
HAL Id: hal-00865304
https://hal.science/hal-00865304

Submitted on 24 Sep 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Let the Solver Deal with Redundancy
Cédric Piette

To cite this version:
Cédric Piette. Let the Solver Deal with Redundancy. 20th International Conference on Tools with
Artificial Intelligence (ICTAI’08), 2008, Dayton, United States. pp.67-73. �hal-00865304�

https://hal.science/hal-00865304
https://hal.archives-ouvertes.fr

Let the Solver Deal with Redundancy

Cédric Piette

Université Lille-Nord de France, Artois

CRIL-CNRS UMR 8188

F-62307 Lens Cedex, France

piette@cril.fr

Abstract

Handling redundancy in propositional reasoning and

search is an active path of theoretical research. For in-

stance, the complexity of some redundancy-related prob-

lems for CNF formulae and for their 2-SAT and Horn SAT

fragments have been recently studied. However, this issue

is not actually addressed in practice in modern SAT solvers,

and is most of the time just ignored. Dealing with redun-

dancy in CNF formulae while preserving the performance

of SAT solvers is clearly an important challenge. In this pa-

per, a self-adaptative process is proposed to manage redun-

dant clauses, enabling redundant information to be discrim-

inated and to keep only the one that proves useful during the

search.

1 Introduction

SAT is the NP-complete decision problem that consists

in checking whether a set of propositional clauses (also

called CNF formula) admits at least one truth assignment

that satisfies all clauses. This problem is of central im-

portance in computer science and has many practical ap-

plications in various areas, such as electronic design au-

tomation, artificial intelligence, bioinformatics or formal

verification to name of few. There is a large and very ac-

tive research community involved with both the theoreti-

cal and experimental algorithmic studies of SAT (see e.g.

http://www.SATlive.org), and its applications.

Problems related to redundancy within CNF formulae

have been well-studied in the literature, especially from a

theoretical point of view. Indeed, the problem of mini-

mizing redundant subformulae in a propositional formula

was already analyzed within the context of the first for-

malization of the polynomial hierarchy [17]. Complexity

results about redundancy-related computational problems

have been established in [13]. Other results have also been

obtained for restricted cases, for instance when the formula

is composed of Horn clauses, exclusively (see e.g. [1, 11]).

Later, the importance of redundancy for practical SAT solv-

ing has been emphasized by several studies. A first one,

conducted on random 3-SAT formulae, provides empirical

results about the role of redundancy in CNF formulae. Es-

pecially, it is claimed that irredundant CNF formulae are

typically harder to solve than the same formulae augmented

with redundant information. This work has been extended

later [20], particularly showing that the hardness of CNF

formulae solving is related to the size of their irredundant

subformulae.

Despite those studies that show strong relations between

redundancy and practical solvability, redundancy is an is-

sue that is ignored in practice in current solvers, since it

would first require redundant clauses to be extracted. Un-

fortunately, this extraction is an heavy task in the worst

case. Indeed, redundancy-related problems are at least in

the first level of the polynomial hierarchy, which makes

them as hard as SAT itself. Checking whether a given clause

can be inferred from the remaining part of the formula is

CoNP-complete. In this paper, a practical approach to deal

with clause redundancy during the search for satisfiability

is investigated and experimentally evaluated. First, to cir-

cumvent the high complexity of redundancy checking, an

incomplete but linear-time inference process is used. Sec-

ondly, as eliminating or adding redundant clauses can ei-

ther improve or degrade the performance of the solver, each

clause of a the CNF formula is checked for redundancy and

added to the learnt database while leaving the modern SAT

solver the freedom to use or eliminate them according to

their activities during search.

The paper is organized as follows. In the next Section,

basic clausal propositional logic and redundancy-related

concepts are provided. A new scheme for SAT solving for

dealing with redundancy is introduced in Section 3. In Sec-

tion 4, an empirical study proves the usefulness of the ap-

proach. Finally, we conclude with some promising paths for

future research.

1

2 About redundancy in CNF formulae

Let L be a standard Boolean (also called propositional)

logical language built on a finite set of Boolean variables.

