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A Decomposition Technique for Max-CSP

The objective of the Maximal Constraint Satisfaction Problem (Max-CSP) is to find an instantiation which minimizes the number of constraint violations in a constraint network. In this paper, inspired from the concept of inferred disjunctive constraints introduced by Freuder and Hubbe, we show that it is possible to exploit the arc-inconsistency counts, associated with each value of a network, in order to avoid exploring useless portions of the search space. The principle is to reason from the distance between the two best values in the domain of a variable, according to such counts. From this reasoning, we can build a decomposition technique which can be used throughout search in order to decompose the current problem into easier sub-problems. Interestingly, this approach does not depend on the structure of the constraint graph, as it is usually proposed. Alternatively, we can dynamically post hard constraints that can be used locally to prune the search space. The practical interest of our approach is illustrated, using this alternative, with an experimentation based on a classical branch and bound algorithm, namely PFC-MRDAC.

Introduction

The Constraint Satisfaction Problem (CSP) is the task of determining if a given constraint network is satisfiable or not, i.e. if it is possible to assign a value to all variables in order to satisfy all constraints. When no solution can be found, it may be interesting to identify a complete instantiation which satisfies the greatest number of constraints (or equivalently, which minimizes the number of violated constraints). This is called the Maximal Constraint Satisfaction Problem (Max-CSP).

During the last decade, many works have been carried out to solve this problem (and its direct extension, WCSP). The basic (complete) approach is to employ a branch and bound mechanism, traversing the search space in a depth-first manner while maintaining an upper bound, the best solution cost found so far, and a lower bound on the best possible extension of the current partial instantiation. When the lower bound is greater than or equal to the upper bound, backtracking (or filtering) occurs. Lower bound computations of constraint violations have been improved repeatedly, over the years, by exploiting inconsistency counts [START_REF] Freuder | Partial constraint satisfaction[END_REF][START_REF] Larrosa | Maintaining reversible DAC for Max-CSP[END_REF][START_REF] Affane | A weighted arc-consistency technique for Max-CSP[END_REF][START_REF] Larrosa | Partition-Based lower bound for Max-CSP[END_REF], disjoint conflicting sets of constraints [START_REF] Regin | New lower bounds of constraint violations for over-constrained problems[END_REF], or cost transfers between constraints [START_REF] Cooper | Arc consistency for soft constraints[END_REF][START_REF] De Givry | Existential arc consistency: Getting closer to full arc consistency in weighted CSPs[END_REF][START_REF] Cooper | Optimal Soft Arc Consistency[END_REF].

Alternative approaches (usually) combine branch and bound search with dynamic programming or structure exploitation. On the one hand, Russian Doll Search [START_REF] Verfaillie | Russian doll search for solving constraint optimization problems[END_REF] and variable elimination [START_REF] Larrosa | Boosting search with variable elimination in constraint optimization and constraint satisfaction problems[END_REF] can be considered as dynamic programming methods, whose principle is to solve successive sub-problems, one per variable of the initial problem. On the other hand, structural decomposition methods [START_REF] Jégou | Hybrid backtracking bounded by treedecomposition of constraint networks[END_REF][START_REF] Marinescu | AND/OR Branch-and-Bound for Graphical Models[END_REF][START_REF] De Givry | Exploiting Tree Decomposition and Soft Local Consistency In Weighted CSP[END_REF] exploit the structure of the problems in order to establish some conditions about possible decompositions. Such methods are based on tree decomposition, provide interesting theoretical time complexities which depend on the width of the decomposition (tree-width), and are becoming increasingly successful.

In [START_REF] Freuder | Using inferred disjunctive constraints to decompose constraint satisfaction problems[END_REF], Freuder and Hubbe have proposed to exploit, for constraint satisfaction, the principle of inferred disjunctive constraints: given a satisfiable binary constraint network P , for any pair (X, a) where X is a variable of P and a a value in the domain of X, if there is no solution containing a for X, then there is a solution containing a value (for another variable) which is not compatible with (X, a). Using this principle, the authors show that it is possible to dynamically and iteratively decompose a problem.

