
HAL Id: hal-00865295
https://hal.science/hal-00865295v1

Submitted on 24 Sep 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Experimenting a Conflict-Driven Clause Learning
Algorithm

Gilles Audemard, Laurent Simon

To cite this version:
Gilles Audemard, Laurent Simon. Experimenting a Conflict-Driven Clause Learning Algorithm. 14th
International Conference on Principles and Practice of Constraint Programming (CP’08), 2008, Syd-
ney, Australia. pp.630-634. �hal-00865295�

https://hal.science/hal-00865295v1
https://hal.archives-ouvertes.fr

Experimenting Small Changes in Conflict-Driven Clause
Learning Algorithms

Gilles Audemard1 and Laurent Simon2

1 Univ Lille-Nord de France CRIL / CNRS UMR8188,
Lens, F-62307audemard@cril.fr,

2 Univ Paris-Sud, LRI / CNRS UMR8623 / INRIA Saclay
Orsay, F-91405simon@lri.fr

Abstract. Experimentation of new algorithms is the usual companion section
of papers dealing with SAT. However, the behavior of those algorithms is so
unpredictable that even strong experiments (hundreds of benchmarks, dozen of
solvers) can be still misleading. We present here a set of experiments of very
small changes of a canonical Conflict Driven Clause Learning(CDCL) solver and
show that even very close versions can lead to very differentbehaviors. In some
cases, the best of them could perfectly have been used to convince the reader of
the efficiency of a new method for SAT. This observation can beexplained by the
lack of real experimental studies of CDCL solvers.

1 Introduction

Conflict-Driven Clause Learning algorithms (CDCL) have been one of the major break-
throughs in the practical solving of industrial SAT problems. Since the introduction of
ZChaff in 2001 [8], a lot of progresses have been made [3], andsolvers can now tackle
problems of millions of clauses. All techniques and methodsembedded in “modern”
solvers are well known: dynamic heuristics [8, 4], learning[9], restarts [6, 1] and lazy
data structures [8]. Efficient solvers can nowadays be written from scratch in less than
a thousand lines of code.
However, we believe that the underlying mechanisms are still not understood. They
result from extensive tests rather than strong experimental studies, where paradigms
would be proposed and tested against observations. We believe that new breakthroughs
in the next years may only come if we begin to really understand the reasons of solvers
performances. A new technique may be good, but can still be thrown away and not pub-
lished because of a dramatic side effect of a previously unknown behavior of CDCL
solvers. It is thus crucial to begin an in-depth study of modern solvers, without trying
to improve their performances at first. In this short paper, we try to consider a typical
CDCL solver, MINISAT [3], as a physical system that we try to test against well ad-
mitted ideas. Our final aim here is more to cast new questions to the community, given
some observations of MINISAT performances, rather than proposing a full and tested
paradigm of CDCL solvers. As a side effect of our studies, we illustrate how far one
may improve MINISAT performances with only a couple lines hack. This last obser-
vation may for instance be a standard to know whether or not new solvers bring really
new ideas or may result from a side effect of small changes of acanonical CDCL solver,
M INISAT.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 10 20 30 40 50 60 70

T
im

e
(s

)
to

 s
ol

ve
 a

n
in

st
an

ce

Number of solved instances

"minisat"
"best"

"best6"
"best24"
"best50"

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 10 20 30 40 50 60 70 80 90

C
P

U
 ti

m
e

(s
)

Number of solved instances

Minisat core
Minisat simp
Best option

Best of 2
Best of 3
Best of 4

Best of all

a. Shuffle Neighboorhood b. One-Parameter Neighboorood

Fig. 1. Studying Shuffling (left) and Parameters (right) (median time on 40 launches)

2 Shuffling Effects: the Lisa Syndrome, revisited

It is well admitted that shuffling instances have a negative effect on industrial bench-
marks (see the so-called “Lisa” Syndrom in [7], related to [2]). This observation has
motivated, in SAT Contests and SAT Races, to consider only proper benchmarks. Thus,
it is admitted that modern solvers explicitly use a heuristic that suppose a non-shuffled
instance. Over all explanations, one intuition is that firstvariables have more chances to
be input variables than additional variables introduced inorder to avoid combinatorial
explosion. During the first phase, MINISAT chooses decision variables in lexicographic
order (some solvers choose variables according to their occurrences in the input for-
mula). However, it is not clear how much one may lose by shuffling an instance. If the
above explanation holds, and if order of clauses and variables are related to some im-
portant structural property between clauses and literals,then one should loose a lot by
shuffling an instance before calling MINISAT.

All experiments are done with instances of the SAT Race 2006.Shuffling is done on
variables order, clauses order and literals order in each clause (like in [2]).

