
HAL Id: hal-00865155
https://hal.science/hal-00865155

Submitted on 10 Mar 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

C-SHORe: a collapsible approach to higher-order
verification

Christopher H. Broadbent, Arnaud Carayol, Matthew Hague, Olivier Serre

To cite this version:
Christopher H. Broadbent, Arnaud Carayol, Matthew Hague, Olivier Serre. C-SHORe: a collapsible
approach to higher-order verification. ACM SIGPLAN International Conference on Functional Pro-
gramming (ICFP’13), Sep 2013, Boston, MA, United States. pp.13-24, �10.1145/2500365.2500589�.
�hal-00865155�

https://hal.science/hal-00865155
https://hal.archives-ouvertes.fr

C-SHORe

A Collapsible Approach to Verifying Higher-Order Programs

C. Broadbent

LIAFA, Université Paris Diderot – Paris
7 & CNRS & University of Tokyo &

Technische Universität München

broadben@in.tum.de

A. Carayol

LIGM, Université Paris-Est & CNRS

arnaud.carayol@univ-mlv.fr

M. Hague

Royal Holloway University of London &
LIGM, Université Paris-Est & LIAFA,

Université Paris Diderot – Paris 7 &
CNRS

matthew.hague@rhul.ac.uk

O. Serre

LIAFA, Université Paris Diderot – Paris 7 & CNRS

olivier.serre@liafa.univ-paris-diderot.fr

Abstract

Higher-order recursion schemes (HORS) have recently received
much attention as a useful abstraction of higher-order functional
programs with a number of new verification techniques employ-
ing HORS model-checking as their centrepiece. This paper con-
tributes to the ongoing quest for a truly scalable model-checker
for HORS by offering a different, automata theoretic perspective.
We introduce the first practical model-checking algorithm that acts
on a generalisation of pushdown automata equi-expressive with
HORS called collapsible pushdown systems (CPDS). At its core
is a substantial modification of a recently studied saturation algo-
rithm for CPDS. In particular it is able to use information gath-
ered from an approximate forward reachability analysis to guide its
backward search. Moreover, we introduce an algorithm that prunes
the CPDS prior to model-checking and a method for extracting
counter-examples in negative instances. We compare our tool with
the state-of-the-art verification tools for HORS and obtain encour-
aging results. In contrast to some of the main competition tack-
ling the same problem, our algorithm is fixed-parameter tractable,
and we also offer significantly improved performance over the only
previously published tool of which we are aware that also enjoys
this property. The tool and additional material are available from
http://cshore.cs.rhul.ac.uk .

Categories and Subject Descriptors F.1.1 [Models of Computa-
tion]: Automata

Keywords Higher-Order; Verification; Model-Checking; Recur-
sion Schemes; Collapsible Pushdown Systems

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICFP ’13, September 25 - 27 2013, Boston, MA, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2326-0/13/09. . . $15.00.
http://dx.doi.org/10.1145/2500365.2500589

1. Introduction

Functional languages such as Haskell, OCaML and Scala strongly
encourage the use of higher-order functions. This represents a chal-
lenge for software verification, which usually does not model re-
cursion accurately, or models only first-order calls (e.g. SLAM [2]
and Moped [33]). However, there has recently been much inter-
est in a model called higher-order recursion schemes (HORS) (see
e.g. [29]), which offers a way of abstracting functional programs in
a manner that precisely models higher-order control-flow.

The execution trees of HORS enjoy decidable µ-calculus theo-
ries [29], which testifies to the good algorithmic properties of the
model. Even ‘reachability’ properties (subsumed by the µ-calculus)
are very useful in practice. As a simple example, the safety of
incomplete pattern matching clauses could be checked by asking
whether the program can ‘reach a state’ where a pattern match
failure occurs. More complex ‘reachability’ properties can be ex-
pressed using a finite automaton and could, for example, specify
that the program respects a certain discipline when accessing a par-
ticular resource (see [22]). Despite even reachability being (n−1)-
EXPTIME complete, recent research has revealed that useful prop-
erties of HORS can be checked in practice.