In this paper, we generalize this approach to Max-CSP (including the non-binary case) by exploiting the arc-inconsistency counts, associated with each value of the problem. The arc-inconsistency count (aic for short) of a pair (X, a) corresponds to the number of constraints that do not support (X, a). The aic gap associated with the variable X is the absolute difference between the two lowest arcinconsistency counts of values of X (plus 1). We show that it is possible to reason from the aic gap to obtain a condition under which we have the guarantee to obtain an optimal solution, while avoiding to explore some portions of the search space.

From this reasoning, we can build a decomposition technique which can be used throughout search to decompose the current problem into simpler sub-problems, generalizing for Max-CSP the approach of [START_REF] Freuder | Using inferred disjunctive constraints to decompose constraint satisfaction problems[END_REF]. It is important to remark that unlike usual decomposition methods, this approach does not depend on the structure of the constraint graph, since the decomposition can always be applied, whatever the structure of the constraint graph is. Alternatively, we can dynamically post hard constraints that can be used locally to prune the search space. Depending on the implementation, these hard constraints can participate to constraint propagation, or just impose backtracking.

The paper is organized as follows. After some technical background, we introduce the central result of this paper. Then, we present two main exploitations of it: decomposition and pruning. After the presentation of some experimental results, we conclude.

Background

In this paper, we are dealing with the discrete CSP (Constraint Satisfaction Problem) framework. Each CSP instance P corresponds to a constraint network which is defined by a finite set of n variables {X1, X2, . . . , Xn} and a finite set of e constraints {C1, C2, . . . , Ce}. Each variable X must be assigned a value from its associated discrete domain dom(X), and each constraint C involves an ordered subset scp(C) of variables of P , called its scope, and specifies the set rel(C) of combinations of values allowed for the variables of its scope. |scp(C)| is called the arity of C, and C is binary if its arity is 2. A CSP instance is binary if it only contains binary constraints, and normalized if it does not contain two constraints with the same scope. Two variables are neighbours iff they both belong to the scope of a constraint. A complete instantiation is the assignment of a value to each variable. Let s denote a complete instantiation, s(X, a) is the complete instantiation obtained from s by replacing the value assigned to X in s by a. A constraint C is violated (or unsatisfied) by a complete instantiation s iff the projection of s over scp(C) does not belong to rel(C). A solution is a complete instantiation that satisfies every constraint.

In some cases, the CSP instance may be over-constrained, and thus admits no such solution. We can then be interested in finding a complete instantiation that best respects the set of constraints. In this presentation, we consider the Max-CSP problem where the goal is to find an optimal solution, i.e. a complete instantiation satisfying as many constraints as possible. A Max-CSP instance is also represented by a constraint network.

Given a constraint C with scp(C) = {Xi 1 , . . . , Xi r }, any tuple in dom(Xi 1 ) × . . . × dom(Xi r ) is called a valid tuple on C. A value a for the variable X is often denoted by (X, a). A constraint C supports the value (X, a) (equivalently, a value (X, a) has a support on C) iff either X / ∈ scp(C) or there exists a valid tuple on C which belongs to rel(C) and which contains the value a for X. When any value is supported by a constraint, this constraint is said (generalized) arc-consistent. For the binary normalized case, we say that a variable Y supports the value (X, a) iff either no constraint involves both X and Y , or such a constraint supports (X, a). For a binary constraint C such that scp(C) = {X, Y }, a value (X, a) is compatible with a value (Y, b) iff (a, b) belongs to rel(C). The arc-inconsistency count of a value (X, a), denoted by aic(X, a), is the number of constraints (variables for the binary normalized case) which do not support (X, a).

Main Theorem

In this section, we present the main result of this paper, generalizing the approach [START_REF] Freuder | Using inferred disjunctive constraints to decompose constraint satisfaction problems[END_REF] developed in the context of binary CSP. Definition 3.1 Let P be a Max-CSP instance and X be a variable of P . An aic best value of X is a value a ∈ dom(X) such that aic(X, a) is minimal, i.e. ∀c ∈ dom(X), aic(X, a) ≤ aic(X, c). An aic second best value of X is a value b ∈ dom(X) such that b = a and ∀c ∈ dom(X) \ {a, b}, aic(X, b) ≤ aic(X, c). The aic gap of X is defined as δ = aic(X, b) -aic(X, a) + 1. Theorem 3.1 Let P be a Max-CSP instance, X be a variable of P , a be an aic best value of X, δ be the aic gap of X and C1, . . . , Cm be the m constraints involving X which support (X, a). There always exists an optimal solution s * of P such that:

• either X is assigned the value a in s * , • or X is assigned a value different from a in s * , and at least δ constraints among C1, . . . , Cm are violated by s * (X, a).