Figure 1.a shows the traditional performance plot for solvers comparison. It gives
the CPU time (in seconds) needed to solve a given number of instances. We can read
that MINISAT (without SATELITE preprocessing) is able to solve 55 problems. Curves
”best” (respectively”best6” , ”best24” and”best50”) plot the result of virtual solvers
which would have the best CPU time obtained on all 50 shuffled runs (respectively the
5th, 24th and 50th (median) percentile). Thus, a very simpleshuffling (50 times) of
instances allows to solve 69 instances in less than 900 seconds (in comparison to the 55
instances solved with only one run on the original problem).What is more striking, is
that there is 24% of chances to obtain better results by shuffling instance (see “best24”
curve). This result is clearly higher than one would have predicted if it was only justified
by the topology of the original problem (input/output variables encoding).

a. 10% Noisy Parameters b. Effect on clause deletion by size

Fig. 2.Noisy parameters (left, median on 40 runs) ; Clauses deletion (right, median on 20 runs)

3 Parameters effects

When tuning the solver, a number of parameters have to be set (like the randomness of
the heuristics, the number of conflicts before restarts, ...). We study how performances
can be enhanced by changing only one of these values in MINISAT. We took 10 different
magic values of MINISAT parameters and studied all (1-parameter) neighboors as they
were different solvers. For each value, we tried both MINISAT with SATELITE (called
simp) and without it (calledcore), on all original benchmarks. Between 5 and 8 different
values were tested for each of 10 parameters3, which give us 126 solvers (half with
SATELITE).

Figure 1.b gives the results for somevirtual solvers based on parameter neighbor-
hood. Eachbest of Ncurve corresponds to the subset of N solvers that give the best
results, if the N solvers were ran in parallel on N computers.First observation: using
two versions of MINISAT (the best couple of solvers were core withRESTARTINC=1
and simp with MINISAT default values) can pay a lot. It seems that keeping a very
fast restart policy, but without preprocessing, may pay. This shed a new light on re-
cent works on restart policies. We report the best of 3 solvers, also based on variants of
restart policies: MINISAT simp with default values, MINISAT core withRESTARTINC=1
and MINISAT core withRESTARTINC=1.1.

3 VARDECAY (inverse of the variable activity decay)∈ {0.5, 0.75, 0.85, 0.90, 0.95, 0.99,

0.999}; VARINC (init. amount to bump vars)∈ {1, 2, 5, 10, 50}; RESTARTINC
(factor by which the restart limit is multiplied after restarts) ∈ {1, 1.1, 1.25,

1.5, 1.75, 2, 4, 8}; RESTARTFIRST (init. restart limit) ∈ {10, 50, 100, 200, 500,

1000, 5000, 10000, 50000}; RANDOMVARFREQ (frequency with which MINISAT choose
a random variable rather than the heuristics based one)∈ {0, 0.001, 0.002, 0.003,

0.01, 0.05, 0.1, 0.5}; LEARNTSIZEINC (factor that increases the limit of learnt clauses)
∈ {0.5, 0.8, 1, 1.1, 1.2, 1.5, 2, 4}; LEARNTSIZEFACTOR (limit for learnt clauses as a fac-
tor of the total number of clauses)∈ {1, 1.5, 2, 3, 4, 5, 8}; CLAINC (init.amount to bump
clauses with)∈ {1, 2, 5, 10, 50}; CLAUSEDECAY (inverse of the clause activity decay fac-
tor) ∈ {0.5, 0.75, 0.85, 0.90, 0.95, 0.99}; POLARITYMODE (branching)∈ {false, true}

The second observation is based on the proximity of all best-N curves (except for
the best of all, that even though, joins all best-N curves at the end), which means that
M INISAT really reaches its limits there. One may cast doubts on the real improvement
of CDCL solvers if any brand new solver does not really improve this “hard” limit.

Figure 2.a reports another experiment: we took MINISAT and, each time one of the
10 constants was requested, we added 10% random noise to it. We can see that the
“noisy” M INISAT now behaves like another solver. When new methods exhibit similar
performance plot w.r.t MINISAT, nothing can be really drawn from it. This can only
be due to some hidden noise. Last observation we made: When considering the whole
neighborhood, using SATELITE as a preprocessor is not so important. We measured that
differences between best of all simp versions and best of allcore versions are only by
one more bench solved for the first version.

