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A Decomposition Technique for Max-CSP

Hachémi Bennaceur, Christophe Lecoutre, Olivier Roussel1

Abstract. The objective of the Maximal Constraint Satisfaction

Problem (Max-CSP) is to find an instantiation which minimizes the

number of constraint violations in a constraint network. In this paper,

inspired from the concept of inferred disjunctive constraints intro-

duced by Freuder and Hubbe, we show that it is possible to exploit

the arc-inconsistency counts, associated with each value of a net-

work, in order to avoid exploring useless portions of the search space.

The principle is to reason from the distance between the two best

values in the domain of a variable, according to such counts. From

this reasoning, we can build a decomposition technique which can

be used throughout search in order to decompose the current prob-

lem into easier sub-problems. Interestingly, this approach does not

depend on the structure of the constraint graph, as it is usually pro-

posed. Alternatively, we can dynamically post hard constraints that

can be used locally to prune the search space. The practical interest

of our approach is illustrated, using this alternative, with an experi-

mentation based on a classical branch and bound algorithm, namely

PFC-MRDAC.

1 Introduction

The Constraint Satisfaction Problem (CSP) is the task of determining

if a given constraint network is satisfiable or not, i.e. if it is possible to

assign a value to all variables in order to satisfy all constraints. When

no solution can be found, it may be interesting to identify a complete

instantiation which satisfies the greatest number of constraints (or

equivalently, which minimizes the number of violated constraints).

This is called the Maximal Constraint Satisfaction Problem (Max-

CSP).

During the last decade, many works have been carried out to solve

this problem (and its direct extension, WCSP). The basic (complete)

approach is to employ a branch and bound mechanism, traversing

the search space in a depth-first manner while maintaining an upper

bound, the best solution cost found so far, and a lower bound on the

best possible extension of the current partial instantiation. When the

lower bound is greater than or equal to the upper bound, backtracking

(or filtering) occurs. Lower bound computations of constraint viola-

tions have been improved repeatedly, over the years, by exploiting

inconsistency counts [7, 11, 1, 10], disjoint conflicting sets of con-

straints [13], or cost transfers between constraints [3, 4, 2].

Alternative approaches (usually) combine branch and bound

search with dynamic programming or structure exploitation. On the

one hand, Russian Doll Search [14] and variable elimination [9] can

be considered as dynamic programming methods, whose principle is

to solve successive sub-problems, one per variable of the initial prob-

lem. On the other hand, structural decomposition methods [8, 12, 5]
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exploit the structure of the problems in order to establish some con-

ditions about possible decompositions. Such methods are based on

tree decomposition, provide interesting theoretical time complexities

which depend on the width of the decomposition (tree-width), and

are becoming increasingly successful.

In [6], Freuder and Hubbe have proposed to exploit, for constraint

satisfaction, the principle of inferred disjunctive constraints: given a

satisfiable binary constraint network P , for any pair (X, a) where

X is a variable of P and a a value in the domain of X , if there is

no solution containing a for X , then there is a solution containing a

value (for another variable) which is not compatible with (X, a). Us-

ing this principle, the authors show that it is possible to dynamically

and iteratively decompose a problem.

In this paper, we generalize this approach to Max-CSP (including

the non-binary case) by exploiting the arc-inconsistency counts, as-

sociated with each value of the problem. The arc-inconsistency count

(aic for short) of a pair (X, a) corresponds to the number of con-

straints that do not support (X, a). The aic gap associated with the

variable X is the absolute difference between the two lowest arc-

inconsistency counts of values of X (plus 1). We show that it is pos-

sible to reason from the aic gap to obtain a condition under which we

have the guarantee to obtain an optimal solution, while avoiding to

explore some portions of the search space.

From this reasoning, we can build a decomposition technique

which can be used throughout search to decompose the current prob-

lem into simpler sub-problems, generalizing for Max-CSP the ap-

proach of [6]. It is important to remark that unlike usual decompo-

sition methods, this approach does not depend on the structure of

the constraint graph, since the decomposition can always be applied,

whatever the structure of the constraint graph is. Alternatively, we

can dynamically post hard constraints that can be used locally to

prune the search space. Depending on the implementation, these hard

constraints can participate to constraint propagation, or just impose

backtracking.

The paper is organized as follows. After some technical back-

ground, we introduce the central result of this paper. Then, we

present two main exploitations of it: decomposition and pruning. Af-

ter the presentation of some experimental results, we conclude.