Proof: When P has an optimal solution where X is assigned a, the first condition is obviously satisfied and the theorem is verified. Otherwise if there is no optimal solution where X = a, let s * = (v1, ..., v, ..., vn) be an optimal solution of P , and let v be the value of X in s * . Let CX be the set of constraints of P involving the variable X (CX is a superset of {C1, . . . , Cm}).

Assume that s * violates p constraints of CX and s * (X, a) violates q constraints of CX . Since there is no optimal solution with X = a, s * (X, a) necessarily violates more constraints of CX than s * and therefore q > p. Necessarily, we have p ≥ aic(X, v) and q ≥ aic(X, a) since arc-inconsistency counts computed wrt P represent lower bounds of aic counts obtained after assigning all variables of P . Therefore, ∃t ≥ 0, r ≥ 0 s.t. p = aic(X, v) + r and q = aic(X, a) + t. Since q > p, aic(X, a) + t > aic(X, v) + r or equivalently t > aic(X, v) -aic(X, a) + r. Since v = a, we have aic(X, v) ≥ aic(X, b) (b is an aic second best value of X) and therefore t > aic(X, b) -aic(X, a) + r. As r ≥ 0 and δ = aic(X, b) -aic(X, a) + 1, we obtain t ≥ δ. This means that at least δ constraints of P which support (X, a) involve variables whose values given by s * are not compatible with (X, a). Therefore, the theorem is also verified. 2

This theorem can be used in two different ways. It can be used to generate a decomposition of the Max-CSP instance or it can be exploited as a pruning rule.

The Decomposition Approach

The decomposition of a Max-CSP instance P around a variable X is defined as follows.

Definition 4.1 Under the hypotheses and with the notations of Theorem 3.1, the decomposition of a Max-CSP instance P around the value a of variable X generates the sub-problems P0, P1, . . . P k (with k = `m δ ´) defined by: • P0 is derived from P by assigning a to variable X • Pi (with i ∈ 1..k) is derived from P by removing a from the domain of X and restricting the assignments of neighbours of X so that at least δ of the constraints supporting (X, a) in P do not support (X, a) in Pi any more.

These sub-problems may be solved independently and Theorem 3.1 guarantees that at least one of them contains an optimal solution of P . It should be noticed that this decomposition may prune some (equivalent) optimal solutions of P .

As described in the definition, the sub-problems are not disjoint which means that an assignment may be a solution of several subproblems simultaneously. It is however easy to generate disjoint subproblems as will be shown in section 4.2. With m denoting the number of constraints that support (X, a), this decomposition generates 1 + `m δ ´sub-problems (when δ = 1, this number is equal to 1 + m and is bounded by n-aic(X, a) with n the number of variables). Although the number of sub-problems is exponential in δ, Section 4.3 proves that the search space of the different sub-problems P0, . . . P k is exponentially smaller than the search space of the initial problem P provided that we generate disjoint sub-problems. This means that the decomposition is always beneficial because, even if it may generate many sub-problems, they are always easier to solve globally than the initial problem.

Example

To illustrate the decomposition technique, let us consider the binary constraint network P built on {X1, X2, X3} and containing the constraints {C12, C13, C23}. We have dom(Xi) = {1, 2, 3} for i ∈ 1..3, and the constraints are defined by the following tables (allowed tuples):

rel(C 12 ) X 1 X 2 1 1 1 2 3 1 rel(C 13 ) X 1 X 3 1 1 1 2 2 1 2 3 3 2 rel(C 23 ) X 2 X 3 1 3 3 1
An optimal solution of this Max-CSP instance violates one constraint. For example, X1 = 1, X2 = 1, X3 = 2 is an optimal solution which violates the constraint C23. To perform the decomposition strategy, we have to select one variable and one of its aic best values. For example, (X1, 1) is one aic best value of X1 since aic(X1, 1) = 0, aic(X1, 2) = 1 and aic(X1, 3) = 0. Here, we have δ = 1. The decomposition around (X1, 1) leads to the following independent sub-problems: P0 is derived from P by assigning X1 = 1. In P0, dom(X 0 1 ) = {1}, dom(X 0 2 ) = dom(X 0 3 ) = {1, 2, 3}. P1 is derived from P by asserting X1 = 1 and restricting the domain of X2 to the values incompatible with (X1, 1). In P1, dom(X

