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Abstract. In constraint satisfaction, basic inferences rely on some properties of
constraint networks, called consistencies, that allow the identification of incon-
sistent instantiations (also called nogoods). Two main families of consistencies
have been introduced so far: those that permit us to reason from variables such
as (1, j)-consistency and those that permit us to reason from constraints such as
relational (%, j)-consistency. This paper introduces a new family of consistencies
based on the concept of failed value (a value pruned during search). This family
is orthogonal to previous ones.

1 Introduction

Any user of a constraint solver ideally expects the system to be robust and clever enough
to automatically identify all relevant properties of a problem instance. These properties
typically depend on the structure of the instance and can help solving it. Some of the
approaches to reach that goal are inferences from strong consistencies, adaptive heuris-
tics, nogood recording and automatic symmetry breaking. They permit an efficient ex-
ploration of the search space, learning much useful information before or during search
so as to avoid exploring fruitless combinations of values of variables.

Usually, backtrack search is used for solving instances of the Constraint Satisfac-
tion Problem (CSP). Backtrack search combines a depth-first exploration to instantiate
variables and a backtracking mechanism to deal with encountered dead-ends. During
search, some values are proved to be inconsistent, i.e. not to participate to any solution
- we call them failed values. Interestingly, it is known [13] that failed values “convey”
some information: given a satisfiable binary CSP instance P, for any pair (z, a) where
x is a variable of P and a a value in the domain of z, if there is no solution containing
a for z, then there is necessarily a variable y # x which is assigned a value b such that
(y,b) is not compatible with (z, a). It is then possible to dynamically and iteratively
decompose problem instances [13, 2].

In this paper, we propose to exploit failed values in a different manner. By locally
reasoning from failed values, we show that some inferences can be performed within
reasonable complexities. In particular, we develop a new family of domain-filtering
consistencies based on failed values and show that they are complementary to (incom-
parable with) usual ones. They contribute to prune the search space and also offer a lazy
detection of a generalized form of the substitutability relation. Algorithms checking or
enforcing consistencies based on failed values can be naturally grafted to any constraint



propagation engine in order to reinforce the filtering strength of the search algorithm.
This approach may represent an interesting contribution to the quest for robust solvers.

After recalling some technical background, two basic consistencies, called FVC and
AFVC and based on failed values, are presented. Next, algorithms for checking FVC
and enforcing AFVC are introduced, and AFVC is compared to substitutability and
usual consistencies. Finally, before presenting some preliminary experimental results,
we show that an entire class of consistencies based on failed values can be naturally
defined.

2 Technical Background

A constraint network (CN) P is composed of a finite set of n variables, denoted by
vars(P), and a finite set of e constraints, denoted by cons(P). Each variable x has an
associated domain, denoted by dom (), that contains the finite set of values that can be
assigned to x. Each constraint ¢ involves a set of variables, called the scope of ¢ and
denoted by scp(c). It is defined by a relation, denoted by rel(c), which contains the set
of tuples allowed for the variables involved in c. A binary constraint involves exactly
2 variables, and a non-binary constraint strictly more than 2 variables. For a binary
constraint ¢, such that scp(cyy) = {z, y}, if (a,b) € rel(cyy), we say that (z, a) and
(y,b) are compatible. We also say that (z,a) and (y, b) are compatible if there is no
binary constraint between x and y.

In this paper, we shall consider given an initial CN P! and a current CN P derived
from P by potentially reducing variable domains. The initial domain of a variable
x is denoted by dom¥(x) whereas the current domain is denoted by dom® (x) or
more simply by dom(x). A (current) value of P is a pair (x, a) with x € vars(P) and
a € dom(x). For any variable x, we always have dom(z) C dom®™(z) and denote
this fact by P < P More generally, given two CNs P and P’, we note P’ < P iff
P and P’ are defined on the same set of variables and the same set of constraints, and
for every variable  in vars(P) = vars(P'), we have dom”’ (z) C dom?® (z). P! < P
iff P’ < P and there exists a variable z such that dom”’ (z) C dom? (x).

