the returned
sub-formula. In addition, this result is obtained in a reasonable time, even if
generally AMUSE provides a rougher core in a shorter time. As an example, for
4col100_9_8, constructMUS extracts a 1455-clause core in less than 6 minutes
whereas zCore only localizes a core made of 1618 clauses in about one hour and
a half. AMUSE and AOMUS provide sets of 1510 and 1502 clauses in 1 and
23 minutes, respectively. Let us note that on this family of benchmarks, our
constructive method is systematically more accurate than the destructive ones.

More generally, our results show that this first implementation of the algo-
rithm constructMUS delivers very satisfying results on various CNF, compared
to state-of-the-art approaches (see e.g. hwb-*, gt-*). However, AOMUS appears
to be a very good approach for some industrial problems (homer), while DPLL-
based procedures are more adapted on various families, such that the am_*_*

one. Consulting the presented results, the developed approach is validated, but
let us note that the four tested methods deliver orthogonal results with respect
to the considered CNF. Each one of them appears the best appropriate tech-
nique for some families of benchmarks, but no one clearly outerperforms the
others. Obviously, the fact that the result is here multi-criterion (size of the
approximation and run time) is not helpful for the comparison.

In [20], it is suggested to use the notion of velocity, which is defined as the
ratio between the size of the delivered core and the time needed for the com-
putation. This element enables to know how many clauses are “eliminated” per
second, then to know the best approach. However, this choice is not completely
satisfying. Indeed, let us assume that a CNF formula exhibits 2 MUS that con-
tain a different number of clauses. Is a method which extracts exactly the bigger
MUS less efficient that another one which delivers roughly the smaller one (and
then, a smaller set of clauses) ?

Deciding the best approach is still intrinsically a problem, that appears to
be difficult to deal with objectively without considering any particular appli-
cation domain. Nevertheless, the behaviour of our implementation appears to
be very satisfying for various benchmarks, in comparison to the “best” current
approaches. This added to its flexibility (parameter to control the precision,
possibility to start with a guess) makes it very interesting as a new general
framework for MUS extraction.

6 Conclusion

In this paper, an original framework called constructive has been presented for
the problem of computing an approximated MUS, or core. The presented tech-
nique is based on a combination of a local search procedure and an exhaustive
DPLL-like algorithm. It exhibits interesting features. For instance, it does not
need to be able to solve the whole CNF for extracting a core; moreover, the pro-



cedure gives rooms to user’s expertise and allows him to guide the search toward
a specific core. This is not possible with classical approaches that always compute
arbitrary cores. Preliminary experiments show that in many cases, an instance
of this framework proves competitive, and can outperform previous approaches.
Particularly, our implementation delivers very satisfying results in terms of the
size of core.

This first implementation opens many interesting perspectives. The concept
of a critical clause, presented in [6], has been proved useful for another local-
search-based extractor. This concept cannot be used as such, due to the nature
of the approach, but a possible adaptation could improve the accuracy of the
delivered core. Other hybridizations of this constructive framework, based for
instance on a genetic algorithm for providing sets of models, are also planned
as further works. Finally, a combination of a constructive and a destructive
approaches could also be explored to combine the best of both worlds.

References

1. McMillan, K.L., Amla, N.: Automatic abstraction without counterexamples. In:
Proceedings of the 9th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’03). (2003) 2–17

2. Gupta, A., Ganai, M., Yang, Z., Ashar, P.: Iterative abstraction using SAT-based
BMC with proof analysis. In: Proceedings of the IEEE/ACM international confer-
ence on Computer-aided design (ICCAD’03), Washington, DC, USA (2003) 416–
423

3. Bryant, R.E., Kroening, D., Ouaknine, J., Seshia, S.A., Strichman, O., Brady, B.:
Deciding bit-vector arithmetic with abstraction. In: Proceedings of the 13th Inter-
national Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS’07). Volume 4424 of Lecture Notes in Computer Science.,
Springer (2007) 358–372

4. Oh, Y., Mneimneh, M.N., Andraus, Z.S., Sakallah, K.A., Markov, I.L.: AMUSE: a
minimally-unsatisfiable subformula extractor. In: DAC’04: Proceedings of the 41st
annual conference on Design automation, New York (USA), ACM Press (2004)
518–523

5. Zhang, L., Malik, S.: Extracting small unsatisfiable cores from unsatisfiable boolean
formula. In: Sixth international conference on theory and applications of satisfia-
bility testing (SAT’03), Portofino (Italy) (2003)

6. Gregoire, E., Mazure, B., Piette, C.: Extracting MUSes. In: Proceedings of the 17th
European Conference on Artificial Intelligence (ECAI’06), Trento (Italy) (2006)
387–391

7. van Maaren, H., Wieringa, S.: Finding guaranteed MUSes fast. In: International
Conference on Theory and Applications of Satisfiability Testing (SAT’08). Volume
4996 of Lecture Notes in Computer Science., Guangzhou (China) (2008) 291–304

8. Hemery, F., Lecoutre, C., Saïs, L., Boussemart, F.: Extracting MUCs from con-
straint networks. In: Proceedings of the 17th European Conference on Artificial
Intelligence (ECAI’06), Trento (Italy) (2006) 113–117

9. Junker, U.: QuickXplain: Preferred explanations and relaxations for over-
constrained problems. In: Proceedings of the 19th National Conference on Artificial
Intelligence (AAAI’04). (2004) 167–172



10. Marques-Silva, J., Planes, J.: Algorithms for maximum satisfiability using un-
satisfiable cores. In: Design, Automation and Test in Europe (DATE’08). (2008)
408–413

11. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, New York
(USA) (1994)

12. Eiter, T., Gottlob, G.: On the complexity of propositional knowledge base revision,
updates and counterfactual. Artificial Intelligence 57 (1992) 227–270

13. Chinneck, J.W.: Feasibility and viability. In: Advances in Sensitivity Analysis and
Parametric Programming. Volume 6., Kluwer Academic Publishers, International
Series in Operations Research and Management Science (1997)

14. de Siqueira, J.L., Puget, J.F.: Explanation-based generalisation of failures. In:
Proceedings of the 8th European Conference on Artificial Intelligence. (1988) 339–
344

15. Kullmann, O., Lynce, I., Marques Silva, J.P.: Categorisation of clauses in con-
junctive normal forms: Minimally unsatisfiable sub-clause-sets and the lean kernel.
In: International Conference on Theory and Applications of Satisfiability Testing
(SAT’06), Seatle (USA) (2006) 22–35

16. Gregoire, E., Mazure, B., Piette, C.: Boosting a complete technique to find mss and
mus thanks to a local search oracle. In: Proceedings of the 20th International Joint
Conference on Artificial Intelligence (ĲCAI’07). Volume 2., Hyderabad (India)
(January 2007) 2300–2305

17. Hutter, F., Tompkins, D.A.D., Hoos, H.H.: Scaling and probabilistic smoothing:
Efficient dynamic local search for SAT. In: Proceedings of the 8th International
Conference on Principles and Practice of Constraint Programming (CP’02). (2002)
233–248

18. Eén, N., Sorensson, N.: Minisat home page
http://www.cs.chalmers.se/cs/research/formalmethods/minisat

19. McMillan, K.L.: Applications of Craig interpolants in model checking. In: Pro-
ceedings of the 11th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’05). (2005) 1–12

20. Gershman, R., Koifman, M., Strichman, O.: Deriving small unsatisfiable cores
with dominators. In: Proceedings of Computer-Aided Verification, Seattle (USA)
(2006) 109–122