1 1 ) = {2, 3}, dom(X 1 2 ) = {3}, dom(X 1 3 ) = {1, 2, 3}.
P2 is derived from P by asserting X1 = 1 and restricting the domain2 of X2 to the values incompatible with (X1, 1) and restricting the domain of X3 to the values compatible with (X1, 1). In P2, dom(X 2 1 ) = {2, 3}, dom(X 2 2 ) = {1, 2}, dom(X 2 3 ) = {3}. Notice that the sub-problem where dom(X1) = {2, 3}, dom(X2) = {1, 2} and dom(X3) = {1, 2} is pruned and this subproblem contains an optimal solution of the whole problem which is X1 = 3, X2 = 1 and X3 = 2. Now, let us modify slightly the initial problem. Assume that the value 3 of X1 is incompatible with all values of X3, then we have:

rel(C 13 ) X 1 X 3 1 1 1 2 2 1 2 3
In this case, for X1 there is only one aic best value (since aic(X1, 1) = 0, aic(X1, 2) = 1 and aic(X1, 3) = 1) and so δ = 2. Thus, the decomposition leads only to two sub-problems P0 and P1. P0 is unchanged and P1 is obtained from P by asserting X1 = 1 and restricting the domain of X2, X3 to the values incompatible with (X1, 1). In P1, dom(X 1 1 ) = {2, 3}, dom(X 1 2 ) = {3}, dom(X 1 3 ) = {3}. In this case we have discarded the following two sub-problems: P2 where dom(X 2 1 ) = {2, 3}, dom(X 2 2 ) = {3} and dom(X 2 3 ) = {1, 2}, and P3 where dom(X3 1 ) = {2, 3}, dom(X 3 2 ) = {1, 2} and dom(X 3 3 ) = {1, 2, 3}. The sub-problem P3 contains one optimal solution of P : X1 = 3, X2 = 1 and X3 = 3.

For the initial problem, the decomposition prunes 2 3 out of 3 3 possible complete instantiations while in the modified problem it prunes 16 (more than a half) of them.

Enumeration of Sub-problems

For the sake of simplicity, we now assume that constraints are binary and normalized (i.e. they all have different scopes) but the method is easy to generalize 3 . When constraints are binary, ensuring that a constraint C with scp(C) = {X, Y } does not support (X, a) simply amounts to reducing the domain of Y to the values incompatible with (X, a).

Enumerating all the sub-problems in the decomposition and ensuring that these problems are disjoint is as simple as enumerating the values of a binary counter under the constraint that at least δ of its bits must be 0.

Let . Exhaustive search on all values of all variables Y will enumerate the 2 m binary words (from all 0 to all 1).

When X = a is chosen for the decomposition of a problem P , the first sub-problem is P0 where X = a and the other sub-problems are the ones where X = a and where δ variables among the m variables Yi which support (X, a) have their domain reduced to I X=a Y i . A simple solution to avoid any redundant or useless search is to use the binary branching scheme presented above. The restriction where δ variables among the m variables Yi have their domain reduced to I X=a Y i translates to the condition 'at least δ bits in the binary word representing the branch must be 0'. This condition is trivial to enforce in a binary branching. As an example, Figure 1 represents the branches that must be explored for two different values of δ and for n = 4 variables. For clarity, * is used as a joker to represent any 0/1 value.

Y1 Y2 Y3 Y4 0 * * * 1 0 * * 1 1 0 * 1 1 1 0 (a) search with δ = 1 Y1 Y2 Y3 Y4 0 0 0 * 0 0 1 0 0 1 0 0 1 0 0 0 (b) search with δ = 3

Some Complexity Results

Interestingly, this binary branching scheme allows to draw immediate complexity results. Assume that Y1, . . . , Ym are the variables which support (X, a) and that Z1, . . . , Zr are the other unassigned variables. Without applying the decomposition, an exhaustive search of the sub-problem where X = a will have to explore the Cartesian product of the domains which amounts to . This means that the number of complete instantiations which are not explored amounts to: have the same size i, the number of pruned complete instantiations simplifies as:

Q m i=1 |dom(Yi)|.
X S∈2 {Y i } with card(S)<δ Y Y i ∈S |I X=a Y i |. Y Y i ∈S |C X=a Y i |.
X j≤δ n j ! i j c m-j r Y i=1 |dom(Zi)| When δ = 1, the number of pruned complete instantiations is just i.c m-1 Q m i=1 |dom(Zi)|.
It roughly corresponds to the size of the so-called consistent sub-problem identified in [START_REF] Freuder | Using inferred disjunctive constraints to decompose constraint satisfaction problems[END_REF] for the CSP case. In any case, the number of complete instantiations that are explored when the decomposition is applied is smaller than the initial number of complete instantiations to explore (by an exponential factor in the general case).

Related Work

Classical structural decomposition methods combine tree decomposition of graphs with branch and bound search [START_REF] Jégou | Hybrid backtracking bounded by treedecomposition of constraint networks[END_REF][START_REF] Marinescu | AND/OR Branch-and-Bound for Graphical Models[END_REF][START_REF] De Givry | Exploiting Tree Decomposition and Soft Local Consistency In Weighted CSP[END_REF]. A tree decomposition involves computing a pseudo-tree which covers the set of variables by clusters. Two clusters are adjacent in this tree if they share some variables. An important property of tree decomposition is that the sub-problems associated with clusters may be solved independently after assigning values to the shared variables. In practice, the efficiency of decomposition methods highly depends on the structure of the constraint graph.

The decomposition approach presented here, inspired from [START_REF] Freuder | Using inferred disjunctive constraints to decompose constraint satisfaction problems[END_REF], proceeds differently from classical ones since the principle is to directly decompose the whole problem into independent sub-problems without computing any pseudo-tree or assigning any variable of the problem. Each sub-problem can be solved independently while in the same time, a portion of the search space of the whole problem is pruned. The downside of this method is that the number of generated sub-problems may be large. However, the decomposition does not rely on the structure of the constraint graph.

The Pruning Approach

Another way to exploit Theorem 3.1 is to interpret it as a pruning rule which can be integrated into any method based on tree search to solve the Max-CSP problem. Assuming here a tree search algorithm employing a binary branching scheme, at each node ν, a value (X, a) is selected, and two branches are built from ν: a left one labelled with the variable assignment X = a, and a right one labelled with the value refutation X = a. Considering the current instance at node ν, let a, δ and {Ci} be the best aic value of X, the aic gap of X and the set of constraints supporting (X, a), respectively. As soon as the left branch has been explored, one can post a hard constraint atLeastU nsatisf ied(δ, {Ci}, (X, a)) before exploring the right branch of ν. This constraint is violated as soon as it is no more possible to find in {Ci}, at least δ constraints which do not support anymore (X, a). Of course, a constraint posted with respect to the right branch of node ν must be removed when the algorithm backtracks from ν.

These hard constraints, dynamically added to the instance, can be used to impose backtracking, and consequently, to avoid exploring useless portions of the search space. After each propagation phase, one can simply check that all currently posted hard constraints are still satisfied. If this is not the case, backtracking occurs. We will denote any tree search algorithm A, exploiting this approach, by A-P C (Pruning Constraints). Interestingly, except for some particular search heuristics (such as the ones based on constraint weighting), we have the guarantee that A-P C will always visit a tree which is included in the one built by A.

On the other hand, the additional hard constraints can also participate to constraint propagation. When for a constraint atLeastU nsatisf ied(δ, {Ci}, (X, a)), we can determine that at most δ constraints of {Ci} can still be in a position of not supporting (X, a), we can impose that these δ constraints do not support (X, a), making then new inferences. For example, for a binary constraint of {Ci}, among the δ ones, involving X and another variable Y , any value of Y compatible with (X, a) can be removed. Here, we can imagine sophisticated mechanisms to manage propagation such as the use of lazy structures (e.g. watched literals).

Importantly, notice that this pruning approach can be integrated into many search algorithm solving the Max-CSP problem, including hybrid ones that combine tree decomposition with enumeration.