2 Background

In this paper, we are dealing with the discrete CSP (Constraint

Satisfaction Problem) framework. Each CSP instance P corre-

sponds to a constraint network which is defined by a finite set

of n variables {X1, X2, . . . , Xn} and a finite set of e constraints

{C1, C2, . . . , Ce}. Each variable X must be assigned a value from

its associated discrete domain dom(X), and each constraint C in-

volves an ordered subset scp(C) of variables of P , called its scope,

and specifies the set rel(C) of combinations of values allowed for



the variables of its scope. |scp(C)| is called the arity of C, and C
is binary if its arity is 2. A CSP instance is binary if it only contains

binary constraints, and normalized if it does not contain two con-

straints with the same scope. Two variables are neighbours iff they

both belong to the scope of a constraint. A complete instantiation is

the assignment of a value to each variable. Let s denote a complete

instantiation, s(X, a) is the complete instantiation obtained from s
by replacing the value assigned to X in s by a. A constraint C is vi-

olated (or unsatisfied) by a complete instantiation s iff the projection

of s over scp(C) does not belong to rel(C). A solution is a complete

instantiation that satisfies every constraint.

In some cases, the CSP instance may be over-constrained, and

thus admits no such solution. We can then be interested in finding

a complete instantiation that best respects the set of constraints. In

this presentation, we consider the Max-CSP problem where the goal

is to find an optimal solution, i.e. a complete instantiation satisfying

as many constraints as possible. A Max-CSP instance is also repre-

sented by a constraint network.

Given a constraint C with scp(C) = {Xi1 , . . . , Xir
}, any tuple

in dom(Xi1) × . . . × dom(Xir
) is called a valid tuple on C. A

value a for the variable X is often denoted by (X, a). A constraint

C supports the value (X, a) (equivalently, a value (X, a) has a sup-

port on C) iff either X /∈ scp(C) or there exists a valid tuple on

C which belongs to rel(C) and which contains the value a for X .

When any value is supported by a constraint, this constraint is said

(generalized) arc-consistent. For the binary normalized case, we say

that a variable Y supports the value (X, a) iff either no constraint

involves both X and Y , or such a constraint supports (X, a). For

a binary constraint C such that scp(C) = {X, Y }, a value (X, a)
is compatible with a value (Y, b) iff (a, b) belongs to rel(C). The

arc-inconsistency count of a value (X, a), denoted by aic(X, a), is

the number of constraints (variables for the binary normalized case)

which do not support (X, a).

3 Main Theorem

In this section, we present the main result of this paper, generalizing

the approach [6] developed in the context of binary CSP.

Definition 3.1 Let P be a Max-CSP instance and X be a variable

of P . An aic best value of X is a value a ∈ dom(X) such that

aic(X, a) is minimal, i.e. ∀c ∈ dom(X), aic(X, a) ≤ aic(X, c).

An aic second best value of X is a value b ∈ dom(X) such that

b 6= a and ∀c ∈ dom(X) \ {a, b}, aic(X, b) ≤ aic(X, c). The aic

gap of X is defined as δ = aic(X, b) − aic(X, a) + 1.

Theorem 3.1 Let P be a Max-CSP instance, X be a variable of P ,

a be an aic best value of X , δ be the aic gap of X and C1, . . . , Cm be

the m constraints involving X which support (X, a). There always

exists an optimal solution s∗ of P such that:

• either X is assigned the value a in s∗,

• or X is assigned a value different from a in s∗, and at least δ
constraints among C1, . . . , Cm are violated by s∗(X, a).

Proof: When P has an optimal solution where X is assigned

a, the first condition is obviously satisfied and the theorem is ver-

ified. Otherwise if there is no optimal solution where X = a,

let s∗ = (v1, ..., v, ..., vn) be an optimal solution of P , and let

v be the value of X in s∗. Let CX be the set of constraints of

P involving the variable X (CX is a superset of {C1, . . . , Cm}).