Kobayashi’s TRecS [23] tool, which checks properties express-
ible by a deterministic trivial Büchi automaton (all states accept-
ing), was the first to achieve this. It works by determining whether
a HORS is typable in an intersection-type system characterising
the property to be checked [22]. In a bid to improve scalability, a
number of other algorithms have subsequently been designed and
implemented such as Kobayashi et al.’s GTRecS(2) [25, 26] and
Neatherway et al.’s TravMC [28] tools (appearing in ICFP 2012),
all of which remain based on intersection type inference.

This work is the basis of various techniques for verifying func-
tional programs. Kobayashi et al. have developed MoCHi [27] that
checks safety properties of (OCaML) programs, and EHMTT Ver-
ifier [38] for tree processing programs. Both use a model-checker
for recursion schemes as a central component. Similarly, Ramsay
and Ong [30] provide a verification procedure for programs with
pattern matching employing recursion schemes as an abstraction.

Despite much progress, even the state-of-the-art TRecS does
not scale to recursion schemes big enough to model realistically
sized programs; achieving scalability while accurately tracking
higher-order control-flow is a challenging problem. This paper of-

http://cshore.cs.rhul.ac.uk

fers an automata-theoretic perspective on this challenge, providing
a fresh set of tools that contrast with previous intersection-type
approaches. Techniques based on pushdown automata have previ-
ously visited ICFP, such as the approximate higher-order control-
flow analysis CFA2 [40], but our aims are a bit different in that we
wish to match the expressivity of HORS. Consequently we require
a more sophisticated notion of pushdown automaton.

Collapsible pushdown systems (CPDS) [16] are an alternative
representation of the class of execution trees that can be gener-
ated by recursion schemes (with linear-time mutual-translations be-
tween the two formalisms [10, 16]). While pushdown systems aug-
ment a finite-state machine with a stack and provide an ideal model
for first-order programs [20], collapsible pushdown systems model
higher-order programs by extending the stack of a pushdown sys-
tem to a nested “stack-of-stacks” structure. The nested stack struc-
ture enables one to represent closures. Indeed the reader might find
it helpful to view a CPDS as being Krivine’s Abstract Machine in
a guise making it amenable to the generalisation of techniques for
pushdown model-checking. Salvati and Walukiewicz have studied
in detail the connection with the Krivine abstract machine [32].

For ordinary (‘order-1’) pushdown systems, a model-checking
approach called saturation has been successfully implemented by
tools such as Moped [33] and PDSolver [15]. Given a regular set
of configurations of the pushdown system (represented by a finite
automaton A acting on stacks), saturation can solve the ‘back-
ward reachability problem’ by computing another finite automaton
recognising a set of configurations from which a configuration in
L(A) can be reached. This is a fixed-point computation that gradu-
ally adds transitions to A until it is ‘saturated’. If A recognises a set
of error configurations, one can determine whether the pushdown
system is ‘safe’ by checking if its initial configuration is recognised
by the automaton computed by saturation.

We recently extended the saturation method to a backward
reachability analysis of collapsible pushdown systems [7]. This
runs in PTIME when the number of control states is bounded.
Crucially, this condition is satisfied when translating from recursion
schemes of bounded arity with properties represented by automata
of bounded size [16]. Whilst the HORS/intersection-type based tool
GTRecS(2) also enjoys this fixed-parameter tractability (others do
not), it times out on many benchmarks that our tool solves quickly.

Motivated by these facts, we revisit the foundations of higher-
order verification tools and introduce C-SHORe — the first model-
checking tool for the (direct) analysis of collapsible pushdown
systems. Whilst the tool is based on the ICALP 2012 result, some
substantial modifications and additions are made to the algorithm,
leading to several novel practical and theoretical contributions:

1. An approximate forward reachability algorithm providing data

(a) . . . allowing for the CPDS to be pruned so that saturation
receives a smaller input.

(b) . . . employed by a modified saturation algorithm to guide its
backward search.

This is essential for termination on most of our benchmarks.

2. A method for extracting witnesses to reachability.

3. A complete reworking of the saturation algorithm that speeds
up the fixed-point computation.

4. Experimental results showing our approach compares well with
TRecS, GTRecS(2) and TravMC.

It is worth remarking that the other type-based tools mentioned
above all work by propagating information in a forward direction
with respect to the evaluation of the model. In contrast, the raw
saturation algorithm works backwards, but we also show here how
forward and backward propagation can be combined.