Experimental Results

In order to show the practical interest of the approach described in this paper, we have conducted an experimentation on a cluster of Xeon 3,0GHz with 1GiB under Linux using the benchmark suite used for the 2006 competition of Max-CSP solvers (see http://www.cril.univ-artois.fr/CPAI06/). We have used the classical branch and bound PFC-MRDAC algorithm [START_REF] Larrosa | Maintaining reversible DAC for Max-CSP[END_REF] which maintains reversible directed arc-inconsistency counts in order to compute lower bounds at each node of the search tree, and have been interested in the impact of using the PC (Pruning Constraints) approach (see Section 5). We have used here the variant that just imposes backtracking, and have not still implemented the one that allows to make inferences. We have not still implemented the decomposition approach either.

Two variable ordering heuristics have been considered. The first one is dom/ddeg, usually considered for Max-CSP, which selects at each node the variable with the lowest ratio domain size on dynamic degree. The second one, denoted by dom * gap/ddeg, involves the aic gap of the variables. More precisely, the ratio dom/ddeg is multiplied by the aic gap in order to favour variables for which there is a large gap between the best value and the following one. We believe that it may help quickly finding good solutions and, more specifically, increasing the efficiency of our approach. Finally, the value with the lowest aic is always selected. Notice that it can be seen as a refinement of the ic + dac counters usually used to select values.

The protocol used for our experimentation is the following: for each instance, we start with an initial upper bound4 set to infinity, and record the (cost of the) best solution found (and time-stamp it) within a given time limit (here, 1, 500 seconds). Even if this protocol prevents us from getting some useful results for some instances (for example, if the same best solution is found by the different algorithms after a few seconds), it benefits from being easily reproducible and exploitable, whether the optimum value is known or not.

First of all, recall that we have the guarantee that PFC-MRDAC-PC always visits a tree which is smaller than the one built by PFC-MRDAC. It makes our experimental comparisons easier. We can then make a first general observation about the results of our experimentation. The overhead of managing PC hard constraints is usually between 5% and 10% of the overall cpu time. Since on random instances, our approach permits to only save a limited number of nodes (as expected), we obtain a similar behaviour with PFC-MRDAC and PFC-MRDAC-PC. This is not shown here, due to lack of space. On the other hand, on structured instances, Table 1 presents the results on representative instances and clearly demonstrates the interest of our approach. These instances belong to academic and patterned series maxclique (brock, p -hat,san), kbtree (introduced in [START_REF] De Givry | Exploiting Tree Decomposition and Soft Local Consistency In Weighted CSP[END_REF]), dimacs (ssa) and composed, and also to real-world series celar (scen, graph) and spot. The ratio introduced in the table corresponds to the cpu of PFC-MRDAC divided by the cpu of PFC-MRDAC-PC. It is either an exact value (when both methods have found the same upper bound) or an approximate one (in this case, we use the time limit 1, 500 as a lower bound). For example, on instance spot5 -404, we obtain 74 as upper bound with PFC-MRDAC and 73 with PFC-MRDAC-PC. Since, any node visited by PFC-MRDAC-PC is necessarily visited by PFC-MRDAC, we know that at least 1, 500 seconds are required by PFC-MRDAC to find the upper bound 73. We then obtain a speedup ratio which is greater than 1, 500/99 = 15.1. Remark that, as expected, the results are more impressive when using the heuristic dom * gap/ddeg (more than two orders of magnitude on some instances) which besides, often allows us to find better upper bounds. Finally, for a very limited number of these instances, we succeeded in finding an optimal value and proving optimality, given 20 hours of cpu time per instance. For example, for brock-200-2, optimality is proved when using PC in 13, 394 and 29, 217 seconds with dom/ddeg and dom * gap/ddeg respectively, while optimality is not proved within 72, 000 seconds when PC is not employed. As an-other example, the instance scenw-06-24 is solved in 18, 858 seconds with PFC-MRDAC-PC-dom * gap/ddeg and in 37, 405 seconds when PC is not used.

Conclusion

In this paper, we have generalized to Max-CSP the principle of inferred disjunctive constraints introduced in [START_REF] Freuder | Using inferred disjunctive constraints to decompose constraint satisfaction problems[END_REF] for CSP. Using the socalled aic (arc-inconsistency count) gap, we have shown that it was possible to obtain a guarantee about the obtention of an optimal solution, while pruning some portions of the search space. Interestingly, this result can be exploited both in terms of decomposition (already addressed for CSP in [START_REF] Freuder | Using inferred disjunctive constraints to decompose constraint satisfaction problems[END_REF]) and backtracking/filtering (by posting hard constraints). We have shown that our approach, grafted to a classical branch and bound algorithm, was really boosting search when solving structured instances. Indeed, using PFC-MRDAC, we have noticed a speedup that sometimes exceeds one order of magnitude with the heuristic dom/ddeg and two orders of magnitude with the original dom * gap/ddeg.