Assume that s∗ violates p constraints of CX and s∗(X, a) vio-

lates q constraints of CX . Since there is no optimal solution with

X = a, s∗(X, a) necessarily violates more constraints of CX than

s∗ and therefore q > p. Necessarily, we have p ≥ aic(X, v) and

q ≥ aic(X, a) since arc-inconsistency counts computed wrt P rep-

resent lower bounds of aic counts obtained after assigning all vari-

ables of P . Therefore, ∃t ≥ 0, r ≥ 0 s.t. p = aic(X, v) + r and

q = aic(X, a) + t. Since q > p, aic(X, a) + t > aic(X, v) + r
or equivalently t > aic(X, v) − aic(X, a) + r. Since v 6= a,

we have aic(X, v) ≥ aic(X, b) (b is an aic second best value of

X) and therefore t > aic(X, b) − aic(X, a) + r. As r ≥ 0 and

δ = aic(X, b) − aic(X, a) + 1, we obtain t ≥ δ. This means that

at least δ constraints of P which support (X, a) involve variables

whose values given by s∗ are not compatible with (X, a). Therefore,

the theorem is also verified. 2

This theorem can be used in two different ways. It can be used

to generate a decomposition of the Max-CSP instance or it can be

exploited as a pruning rule.

4 The Decomposition Approach

The decomposition of a Max-CSP instance P around a variable X is

defined as follows.

Definition 4.1 Under the hypotheses and with the notations of The-

orem 3.1, the decomposition of a Max-CSP instance P around the

value a of variable X generates the sub-problems P0, P1, . . . Pk

(with k =
`

m

δ

´

) defined by:

• P0 is derived from P by assigning a to variable X
• Pi (with i ∈ 1..k) is derived from P by removing a from the

domain of X and restricting the assignments of neighbours of X
so that at least δ of the constraints supporting (X, a) in P do not

support (X, a) in Pi any more.

These sub-problems may be solved independently and Theorem

3.1 guarantees that at least one of them contains an optimal solution

of P . It should be noticed that this decomposition may prune some

(equivalent) optimal solutions of P .

As described in the definition, the sub-problems are not disjoint

which means that an assignment may be a solution of several sub-

problems simultaneously. It is however easy to generate disjoint sub-

problems as will be shown in section 4.2. With m denoting the num-

ber of constraints that support (X, a), this decomposition generates

1 +
`

m

δ

´

sub-problems (when δ = 1, this number is equal to 1 + m
and is bounded by n−aic(X, a) with n the number of variables). Al-

though the number of sub-problems is exponential in δ, Section 4.3

proves that the search space of the different sub-problems P0, . . . Pk

is exponentially smaller than the search space of the initial problem

P provided that we generate disjoint sub-problems. This means that

the decomposition is always beneficial because, even if it may gener-

ate many sub-problems, they are always easier to solve globally than

the initial problem.

4.1 Example

To illustrate the decomposition technique, let us consider the bi-

nary constraint network P built on {X1, X2, X3} and containing

the constraints {C12, C13, C23}. We have dom(Xi) = {1, 2, 3} for

i ∈ 1..3, and the constraints are defined by the following tables (al-

lowed tuples):



rel(C12)
X1 X2

1 1
1 2
3 1

rel(C13)
X1 X3

1 1
1 2
2 1
2 3
3 2

rel(C23)
X2 X3

1 3
3 1

An optimal solution of this Max-CSP instance violates one con-

straint. For example, X1 = 1, X2 = 1, X3 = 2 is an optimal

solution which violates the constraint C23. To perform the decom-

position strategy, we have to select one variable and one of its aic

best values. For example, (X1, 1) is one aic best value of X1 since

aic(X1, 1) = 0, aic(X1, 2) = 1 and aic(X1, 3) = 0. Here, we

have δ = 1. The decomposition around (X1, 1) leads to the fol-

lowing independent sub-problems: P0 is derived from P by assign-

ing X1 = 1. In P0, dom(X0
1 ) = {1}, dom(X0

2 ) = dom(X0
3 ) =

{1, 2, 3}. P1 is derived from P by asserting X1 6= 1 and restrict-

ing the domain of X2 to the values incompatible with (X1, 1). In

P1, dom(X1
1 ) = {2, 3}, dom(X1

2 ) = {3}, dom(X1
3 ) = {1, 2, 3}.

P2 is derived from P by asserting X1 6= 1 and restricting the do-

main2 of X2 to the values incompatible with (X1, 1) and restrict-

ing the domain of X3 to the values compatible with (X1, 1). In P2,

dom(X2
1 ) = {2, 3}, dom(X2

2 ) = {1, 2}, dom(X2
3 ) = {3}.