A CNF formula is a set (interpreted as a conjunction) of

clauses, where a clause is a set (interpreted as a disjunction)

of literals. A literal is a propositional variable x (which can

be either true or false) or its negation ¬x. The two lit-

erals x and ¬x are called complementary. We note l̄ the
complementary literal of l. Let L be a set of literals, L̄ is

defined as {l̄ | l ∈ L}. A unit clause is a clause contain-

ing one literal (called unit literal), only. A binary clause

contains exactly two literals. An empty clause, noted ⊥, is
interpreted as false (unsatisfiable), whereas an empty CNF
formula, noted ⊤, is interpreted as true (satisfiable).

The set of variables occurring in Σ is noted VΣ. A set of

literals is complete if it contains one literal for each variable

in VΣ, and fundamental if it does not contain complemen-

tary literals. An interpretation ρ of a propositional formula

Σ associates a value ρ(x) to the variables x ∈ VΣ. An in-

terpretation is also represented by the complete and funda-

mental set of literals that it satisfies. A model ρ of a formula

Σ is an interpretation that satisfies Σ, noted ρ � Σ.

Let Σ be a CNF formula. We note Σ|x the formula ob-

tained fromΣ by assigning the literal x the truth-value true.
Formally Σ|x = {c | c ∈ Σ and {x,¬x} ∩ c = ∅} ∪
{c\{¬x} | c ∈ Σ and ¬x ∈ c}. This notation is extended to
interpretations: given an interpretation ρ = {x1, . . . , xn},
Σ|ρ is defined as (. . . ((Σ|x1

)|x2
) . . . |xn

). We also note Σ∗

the formula Σ closed under unit propagation (UP), defined

recursively as follows:

1. Σ∗ = Σ if Σ does not contain any unit clause,

2. ⊥∈ Σ∗ if Σ contains two unit-clauses {x} and {¬x},

3. otherwise, Σ∗ = (Σ|x)∗ where x is the literal appear-

ing in a unit clause of Σ.

Moreover, a clause c is implied by unit propagation from

Σ, noted Σ |=∗ c, if ⊥∈ (Σ|c̄)
∗.

The way a problem is encoded in CNF is now recognized

as crucial for its practical resolution, and many studies have

been devoted to this point (see e.g. [12]). Particularly, the

presence of redundant information can play an important

role for determining its satisfiability. Indeed, expliciting a

lot of implied constraints can actually help solvers. Nev-

ertheless, recording redundant information finds its limits

in memory space constraints. As a matter of fact, at any

step of a search for satisfiability by most current DPLL-

based solvers [4], two unassigned literals of each clause are

watched and an incomplete list of occurrences has to be up-

dated after each assignment, following the principles of lazy

data structures [21]. Accordingly, the presence of a large

number of redundant clauses just slows down the resolution

process by providing too much information to manage.

¬c

c ∨ d
¬b ∨ c

¬a ∨ b ∨ c

a ∨ ¬b

¬a ∨ c ∨ ¬d

Figure 1. The 3 irredundant subformulae of

Example 2

Let us define a redundant clause formally.

Definition 1 Let Σ be a CNF formula and c a clause such

that c ∈ Σ. c is called redundant (w.r.t. Σ) if and only if

Σ\{c} � {c}. Any non redundant clause is called irredun-

dant.

Through this definition, it is clear that when a clause is

redundant, it can be safely removed from the formula while

preserving satisfiability.

Example 1 Let Σ = {¬a ∨ b ∨ c,¬b ∨ c,¬c, a ∨ ¬b, c ∨
d,¬a∨ c∨¬d} be a CNF formula. The clause φ1 = ¬b∨ c
is redundant w.r.t. Σ, since (Σ\{φ1})|φ̄1

is clearly un-

satisfiable. The clauses φ2=¬a ∨ b ∨ c, φ3=a ∨ ¬b and

φ4=¬a ∨ c ∨ ¬d are also redundant w.r.t. Σ.