4 Learning large or short clauses?

In order to avoid memory explosion, modern solvers clean outlearnt clauses database.
Clauses with less activity (the number of times that these clauses were directly, and
recently, considered when analyzing the reasons for the conflict) are deleted. However,
it is not necessary for CDCL solver completeness to keep learnt clauses until the end.
They just have to provide a reason for current asserting literals. This reason, repre-
sented as a clause, can be forgotten when it becomes unnecessary. We analyze here the
behavior of MINISAT when one forces it to forget some clauses. Our first goal is to
know whether some classes of clauses may be removed without degrading MINISAT

performances. The second is more important. We believe thatimprovements of future
CDCL solvers are related to highlighting ”important” learnt clauses (yet another time,
in a multi-core context, it would be worth sharing a clause between processes only if it
is important, see [5] for example).

We conducted this experiment as follows. First, we run MINISAT on shuffled in-
stances (20 times), and store, for each benchmark, the median size of learnt clauses.
Then, we run 3 versions of MINISAT. The first one forgets 25 % of learnt clauses of
any size. In the second (resp. third), it forgets 50% of clauses of size less than (resp.
greater than) the computed median size (for a given benchmark). For each parameter,
and each benchmark, we consider the median CPU time over 20 shuffled instances. This
experiment should show what is highly believed: the size of learnt clauses matters.

Results are summarized in figure 2.b and, contrary to what is usually believed, it
seems that short clauses are notsignificantlymore important than large ones. Indeed,
removing short, large or any clauses produces approximatively the same results at the
end. This was already pointed out in previous, theoretical,works, that shown that some
proofs need large clauses, but it is surprising to measure inpractice that deleting 50%
of short clauses is not so different than deleting 50% of large clauses. We also tried
to characterize important clauses with other parameters (number of resolutions step
during conflict analysis, minimal resolution depth of clauses), but results are identical,
andimportantclauses are very hard to characterize, with a global measure.

5 Conclusion

In [2], it was already proposed to use shuffling techniques tocharacterize the behav-
ior of solvers, and to begin a real experimental study of them. However, this is not
a sufficient framework to really test solvers against hypothesis, as they were physical
systems. This work is a first step in this direction. We took a canonical, well known,
solver, MINISAT, and built experimental studies in order to validate or invalidate some
well admitted ideas. So, what can be drawn from our very simple experiments? First,
shuffling instances is not as bad as one may have expected. In 25% of the case, it may
pay, which is probably to high to confirm that the locality of variables and the order of
clauses in real world problems really matters. It is often argued that shuffling instances
is useless and has no meaning at all from a practical point of view. However, if one
wants to add good learnt clauses somewhere in a formula, by any preprocessing tech-
nique, then it is essential to understand where to add it, andif the order really matters
and how. At last, we showed that it is not possible to considershort clauses as globally
more important than large clauses, which is highly counter-intuitive and was believed
to be false. We also show that, by moving parameters, one may obtain really different
solvers.

In the next years, CDCL framework will probably be extended to multi-core archi-
tectures, which will increase their complexity and their “unpredictability”. If one wants
to understand their behavior, a lot of effort has to be made now. Would it be satisfactory
to use the multi-core ability of next processors generationonly by using different shuf-
fled instances of the same benchmarks? We shown in this paper that a lot of progress
has to be done in order to really, deeply, understand why CDCLare so efficient, and
what mechanisms are essential. In the quest for efficiency, it is urgent to begin to study
them, from a real, deep, experimental perspective.

References

1. A. Biere. Adaptive restart strategies for conflict drivenSAT solvers. InProceedings of SAT’08,
pages 28–33, 2008.

2. F. Brglez, X.Y. Li, and M. F. Stallmann. On SAT instance classes and a method for reliable
performance experiments with SAT solvers.Annals of Mathematics and Artificial Intelligence,
43:1–34, 2005.

3. Niklas Een and Niklas Sorensson. An extensible sat-solver. In Enrico Giunchiglia and Ar-
mando Tacchella, editors,SAT, volume 2919 ofLNCS, pages 502–518. Springer, 2003.

4. Eugene Goldberg and Yakov Novikov. BerkMin: A fast and robust SAT-solver. Discrete
Applied Mathematics, 155(12):1549–1561, 2007.

5. Y. Hamadi, S. Jabbour, and L. Sais. ManySAT: Solver description. InSystem description for
the SAT-RACE, 2008.

6. Jinbo Huang. The effect of restarts on the efficiency of clause learning. Inproceedings of
IJCAI’07, pages 2318–2323, 2007.

7. D. Le Berre and L. Simon. Essentials of the SAT’03 competition. SAT’03, 2003.
8. M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering an efficient

SAT solver. InProceedings of DAC’01, pages 530–535, 2001.
9. João P. Marques Silva and Karem A. Sakallah. Grasp - a new search algorithm for satisfiabil-

ity. In ICCAD, pages 220–227, 1996.