Notice that the sub-problem where dom(X1) = {2, 3},

dom(X2) = {1, 2} and dom(X3) = {1, 2} is pruned and this sub-

problem contains an optimal solution of the whole problem which is

X1 = 3, X2 = 1 and X3 = 2.

Now, let us modify slightly the initial problem. Assume that the

value 3 of X1 is incompatible with all values of X3, then we have:

rel(C13)
X1 X3

1 1
1 2
2 1
2 3

In this case, for X1 there is only one aic best value (since

aic(X1, 1) = 0, aic(X1, 2) = 1 and aic(X1, 3) = 1) and so δ = 2.

Thus, the decomposition leads only to two sub-problems P0 and P1.

P0 is unchanged and P1 is obtained from P by asserting X1 6= 1
and restricting the domain of X2, X3 to the values incompatible with

(X1, 1). In P1, dom(X1
1 ) = {2, 3}, dom(X1

2 ) = {3}, dom(X1
3 ) =

{3}. In this case we have discarded the following two sub-problems:

P2 where dom(X2
1 ) = {2, 3}, dom(X2

2 ) = {3} and dom(X2
3 ) =

{1, 2}, and P3 where dom(X3
1 ) = {2, 3}, dom(X3

2 ) = {1, 2} and

dom(X3
3 ) = {1, 2, 3}. The sub-problem P3 contains one optimal

solution of P : X1 = 3, X2 = 1 and X3 = 3.

For the initial problem, the decomposition prunes 23 out of 33 pos-

sible complete instantiations while in the modified problem it prunes

16 (more than a half) of them.

4.2 Enumeration of Sub-problems

For the sake of simplicity, we now assume that constraints are binary

and normalized (i.e. they all have different scopes) but the method

is easy to generalize3. When constraints are binary, ensuring that a

constraint C with scp(C) = {X, Y } does not support (X, a) simply

amounts to reducing the domain of Y to the values incompatible with

(X, a).

2 This restriction is enforced to obtain disjoint sub-problems, see 4.2
3 This restriction just ensures that reducing the domain of a neighbour of

X will affect only one constraint on X . Otherwise we have to take into
account some variables more than once.

Enumerating all the sub-problems in the decomposition and ensur-

ing that these problems are disjoint is as simple as enumerating the

values of a binary counter under the constraint that at least δ of its

bits must be 0.

Let IX=a
Y be the values of domain dom(Y ) which are incompati-

ble with (X, a) and CX=a
Y be the values of dom(Y ) which are com-

patible with (X, a). By definition, dom(Y ) = IX=a
Y ∪ CX=a

Y and

IX=a
Y ∩ CX=a

Y = ∅. Clearly, sub-domains I and C form a parti-

tion of each domain and this can be used to decompose the search

in a systematic way. Exhaustive search on all values of a variable Y
can be performed by first restricting the domain to IX=a

Y and then to

CX=a
Y . This is a binary branching. Since this can be done recursively,

each branch can be represented by a binary word bY1
, . . . , bYm

where

bYi
= 0 indicates that the domain of Yi is restricted to IX=a

Yi
and

bYi
= 1 indicates that the domain of Yi is restricted to CX=a

Yi
. Ex-

haustive search on all values of all variables Y will enumerate the

2m binary words (from all 0 to all 1).

When X = a is chosen for the decomposition of a problem P ,

the first sub-problem is P0 where X = a and the other sub-problems

are the ones where X 6= a and where δ variables among the m vari-

ables Yi which support (X, a) have their domain reduced to IX=a
Yi

.

A simple solution to avoid any redundant or useless search is to use

the binary branching scheme presented above. The restriction where

δ variables among the m variables Yi have their domain reduced to

IX=a
Yi

translates to the condition ’at least δ bits in the binary word

representing the branch must be 0’. This condition is trivial to en-

force in a binary branching.

Y1 Y2 Y3 Y4

0 ∗ ∗ ∗
1 0 ∗ ∗
1 1 0 ∗
1 1 1 0

(a) search with δ = 1

Y1 Y2 Y3 Y4

0 0 0 ∗
0 0 1 0
0 1 0 0
1 0 0 0

(b) search with δ = 3

Figure 1. List of branches to explore for n = 4 and different values of δ

As an example, Figure 1 represents the branches that must be ex-

plored for two different values of δ and for n = 4 variables. For

clarity, ∗ is used as a joker to represent any 0/1 value.