An instantiation I of a set X = {z1,...,x;} of variables is a set {(z1,a1), ...,
(71, ax)} such that Vi,a; € dom™(z;) ; the set X of variables occurring in I is
denoted by vars(I) and each value a; is denoted by I[x;]. An instantiation I on a CN
P is an instantiation of a set X C wvars(P) ; it is complete if vars(I) = vars(P),
partial otherwise. [ is valid on P iff V(x,a) € I,a € dom(x) (= dom® (z)). I|x/a]
is the instantiation obtained from I by replacing the value assigned to x in I by a. An
instantiation I covers a constraint ¢ iff sep(c) C vars(I), and satisfies a constraint ¢
with sep(e) = {x1,...,2,} iff a) I covers ¢ and b) the tuple (ay,...,a,), such that
Vi,a; = I[x;], is allowed by ¢, i.e. (a1, ...,a,) € rel(c). An instantiation I on a CN
P is locally consistent iff a) I is valid on P and b) every constraint of P covered by
1 is satisfied by I. It is locally inconsistent otherwise. A solution of P is a complete
instantiation on P that is locally consistent. An instantiation I on a CN P is globally
inconsistent, or a nogood, iff it cannot be extended to a solution of P. It is globally
consistent otherwise.



A CN is said to be satisfiable iff it admits at least one solution. The Constraint
Satisfaction Problem (CSP) is the NP-complete task of determining whether a given
CN is satisfiable or not. A CSP instance is defined by a CN which is solved either by
finding a solution or by proving unsatisfiability. To solve a CSP instance, a depth-first
search algorithm with backtracking can be applied, where at each step of the search,
a variable assignment is performed followed by a filtering process called constraint
propagation. Typically, constraint propagation algorithms are based on some properties
of CNs that allow us to identify and remove some values which cannot occur in any
solution. Such properties are called domain-filtering consistencies [6, 4].

Let us introduce some classical consistencies. An instantiation I on P is a sup-
port (resp. a conflict) for a value (z,a) on a constraint ¢ involving x iff I is valid,
I[z] = a and I satisfies (resp. does not satisfy) c. A value (z, a) of P is GAC-consistent
(GAC stands for Generalized Arc Consistency) iff there exists a support for (x, a) on
every constraint of P involving z. P is GAC-consistent iff every value of P is GAC-
consistent. For binary CNs, GAC is referred to as AC (Arc Consistency). For any CN P,
we know that there exists a greatest GAC-consistent network, denoted by GAC(P) and
called the GAC-closure of P, which is equivalent to P and such that GAC(P) < P.
When the domain of a variable of P is empty, P is clearly unsatisfiable, which is de-
noted by P = L. The CN P|,—, is obtained from P by removing every value b # a
from dom(z). A value (x,a) of P is SAC-consistent (SAC stands for Singleton Arc
Consistent) iff GAC(P|,=,) # L. P is SAC-consistent iff every value of P is SAC-
consistent.

Any domain-filtering consistency allows us to identify and remove inconsistent val-
ues. In order to compare the pruning capability of different consistencies, we can intro-
duce a preorder [6]. Let ¢ and v be two consistencies. ¢ is stronger than v, denoted by
¢ > 1), iff whenever ¢ holds on a CN P, 1) also holds on P. ¢ is strictly stronger than
1, denoted by ¢ > v iff ¢ > 1) and there exists at least one CN P such that ¢ holds
on P but not ¢. When some consistencies cannot be ordered (none is stronger that the
other), we say that they are incomparable. For classical domain-filtering consistencies
defined on binary CNs, we have: SAC > MaxRPC > PIC > AC (MaxRPC and PIC are
respectively Max-Restricted Path Consistency and Path Inverse Consistency, see [3]).

3 Consistencies based on Failed Values

In this section, we present two new basic consistencies. The first identifies nogoods
of any size whereas the second identifies inconsistent values (i.e. nogoods of size 1).
These two consistencies are based on failed values which are simply values proved to
be inconsistent (e.g. during search). Failed values “convey” some information:

Lemma 1 (directly derived from [13]). If a value (x, a) of a CN P is globally incon-
sistent then every solution S of P is such that S[x/a] violates at least one constraint of
P involving x.

Proof. S|z /a] is not a solution of P since (x,a) is globally inconsistent. This means
that at least one constraint of P is not satisfied by S[x/a]. But we know that every
constraint ¢ of P that does not involve z is satisfied by S[x/a] because the restriction



of S[x/a] over scp(c) is exactly the restriction of .S over scp(c). Consequently, at least
one constraint of P involving x is not satisfied by S[z/a]. m|

If P is a binary CN, then every solution of P contains a value for a variable y # «
which is not compatible with (z, a). A failed value is defined as follows:

Definition 1. Let P and P’ be two CNs such that P' < P. A failed value of P’ with
respect to P is a value (z,a) of P such that P|,—, is unsatisfiable and a ¢ dom?” (z) .

