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Abstract

These last years, the issue of locating and explaining
contradictions inside sets of propositional clauses has re-
ceived a renewed attention due to the emergence of very
efficient SAT solvers. In case of inconsistency, many such
solvers merely conclude that no solution exists or provide
an upper approximation of the subset of clauses that are
contradictory. However, in most application domains, only
knowing that a problem does not admit any solution is
not enough informative, and it is important to know which
clauses are actually conflicting. In this paper, the focus
is on the concept of Minimally Unsatisfiable Subformulas
(MUSes), which explain logical inconsistency in terms of
minimal sets of contradictory clauses. Specifically, various
recent results and computational approaches about MUSes
and related concepts are discussed.

1. Introduction

Many issues in the Artificial Intelligence domain amount
to representing knowledge using tools that can be related to
logic, where the logical satisfiability of the representation
translates the feasibility of the problem. For example, some
VLSI configuration problems are best modeled as sets of
Boolean formulas; proving that no truth-assignment satis-
fying all formulas does exist guarantees important correct-
ness properties of the circuit (see e.g. [32]). In this pa-
per, the focus is on recent works allowing the infeasibil-
ity of a Boolean problem to be explained when no truth-
assignment, called model, can be found.

Indeed, the issue of locating and explaining contradic-
tions inside sets of propositional clauses has received a re-
newed attention these last years, due to the emergence of
very efficient SAT solvers [8]. When a set of Boolean
clauses is shown satisfiable by a SAT solver, this one de-
livers a model, which is a certificate of the satisfiability of
the problem. On the contrary, in case of inconsistency, these

approaches only ensure that no model exists, or provide an
upper-approximation of the subset of contradictory clauses.
However, such a conclusion is often not enough informa-
tive in many application domains. Indeed, users might need
to localize in a precise manner a contradictory subpart of
the problem that causes its inconsistency since all clauses
of the unsatisfiable problem do not necessarily participate
to its infeasibility. In some cases, only a subset of them are
actually conflicting and make the whole set of clauses unsat-
isfiable; it can thus be important to pinpoint those contradic-
tory clauses. The concept of Minimally Unsatisfiable Sub-
formulas (MUS) is intended to achieve this objective since
it allows logical inconsistency to be explained in terms of
minimal sets of contradictory clauses. Accordingly, MUSes
of a set of clauses represent the smallest – in terms of set-
theoretical inclusion – explanations of the unsatisfiability
of the set, and thus point out which precise subpart(s) of a
problem should be “repaired” in order for feasibility to be
recovered. The goal of this paper is to review various results
and computational approaches about MUSes.

2. MUSes and logical background

A propositional or Boolean formula in conjunctive nor-
mal form (CNF, for short) is a finite set (interpreted as a con-
junction) of clauses, where a clause is a set (interpreted as
a disjunction) of literals, a literal being a Boolean variable
or its negation. An interpretation is an application that as-
signs values from{true, false} to every Boolean variable.
An interpretation is called amodelof a CNF when it sat-
isfies the CNF, namely when it makes ittrue. SAT is the
NP-complete problem which consists in deciding whether a
CNF is satisfiable or not, i.e. whether this formula admits
at least one model.

SAT is usually solved in practice thanks to variants of the
well-known DPLL algorithm [9]. This algorithm consists in
assigning a truth value to a variable from the CNF, simpli-
fying the formula and then recursively checking if the sim-
plified formula is satisfiable; if this is the case, the original



a

¬b
¬a ∨ b ¬a ∨ c ∨ d

¬d

b ∨ ¬c

¬d ∨ e

a ∨ ¬c ∨ ¬e

Figure 1. MUSes of example 1

formula is satisfiable; otherwise, the same recursive check
is done assuming the opposite truth value. The simplifica-
tion step essentially removes all clauses which becometrue

under the assignment from the formula, and all literals that
becomefalse from the remaining clauses. Moreover, DPLL
uses the unit propagation rule: if a clause is a unit clause,
i.e. if it contains only a single unassigned literal, this clause
can only be satisfied by assigning the necessary value to
make this literaltrue. Thus, no choice is necessary. In
practice, this often leads to cascades of unit propagations,
thus pruning large parts of the search space. Modern ex-
haustive solvers are all based on this DPLL algorithm and
include enhanced techniques such as lazy data structures,
learning from conflict analysis, dynamic heuristics or non-
chronological backtracking. More details about SAT solv-
ing can be found in [4].

Any unsatisfiable CNF exhibits at least oneMinimally
Unsatisfiable Subformula, which is defined as follow:

Definition 1 A Minimally Unsatisfiable Subformula
(MUS)Γ of a CNFΣ is a set of clauses s.t.:

1. Γ ⊆ Σ

2. Γ is unsatisfiable
3. ∀∆ ⊂ Γ, ∆ is satisfiable

Clearly, an MUS ofΣ corresponds to a minimal subset of
clauses ofΣ that forms a resolution-tree leading to incon-
sistency [33]. However, most current SAT solvers do not
deliver such explanations, or simply deliver sets of conflict-
ing clauses that are not guaranteed to be minimal ones. Un-
fortunately, extracting an MUS within CNF is a hard com-
putational problem in the worst case since deciding whether
a CNF is an MUS or not is DP-complete [31].