Checking whether a clause is redundant or not is clearly

CoNP-complete. By iterating a redundancy test on each

clause of a CNF formula and removing it when it has been

proved redundant, one obtains an irredundant formula.

Definition 2 Let Σ be a CNF formula. Σ is called irredun-

dant formula if and only if ∀c ∈ Σ, c is irredundant.

This notion of irredundant formula has been used for a

long time, even if it has been named in different ways in

the literature. For example, it is called irredundant equiv-

alent subset in [13] and satisfiable core in [5]. Moreover,

many studies have recently focused on the problem of ex-

plaining why a CNF formula does not exhibit any solu-

tion, through the concept of Minimally Unsatisfiable Sub-

formula, or MUS (see e.g. [10, 22, 9]). An MUS is actually

an irredundant formula for the special case of unsatisfiabil-

ity.

A CNF formula can clearly exhibit several irredundant

subformulae; actually, a CNF formula with m clauses ex-

hibits Cm/2

m such irredundant subformulae, in the worst

case.

Example 2 Let Σ be the CNF formula from the previous

example. Σ exhibits 3 irredundant sub-formulae, which

2

are Σ1 = Σ\{φ1, φ2}, Σ2 = Σ\{φ2, φ3} and Σ3 =
Σ\{φ3, φ4}. Those 3 formulae are illustrated in Figure 1.

In the general case, the role of redundant clauses within

CNF formulae remains unclear w.r.t. SAT solving. In [5],

it is claimed that irredundant formulae are in general harder

to solve than the same formulae augmented with redundant

clauses. Indeed, it is well-known that redundant informa-

tion can actually help SAT solvers; for instance, the power-

ful learning scheme introduced in [3], which produces a par-

ticular resolvent clause after each conflict, can be viewed as

a dynamic addition of redundant clauses during the search

process. This learning strategy is now recognized to be one

of the key features of modern SAT solvers, which proves

the interest of redundant information with respect to practi-

cal SAT solving. However, it is also well-known that adding

too many redundant clauses can make the search computa-

tionally heavier by producing too much information to man-

age. Besides, a simple experiment that consists in adding all

learnt clauses to a CNF formula after its resolution shows

that this new redundant information makes the formula gen-

erally more difficult to solve.

Hence, in the general case it appears difficult to predict

whether a redundant clause will prove useful for practical

resolution of a CNF formula, particularly because it de-

pends on the way the search space is explored. In the next

Section, an approach to deal with redundant information is

proposed.

3 A new scheme for managing redundancy

3.1 Extracting redundant clauses polynomially

As shown in the last section, redundant information can

prove very useful for practical SAT solving. However, it

can also clutter the resolution process. We propose here

an original way to deal with this redundant information.

Unfortunately, this requires us to be able to extract redun-

dant clauses within CNF formulae, and checking whether

a clause is redundant is a CoNP-complete task; performing

this test as such does thus not make sense when trying to in-

crease the efficiency of SAT solvers. Yet, a recent approach

[7] aims at detecting – in an incomplete way – redundant

clauses in polytime. The main idea is to perform the redun-

dancy test through unit propagation, only.

Definition 3 Let Σ be a CNF formula and c ∈ Σ be a

clause. c is called U-redundant if and only if Σ\{c} |=∗ c
i.e. ⊥∈ (Σ\{c})|c̄)

∗.

Considering U-redundant clauses enables to avoid any

combinatorial explosion while detecting a great number of

redundant clauses in practice. Actually, any formula Σ can

be decomposed in a polynomial time intoΣuir∪Σur, where

Input: Σ : a CNF formula

Output: true if Σ is satisfiable, false otherwise

begin1

Σur ← ∅ ;2

Σuir ← Σ ;3

foreach c ∈ Σ do4

Σuir ← Σuir\{c} ;5

Let c = {l1, . . . , li, . . . , lk} ;6

if (Σuir|{l̄1,...,l̄i})
∗ = ⊥ then7

Σur ← Σur ∪ {l1, . . . , li} ;8

end9

else10

Σuir ← Σuir ∪ {c} ;11

end12

end13

return solve(Σuir,Σur) ;14

end15

Algorithm 1: U-redSAT solver

Σuir is a U-irredundant sub-formula of Σ and Σur is a set

of redundant clauses w.r.t. Σ. Obviously, different clause

orderings for redundancy checking may lead to different U-

irredundant sub-formulae.