In Sections 5 to 8 we describe the original contributions of this
paper. These sections can be understood independently of one an-
other, and hence the reader does not need to fully grasp each section
before continuing to the next. The remaining sections describe the
background, related work and conclusions.

In Section 3 we recall the basic structures used in the paper
as well as recapping the ICALP 2012 algorithm. In Section 5 we
describe the approximate forwards-reachability analysis and how
it is exploited. In Section 6 we show how to generate witnesses to
reachability. In Section 7, we then consider how to restructure the
saturation algorithm to more efficiently compute the fixed-point.
We provide experimental results in Section 8. Note that we do not
discuss in formal detail the translation from HORS model-checking
to reachability for CPDS, which essentially follows [10]. However,
we do give an informal overview in Section 2, which we hope
serves to demonstrate how closures can be accurately modelled.

The tool is available at http://cshore.cs.rhul.ac.uk . An
appendix containing additional material appears in the long version
of this paper, available from the same URL.

2. Modelling Higher-Order Programs

In this section we give an informal introduction to the process of
modelling higher-order programs for verification. In particular, we
show how a simple example program can be modelled using a
higher-order recursion scheme, and then we show how this scheme
is evaluated using a collapsible pushdown system. For a more sys-
tematic approach to modelling higher-order programs with recur-
sion schemes, we refer the reader to work by Kobayashi et al. [27].
This section is for background only, and can be safely skipped.

For this section, consider the toy example below.

Main = MakeReport Nil
MakeReport x = if * (Commit x)

else (AddData x MakeReport)
AddData y f = if * (f Error) else (f Cons(_, y))

In this example, * represents a non-deterministic choice (that may,
for example, be a result of some input by the user). Execution
begins at the Main function whose aim is to make a report which is
a list. We begin with an empty report and send it to MakeReport.
Either MakeReport indicates the report is finished and commits the
report somehow, or it adds an item to the head of the list, using the
AddData function, which takes the report so far, and a continuation.
AddData either detects a problem with the new data (maybe it is
inconsistent with the rest of the report) and flags an error by passing
Error to the continuation, or extends the report with some item. In
this case, the programmer has not provided error handling as part
of the MakeReport function, and so an Error may be committed.

2.1 Higher-Order Recursion Schemes

As a first step in modelling this program, we introduce, informally,
higher-order recursion schemes. These are rewrite systems that
generate the computation tree of a functional program. A rewrite
rule takes the form

N φ x →֒ t

where N is a typed non-terminal with (possibly higher-order) argu-
ments φ and x. A term N tφ tx rewrites to t with tφ substituted for
φ and tx substituted for x. Note that recursion schemes require t to
be of ground type. We will illustrate the behaviour of a recursion
scheme and its use in analysis using the toy example from above.

We can directly model our example with the scheme

main →֒ M nil
M x →֒ or (commit x) (A x M)
A y φ →֒ or (φ error) (φ (cons y))

http://cshore.cs.rhul.ac.uk

where M is the non-terminal associated with the MakeReport
function, and A is the non-terminal associated with the AddData
function; nil, or, commit, error and cons are terminal symbols
of arity 0, 2, 1, 0 and 1 respectively (e.g. in the second rule, or
takes the two arguments (commit x) and (A x M)). The scheme
above begins with the non-terminal main and, through a sequence
of rewrite steps, generates a tree representation of the evolution of
the program. Figure 1, described below, shows such a sequence.

Beginning with the non-terminal main, we apply the first
rewrite rule to obtain the tree representing the term (A nil). We
then apply the second rewrite rule, instantiating x with nil to ob-
tain the next tree in the sequence. This continues ad infinitum to
produce a possibly infinite tree labelled only by terminals.

We are interested in ensuring the correctness of the program.
In our case, this means ensuring that the program never attempts
to commit an error. By inspecting the rightmost tree in Fig-
ure 1, we can identify a branch labelled or, or, or, commit, error.
This is an error situation because commit is being called with
an error report. In general we can define the regular language
Lerr = or∗commit or∗error. If the tree generated by the re-
cursion scheme contains a branch labelled by a word appearing in
Lerr, then we have identified an error in the program.