In practice, a failed value is a value pruned from a CN because it has been proved to
be inconsistent. At any time during search, a failed value can be identified by inference
and/or search methods [7, 16]. For example, if Pimt|$:a is shown to be unsatisfiable,
clearly, a can be removed from dom "% (z). We then obtain a smaller CN P with (x, a)
being a failed value of P (with respect to P™™*). However, note that failed values can
be defined with respect to any intermediate CN reached during search. We need now to
introduce conflict sets.

Definition 2. Let P be a CN, x be a variable of P and a € dom™* ().

— The conflict set of (x, a) on a constraint ¢ of P involving x, denoted by x p(c, x, a),
is the set of valid instantiations I of scp(c) \ {z} on P such that I U {(x,a)} does
not satisfy c.

— The conflict set of (’I, a) on P is XP(xa a) = Ucecons(P)\wescp(c)XP(Ca Z, a)'

For every conflict set x, vars(x) = Ureyvars(I). When possible, we simplify
xp(z,a) into x(z,a). Figure 1 shows! a simple CN P with a binary constraint be-
tween w and x and a ternary constraint between w, y and z. Here x(w, a) = {{(x,b)},

{(y;a), (2,0)}} and x(w, ¢) = {{(z,0)},{(, )}, {(y, ), (2,¢)} }; note that {(z, )}

and {(y, a), (z,a)} are two instantiations in x (w, a) of size 1 and 2.
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Fig. 1. Illustration of conflict sets.

Failed values and instantiations can be connected as follows:

"In each figure of this paper, solid (resp. dashed) edges represent allowed (resp. forbidden)
tuples. The absence of edges between two variables means that there is no binary constraint
involving them.



Definition 3. Let (x, a) be a failed value of a CN P and I a valid instantiation on P.

- (z,a) is covered by I iff vars(xp(z,a)) C vars(I).
- (x,a) is verified by I iff 3J € xp(x,a) | J C I.

Note that a failed value verified by an instantiation is not necessarily covered by
it. However, it is shown below that when a failed value is covered by an instantiation
but not verified, a nogood is identified. FVC (Failed Value Consistency) is a general
nogood-identifying consistency.

Definition 4. Let P be a constraint network.

— A valid instantiation I on P is FVC-consistent for a failed value (x,a) of P iff
either (x,a) is not covered by I or (x, a) is verified by I.

— A valid instantiation I on P is FVC-consistent iff it is FVC-consistent for every
failed value of P; otherwise, I is said to be FVC-inconsistent.

Assume that (w, ¢) in Figure 1 is a failed value. I = {(z,a), (y,¢), (z,¢)} is an
instantiation that verifies (w, c) because I contains {(y,c¢),(z,¢)} € x(w,c). I' =
{(z,a)} does not verify (w, ¢) but is FVC-consistent for (w, ¢) because (w, ¢) is not
covered by I'. I = {(z,a), (y,a), (z,a)} is FVC-inconsistent because (w, ¢) is both
covered by I" and not verified by I"”.

Proposition 1. Any FVC-inconsistent instantiation is globally inconsistent.

Proof. Without any loss of generality, we consider here that [ is a valid instantiation on
a constraint network P that is FVC-inconsistent for a failed value (z, a) of P with re-
spect to P, we have P < Pt We know that there is no solution of P* involving
(7, a) because (z,a) is a failed value of P wrt P, We can even say more: for every
solution S of P the complete instantiation S[x/a] is not a solution because at least
one constraint involving x is violated (see Lemma 1). Because I is FVC-inconsistent
for (z,a), we know that I covers vars(xp(z,a)) and (z,a) is not verified by I. This
means that it is not possible to extend I into a complete instantiation I’ on P such that
I'[z/a] violates at least one constraint involving z. Every solution of P is a solution of
Pt (since P < P™) and every solution S of P is such that S[x/a] violates at
least one constraint involving x. We can deduce that I is globally inconsistent. O

Otherwise stated, some nogoods can be identified via deleted values (that are them-
selves nogoods). These nogoods are not necessarily of size 1. For example, in Figure 2
there is a failed value (w, a) and three binary constraints involving w. Any valid instan-
tiation of {z,y, z} is globally inconsistent if it only contains values compatible with
(w, a). In other words, every tuple in C;, x C,, x C, is a nogood (of size 3).