3.2 Special usage of detected redundant clauses

Our intuition is that a well-known feature of modern SAT

solvers could be in charge of selecting relevant redundant

clauses with respect to the state of the search in progress.

Indeed, current solvers produce redundant information af-

ter each conflict through their learning functions. The prob-

lems of storing and updating clauses have then already been

addressed: different well-tuned techniques ensure a good

trade-off between the amount of information to store/up-

date and the propagation capacity of the algorithm. First,

it was proposed to only keep the clauses whose size is less

than a given value, provided that the shorter a clause is, the

more unit propagations it should trigger [16]. However, the

most widely used technique in current solvers is inspired

by the branching heuristic VSIDS [18], and aims at keep-

ing the most active clauses, i.e. clauses that contain literals

involved in the greatest number of conflicts [8]. More pre-

cisely, a counter (initialized to 0) is associated with each

learnt clause, and is incremented when the corresponding

clause has played a role with respect to an encountered con-

flict. Periodically, the learnt clauses base is purged from the

ones that exhibit the lowest values, following the assump-

tion that the most useful clauses until now will also be the

most useful for the rest of the search.

Hence, we propose to use the method of Fourdrinoy et al.

[7] to efficiently capture redundant clauses within CNF for-

mulae, and inform the solver of the nature of those detected

3

clauses. To this end, the detected redundant clauses are

eliminated from the CNF formula and moved to the learnt

database of the SAT solver.

Thanks to this approach, the most useful (with the high-

est activity) redundant clauses will be kept, whereas the

non relevant ones will be progressively deleted. In this

way, redundant clauses not relevant for the current proof are

dynamically eliminated, leading to an interesting improve-

ment in both space and time complexity.

Our proposed approach is depicted in Algorithm 1. First,

all the clauses of Σ are checked for redundancy (line 4 to

13). Let us note that in practice, the test in line 7 is per-

formed by alternating the assignment of the opposite of one

literal from c (literal li with 1 ≤ i ≤ k) with unit propaga-

tion. Hence, if a conflict occurs without all opposites having

been assigned (i < k), the clause made of the first i literals
of c is deduced and added to Σur.

At the end of this preprocessing step, two formulae Σuir

and Σur are obtained. Let us now assume that a SAT solver

solve is modified in order to record its first parameter as

the input formula and the second one as an “initial” learnt

clauses database: a classical call to such a solver would be

“solve(Σ,∅)”. Instead of such a call, after this preliminary

step the modified SAT solver is called using the two formu-

lae Σuir and Σur (line 14). Let us note that those CNF

formulae obey the following property.

Property 1 Let Σ be a CNF formula, and Σuir,Σur the

partition of Σ delivered by the first part of Algorithm 1. We

have:

1. Σ and Σuir are equivalent with respect to satisfiability

2. Σur � Σ\Σuir

Proof

1. Straightforward: by definition, eliminating a redun-

dant clause preserves satisfiability. A process that it-

erates a test of redundancy and deletes each clause of

a CNF formula when it is redundant clearly returns an

equivalent formula with respect to satisfiability

2. Let us assume that a clause c = {l1, . . . , li, . . . , lk} ∈
Σ is U-redundant. As the literals of c̄ are assigned one

by one, and unit propagation is applied at each assign-

ment, one can reach the conflict after the assignment

of the literal li i.e. ⊥∈ (Σ|{l̄1,...,l̄i})
∗. In such a case,

we have Σ �
∗ {l1, . . . , li}. Σur is then composed of

subclauses of Σ\Σuir, hence this latter set of clauses

can clearly be infered by the former one.

This schema of SAT solving, from redundancy checking

to the special storage of U-redundant clauses, can be easily

grafted to most of current modern SAT solvers. In Section

4, these ideas are evaluated, from an experimental point of

view.