Example 1 LetΣ = {¬d ∨ e, b ∨ ¬c, ¬d, ¬a ∨ b, a, a ∨
¬c∨¬e, ¬a∨c∨d, ¬b} be a CNF. The setΣM = {a, ¬a∨
b, ¬b} is an MUS ofΣ. Indeed,ΣM is unsatisfiable and
each of its proper subsets is satisfiable.

A CNF can exhibit several MUSes. Yet, recovering sat-
isfiability requires at least one clause from each MUS of the
CNF to be removed. Those MUSes can contain disjoint sets
of clauses, or share some of them.

Example 2 Let Σ be the CNF from the previous exam-
ple. ΣM is not the only MUS ofΣ. Indeed,ΣM ′ =
{b ∨ ¬c, ¬d, a, ¬a ∨ c ∨ d, ¬b} is another MUS ofΣ.
Those two MUSes, are represented with the remaining part
of Σ in Figure 1. They are the only MUSes ofΣ. Let us
notice that the clauses “a” “ ¬b” belong to both MUSes of
Σ. The removal of one of them fromΣ is thus sufficient for
satisfiability to be recovered, since it would “break” all the
sources of inconsistency inΣ. On the contrary, the clause
“ ¬d∨e” does not belong to any MUS and does not actually
participate to the infeasibility of the CNF.

Actually, the number of MUSes of a CNF can be expo-
nential w.r.t. the number of clauses in the CNF. More pre-
cisely, a CNF composed ofn clauses exhibitsCn/2

n MUSes
in the worst case. More generally, computational problems
related to MUSes are typically very hard, and out of reach
in the worst case. For instance, checking whether a set
of clauses belongs to at least one MUS of an unsatisfiable
CNF is Σp

2-hard (a consequence of Theorem 8.2 of [12]).
Despite these bad worst-case complexity results, efficient
techniques have been developped to approximate or com-
pute MUSes for real-world problems. The most recent and
efficient ones are reviewed in this paper.

The paper is organized as follows. In Section 3, known
polynomial instances of the problem of extracting one MUS
are reviewed. Section 4 discusses approaches to approxi-
mate one MUS in the general case, whereas main minimiza-
tion procedures are described in Section 5. Next, exhaustive
approaches to explain inconsistency are presented. In Sec-
tion 7 various techniques to extract the smallest MUS (in
terms of the number of clauses) are described. Finally, other
important results about MUSes are discussed in Section 8.

3 Polynomial classes for the problem of ex-
tracting one MUS

Several fragments of Boolean logic are known to be
polynomial time w.r.t. computing one MUS. First, a poly-
nomial algorithm is proposed in [10] for locating an MUS
that exhibits adeficiencyequals to1, the deficiency being
defined as the difference between the number of clauses
and the number of variables of a CNF. Clearly enough, any
MUS exhibits a positive deficiency [1]. In a more general
way, it has been shown that extracting an MUS with a defi-
ciency equals tok (wherek is a positive integer) is an NP-
hard problem [7]. However, in the same paper, a polynomial
algorithm is proposed when the deficiency of the extracted
MUS is equal to 2. The complexity of extracting a minimal
unsatisfiable formula with deficiencyk is nO(k) [13], where
n is the number of variables of the formula.

More recently, new classes of CNFs have been proved
polynomial w.r.t. the problem of extracting one of their



MUSes, when they exist. In [6], it is established that it
is possible to extract one MUS for any CNF that obeys
a so-called “integral property” thanks to a polynomial-
time algorithm. Several well-known classes of CNFs obey
this property, like (renamable, extended) Horn, Balanced,
Matched, for instance. Let us stress that all these classes
are also known to be “easy” for SAT. However, all polyno-
mial classes for SAT are not polynomial for the problem of
extracting one MUS. For example, CNFs made of binary
clauses are polynomial w.r.t. SAT, but they are not polyno-
mial w.r.t. the MUS finding problem.

4 Algorithms for approximating an MUS

Computing an MUS is a hard problem from a worst-
case complexity point of view. Thus, complete and exact
algorithms to compute MUSes can only be used for formu-
las that are often smaller than many large CNFs that are
encoding real-world problems. Accordingly, the most effi-
cient approaches cannot always guarantee the minimality of
the delivered unsatisfiable formula, but deliver “approxima-
tions” of an MUS, only.

4.1 Adaptative search for MUSes

A first approach to approximate an MUS, calledadapta-
tive [5], is based on a preliminary computedscoreabout the
“difficulty” of clauses, the difficulty here being defined as a
weight associated to a clause w.r.t. its estimated importance
within the CNF. This is evaluated through an exploration on
the search space, the processus recording indications about
the “difficulty” to satisfy the various clauses of the CNF.