2.2 Collapsible Pushdown Automata

Previous research into the verification of recursion schemes has
used an approach based on intersection types (e.g. [24, 28]). In
this work we investigate a radically different approach exploiting
the connection between higher-order recursion schemes and an
automata model called collapsible pushdown automata (CPDA).
These two formalisms are, in fact, equivalent.

Theorem 2.1 (Equi-expressivity [16]). For each order-n recursion
scheme, there is an order-n collapsible pushdown automaton gen-
erating the same tree, and vice-versa. Furthermore, the translations
in both directions are linear.

We describe at a high level the structure of a CPDA and how
they can be used to evaluate recursion schemes. In our case, this
means outputting a sequence of non-terminals representing each
path in the tree. More formal definitions are given in Section 3.
At any moment, a CPDA is in a configuration 〈p,w〉, where p
is a control state taken from a finite set P , and w is a higher-
order collapsible stack. In the following we will focus on the stack.
Control states are only needed to ensure that sequences of stack
operations occur in the correct order and are thus elided for clarity.

In the case of our toy example, we have an order-2 recursion
scheme and hence an order-2 stack. An order-1 stack is a stack of
characters a from a finite alphabet Σ. An order-2 stack is a stack of
order-1 stacks. Thus we can write [[main]] to denote the order-
2 stack containing only the order-1 stack [main]; [main] is an
order-1 stack containing only the character main. In general Σ
will contain all subterms appearing in the original statement of our
toy example recursion scheme. The evolution of the CPDA stack is
given in Figure 2 and explained below.

The first step is to rewrite main using main →֒ M nil. Since
(M nil) is a subterm of our recursion scheme, we have (M nil) ∈
Σ and we simply rewrite the stack [[main]] to [[M nil]].

The next step is to call the function M . As is typical in the
execution of programs, a function call necessitates a new stack
frame. In particular, this means pushing the body of M (that is
(or (commit x) (A x M))) onto the stack, resulting in the third
stack in Figure 2. Note that we do not instantiate the variable x,
hence we use only the subterms appearing in the recursion scheme.

Recall that we want to obtain a CPDA that outputs a sequence
of terminals representing each path in the tree. To evaluate the term
or (· · ·) (· · ·) we have to output the terminal or and then (non-

deterministically) choose a branch of the tree to follow. Let us
choose (A x M). Hence, the CPDA outputs the terminal or and
rewrites the top term to (A x M). Next we make a call to the A
function, pushing its body on to the stack, and then pick out the
(φ error) branch of the or terminal. This takes us to the beginning
of the second row of Figure 2.

To proceed, we have to evaluate (φ error). To be able to do this,
we have to know the value of φ. We can obtain this information by
inspecting the stack and seeing that the second argument of the call
of A is M . However, since we can only see the top of a stack,
we would have to remove the character (φ error) to be able to
determine that φ = M , thus losing our place in the computation.

This is where we use the power of order-2 stacks. An order-2
stack is able — via a push2 operation — to create a copy of its
topmost order-1 stack. Hence, we perform this copy (note that the
top of the stack is written on the left) and delve into the copy of the
stack to ascertain the value of φ. While doing this we also create a
collapse link, pictured as an arrow from M to the term (φ error).
This collapse link is a pointer from M to the context in which
M will be evaluated. In particular, if we need to know the value
of x in the body of M , we will need to know that M was called
with the error argument, within the term (φ error); the collapse
link provides a pointer to this information (in other words we have
encoded a closure in the stack). We can access this information via
a collapse operation. These are the two main features of a higher-
order collapsible stack, described formally in the next section.

To continue the execution, we push the body of M on to the
stack, output the or symbol and choose the (commit x) branch.
Since commit is a terminal, we output it and pick out x for
evaluation. To know the value of x, we have to look into the stack
and follow the collapse link from M to (φ error). Note that we do
not need to create a copy of the stack here because x is an order-
0 variable and thus represents a self-contained execution. Since
error is the value of the argument we are considering, we pick
it out and then output it before terminating. This completes the
execution corresponding to the error branch identified in Figure 1.