4 Experimental results

In order to assess the pertinence of those ideas, we have

implemented the unit-redundancy checking procedure to

compute (in an incomplete way) a set of redundant clauses

within a CNF. As the order of the tested clauses matters,

we have chosen to sort the clauses w.r.t. their decreasing

size, as suggested by [7], to obtain a formula closed under

subsumption. As a result, the procedure delivers a partition

of two sets of clauses, the first part containing the funda-

mental clauses whereas the second one is a set of redundant

clauses.

Then, we have modified a complete method in order to

take this information into account by considering the de-

tected redundant clauses as learnt ones. We have compared

the behavior of this modified solver with the original ver-

sion, using all clauses of the formula as fundamental (no

one could be deleted, and all of them are all considered dur-

ing the whole computation). As a case study, minisat [6]

was selected as the complete solver. As a point of technical

clarification, let us note that the parameters of minisat

were voluntarily kept as such in our modified version, in

order to obtain a fair comparison between solvers. Espe-

cially, the number of recorded clauses during the search

was initially set to |Σ|/3. This means that at any time,

both solvers exhibit the same upper bound on the number

of learnt clauses at any time, which contributes to run them

under the same conditions. Nevertheless, our version starts

the computation with a non-empty set of learnt clauses, and

when the cardinality of this set exceeds a third of the num-

ber of clauses, some of them are removed as soon as a con-

flict is reached. Fortunately, as our experimental results

show, this case occurs only a very few times.

Our experiments have been conducted on a selection of

940 real-world (crafted and industrial) problems from the

last SAT competitions [19]. First, a sample of the results is

proposed in Table 1, which is composed of 3 main columns.

The first one provides information about the tested in-

stances, through their names together with their numbers

of clauses and their satisfiability status (S for SAT, U for

UNSAT). The second column of the table focuses on the

redundancy test, reporting the number of redundant clauses

detected by the approach, the percentage of clauses it rep-

resents and the needed time in second. Finally, in the third

column, the time (in seconds) needed to solve the formula,

using either the original minisat or the modified version

(minisatred) taking into account the nature of the redun-

dant clauses is reported. For minisatred, preprocessing

and solving times are summed and reported. Our experi-

mental studies have been conducted on Intel Xeon 3GHz

under Linux CentOS 4.1. (kernel 2.6.9) with 2GB of RAM.

For all these experimentations, a time-out limit of 900 sec-

onds was respected. If a computation exceeded this limit,

4

Instance Redundancy test Solving time (sec.)

Name #cla S/U #clared %red time (sec.) minisat minisatred

hanoi5u 59,718 U 2,139 3.58% 1.21 214.87 164.15

bqwh.33.381 9,040 S 494 5.46% 0.06 456.5 38.32

5col100 15 6 3,473 U 397 11.43% 0.03 56.93 30.88

lksat-n2000-m6840-k3-l4 6,598 U 242 3.66% 0.02 28.72 29.66

Composite-024BitPrimes-0 9,689 S 793 8.18% 0.05 206.25 163.71

shuffling-1-s1025511904 42,818 U 4,818 11.3% 2.17 284.04 332.98

manol-pipe-c6id 238,142 U 3,899 1.64% 3.38 150.58 147.97

ferry12 23,285 S 7,285 31.3% 0.43 0.85 0.94

avg-checker-5-34 33,206 U 2,700 8.13% 1.09 55.09 28.77

2dlx cc mc ex bp f2 bug015 149,693 S 37,664 25.2% 40.35 2.31 2.35

9vliw bp mc 156,921 U 22,542 14.4% 59.99 248.77 898.7

k2fix gr 2pinvar w8 270,136 U 0 0% 30.04 67.52 67.48

hanoi6 22,633 S 11,120 49.1% 0.21 132.56 87.69

shuffling-2-s1182968979 58,408 U 4,487 7.68% 5.05 405.65 348.83

frg2mul.miter 58,477 U 4,418 7.56% 2.02 540.28 305.04

CompositeRSA640 1,929,086 ? 105,148 5.45% 26.04 time out time out

lksat-n900-m6174-k4-l4-s... 6,084 U 90 1.48% 0.02 57.59 109.26

4pipe 1 ooo 60,564 U 13,956 23.04% 4.19 184.56 82.56

rand net70-30-5 12,071 U 390 3.23% 0.33 266.33 344.21

gripper10 14,126 S 3,782 26.77% 0.21 time out 192.95

Table 1. Redundancy rate and solving time on a sample of benchmarks

then a time out was reported.