Interestingly, inference can be conducted differently by reasoning between each
value and each failed value (through its conflict set). More precisely, we can define a
related domain-filtering consistency, called Arc Failed Value Consistency (AFVC).

Definition 5. Let P be a constraint network.

— Avalue (x,a) of P is AFVC-consistent for a failed value (y,b) of P iff (x,a) can
be extended to a locally consistent instantiation verifying (y,b).



Fig. 2. A failed value (w, a), its compatible values in C;, C\, and C and its incompatibles values
in I, I, and I.

— Avalue (z,a) of P is AFVC-consistent iff (x, a) is AFVC-consistent for every failed
value of P; otherwise, (x,a) is said to be AFVC-inconsistent.
— P is AFVC-consistent iff every value of P is AFVC-consistent.

For the first item above, note that we may have x = y. In this case, necessarily,
we have a # b since (z,a) is a current value whereas (y,b) is a pruned one. Note
that AFVC can be regarded as a local consistency since it suffices to reason from the
conflict set of each failed value. In particular for binary constraints, a value (z,a) is
AFVC-consistent for a failed value (y, b) iff (x, a) is compatible with a valid value in
X(y,b). The AFVC algorithm given in Section 4 is based on this simple observation.

Proposition 2. Any AFVC-inconsistent value is globally inconsistent.

Proof. Let (x,a) be a current value of P that is AFVC-inconsistent for a failed value
(y, b) of P. Suppose that there exists a solution S of P such that S[z] = a. Necessarily,
as (z, a) is AFVC-inconsistent for (y, b), S[y/b] cannot violate any constraint involving
y, and consequently is a solution of P. This contradicts the fact that (y,b) is globally
inconsistent (since it is a failed value), and consequently our hypothesis. We can deduce
that (z, @) is globally inconsistent. O

As an illustration, let us consider the CN (partially) depicted in Figure 3. This CN
can be completed (see dots) so that some classical consistencies hold (e.g. arc consis-
tency). We assume here that (w, a) is a failed value and x(w, a) = {{(z,a)}, {(y,¢c)}}.

Fig. 3. Illustration of AFVC



Observe that (w, b) and (z, a) are AFVC-inconsistent. Indeed, (w, b) (resp. (2, a)) is not
compatible with any value in x(w, a).

Restricted to nogoods of size 1, FVC is strictly weaker than AFVC (the proof is
omitted). We have:

Proposition 3. Let (x,a) be a value of P. If I = {(x,a)} is FVC-inconsistent then
(x,a) is AFVC-inconsistent.

Finally, one can show that AFVC verifies certain properties (e.g. see [1, 3, 16]) that
permits us to define the AFVC-closure.

Proposition 4. For any CN P, there exists a greatest AFVC-consistent CN equivalent
to P, called the AFVC-closure of P and denoted by AFVC (P), such that AFVC (P) <
P.

AFVC(P) can be obtained by iteratively removing, in any order, values that are
not AFVC-consistent.

4 Algorithms for FVC and AFVC

We propose to embed filtering algorithms based on failed values within MAC (Main-
taining Arc Consistency) [23]. MAC is a backtrack search algorithm that develops a
binary search tree: at each node, an uninstantiated variable x is selected, a value a in
dom(z) is selected, a left subtree starting with a branch labelled with the positive de-
cision x = a (variable assignment) is first explored and a right subtree starting with a
branch labelled with the negative decision & # a (value refutation) is later explored.
The consistency enforced at each node is GAC.

For binary CNs, an immediate solution to make use of FVC is to post, for each
failed value (z, a), a non-binary constraint whose scope is vars(x(z, a)): its associated
relation forbids any instantiation FVC-inconsistent for (z, a). For our example in Figure
2, we would obtain a ternary constraint ¢, such that rel(c;,.) = dom(x) x dom(y) x
dom(z) \ Cy x Cy x C,. Interestingly, one may conceive efficient filtering algorithms
(propagators) to enforce GAC on such constraints. However, this approach is intrusive
and its generalization to non-binary CNs is rather complex. This is why we propose
a weakened approach for the general case: checking FVC at each node of the search
tree by checking that no identified failed value is currently covered and unverified. To
identify failed values during search, it suffices to keep the set F' of negative decisions
labelling the current branch (i.e. the branch leading from the root of the search tree
to the current node). Note that failed values that correspond to values removed when
enforcing GAC can be discarded because these failed values are always verified (as long
as no domain wipe-out occurs): for each of these values, there exists a constraint with
only conflicts.