2.3 Collapsible Pushdown Systems

The CPDA output or, or, or, commit, error in the execution
above. This is an error sequence in Lerr and should be flagged.
In general, we take the finite automaton A representing the regular
language Lerr and form a product with the CPDA described above.
This results in a CPDA that does not output any symbols, but in-
stead keeps in its control state the progression of A. Thus we are
interested in whether the CPDA is able to reach an accepting state
of A, not the language it generates. We call a CPDA without output
symbols a collapsible pushdown system (CPDS), and the question
of whether a CPDS can reach a given state is the reachability prob-
lem. This is the subject of the remainder of the paper.

3. Preliminaries

3.1 Collapsible Pushdown Systems

We first introduce higher-order collapsible stacks and their opera-
tions, before giving the definition of collapsible pushdown systems.

3.1.1 Higher-Order Collapsible Stacks and Their Operations

Higher-order collapsible stacks are built from a stack alphabet Σ
and form a nested “stack-of-stacks” structure. Using an idea from
panic automata [21], each stack character contains a pointer —
called a “link” — to a position lower down in the stack. Operations
updating stacks (defined below) may create copies of sub-stacks.
The link is intuitively a pointer to the context in which the stack
character was first created. In the sequel, we fix the maximal order
to n, and use k to range between 1 and n. In the definition below,
we defer the meaning of collapse link to Definition 3.2.

main →֒ M

nil

→֒ or

commit A

nil nil M

→֒ · · · →֒ or

commit or

nil or M

commit A cons

error nil M nil

→֒ · · ·

Figure 1: The behaviour of a toy recursion scheme.

[[main]] −→ [[A nil]] −→

[[

or (commit x) (A xM)
M nil

]]

or
−→

[[

A xM
M nil

]]

−→

or · · ·
A xM
M nil

or
−→

φ error
A x M
M nil

 −→

φ error
A x M
M nil

φ error
A x M
M nil

 −→

[

M
M nil

]

φ error
A x M
M nil

 −→

or · · ·
M

M nil

φ error
A x M
M nil

or
−→

commit x
M

M nil

φ error
A x M
M nil

commit
−−−−−→

x
M

M nil

φ error
A x M
M nil

 −→

error
A x M
M nil

error
−−−→ •

Figure 2: A stack evaluating the toy example.

Definition 3.1 (Order-n Collapsible Stacks). Given a finite set of
stack characters Σ, an order-0 stack is simply a character a ∈ Σ.
An order-n stack is a sequence w = [wℓ . . . w1]n such that each
wi is an order-(n − 1) stack and each character a on the stack
is augmented with a collapse link. The top-most stack is wℓ. Let
Stacksn denote the set of order-n stacks.

Collapse links point to positions in the stack. Before describing
them formally, we give an informal description and some basic def-
initions. An order-n stack can be represented naturally as an edge-
labelled word-graph over the alphabet {[n−1, . . . , [1,]1, . . . ,]n−1}⊎
Σ, with additional collapse-links pointing from a stack character in
Σ to the beginning of the graph representing the target of the link.
For technical convenience we do not use [n or]n symbols (these
appear uniquely at the beginning and end of the stack). An example
order-3 stack is given in Figure 3, with only a few collapse links
shown, ranging from order-3 to order-1 respectively.

Stacks are written with the top on the left. Given an order-n
stack [wℓ . . . w1]n, we define

topn+1([wℓ . . . w1]n) = [wℓ . . . w1]n
topn([wℓ . . . w1]n) = wℓ if ℓ > 0

topn([]n) = []n−1 otherwise
topk([wℓ . . . w1]n) = topk(wℓ) if k < n and ℓ > 0

noting that topk(w) is undefined if topk′(w) is empty for any
k′ > k. We also remove the top portion of a topk stack using

bot
i
n([wℓ . . . w1]n) = [wi . . . w1]n

when i ≤ ℓ and ℓ > 0, and

bot
i
k([wℓ . . . w1]n) = [botik(wℓ)wℓ−1 . . . w1]n

when k < n and ℓ > 0. We are now ready to define collapse links.

Definition 3.2 (Collapse Links). An order-k collapse link is a pair
(k, i) where 1 ≤ k ≤ n and i > 0.