First, let us focus on the unit-redundancy test. The

obtained results show that there exists modelizations of

problems that generate a really large number of redun-

dant clauses. For example, the 2dlx...bug015 and

ferry12 instances exhibit at least 25.2% and 31.3% of

their clauses that are redundant, respectively. Limiting this

test to unit propagation thus enables to detect a lot of such

clauses and leads very often to a cheap computation: most

of the time, this test can be performed in less than 5 sec-

onds, even if, for huge instances, several tens of seconds

can be necessary (CompositeRSA640). The most re-

dundant CNF formula discovered is the clausal proposi-

tional encoding of the Hanoi tower problem of size 6.This

benchmark contains 22633 clauses, but about half of them

are implied by the remaining part of the CNF formula and

are not actually necessary to encode the problem. Fortu-

nately, for most tested benchmarks, this “redundancy rate”

did not exceed 15%. Actually, in some cases, the proce-

dure was not able to detect any redundant clause at all (e.g.

k2fix gr 2pinvar w8).

Now, let us consider the consequences of using this poly-

nomially obtained information. Discriminating redundant

clauses in order to eventually lighten the amount of data

the solver has to update after each assignment (either by

decision or propagation) speeds up the resolution of in-

stances, very often. It has been observed that redundant

clauses are sometimes kept by the solver a long time during

the search, or are erased very quickly, when more helpful

clauses are learnt by the solver. Thus, the adaptative storage

of clauses of modern solvers also appears to be appropriate

to manage clauses known to be non fundamental. Note that

even when the CNF formula exhibits a quite small redun-

dancy rate (< 15%), using those clauses as learnt ones of-

ten boosts the solver (Composite-024BitPrimes-0,

avg-checker-5-34). Taking the redundancy of clauses

into account can sometimes be less efficient that just ignor-

ing their redundancy status. But on many cases, computing

this strategic information proves useful for practical SAT

solving. Obviously, on some cases, taking the redundancy

of clauses into account is less efficient than just ignoring

their redundancy status. For instance, in spite of the discov-

ery of the redundancy of 14.3% of its clauses, the original

minisat proves the unsatisfiability of 9vliw bp mc in

about 4 minutes whereas making those clauses optional for

the same solver leads to solve of formula in almost 15 min-

utes. Nevertheless, on many cases, computing this strategic

information proves useful for practical SAT solving.

In a more general way, we have compared the needed

solving time of our modified version of minisat with the

original one. The obtained results are provided in Figure

2. Each plot in this figure represents the time for solving a

particular CNF formula: the time for minisatred is given

by its projection on the X-axis, whereas the time for the

original minisat is given by its projection on the Y-axis.

Thus, a plot located above (below) the first diagonal means

5

 0.01

 0.1

 1

 10

 100

 0.01 0.1 1 10 100

m
in

is
a

t

minisat_red

Figure 2. Minisat taking detected redundant clauses into account (or not)

that the modified version needed less (resp. more) time to

solve the CNF formula than the original version. Let us

also note that both axes are displayed in a logarithmic scale

in Figure 2.

First, it is noticeable that for easy-to-solve problems

(solving time less than 1 second), the “classic” minisat

is generally the most efficient version. This phenomena is

explained by the computational overhead due to the prelim-

inary redundancy test. This one is most often computation-

ally inexpensive, but for such easy problems, any amount of

spent time matters. Moreover, as previously mentioned, for

very large CNF formulae, the preliminary tests may require

several seconds. When such a benchmark is really easy to

be solved for CDCL implementations, useless computation

of redundant clauses can deteriorate the results. Fortunately,

this waste of time represents only a few tens of seconds in

the worst empirically observed cases.