Next, a set of “difficult” clauses is produced. If it is
proved unsatisfiable then it is delivered as an approxima-
tion of an MUS. If it is proved satisfiable then this set isex-
panded, and if after a given amount of computing resources
no response to the satisfiability test is provided, then it is
contracted.

The preprocessing step of this approach is crucial, since
it enables the clauses to be stratified w.r.t. their difficulty.
This approximation technique shows efficient on several
families of instances but its accuracy is very dependent on
several parameters (like the ratio of difficult clauses to se-
lect, etc.) which must be tuned for each CNF in order to
find an unsatisfiable subformula of an acceptable size.

4.2 AMUSE

The basic principle of theAMUSE [30] method is to cre-
ate a new variable for each clause of the CNF, introduce it as
new disjunct inside the clause, and identify an unsatisfiable
subformula thanks to an adapted complete search that gives

those auxiliary variables a specific role. Actually, those ad-
ditional literals are used to mark the corresponding clause;
a complete DPLL-oriented search is run on this modified
CNF, and when it ends, an unsatisfiable subformula can be
found checking the value of those literals.

The AMUSE approach appears quite efficient and, on
some instances, allows unsatisfiable subformulas to be ob-
tained that are actual MUSes (even if the minimality crite-
rion is not guaranteed). However, this method is efficient
only when the MUS is small w.r.t. the size of the formula.

4.3 MUS extraction through learning

Various learning techniques from conflicts have been de-
velopped these last years in SAT solvers. Their goal is to re-
duce the remaining search space to prove (un)satisfiability,
taking the information about encountered conflicts into ac-
count. Actually, these techniques can also be used to point
out which subset of clauses from the CNF has been the
source of a discovered conflict, and thus put in light clauses
belonging to an unsatisfiable subformula [36].

Roughly, the principle behind such approaches, as imple-
mented inzCore, is to keep a trace of the clauses responsi-
ble of the production of a new learnt clause, after each con-
flict. To this end, a Directed Acyclic Graph (DAC) called
resolution graphis used. Each node of this graph repre-
sents a clause, the root nodes being the initial clauses of the
CNF, and the internal nodes being the clauses learnt during
the search. Edges symbolize resolution: if for instance, an
edge starts from a nodeα to a nodeβ, this means thatα is
one of the source clauses for learningβ. Each clause repre-
sented in an internal node is the result of the resolution of
each of its father nodes. An example of resolution graph is
given in Figure 2.

In order to discriminate clauses that are responsible for
yielding the empty clause, it suffices to consider the root
nodes which are ancestors of the produced empty clause.
Indeed, the other root nodes are not necessary for obtaining
the refutation proof. Thus removing them does not invali-
date this particular proof. As a consequence, this method
ensures that an unsatisfiable formula will be obtained. In
addition, once a subformula has been derived, a new com-
plete search can be run with this new formula given in input,
in order to produce a new proof that implies a new unsatisfi-
able subset of clauses. Iterating this procedure leads to com-
pute smaller and smaller (in term of numbers of clauses)
subformulas, until a fixed point is reached. However, the
minimality of the obtained subformula is not guaranteed.

One main drawback ofzCore [36] concerns the size
of the resolution graph. Indeed, it can be very large, even
for a formula of a restricted size.zCore solution for this
problem consists in recording the resolution graph inside
an external file stored on a hard disk. This storage option
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source of the refutation proof of the formula.

Figure 2. Refutation graph example

has a limited effect on the efficiency of the system since the
nodes of the resolution graph are sorted topologically. In-
deed, when a clause is generated by resolution, all its source
clauses necessarily belong to the graph. However, when the
empty clause is produced, the order according to which the
graph is explored is reversed, which can lead to a perfor-
mance problem since exploring a file in the “wrong” order is
generally inefficient. To overcome this problem, zCore re-
verses the graph using a buffer. This technique often proves
efficient for extracting an unsatisfiable subformula, but is
limited by the required storage of the resolution graph. Re-
cently, a variant ofzCore has been proposed [14], which
implements an analysis of the resolution graph in order to
remove some clauses of the computed subformula.

4.4 MUS extraction based on local search

In [27], an original DPLL branching variable heuristic
has been introduced. It consists in exploiting the trace of
a local search computation to select the next variable to be
assigned. The main idea is based on the heuristics that the
most often falsified clauses during a local search are ex-
pected to be the most difficult ones to satisfy. Branching
on such variables can thus lead to trigger many unit propa-
gations, and thus reduce the size of the subsequent subfor-
mula.