To check FVC, Algorithm 1 is called. For each failed value, we seek a conflict;
seekConflict(c, z, a) seeks a conflict for (z,a) on c. When a conflict is found for a
failed value (x, a), it is stored in a backtrack-stable data structure called res; this plays
the role of residues as in [17] when establishing GAC. The validity of the residual con-
flict is first tested at line 3. When no conflict exists for a failed value, false is returned,



1 function checkFailedValue(P: CN, (z, a): failed value):Boolean
2 begin

3 if isValid(res|z, a]) then

4 | return true

5 foreach constraint c of P such that x € scp(c) do

6 7 « seekConflict(c, z, a)

7 if 7 # nil then

8 res[z,al «— T

9 L return frue

10 return false

11 end

12 function checkFVC(P: CN, F' set of failed values):Boolean
13 begin

14 foreach failed value (z,a) € F do

15 if ~checkFailedValue(P, (x,a)) then

16 L | return false

17 return frue

18 end

Algorithm 1: Checking FVC

which forces the search algorithm to backtrack. The worst-case space complexity of
this algorithm is O(nd) whereas its worst-case time complexity is O(|F'|ed"~!) where
|F'| denotes the number of failed values in F', e the number of constraints, d the great-
est domain size and r the greatest constraint arity. For binary constraint networks, the
worst-case time complexity is only O(|F|ed).

We now propose an algorithm to enforce the domain-filtering consistency AFVC
on binary constraint networks. Given a binary CN P with a set of failed values F’, the
procedure enforceAFVC (see Algorithm 2) computes AFVC(P) and returns false
when a domain wipe-out occurs. The data structures are as follows. For each failed value
(x,a), x(x, a) is considered to be an array of values indexed from 1 to length(x(z, a)).
These values correspond to the instantiations (of size 1 since P is binary) in the conflict
set of (x, a). The 2-dimensional array last maps each pair composed of a failed value
(z,a) in F and a value (y, b) of P to an an integer corresponding to the index of the
most recent value found in x(x,a) that is present in P and compatible with (y,b):
last[(z, a)][(y, b)] indicates the position of the last found (so-called) AFVC-support for
(y,b) on (x,a). For each value (z,c) of P, S(z,c) is a list storing the pairs (failed
value,value) for which (z, ¢) is the last found AFVC-support. Structures .S and last are
inspired from those used in AC6 and AC2001 (see e.g. [3]).

Certainly, dynamically computing (or updating) conflict sets at each node would be
prohibitive. This is why we consider that conflict sets are computed for the initial prob-
lem instance by the call initialize(P™*). The function enforceAFVC tries to identify
an AFVC-support for each pair (failed value,value). If no support can be found for a
value (y, b) on a failed value (x,a), b is removed from dom(y) and (y, b) is added to
the propagation queue (. Each removed value (z,¢) € Q is “propagated”: a new sup-
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procedure initialize(P: binary CN)
begin
foreach value (z,a) of P do
x(z,a) — @
S(z,a) — @
foreach constraint c,, of P do
foreach ruple (a,b) € dom(z) x dom(y) | (a,b) ¢ rel(csy) do
add (z, a) to x(y, b)
L add (y, b) to x(z, a)

end
function seekAFVCSupport((z, a): failed value, (y, b): value): Boolean
begin
position «— last|(x,a)][(y,b)] + 1
while position < length(x(x,a)) do
(z,¢) < x(z,a)[position]
if ¢ € dom(z) A (y, b) and (z, c) are compatible then
last[(z, a)][(y, b)] < position
add ((z,a), (y,b)) to S(z,c)
return true

position <« position + 1

return false
end
function enforceAFVC(P: binary CN, F': set of failed values): Boolean
begin
Q<o
foreach failed value (x,a) € F do
foreach value (y, b) of P do
last](z, a)][(y, b)] — 0
if ~seekAFVCSupport((z,a), (y,b)) then
remove b from dom(y)
if dom(y) = @ then
| return false

add (y,b) to Q

while Q) # @ do
pick and delete (z, ¢) from Q@
foreach ((z,a), (y,b)) € S(z,c) do
if b € dom(y) N ~seekAFVCSuppori((z,a), (y, b)) then
remove b from dom(y)
if dom(y) = @ then
L return false

add (y,b) to Q

S(z,¢) — @

end
Algorithm 2: Enforcing AFVC



port must be found for each pair stored in S(z, ¢) (this is done from the last recorded
position).