Let us now focus on more difficult benchmarks (solving

time larger than 10 seconds). On such problems, selecting

the detected redundant clauses w.r.t. their number of per-

formed propagations proves valuable very often. Indeed,

most of the plots are located above the diagonal, which

shows the improvement of minisat thanks to our new fea-

ture. Using the VSIDS-like strategy on redundant clauses

thus appears adapted for dealing with those particular ex-

tracted clauses.

Finally, let us also note that a lot of plots are located

around the diagonal. This is explained by the fact that there

exists some CNF formulae that exhibit only a few or even

no U-redundant clauses. Obviously enough, in such cases

the behavior of both versions of minisat is very similar,

and is exactly the same when no U-redundant clauses are

extracted by the preliminary detection procedure.

Nevertheless, those first results plead for more attention

about redundancy of information within CNF formulae for

practical SAT solving. Our first implementation clearly de-

livers promising results, and using existing mechanisms cre-

ated for learnt clauses appears adapted for dealing with re-

dundant clauses. Clearly enough, even better results could

be expected by fine-tuning the various parameters of the

solver, especially the initial number of stored learnt clauses.

5 Conclusions

In this paper, a new strategy to deal with redundant

clauses within CNF formulae has been presented in the con-

text of SAT solving. This technique has the great advantage

to be easily graftable to current solvers, thanks to an origi-

nal use of some of their features. More precisely, the idea

is to inexpensively extract a set of redundant clauses within

a CNF formula, and test whether each clause of the CNF

formula is redundant w.r.t. the remaining part of the prob-

lem; accordingly, a set of redundant clauses is delivered and

added to the learnt database. Therefore, the VSIDS-like

strategy of state-of-the-art solvers is applied to them, and

if they do not enable to propagate literals during the search,

then the solver can just remove them. This technique can

be viewed as an automatic tuning strategy to manage redun-

6

dancy within CNF formulae. It has been empirically vali-

dated through intensive experiments that show its practical

interest.

This work opens many interesting future directions of

research. First, as mentioned earlier in this paper, the order

according to which the clauses are tested for redundancy

has a great importance for obtaining an easy-to-solve CNF

formula. The subsumption-based choice made here proves

relevant, but new ones should be investigated. Moreover,

SAT solvers often exhibit a large number of parameters that

are crucial for the efficiency of the procedure. It has been

chosen not to modify those parameters in the used proof-

of-concept solver, but some of them, especially the num-

ber of allowed learnt clauses, could be redefined taking the

initially provided extra information into consideration. Fi-

nally, this study focuses on the way redundant constraints

existing within CNF formulae can be managed. It would be

also interesting to produce redundant clauses by performing

limited resolution, as preprocessors like HyPre [2] do, for

instance. The produced clauses could be added within the

solver as learnt, in order to help the solver to make propa-

gations when they are actually useful. If some of them do

not prove useful during the search, the solver would then be

able to get rid of those clauses. We plan to explore those

different paths of research in the next future.

Acknowledgement

The author would like to thank Bertrand Mazure and

Lakhdar Saı̈s for very helpful discussions.

References

[1] G. Ausiello, A. D’Atri, and D. Saccá. Minimal representa-

tion of directed hypergraphs. SIAM Journal on Computing,

15(2):418–431, 1986.
[2] F. Bacchus and J. Winter. Effective preprocessing with

hyper-resolution and equality reduction. In 6th Interna-

tional Conference on Theory and Applications of Satisfia-

bility Testing (SAT’03), volume 2919 of Lecture Notes in

Computer Science, pages 341–355, Santa Margherita Lig-

ure (Italy), 2003. Springer.
[3] P. Beame, H. Kautz, and A. Sabharwal. Understanding the

power of clause learning. In 18th International Joint Confer-

ence on Artificial Intelligence (IJCAI’03), pages 1194–1201,

2003.
[4] L. Bordeaux, Y. Hamadi, and L. Zhang. Propositional satis-

fiability and constraint programming: A comparative survey.