For top1(w) = a where a has the link (k, i), the destination
of the link is botik(w). We disallow collapse links where botik
does not lead to a valid stack. The example stack in Figure 3 is

thus [[[a(3,1)b]1]2[[c
(2,1)]1[d

(1,1)e]1]2]3, where collapse links are
denoted as superscripts. Often (as we have done for the stack
characters b and e) we will omit these superscripts for readability.

Finally the following notation appends a stack on top of another.
Given an order-k stack v = [vℓ . . . v1]k and an order-(k′−1) stack
u (with k′ ≤ k), we define u :k′ v = [u vℓ . . . v1]k if k′ = k and
u :k′ v = [(u :k′ vℓ) . . . v1]k if k′ < k.

The following operations apply to an order-n collapsible stack.

On = {pop1, . . . , popn} ∪ {push2, . . . , pushn} ∪
{collapse2, . . . , collapsen} ∪
{

push2
a, . . . , push

n
a , rewa | a ∈ Σ

}

We define each stack operation for an order-n stack w. Collapse
links are created by pushk

a, which add a character to the top of a
given stack w with a link pointing to topk+1(popk(w)). This gives
a access to the context in which it was created. We set

1. popk(u :k v) = v,

2. pushk(u :k v) = u :k (u :k v),

3. collapsek(w) = botik(w) where top1(w) = a(k,i) for some i,

4. pushk
b (w) = b(k,ℓ−1) :1 w where topk+1(w) = [wℓ . . . w1]k ,

5. rewb

(

a(k,i) :1 v
)

= b(k,i) :1 v.

Note that, for a pushk operation, links outside of u = topk(w)
point to the same destination in both copies of u, while links
pointing within u point within the respective copies of u. Since
collapse1 would always be equivalent to pop1, we neither create
nor follow order-1 links. (Often in examples we do not illustrate
links that are never used.) For a more detailed introduction see [10].

3.1.2 Collapsible Pushdown Systems

We are now ready to define collapsible pushdown systems.

Definition 3.3 (Collapsible Pushdown Systems). An order-n col-
lapsible pushdown system (n-CPDS) is a tuple C = (P ,Σ,R)
where P is a finite set of control states, Σ is a finite stack alphabet,
and R ⊆ P × Σ×On ×P is a set of rules.

A configuration of a CPDS is a pair 〈p,w〉 where p ∈ P and
w ∈ Stacksn. We denote by 〈p,w〉 −→ 〈p′, w′〉 a transition from
a rule (p, a, o, p′) with top1(w) = a and w′ = o(w). A run of a
CPDS is a finite sequence 〈p0, w0〉 −→ · · · −→ 〈pℓ, wℓ〉.

• • • • • • • • • • • • • • • •
[2 [1 a b]1]2 [2 [1 c]1 [1 d e]1]2

Figure 3: A graph representation of a stack.

3.2 Representing Sets of Stacks

Our algorithm represents sets of configurations using order-n stack
automata. These are a kind of alternating automata with a nested
structure that mimics the nesting in a higher-order collapsible stack.
We recall the definition below.

Definition 3.4 (Order-n Stack Automata). An order-n stack au-
tomaton A = (Qn, . . . ,Q1,Σ,∆n, . . . ,∆1,Fn, . . . ,F1) is a tu-
ple where Σ is a finite stack alphabet, and

1. for all n ≥ k ≥ 2, we have Qk is a finite set of states, Fk ⊆ Qk

is a set of accepting states, and ∆k ⊆ Qk × Qk−1 × 2Qk is a
transition relation such that for all q and Q there is at most one
q′ with (q, q′, Q) ∈ ∆k, and

2. Q1 is a finite set of states, F1 ⊆ Q1 a set of accepting states,

and ∆1 ⊆
⋃

2≤k≤n

(

Q1 × Σ× 2Qk × 2Q1
)

a transition rela-

tion.