Furthermore, this incomplete technique can provide a

( a ∨ b ∨ c )
∧ ( ¬b ∨ c )
∧ ( ¬a ∨ ¬b ∨ ¬c )

∧ ( ¬a ∨ b )

∧ ( a ∨ ¬c )

Figure 3. Example of critical clause from ex-
ample 3

powerful heuristic for determining over-constrainted parts
of a CNF. This one is studied in [17], where an algorithm
calledAOMUS is introduced. Based on the empirical find-
ings that some clauses can be often falsified without belong-
ing to any MUS, a refined criterium is investigated. This
one is based on the concept ofcritical clause. Intuitively, a
clause is critical w.r.t. a given complete interpretation if it is
falsified and, at the same time, if the opposite of each of its
literals belongs to at least one once-satisfied clause (namely,
a clause that is satisfied by exactly one of its literals). Per-
forming a flip1 in order to satisfy one critical clause leads
to falsify at least one other clause of the CNF. Particularly,
this concept allows a relevant partial neighborhood of the
explored interpretation to be taken into account, in order to
decide whether a clause has to be considered by the count-
ing heuristic that is expected to discrimate clauses belong-
ing to MUSes. Interestingly, various properties establish-
ing links between critical clauses and clauses that belong to
MUSes can be found in [17]. The concept of critical clause
is illustrated by the following example.

Example 3 LetΣ = {a∨ b∨ c,¬b∨ c,¬a∨¬b∨¬c,¬a∨
b, a ∨ ¬c} be a CNF. Actually,Σ is an MUS. Letω =
{¬a, b,¬c} be an interpretation. Literals that are satis-
fied byω are circled in the representation ofΣ in Figure
3. ω only falsifies one clause ofΣ and once-satisfies two
other ones. The falsified clause is critical, since the oppo-
site of each of its literals belongs to a once-satisfied clause
(clauses are pointed out by an arrow w.r.t. the “linked” lit-
eral). Satisfying this clause by flipping one variable ofω

thus leads to falsify another clause, that was satisfied byω.

Thus, a local search algorithm is run on the CNF, and de-
livers a score for each of its clauses expressing the number
of times this one has been critical. Clauses with the high-
est scores are expected to form a good approximation of the
MUS(es) of the formula. Lowest-score clauses are then re-
moved, and the resulting CNF is recorded in a FILO struc-
ture. Those operations are iterated until the local search

1A flip reversesonetruth value in the current complete interpretation.



finds out a model of the current subformula. In this case, the
last subformula from the FILO stack is checked for satisfi-
ability. If it is unsatisfiable, then it is delivered as an MUS
approximation, since removing a few clauses heuristically
selected suffices to make it consistent. Else, the previously
recorded subformulas are considered, until an unsatisfiable
one is found, which is then the delivered approximation.
This approach performs well on many CNFs, like e.g. ran-
dom ones or FPGA encoding benchmarks [29].

5 Minimization procedures of unsatisfiable
subformulas

The approaches in the last Section cannot ensure that the
delivered CNF is minimal: they merely return a subformula
that is proved unsatisfiable. However, in some applications,
users might prefer getting an MUS, which is an exact cause
of inconsistency in the sense that all of its clauses necessar-
ily take part in the contradiction. Clearly enough, methods
for computing MUSes in an exact way can be computation-
aly heavier than simply computing their approximations. In
practice, an “approximation” approach as described in last
Section is first run, before some kind of minimization step
is performed to get an MUS. In this Section, various such
minimization techniques are described.

5.1 Transition constraint-based techniques

Several minimization techniques have been proposed in-
dependently, in the context of various formal and problems
frameworks (Constraints Satisfaction Problems, Mathemat-
ical Programming, Boolean logic). They are all based on
thetransition constraintconcept.

Definition 2 Let Σ be an unsatisfiable CNF and
(c1, . . . , cn) be an ordering of then clauses of Σ.
There exists a unique clauseci, called transition con-
straint, s.t. {c1, . . . , ci−1} is satisfiable and {c1, . . . , ci} is
unsatisfiable.

Property 1 Let ci be the transition constraint of an unsat-
isfiable CNFΣ = {c1, . . . , cn}. ci belongs to all MUSes of
the{c1, . . . , ci} CNF.

Computing a transition constraint hence enables one
clauseci of an MUS to be discovered, and the clauses with
an index greater toi to be dropped from the list of candidate
clauses for belonging to an MUS.

An MUS can be extracted by first computing a transi-
tion constraintci of the CNF and by reorganizing the or-
dering (c1, . . . , ci) into (ci,c1, . . . , ci−1). A second transi-
tion constraintcj is then computed; the ordering becomes
(ci, cj , c1, . . . , cj−1). This process is iterated and stops

when the set of transition constraints has been proved un-
satisfiable. This set is an MUS.

The minimization techniques differ according to the way
of the transition constraint is computed, leading to various
efficiency performances. Three main techniques have been
proposed to this end.