The worst-case space and time complexities of enforceAFVC are O(nd(M + |F))
and O(M |F'|nd) respectively, where n is the number of variables, d the greatest do-
main size, |F'| the number of failed values and M the maximum size of a conflict set
(M = maz(y q)epinit|x (7, a)]). Indeed, the space required by x arrays is O(ndM),
and that required by both last and S is O(|F|nd). On the other hand, the cumulated
complexity of seekAFVCSupport for each pair (failed value,value) is O(M), and
there are O(|F|nd) different pairs. Note that initialize has a O(ed?) time complex-
ity but this is amortized since initialize is only called initially (for P?"**). By definition,
|F| < nd and M < nd hence M|F|nd < n3d>. In practice, it may be worthwhile to
bound the number of failed values and/or to bound the maximum size of conflict sets
by a constant in order to concentrate only on promising failed values. If both are bound,
the complexity becomes O(nd). The algorithm presented above can be easily adapted
to be used at each node of the search tree developed by MAC (the complexity remains
the same for a branch of the search tree).

S Substitutability and Usual Consistencies

Neighborhood substitutability is a weak form of substitutability [11] that can be related
to consistencies based on failed values. A value a € dom(z) is neighborhood substi-
tutable for a value b € dom(x) iff for every constraint ¢ involving x and every support
I for (z,b) on ¢, I[x/a] is a support for (z, a) on c. For example, it can be exploited as
a reduction operator by applying a convergent sequence of neighborhood substitution
deletions [5]. We have the following interesting proposition.

Proposition 5. If a value (x, a) is neighborhood substitutable for a value (x,b) on a
CN P’ » P, if (x,a) is a failed value of P and if (x,b) is a value of P then (xz,b) is
AFVC-inconsistent.

Proof. The definition of neighborhood substitutability can be reformulated as: (z, a) is
neighborhood substitutable for (z,b) iff x(z,a) C x(z,b). If (z,a) is a failed value
of P, then it is not possible to extend (z, b) into a consistent instantiation that verifies
(z,a). (x,b) is then AFVC-inconsistent. O

AFVC can be seen as a lazy dynamic mechanism to detect values that can be sub-
stituted (and are globally inconsistent). Importantly, it allows us to identify inconsistent
values for which no neighborhood substitutable value exists. Indeed, a value (z, b) is
AFVC-inconsistent if the conflict set of (x, b) is included in the conflict set of a failed
value. However, whereas only values for the same variable are considered for neighbor-
hood substitutability, AFVC is more general. An illustration is given in Figure 3: (w, a)
is substitutable for (w, b) but not for (z, a) since w # z.

Interestingly, AFVC is incomparable with most of the domain-filtering consisten-
cies. More precisely, it is incomparable with “usual” consistencies, i.e. local consisten-
cies ¢ that do not rely on failed values and that verify the four basic properties: a) ¢
holds on any CN only involving entailed constraints (a constraint is entailed on P iff it



is satisfied by every valid instantiation on its scope), b) ¢ holds on any CN iff it holds
on each of its connected sub-networks, c) there exist unsatisfiable CNs where ¢ holds
and d) there exist some CNs where ¢ does not hold. For example, (G)AC, SAC, PIC,
... are “usual” but global consistency (defined as: any locally consistent instantiation
can be extended to a solution) is not usual.

Proposition 6. AFVC is incomparable with usual consistencies.