The sets Qk are disjoint and their states recognise order-
k stacks. Stacks are read from “top to bottom”. A transition

(q, q′, Q) ∈ ∆k, written q
q′

−→ Q, from q to Q for some k > 1
requires that the topk−1 stack is accepted from q′ ∈ Q(k−1) and
the rest of the stack is accepted from each state in Q. At order-1,
a transition (q, a,Qcol, Q) has the additional requirement that the
stack linked to by a is accepted from Qcol. A stack is accepted if a
subset of Fk is reached at the end of each order-k stack. We write
w ∈ Lq(A) to denote the set of all w accepted from q. Note that
a transition to the empty set is distinct from having no transition.
Figure 4 shows part of a run over the stack in Figure 3 where each
node in the graph is labelled by the states from which the remain-
der of the stack containing it (as well as the stacks linked to) must
be accepted. Note, e.g., that since Q2 appears at the bottom of an
order-2 stack, we must have Q2 ⊆ F2 for the run to be accepting.

The transitions used are q3
q2−→ Q3 ∈ ∆3, q2

q1−→ Q2 ∈ ∆2, and

q1
a

−−−→
Qcol

Q1 ∈ ∆1. See Section 4 for further examples.

q3 q2 q1 Q1 · · · Q2 Q3 ∪Qcol · · ·
[2 [1 a b]1]2 [2

Figure 4: Part of a run over an example stack.

3.2.1 Representing Transitions and States

We use a long-form notation (defined below) that captures nested

sequences of transitions. For example, we may write q3
a

−−−→
Qcol

(Q1, Q2, Q3) to capture the transitions shown in Figure 4. To-
gether, these indicate that after starting from the beginning of the
stack and reading only the topmost stack character, the remainder
of the stack must be accepted by Qcol, Q1, Q2, and Q3. More gen-

erally, we may also use q3
q1−→ (Q2, Q3), and q3

q2−→ (Q3).
Formally, when q ∈ Qk, q′ ∈ Qk′ , Qi ⊆ Qi for all k ≥ i ≥ 1,

and there is some i with Qcol ⊆ Qi, we write

q
a

−−−→
Qcol

(Q1, . . . , Qk) and q
q′

−→ (Qk′+1, . . . , Qk) .

In the first case, there exist qk−1, . . . , q1 such that q
qk−1
−−−→ Qk ∈

∆k, qk−1

qk−2
−−−→ Qk−1 ∈ ∆k−1, . . . , q1

a
−−−→
Qcol

Q1 ∈ ∆1. In

the second case there exist qk−1, . . . , qk′+1 with q
qk−1
−−−→ Qk ∈

∆k, qk−1

qk−2
−−−→ Qk−1 ∈ ∆k−1, . . . , qk′+2

qk′+1
−−−−→ Qk′+2 ∈

∆k′+2 and qk′+1
q′

−→ Qk′+1 ∈ ∆k′+1.

Remark 3.1. We may also write qQk,...,Qk′+1
for the q′ above

(which is uniquely determined by Qk, . . . , Qk′+1).

Note that our definitions mean that we have, e.g., q
a

−−−→
Qcol

(Q1, Q2, Q3) if and only if we have qQ3,Q2

a
−−−→
Qcol

Q1 in ∆1.

3.2.2 Representing Sets of Transitions

Let ∆S
k denote the set of all order-k long-form transitions q

a
−−−→
Qcol

(Q1, . . . , Qk) of order-k. For a set T = {t1, . . . , tℓ} ⊆ ∆S
k , we

say T is of the form

Q
a

−−−→
Qcol

(Q1, . . . , Qk)

whenever Q = {q1, . . . , qℓ} and for all 1 ≤ i ≤ ℓ we have

ti = qi
a

−−−→
Qi

col

(

Qi
1, . . . , Q

i
k

)

and Qcol =
⋃

1≤i≤ℓ Q
i
col and for

all 1 ≤ k′ ≤ k, Qk′ =
⋃

1≤i≤ℓ
Qi

k′ . Because a link can only be of

one order, we insist that Qcol ⊆ Qk′ for some 1 ≤ k′ ≤ n.

3.3 Representing Sets of Configurations

We define a notion of P-multi-automata [4] for representing sets of
configurations of collapsible pushdown systems.

Definition 3.5 (P-Multi Stack Automata). Given an order-n
CPDS with control statesP , a P-multi stack automaton is an order-
n stack automaton A = (Qn, . . . ,Q1,Σ,∆n, . . . ,∆1,Fn, . . . ,F1)
such that for each p ∈ P there exists a state qp ∈ Qn.