A first method, calledconstructive[11], starts with an
empty CNF and inserts additional clauses in an incremen-
tal manner, as long as the resulting CNF remains sat-
isfiable. Whenever the CNF becomes unsatisfiable, the
clause introduced in the last place is identified as the
transition constraint. A second method for finding the
transition constraint is calleddestructive[3]. It consid-
ers the whole CNF and removes its clauses incremen-
tally until the resulting CNF becomes satisfiable. The
last removed clause is the transition constraint. Finally,
a dichotomic technique has been proposed in [21], con-
sidering two boundsmin and max (initialized to 1 and
|Σ|, respectively). A satisfiabity test is performed on the
CNF {c1, . . . , c(min+max)/2}. If it is satisfiable, then
min= ⌈(min+max)/2⌉; otherwise, max= ⌊(min+max)/2⌋.
This process is iterated untilmin=max, which points out the
transition constraint.

Let us notice that the minimization technique ofzCore
[36], calledzminimal, is a destructive one. This is also
the case ofAOMUS, which also uses a (cheap) incomplete
technique to avoid some calls to a complete solver, through
the concept ofprotected clause[17]. Main t

Example 4 Let Σ be a CNF composed of 30 clauses,
and containing exactly one MUS made of clauses
1, 3, 8, 12, 17, 20, 21. Following the numerical ordering, the
behavior of the 3 minimization techniques for computing the
first transition constraint (which isc21) is illustrated in Fig-
ure 4.

The computational complexity of these minimization
techniques can be caracterized by their number of calls to
an NP-complete oracle. LetΣ be a CNF,n the number of
clauses ofΣ, andk the size of the largest MUS ofΣ, the
time complexity of those techniques is:

– constructive:O(n × k)

– destructive:O(n)

– dichotomic:O(log(n).k)

Complexity results plead for the use of the dichotomic
approach. Actually, it has been empirically observed that
the dichotomic one is indeed the more efficient one when
applied to approximations of MUSes of a rough quality.
However, when the approximation of MUS is already accu-
rate, the destructive approach is more adapted, because the
dichotomic method can also need several tests to remove
e.g. just one clause. In [18], a specific combination of both



Σ c1 c2 c3 c4 c5 c6 c7 c8 c10 c11 c12 c13 c14 c15 c16 c17 c18 c19 c20 c21 c22 c23 c24 c25 c26 c27 c28 c29 c30

Constructive Destructive Dichotomic

SAT c1

SAT c1 c2

SAT c1 c2 c3

...

UNSAT c1 c2 . . . c20 c21

UNSAT c1 c2 . . . c29 c30

UNSAT c1 c2 . . . c28 c29

...

UNSAT c1 c2 . . . c20 c21

SAT c1 c2 . . . c19 c20

SAT c1 c2 . . . c14 c15 (min=1,max=30)

UNSAT c1 c2 . . . c22 c23 (min=16,max=30)

SAT c1 c2
. . . c18 c19 (min=16,max=23)

...

UNSAT c1 c2 . . . c20 c21 (min=21,max=21)

Clauses that belong to the MUS

Clauses that do not belong to the MUS

Figure 4. Behavior of the three minimization techniques

destructive and dichotomic approaches has been proposed
and proved efficient for extracting an MUS for most fami-
lies of problems.

5.2 MUP

MUP (Minimal Unsatisfiability Prover) [22] is a mini-
mization technique that makes use of “clause selector” lit-
erals, like theAMUSE approach presented in Section 4.2.
Unlike AMUSE that addsn variables in a formula con-
tainingn clauses, it is here suggested to only augment the
formula with ⌈log(n + 1)⌉ variables. In this way, the for-
mula is proved minimally unsatisfiable if and only if its
augmented version exhibits exactlyn models with different
values for the added variables, since the removal of each
one of its clause makes the formula recover satisfiability.
Thus, this minimality problem is reduced to the counting
model one [22]. In addition,MUP uses Binary Decision Di-
agrams (BDD) for eliminating variables. Moreover, if the
CNF is not an MUS, thenMUP is able to provide the clauses
to be removed in order for one MUS to be obtained. Nev-
ertheless, the efficiency of this method highly relies on the
quality of the initial approximation. Accordingly, it proves
computationally more efficient to provide the approach with
an approximation computed by a method from Section 4,
rather than with the whole initial unsatisfiable CNF.

5.3 MiniUnsat

In [34], another minimization technique is presented,
where an MUS is seen as a minimal irredundant subfor-
mula, in the specific context of inconsistency. The approach

starts with an empty CNFΣM , and inserts insideΣM the
clauses of the original CNF that are not redundant, namely
clausesc s.t. ΣM 2 c, which istrue iff ¬c ∧ ΣM is satisfi-
able.

The algorithm is similar to the constructive method since
it adds clauses only if they are not redundant with the cur-
rent growing subformula, which proves generally more effi-
cient. Moreover,MiniUnsat uses a so-called “associated
assignment” concept for potentially adding several clauses
after each complete check, instead of just one, like the clas-
sical constructive policy does.

6 Approaches for computing all MUSes

In this Section, complete methods are reviewed, namely
methods that are expected to deliver the exhaustive set of
MUSes of a CNF. As emphasized earlier, the size of this
set is exponential in the worst case. However, in real-world
problems, it often remains of a manageable size.