Proof. Let us consider a “usual” local consistency ¢. Let us consider a (satisfiable) CN
P, that only contains entailed constraints, a CN P, unsatisfiable but ¢-consistent, on
a separate set of variables, and the problem P = P; U P5. Since P, is unsatisfiable,
any value (x,a) of Py can be identified as a failed value (e.g. after search). We now
assume that (x, a) is a failed value of P;. Since P, contains only entailed constraints,
Xx(z,a) = @ and therefore, no instantiation can verify (x, a). Thus, P is not AFVC-
consistent. In contrast, ¢ holds on P (by hypothesis), hence ¢ ¥ AFVC. Besides, AFVC
¢ ¢: it suffices to choose a CN P with no failed value such that ¢ does not hold.
Consequently, AFVC and ¢ are incomparable. o

6 A Hierarchy of Consistencies

In [10], Freuder introduced the general class of (7, j)-consistencies. Informally, a con-
straint network is (7, j)-consistent iff every locally consistent instantiation of a set of
1 variables can be extended to a locally consistent instantiation involving any j addi-
tional variables. Arc consistency, path consistency [20, 19] and path inverse consistency
(PIC) [12] all belong to this class since they correspond to (1, 1)-consistency, (2, 1)-
consistency and (1, 2)-consistency, respectively. Another important class of consisten-
cies defined in terms of (existing) constraints is that of relational (4, m)-consistencies
[8]. Informally, a constraint network is relational (4, m)-consistent iff for every set C
of m constraints and every set X C Y of ¢ variables, where Y = U.ccscp(c), every
locally consistent instantiation of X can be extended to a valid instantiation of Y sat-
isfying each constraint of C. Generalized arc consistency and relational path-inverse-
consistency [4] respectively correspond to relational (1, 1)-consistency and relational
(1, 2)-consistency.

Here, we propose a new general class of original consistencies, based on the concept
of failed value.

Definition 6 (Failed Value (i, f)-consistency). P is FV(i, f)-consistent iff for every
set X of i variables of P and every setY of f failed values of P, every locally consistent
instantiation of X can be extended to a locally consistent instantiation verifying each
failed value in'Y .

From this general definition, many consistencies can be derived: Arc Failed Value
Consistency (AFVC) is FV(1, 1)-consistency; Path Failed Value Consistency (PFVC)
is FV(2, 1)-consistency; Path-Inverse Failed Value Consistency (PIFVC) is FV(1,2)-
consistency. Inspired from their variable-based counterparts, MaxRPC and SAC, two
additional natural consistencies are introduced.



Definition 7 (MaxFVC). A value (x, a) of P is MaxFVC-consistent iff for every failed
value (y,b) of P, (x, a) can be extended to a locally consistent instantiation I verifying
(y,b) such that for every additional failed value (z,c) of P, I can be extended to a
locally consistent instantiation verifying (z, c).

Definition 8 (SAFVC). A value (x, a) of P is SAFVC-consistent iff AFVC(P|y=q) #
1.

Proposition 7. PIFVC > AFVC and SAFVC > AFVC.

Proof. From definitions, we directly deduce that PIFVC > AFVC and SAFVC >
AFVC. To show strictness, let us consider Figure 4 where a CN P (partially depicted)
admits two failed values (w, a), and (x, a). Here, we have x(w, a) = {{(y,b)},{(2,b)}}
and x(z,a) = {{(y,a)}, {(2,b)}}. Pis AFVC-consistent but neither SAFVC-consistent
nor PIFVC-consistent. Indeed, (2, a) cannot be extended to an instantiation verifying
both failed values and AFVC(P|,—,) = L. m|

Fig. 4. AFVC holds but neither SAFVC nor PIFVC holds.

Figure 5 summarizes the relations between domain-filtering consistencies based on
failed values. Due to lack of space, proofs are omitted.

MaxFVC

SR

PIFVC <4  SAFVC

\ / — strictly stronger

AFVC <4 incomparable

Fig. 5. Relationships between domain-filtering consistencies based on failed values.



7 Preliminary Experimental Results

In order to show the practical interest of consistencies based on failed values, we have
performed experiments with our constraint solver Abscon. On a computer equipped
with a 3GHz processor and 2GB of RAM under Linux, MAC was employed with
dom/ddeg and lexico as variable? and value ordering heuristics, as our baseline. We
first compared, on binary instances, MAC with MAC embedding the procedure (see
Algorithm 1) that checks FVC at each search step (denoted by MAC+FVC) and also
with MAC embedding a function that enforces AFVC at each search step (denoted by
MAC+AFVC). For our preliminary tests, we have implemented a less sophisticated
version of Algorithm 2. This algorithm does enforce AFVC but is quite simpler (and
theoretically less efficient) as it does not integrate last and S structures.

Table 1. Impact of checking FVC and enforcing AFVC on binary instances.