4.3 Some Complexity Results

Interestingly, this binary branching scheme allows to draw imme-
diate complexity results. Assume that Y1, . . . , Ym are the vari-
ables which support (X, a) and that Z1, . . . , Zr are the other
unassigned variables. Without applying the decomposition, an ex-
haustive search of the sub-problem where X 6= a will have to
explore the Cartesian product of the domains which amounts to
Qm

i=1 |dom(Yi)|.
Qr

i=1 |dom(Zi)| complete instantiations. When
the decomposition is used, at least δ variables Y must have their
domain reduced to IX=a

Y . This means that the number of complete
instantiations which are not explored amounts to:

X

S∈2{Yi} with card(S)<δ

Y

Yi∈S

|IX=a
Yi

|.
Y

Yi 6∈S

|CX=a
Yi

|.

r
Y

i=1

|dom(Zi)|

As an illustration, if all CX=a
Yi

have the same size c and all IX=a
Yi

have the same size i, the number of pruned complete instantiations
simplifies as:

X

j≤δ

 

n

j

!

ijcm−j

r
Y

i=1

|dom(Zi)|



When δ = 1, the number of pruned complete instantiations is just

i.cm−1Qm

i=1 |dom(Zi)|. It roughly corresponds to the size of the

so-called consistent sub-problem identified in [6] for the CSP case.

In any case, the number of complete instantiations that are explored

when the decomposition is applied is smaller than the initial number

of complete instantiations to explore (by an exponential factor in the

general case).

4.4 Related Work

Classical structural decomposition methods combine tree decompo-

sition of graphs with branch and bound search [8, 12, 5]. A tree de-

composition involves computing a pseudo-tree which covers the set

of variables by clusters. Two clusters are adjacent in this tree if they

share some variables. An important property of tree decomposition

is that the sub-problems associated with clusters may be solved in-

dependently after assigning values to the shared variables. In prac-

tice, the efficiency of decomposition methods highly depends on the

structure of the constraint graph.

The decomposition approach presented here, inspired from [6],

proceeds differently from classical ones since the principle is to di-

rectly decompose the whole problem into independent sub-problems

without computing any pseudo-tree or assigning any variable of the

problem. Each sub-problem can be solved independently while in

the same time, a portion of the search space of the whole problem

is pruned. The downside of this method is that the number of gener-

ated sub-problems may be large. However, the decomposition does

not rely on the structure of the constraint graph.

5 The Pruning Approach

Another way to exploit Theorem 3.1 is to interpret it as a pruning

rule which can be integrated into any method based on tree search

to solve the Max-CSP problem. Assuming here a tree search algo-

rithm employing a binary branching scheme, at each node ν, a value

(X, a) is selected, and two branches are built from ν: a left one la-

belled with the variable assignment X = a, and a right one labelled

with the value refutation X 6= a. Considering the current instance

at node ν, let a, δ and {Ci} be the best aic value of X , the aic gap

of X and the set of constraints supporting (X, a), respectively. As

soon as the left branch has been explored, one can post a hard con-

straint atLeastUnsatisfied(δ, {Ci}, (X, a)) before exploring the

right branch of ν. This constraint is violated as soon as it is no more

possible to find in {Ci}, at least δ constraints which do not support

anymore (X, a). Of course, a constraint posted with respect to the

right branch of node ν must be removed when the algorithm back-

tracks from ν.

These hard constraints, dynamically added to the instance, can be

used to impose backtracking, and consequently, to avoid exploring

useless portions of the search space. After each propagation phase,

one can simply check that all currently posted hard constraints are

still satisfied. If this is not the case, backtracking occurs. We will

denote any tree search algorithm A, exploiting this approach, by A-

PC (Pruning Constraints). Interestingly, except for some particular

search heuristics (such as the ones based on constraint weighting),

we have the guarantee that A-PC will always visit a tree which is

included in the one built by A.

On the other hand, the additional hard constraints can also

participate to constraint propagation. When for a constraint

atLeastUnsatisfied(δ, {Ci}, (X, a)), we can determine that at

most δ constraints of {Ci} can still be in a position of not supporting

(X, a), we can impose that these δ constraints do not support (X, a),

making then new inferences. For example, for a binary constraint of

{Ci}, among the δ ones, involving X and another variable Y , any

value of Y compatible with (X, a) can be removed. Here, we can

imagine sophisticated mechanisms to manage propagation such as

the use of lazy structures (e.g. watched literals).