General approaches to compute all minimally inconsis-
tent subsets of a constraints system have been proposed by
[3, 20]. These methods correspond to various explorations
of a so-calledCS-tree, which aims at enumerating all
subproblems of the formula. Unfortunately, this kind of
techniques is limited by the combinatorial explosion of the
number of subclauses, and is not very efficient in practice.

6.1 Dualize and Advance

Another approach to compute all minimal unsatisfi-
able subsets of constraints has not been developped in the



MSS { c1, c2, c3, c5, c6}{ c2, c3, c4, c6}{ c3, c4, c5}{ c2, c4, c5}

(1) ↓ ↓ ↓ ↓

CoMSS { c4} { c1, c5} { c1, c2, c6}{ c1, c3, c6}

(2) ↓

MUS { c2, c3, c4, c5} { c1, c4} { c4, c5, c6}

Figure 5. From MSSes set to MUSes set

Boolean framework, but for Herbrand constraints systems
[2, 19]. Particularly, this method, calledDualize And
Advance, is based on theMaximal Satisfiable Subformula
concept (MSS), which is defined as follows:

Definition 3 A Maximal Satisfiable Subformula (MSS)Γ of
a CNFΣ is a set of clauses s.t.:

1. Γ ⊆ Σ

2. Γ is satisfiable
3. ∀∆ ⊆ (Σ\Γ) s.t.∆ 6= ∅, Γ ∪ ∆ is unsatisfiable

The MSS and MUS concepts are dual ones. Indeed,
whereas an MUS is a subset of constraints s.t. each of its
proper subset is satisfiable, an MSS is a satisfiable subset of
constraints s.t. adding any other constraint from the system
would make it inconsistent. Actually, the set of MUSes can
be deduced from the set of CoMSSes (the complementary
set of an MSS), since each set is a “minimal hitting set” of
the other one.

Definition 4 Given a collection of setsΩ built on a domain
D, a hitting setof Ω is a set of elements ofD that contains
at least one element from each set ofΩ. Formally:

H is a hitting set ofΩ iff H ⊆ D and∀S ∈ Ω,H ∩ S 6= ∅

Moreover, a hitting setH of Ω is calledminimal iff for any
elemente ∈ H, H\{e} is not a hitting set ofΩ.

This relation is also knows as “hypergraph transversal
problem” (HTP). Hence, it “suffices” to compute all MSSes
of a formula to be able to deduce all its MUSes.

Example 5 LetΣ be an unsatisfiable CNF s.t.:

Σ = (x1) ∧ (¬x3) ∧ (x2∨x3) ∧ (¬x1) ∧ (x1∨¬x2) ∧ (x2)
c1 c2 c3 c4 c5 c6

The set of MSSes ofΣ is given in the first line of Fig-
ure 5. The MUSes are computed using a two steps pro-
cess. First, the complementary of each MSS, called CoMSS,
is produced(1). Second, this hitting set is produced, by
computing all sets containing exactly one clause of each
CoMSS. Those sets are the MUSes ofΣ.

c1

c2

c3

c4

c5 c6

c7

c8

Figure 6. MUSes from example 6

In practice,DAA computes MSSes in a straight, incre-
mental, way of growing them. Given aseed, under the form
of a satisfiable set of constraints (initially the empty set),
an MSS is built by trying to add each remaining constraint
of the problem, and only keeping the ones which does not
trigger a conflict. After having tried each possible clause,an
MSS has been obtained, since any other clauses cannot be
added without making the set unsatisfiable. When an MSS
has been computed, the hitting set is computed to produce
an MUS and/or a new seed. Each unsatisfiable element of
the hitting set is an MUS, whereas each satisfiable element
is a seed for the next iterations, guaranteed to be different
from previous ones. Once all MSSes have been computed,
the hitting set only produces unsatisfiable sets, which are
the set of all MUSes of the CNF.

6.2 CAMUS

DAA has been revisited in [25], where a more efficient
approach is proposed. This algorithm also builds the set of
all MUSes from the set of all MSSes throughHTP. Nev-
ertheless, both sets are not computed simultaneously but in
independent ways in this alternative version.

First, each clauseci of the CNF is augmented with a new
literal¬yi calledclause selector. Indeed, when solving this
modified CNF, the assignment ofyi to false desactivatesci

from the instance, by satisfying this clause trivially.