We want to recall that dynamic programming and decomposition methods, which have recently received a lot of attention, still rely on branch and bound search. It means that all these methods may benefit from the approach developed in this paper. Finally, one perspective of this work is to extend it with respect to Weighted CSP and Valued CSP frameworks.
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 1 Best upper bound (ub, number of violated constraints) and cpu time (to reach it) obtained with PFC-MRDAC on structured instances, with (P C) and without (¬P C) the Pruning Constraints method. The timeout was set to 1, 500 seconds per instance.

					PFC-MRDAC
			dom/ddeg		dom*gap/ddeg
			¬P C P C ratio ¬P C P C	ratio
	Academic and Patterned instances		
	brock-200-1	ub cpu 1, 490 706 > 2.1 184 183	184 183 3 57 > 26.3
	brock-200-2	ub cpu	191 191 638 92 > 6.9	191 190 85 201 > 7.4
	composed-25-1-2-1 ub cpu	3 613 332 = 1.8 3	6 19 846 > 1.7 3
	composed-25-1-25-1 ub cpu	4 92	4 72 = 1.2	6 14 1, 407 3	> 1
	kbtree-9-2-3-5-20-01 ub cpu	6 996 1, 333 > 1.1 0	3 0	0 15 > 100
	13 cpu 1, 037 1, 009 = 1.0 1, 177 392 13 14 4 kbtree-9-2-3-5-30-01 ub	> 3
	keller-4	ub cpu	162 160 36 303 > 4.9	162 160 1 149 > 10.0
	p-hat300-1	ub cpu	293 293 396 76 = 5.2 1, 481 224 = 6.6 293 293
	p-hat500-1	ub cpu 1, 357 652 = 2.0 493 493	493 492 33 717 > 2.0
	san-200-0.9-1	ub cpu 1, 425 1, 287 > 1.1 174 173	157 155 0 888 > 1.6
	sanr-200-0.7	ub cpu	185 185 426 94 = 4.5	185 184 808 324 > 4.6
	ssa-0432-003	ub cpu	82 0 175 > 8.5 73	11 46	2 19 > 78.9
	ssa-2670-130	ub cpu	392 390 1 56 > 26.7	52 55 1, 126 > 1.3 49
	Real-world instances				
	graph6	ub cpu	342 341 216 935 > 1.6	366 365 7 406 > 1.0
	graph8-f11	ub cpu	161 159 5 1, 299 > 1.1	160 160 644 56 = 11.5
	graph11	ub cpu	576 576 5 5	= 1	620 620 677 70 = 9.6
	scen6	ub cpu	269 269 69 27 = 2.5	211 211 20 14 = 1.4
	scen10	ub cpu	744 744 34 34	= 1	741 741 623 56 = 11.1
	scen11-f12	ub cpu	81 729 395 = 1.8 81	66 146	66 35 = 4.1
	scenw-06-18	ub cpu	215 214 8 934 > 1.6	133 131 231 442 > 3.3
	scenw-06-24	ub cpu	98 686 244 = 2.8 98	121 117 741 400 > 3.7
	scenw-07	ub cpu 1, 239 471 = 2.6 353 353	525 524 25 8 > 187.5
	spot5-28	ub cpu	207 206 0 31 > 48.3	196 196 1 1	= 1
	spot5-29	ub cpu	52 25 305 > 4.9 51	49 807	48 29 > 51.7
	spot5-42	ub cpu	124 124 900 64 = 14.0 1, 157 122 122 6 = 192.8
	spot5-404	ub cpu	74 85	73 99 > 15.1	76 0 331 > 4.5 73

This restriction is enforced to obtain disjoint sub-problems, see 4.2

This restriction just ensures that reducing the domain of a neighbour of X will affect only one constraint on X. Otherwise we have to take into account some variables more than once.

In the experimentation, Max-CSP was considered as the problem of minimizing the number of violated constraints.
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