ACM Computing Surveys, 38(4), 2006.
[5] Y. Boufkhad and O. Roussel. Redundancy in random SAT

formulas. In 17th National Conference on Artificial Intelli-

gence (AAAI’00), pages 273–278, 2000.
[6] N. Eén and N. Sorensson. Minisat home page

http://www.cs.chalmers.se/cs/research/for-

malmethods/minisat.

[7] O. Fourdrinoy, É. Grégoire, B. Mazure, and L. Saı̈s. Elim-

inating redundant clauses in SAT instances. In 4th Interna-

tional Conference on Integration of AI and OR Techniques

in Constraint Programming for Combinatorial Optimization

Problems (CP-AI-OR’07), volume 4510 of Lecture Notes in

Computer Science, pages 71–83, Brussels (Belgium), 2007.

Springer.
[8] E. P. Goldberg and Y. Novikov. Berkmin: a fast and ro-

bust SAT-solver. In Design Automation and Test in Europe

(DATE’02), pages 142–149, Paris (France), 2002.
[9] É. Grégoire, B. Mazure, and C. Piette. Boosting a complete

technique to find MSS and MUS thanks to a local search

oracle. In 20th International Joint Conference on Artificial

Intelligence (IJCAI’07), volume 2, pages 2300–2305, Hy-

derabad (India), 2007.
[10] É. Grégoire, B. Mazure, and C. Piette. Local-search extrac-

tion of MUSes. Constraints Journal, 12(3):325–344, 2007.
[11] P. L. Hammer and A. Kogan. Optimal compression of propo-

sitional horn knowledge bases: Complexity and approxima-

tion. Artificial Intelligence, 64(1):131–145, 1993.
[12] A. Hertel, P. Hertel, and A. Urquhart. Formalizing danger-

ous SAT encodings. In 10th International Conference on

Theory and Applications of Satisfiability Testing (SAT’07),

volume 4501 of Lecture Notes in Computer Science, pages

159–172, Lisbon (Portugal), 2007. Springer.
[13] P. Liberatore. The complexity of checking redundancy of

CNF propositional formulae. In 17th European Conference

on Artificial Intelligence (ECAI’02), pages 262–266, 2002.
[14] P. Liberatore. Redundancy in logic I: CNF propositional

formulae. Artificial Intelligence, 163(2):203–232, 2005.
[15] P. Liberatore. Redundancy in logic II: 2CNF and Horn

propositional formulae. Artificial Intelligence, 172(2–

3):265–299, 2008.
[16] J. P. Marques-Silva and K. A. Sakallah. GRASP: A new

search algorithm for satisfiability. In International Confer-

ence on Computer-Aided Design (CAD’96), pages 220–227,

Santa Clara (USA), 1996.
[17] A. R. Meyer and L. J. Stockmeyer. The equivalence problem

for regular expressions with squaring requires exponential

space. In 13th Annual Symposium on Switching and Au-

tomata Theory (FOCS’72), pages 125–129, 1972.
[18] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and

S. Malik. Chaff: Engineering an efficient SAT solver. In

38th Design Automation Conference (DAC’01), pages 530–

535, Las Vegas (USA), 2001.
[19] SAT competitions, http://www.satcompetition.org.
[20] H. Zeng and S. A. McIlraith. The role of redundant clauses

in solving satisfiability problems. In 11th International Con-

ference on Principles and Practice of Constraint Program-

ming (CP’05), volume 3709 of Lecture Notes in Computer

Science, page 873. Springer, 2005.
[21] L. Zhang and S. Malik. The quest for efficient boolean satis-

fiability solvers. In 18th International Conference on Auto-

mated Deduction (CADE’02), volume 2392 of Lecture Notes

in Artificial Intelligence, pages 295–313. Springer, 2002.
[22] L. Zhang and S. Malik. Extracting small unsatisfiable

cores from unsatisfiable boolean formula. In 6th Interna-

tional Conference on Theory and Applications of Satisfia-

bility Testing (SAT’03), volume 2919 of Lecture Notes in

Computer Science, Portofino (Italy), 2003. Springer.

7