Example 6 LetΣ be the following unsatisfiable CNF:

Σ Σy

c1 : ¬c ∨ ¬b

c2 : ¬a ∨ ¬c

c3 : c

c4 : a ∨ b

c5 : ¬c ∨ d

c6 : b ∨ ¬d

c7 : ¬a ∨ e

c8 : ¬e

=⇒

c1 : ¬c ∨ ¬b ∨ ¬y1

c2 : ¬a ∨ ¬c ∨ ¬y2

c3 : c ∨ ¬y3

c4 : a ∨ b ∨ ¬y4

c5 : ¬c ∨ d ∨ ¬y5

c6 : b ∨ ¬d ∨ ¬y6

c7 : ¬a ∨ e ∨ ¬y7

c8 : ¬e ∨ ¬y8

Σ is built on 5 variables and contains 8 clauses. Those
clauses form 3 MUS:MUS1

Σ = {c1, c2, c3, c4}, MUS2
Σ =



{c1, c3, c5, c6} and MUS3
Σ = {c1, c3, c4, c7, c8}, repre-

sented in Figure 6. The first step ofCAMUS changesΣ into
Σy by adding clause selectors.

An adapted DPLL algorithm is run onΣy. This complete
solver allows a given number of clause selectors to be falsi-
fied, only. For each value of this bound (initialized to 1 and
incremented at each new iteration), an exhaustive search is
achieved to compute all models ofΣy. From these mod-
els, CoMSSes ofΣ can be deduced: those sets are actually
made of the clauses satisfied by one of the added literals.
When a model ofΣy is found, the corresponding CoMSS is
recorded.

Example 7 After the first iteration ofCAMUS on Σy from
example 6, CoMSSes{c1} and {c3} are deduced. Block-
ing clausesy1 andy3 are added to the CNF, which becomes
Σ1

y = Σy ∧ {y1} ∧ {y3}. In the same way, after the second
iteration (where 2 clause selectors are allowed to be falsi-
fied), CoMSSes{c4, c5} and{c4, c6} are obtained, and the
CNF evolves intoΣ2

y = Σ1
y ∧ {y4 ∨ y5} ∧ {y4 ∨ y6}.

Without augmenting the CNF with those clauses, during
the second iteration of the algorithm the setC = {c3, c8}
would be computed as a CoMSS. Yet, this one cannot be
a CoMSS, since{c3} has already been extracted. Accord-
ingly, C is not minimal for set-theoretical inclusion, conse-
quently it is not a CoMSS ofΣ.

This algorithm enables larger and larger CoMSSes to be
derived, by incrementing the bound on the clause selectors.
Moreover, after each iteration of the algorithm, one has to
check whether the new instance augmented with blocking
clauses is still satisfiable without any bound on clause se-
lectors. If the CNF is unsatisfiable, then all CoMSSes have
been delivered, since any interpretation falsifies an upper-
set of a CoMSS of the CNF. The algorithm is thus stopped.
Otherwise, larger CoMSSes exist; the bound is incremented
and a new search is run.

Example 8 After the first iteration ofCAMUS, a consistency
check onΣ1

y is run (without any bound on clause selec-
tors). Clearly, this CNF is satisfiable. After the extrac-
tion of CoMSS of size 2, a similar check is performed on
Σ2

y. This CNF is consistent: one of its model is for instance
ω2

y = {a,¬b, c,¬d, e, y1,¬y2, y3,¬y5,¬y8}. The third it-
eration is the last one; it enables to extract the CoMSSes
{c2, c5, c7}, {c2, c5, c8}, {c2, c6, c7} and {c2, c6, c8}, and
the CNFΣ3

y is proved unsatisfiable, which entails that all
its CoMSS have been extracted. The evolution ofΣy is de-
scribed in Figure 7.

6.3 HYCAM

TheCAMUS algorithm has been hybridized with an in-
complete stochastic local search algorithm (SLS) [16]. The
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Figure 7. Evolution of Σy

main idea is that SLS often explores interpretations that per-
mit MSSes to be deduced. Indeed, such interpretations rep-
resent some forms of minima for the landscape explored by
SLS, and it is well-known that SLS methods are often “at-
tracted” towards those minima.

More precisely, during the exploration of the set of truth-
assignments made by a SLS, each set of falsified clauses is
considered, and is recorded only if it is not a superset of
a previous recorded set of clauses. After a given pre-fixed
amount of time, SLS is stopped and the clasicalCAMUS al-
gorithm is run, with adding new blocking clauses w.r.t. pre-
viously found MSSes. It is shown in [16] that each actual
preliminarily discovered MSS allows an NP-complete test
together with CoNP-complete tests to be avoided. In prac-
tice, this hydrid approach proves very efficient by delivering
a significant part of the MSSes of the CNF at a low cost, and
in allowing significant gains of efficiency to be obtained.

7 Extracting one smallest MUS

In this Section, the main approaches to compute the
smallest -in terms of the number of involved clauses-
MUSes, noted SMUS (Smallest Minimally Unsatisfiable
Subformula), are reviewed.