Importantly, notice that this pruning approach can be integrated

into many search algorithm solving the Max-CSP problem, including

hybrid ones that combine tree decomposition with enumeration.

6 Experimental Results

In order to show the practical interest of the approach described

in this paper, we have conducted an experimentation on a clus-

ter of Xeon 3,0GHz with 1GiB under Linux using the bench-

mark suite used for the 2006 competition of Max-CSP solvers (see

http://www.cril.univ-artois.fr/CPAI06/). We have

used the classical branch and bound PFC-MRDAC algorithm [11]

which maintains reversible directed arc-inconsistency counts in or-

der to compute lower bounds at each node of the search tree, and

have been interested in the impact of using the PC (Pruning Con-

straints) approach (see Section 5). We have used here the variant that

just imposes backtracking, and have not still implemented the one

that allows to make inferences. We have not still implemented the

decomposition approach either.

Two variable ordering heuristics have been considered. The first

one is dom/ddeg, usually considered for Max-CSP, which selects at

each node the variable with the lowest ratio domain size on dynamic

degree. The second one, denoted by dom ∗ gap/ddeg, involves the

aic gap of the variables. More precisely, the ratio dom/ddeg is mul-

tiplied by the aic gap in order to favour variables for which there is a

large gap between the best value and the following one. We believe

that it may help quickly finding good solutions and, more specif-

ically, increasing the efficiency of our approach. Finally, the value

with the lowest aic is always selected. Notice that it can be seen as a

refinement of the ic + dac counters usually used to select values.

The protocol used for our experimentation is the following: for

each instance, we start with an initial upper bound4 set to infinity,

and record the (cost of the) best solution found (and time-stamp it)

within a given time limit (here, 1, 500 seconds). Even if this proto-

col prevents us from getting some useful results for some instances

(for example, if the same best solution is found by the different algo-

rithms after a few seconds), it benefits from being easily reproducible

and exploitable, whether the optimum value is known or not.

First of all, recall that we have the guarantee that PFC-MRDAC-

PC always visits a tree which is smaller than the one built by PFC-

MRDAC. It makes our experimental comparisons easier. We can

then make a first general observation about the results of our exper-

imentation. The overhead of managing PC hard constraints is usu-

ally between 5% and 10% of the overall cpu time. Since on ran-

dom instances, our approach permits to only save a limited num-

ber of nodes (as expected), we obtain a similar behaviour with PFC-

MRDAC and PFC-MRDAC-PC. This is not shown here, due to lack

of space. On the other hand, on structured instances, Table 1 presents

the results on representative instances and clearly demonstrates the

interest of our approach. These instances belong to academic and

patterned series maxclique (brock, p − hat,san), kbtree (intro-

duced in [5]), dimacs (ssa) and composed, and also to real-world

4 In the experimentation, Max-CSP was considered as the problem of mini-
mizing the number of violated constraints.



series celar (scen, graph) and spot. The ratio introduced in the ta-

ble corresponds to the cpu of PFC-MRDAC divided by the cpu of

PFC-MRDAC-PC. It is either an exact value (when both methods

have found the same upper bound) or an approximate one (in this

case, we use the time limit 1, 500 as a lower bound). For example,

on instance spot5 − 404, we obtain 74 as upper bound with PFC-

MRDAC and 73 with PFC-MRDAC-PC. Since, any node visited by

PFC-MRDAC-PC is necessarily visited by PFC-MRDAC, we know

that at least 1, 500 seconds are required by PFC-MRDAC to find the

upper bound 73. We then obtain a speedup ratio which is greater than

1, 500/99 = 15.1. Remark that, as expected, the results are more im-

pressive when using the heuristic dom ∗ gap/ddeg (more than two

orders of magnitude on some instances) which besides, often allows

us to find better upper bounds.