MAC MAC+FVC MAC+AFVC
Instance CPU nodes CPU nodes CPU nodes
Graph coloring
1-fullins-4-4 106 TM934 4.8 215,812 5.6 110,636
2-fullins-4-4 10.7 177,424 4.8 67,924 2.3 12,764
2-insertions-4-3 10.5 455,533 3.2 112, 886 5.4 62,753
2-insertions-5-3 3.1 7,767 1.8 3,494 2.4 2,941
Composed
composed-25-5 178 10M 864 85 4M838 148 2M 333
composed-25-7 106 TM934 4.78 215,812 5.6 110,636
Job-shop
os-taillard-4-100-1 84 1M870 30.2 247,383 83 206, 845
os-taillard-4-100-3 7.6 147,270 2.3 29, 698 3.0 17,818
os-taillard-4-95-2 7.5 195, 665 3.3 51,957 19.7 41,226
Queen Attacking
qa-5 7.5 318,601 6.4 240,495 10.0 238,940
qa-6 311 TMT703 259 5M 883 443 5M576

Table 1 shows the results obtained on some binary instances® with these three back-
track search variants in terms of CPU time and number of visited nodes. Because
dom/ddeg is a non-adaptive heuristic, we have the guarantee that MAC+FVC visits
less nodes than MAC and that MAC+AFVC visits less nodes than MAC+FVC. In Ta-
ble 1, for some instances, the number of visited nodes is significantly reduced when
consistencies based on failed values are used. MAC+FVC is clearly the most efficient
algorithm since it is usually better than MAC+AFVC and sometimes one order of mag-
nitude faster than MAC alone. Interestingly, reasoning from failed values allows us to

2 Using dom /wdeg does not guarantee exploring the same search tree when additional filtering
is performed. This is why we have chosen dom /ddeg.
3 Available at http: //www.cril.fr/~lecoutre/research/benchmarks/



benefit from the structure (related to substitutability for graph coloring and job-shop in-
stances) contained in these instances. On some other series of instances (not presented
here) including random ones, MAC+FVC does not prune the search tree. However, we
have observed that this is never penalizing in terms of CPU time. This is because the
worst-case time complexity of checking FVC is limited and the number of failed val-
ues is usually small. Although one may be disappointed by the relative inefficiency of
MAC+AFVC, one should consider that a non optimized AFVC algorithm has been used
here and that many developments to control the complexity of AFVC (or even stronger
consistencies) remain to be studied.

Table 2 shows the results obtained on some series of non-binary instances. Clearly,
MAC+FVC outperforms MAC alone. Finally, note that MAC+FVC was used in Abscon
during the third constraint solver competition* with good results.

Table 2. Impact of checking FVC on non-binary instances.

MAC MAC+FVC
Instance CPU nodes CPU nodes
Dimacs
hole-08 5.8 0M699 1.9 oOM177
hole-09 80 9M 062 16 1M753
aim-100-1-6-sat-3 21.4 3M173 5.01 0M505
aim-100-1-6-sat-4 160 22M 400 47.1 5M 292
Renault-mod
renault-mod-15 505 1M969 118 0M511
renault-mod-18 1,193 6M812 253 1M419
renault-mod-43 796 4M?221 23 oM127
renault-mod-45 85.5 0M591 15.5 89,494

8 Conclusion

In this paper, we have shown how values detected as globally inconsistent during search,
and called failed values, can be useful to prune the search space through the introduc-
tion of a new class of consistencies that are orthogonal to the usual ones. Whereas FVC
is a consistency that is cheap to check and that makes MAC more robust, AFVC and
its direct extensions require further developments to determine the best way of control-
ling the enforcement of these new domain-filtering consistencies. We have also noticed
that AFVC allows us to detect in a lazy manner a generalized form of neighborhood
substitutability.

Although it is related to approaches that eliminate redundancies by posting con-
straints (for SAT) [21, 14] or decomposing problems [13], this way of reasoning has
been developed so as to yield a hierarchy of increasingly stronger consistencies. For

4Seehttp://www.cril.univ-artois.fr/CPAIOS/



binary constraint networks, failed values basically permit us to identify and exploit a
form of nogood in the same spirit as generalized nogood in [15], global cut seed in
[9], kernel [22] and partial state [18]. We believe that identifying common properties to
these different approaches is an exciting perspective.
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