7.1 Enumerating subformulas

In [26], an algorithms for extracting one SMUS consists
of a mere enumeration of subformulas. Roughly, a method
that approximates an MUS (see Section 4) is called in or-
der to obtain an unsatisfiable subformula, that provides an
upper bound on the size of the smallest MUS. This enables
to prune the exploration of a large number of subformu-



las. Then, each strictly smaller subformula of the CNF is
checked for satisfiability and the smallest inconsistent one
is recorded. Clearly enough, when a CNF is satisfiable, so
are all its subformulas. Accordingly, when a subformula is
proved satisfiable during the search, the exploration of all
its subsets of clauses is pruned. After all subformulas have
been tested, the smallest unsatisfiable one is delivered as a
SMUS of the CNF. Unfortunately, this approach is limited
by the combinatorial blow-up of the number of subformu-
las. In practice, it can be performed for very small formulas,
only.

7.2 A branch & bound algorithm

A more efficient technique for extracting an SMUS is
presented in [28]. It is based both onbranch & boundtech-
niques and on the following property:

Property 2 Let Σ be a CNF, andω be an interpretation
falsifying the smallest possible number of clauses ofΣ, or
MaxSatsolution. Any clausec ∈ Σ falsified byω belongs
to at least one MUS ofΣ.

Accordingly, the technique of [28] requires us to iterate
MaxSat solutions to improve a lower bound on the size of
the SMUS. Indeed, if for instance two MaxSat solutions fal-
sify disjoint sets of clauses, following Property 2 the sizeof
the SMUS is at least two. This reasoning is generalized to
lower-bound the size of the SMUS(es).

An upper bound is next obtained as follows: by consid-
ering the set-theoretical union of the disjoint sets of falsified
clauses w.r.t. explored MaxSat solutions, one can obtain a
subformula that is unsatisfiable. The set of all MUSes of
this subformula is computed, and the upper bound is then
the size of the smallest MUS of this set.

If the upper bound is equal to the lower bound, then the
smallest MUS of the previously computed set of MUSes
is delivered as one SMUS. Otherwise, specific subformulas
are checked for satisfiability, the search being limited by
the known bounds. Furthermore, the approach is enhanced
by several additional features to improve the bounds and
reduce the subformulas space.

7.3 A greedy genetic approach

Finally, a greedy genetic algorithm has been proposed
for extracting one SMUS [35]. This approach uses the re-
lation between Maximum Satisfiability and Minimum Un-
satisfiability, like algorithms for computing all MUSes (see
Section 6). So, the idea is to compute all MSSes and to
derive the SMUS from them. Actually, each MSS is next
considered as achromosome, and a genetic approach is run,
including the classic crossover, mutation, inversion and se-
lection steps.

The authors show that their approach is faster than [28]’s
technique by one order of magnitude in practice. Nevethe-
less, it remains an incomplete approach which can deliver
an MUS that is not the smallest one. Even when one of
the actual smallest one is extracted, no warranty can be
provided, in opposite to the previously presented branch &
bound algorithm that ensures the optimality of the returned
set of clauses.

8 Other MUS-related results

In this Section some other results about the computation
of MUSes are briefly described.

In [24], a preprocessor for MUSes-computing techniques
is introduced. It is based on theautarkyconcept which is
defined as a partial assignment that satisfies all clauses that
contain an assigned literal. Indeed, within a CNF, clauses
satisfied by an autarky cannot be a part of any MUS (and
of any CoMSS neither). The authors propose a method to
efficiently remove clauses from CNFs thanks to the com-
putation of autarkies before using MUS-finding algorithms.
They show that this approach is relevant in practice for the
problems of finding out the SMUS and all MUSes of a CNF.

A theoretical study about categorization of clauses w.r.t.
their role in inconsistency can be found in [23]. Particu-
larly, the fact that clauses belong to one or several MUSes
can determine their classification. Thus, any clause that be-
longs to all MUSes of a formula is callednecessary clause.
Those clauses belong to any refutation by resolution, and
removing one of them allows satisfiability to be obtained.
Potentially necessary clausesbelong to at least one MUS of
the formula but not to all of them. Removing one of them
is not sufficient to regain satisfiability, but they can become
necessary with the removal of appropriate clauses. Clauses
that do not belong to any those categories are calledunnec-
essary, because they do not belong to any MUS. Removing
any combination of unnecessary clauses ensures that the in-
consistency of the formula remains, but in this case, the
size of the resolution proof can be very large. [23] pro-
vides finer-grained categorizations that allow for a better
understanding of the various possible roles and properties
of clauses within an unsatisfiable CNF.

Finally, the concept ofstrict inconsistent covers(SIC),
introduced in [15], locates all disjoint areas of inconsistency
in a CNF. This SIC can avoid to compute all MUSes of a
CNF while it permits to restore easily the satisfiability of
the CNF since the SIC is a set of disjoint MUSes of the
CNF s.t. the removing of these MUSes gives a satisfiable
CNF.



9 Conclusions

By stressing on minimal subsets of contradictory clauses
inside a CNF, MUSes is a useful concept to explain infeasi-
bility of a CNF. The issue of extracting MUSes in CNFs has
received much attention these last years, leading to signif-
icant practical computational progress, despite bad worst-
case complexity results. In this paper, recent approaches to
provide users with MUS-based explanations of infeasibility
have been presented.
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