PFC-MRDAC
dom/ddeg dom*gap/ddeg

¬PC PC ratio ¬PC PC ratio
Academic and Patterned instances

brock-200-1
ub 184 183 184 183

cpu 1, 490 706 > 2.1 3 57 > 26.3

brock-200-2
ub 191 191 191 190

cpu 638 92 > 6.9 85 201 > 7.4

composed-25-1-2-1
ub 3 3 6 3

cpu 613 332 = 1.8 19 846 > 1.7

composed-25-1-25-1
ub 4 4 6 3

cpu 92 72 = 1.2 14 1, 407 > 1

kbtree-9-2-3-5-20-01
ub 6 0 3 0

cpu 996 1, 333 > 1.1 0 15 > 100

kbtree-9-2-3-5-30-01
ub 13 13 14 4

cpu 1, 037 1, 009 = 1.0 1, 177 392 > 3

keller-4
ub 162 160 162 160

cpu 36 303 > 4.9 1 149 > 10.0

p-hat300-1
ub 293 293 293 293

cpu 396 76 = 5.2 1, 481 224 = 6.6

p-hat500-1
ub 493 493 493 492

cpu 1, 357 652 = 2.0 33 717 > 2.0

san-200-0.9-1
ub 174 173 157 155

cpu 1, 425 1, 287 > 1.1 0 888 > 1.6

sanr-200-0.7
ub 185 185 185 184

cpu 426 94 = 4.5 808 324 > 4.6

ssa-0432-003
ub 82 73 11 2

cpu 0 175 > 8.5 46 19 > 78.9

ssa-2670-130
ub 392 390 52 49

cpu 1 56 > 26.7 55 1, 126 > 1.3
Real-world instances

graph6
ub 342 341 366 365

cpu 216 935 > 1.6 7 406 > 1.0

graph8-f11
ub 161 159 160 160

cpu 5 1, 299 > 1.1 644 56 = 11.5

graph11
ub 576 576 620 620

cpu 5 5 = 1 677 70 = 9.6

scen6
ub 269 269 211 211

cpu 69 27 = 2.5 20 14 = 1.4

scen10
ub 744 744 741 741

cpu 34 34 = 1 623 56 = 11.1

scen11-f12
ub 81 81 66 66

cpu 729 395 = 1.8 146 35 = 4.1

scenw-06-18
ub 215 214 133 131

cpu 8 934 > 1.6 231 442 > 3.3

scenw-06-24
ub 98 98 121 117

cpu 686 244 = 2.8 741 400 > 3.7

scenw-07
ub 353 353 525 524

cpu 1, 239 471 = 2.6 25 8 > 187.5

spot5-28
ub 207 206 196 196

cpu 0 31 > 48.3 1 1 = 1

spot5-29
ub 52 51 49 48

cpu 25 305 > 4.9 807 29 > 51.7

spot5-42
ub 124 124 122 122

cpu 900 64 = 14.0 1, 157 6 = 192.8

spot5-404
ub 74 73 76 73

cpu 85 99 > 15.1 0 331 > 4.5

Table 1. Best upper bound (ub, number of violated constraints) and cpu
time (to reach it) obtained with PFC-MRDAC on structured instances, with

(PC) and without (¬PC) the Pruning Constraints method. The timeout was
set to 1, 500 seconds per instance.

Finally, for a very limited number of these instances, we succeeded

in finding an optimal value and proving optimality, given 20 hours

of cpu time per instance. For example, for brock-200-2, optimal-

ity is proved when using PC in 13, 394 and 29, 217 seconds with

dom/ddeg and dom ∗ gap/ddeg respectively, while optimality is not

proved within 72, 000 seconds when PC is not employed. As an-

other example, the instance scenw-06-24 is solved in 18, 858 sec-

onds with PFC-MRDAC-PC-dom ∗ gap/ddeg and in 37, 405 sec-

onds when PC is not used.

7 Conclusion

In this paper, we have generalized to Max-CSP the principle of in-

ferred disjunctive constraints introduced in [6] for CSP. Using the so-

called aic (arc-inconsistency count) gap, we have shown that it was

possible to obtain a guarantee about the obtention of an optimal solu-

tion, while pruning some portions of the search space. Interestingly,

this result can be exploited both in terms of decomposition (already

addressed for CSP in [6]) and backtracking/filtering (by posting hard

constraints). We have shown that our approach, grafted to a classi-

cal branch and bound algorithm, was really boosting search when

solving structured instances. Indeed, using PFC-MRDAC, we have

noticed a speedup that sometimes exceeds one order of magnitude

with the heuristic dom/ddeg and two orders of magnitude with the

original dom ∗ gap/ddeg.

We want to recall that dynamic programming and decomposition

methods, which have recently received a lot of attention, still rely on

branch and bound search. It means that all these methods may benefit

from the approach developed in this paper. Finally, one perspective

of this work is to extend it with respect to Weighted CSP and Valued

CSP frameworks.
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