A state is initial if it is of the form qp ∈ Qn for some control
state p or if it is a state qk ∈ Qk for k < n such that there exists

a transition qk+1
qk−→ Qk+1 in ∆k+1. The language of a P-multi

stack automaton A is the set L(A) =
{

〈p,w〉
∣

∣ w ∈ Lqp(A)
}

.

3.4 Basic Saturation Algorithm

Our algorithm computes the set Pre∗C(A0) of a collapsible push-
down system C and a P-multi stack automaton A0. We assume
without loss of generality that initial states of A0 do not have in-
coming transitions and are not final. To accept empty stacks from
initial states, a bottom-of-stack symbol can be used.

Let Pre∗C(A0) be the smallest set with Pre∗C(A0) ⊇ L(A0),
and Pre∗C(A0) ⊇ {〈p,w〉 | ∃〈p,w〉 −→ 〈p′, w′〉 ∈ Pre∗C(A0)}.

We begin with A0 and iterate a saturation function Π — adding
new transitions to A0 — until a ‘fixed point’ is reached; that is, we
cannot find any more transitions to add.

Notation for Adding Transitions During saturation we designate

transitions qn
a

−−−→
Qcol

(Q1, . . . , Qn) to be added to the automaton.

Recall this represents q
qn−1
−−−→ Qn ∈ ∆n, qn−1

qn−2
−−−→ Qn−1 ∈

∆n−1, . . . , q1
a

−−−→
Qcol

Q1 ∈ ∆1. Hence, we first, for each n ≥ k >

1, add qk
qk−1
−−−→ Qk to ∆k if it does not already exist. Then, we

add q1
a

−−−→
Qcol

Q1 to ∆1.

Justified Transitions In this paper, we extend the saturation func-
tion to add justifications to new transitions that indicate the prove-
nance of each new transition. This permits counter example gen-

eration. To each t = q
a

−−−→
Qcol

(Q1, . . . , Qn) we will define the

justification J(t) to be either 0 (indicating the transition is in A0),
a pair (r, i), a tuple (r, t′, i) or a tuple (r, t′, T, i) where r is a rule
of the CPDS, i is the number of iterations of the saturation function
required to introduce the transition, t′ is a long-form transition and
T is a set of such transitions. This information will be used in Sec-
tion 6 for generating counter examples. Note that we apply J to the
long-form notation. In reality, we associate each justification with

the unique order-1 transition q1
a

−−−→
Qcol

Q1 associated to each t.

The Saturation Function We are now ready to recall the sat-
uration function Π for a given C = (P ,Σ,R). As described
above, we apply this function to A0 until a fixed point is reached.
First set J(t) = 0 for all transitions of A0. The intuition be-
hind the saturation rules can be quickly understood via a rewrite
rule (p, a, rewb, p

′) which leads to the addition of a transition

qp
a

−−−→
Qcol

(Q1, . . . , Qn) whenever there already existed a transi-

tion qp′
b

−−−→
Qcol

(Q1, . . . , Qn). Because the rewrite can change the

control state from p to p′ and the top character from a to b, we must
have an accepting run from qp with a on top whenever we had an
accepting run from qp′ with b on top. We give examples and intu-
ition of the more complex steps in Section 4, which may be read
alongside the definition below.

Definition 3.6 (The Saturation Function Π). Given an order-n
stack automaton Ai we define Ai+1 = Π(Ai). The state-sets of
Ai+1 are defined implicitly by the transitions which are those in Ai

plus, for each r = (p, a, o, p′) ∈ R,

1. when o = popk, for each qp′
qk−→ (Qk+1, . . . , Qn) in Ai, add

t = qp
a
−→
∅

(∅, . . . , ∅, {qk} , Qk+1, . . . , Qn) to Ai+1 and set

J(t) = (r, i+ 1) whenever t is not already in Ai+1,

2. when o = pushk, for each t = qp′
a

−−−→
Qcol

(Q1, . . . , Qk, . . . , Qn)

and T of the form Qk
a

−−−→
Q′

col

(Q′
1, . . . , Q

′
k) in Ai, add to Ai+1

the transition

t
′ = qp

a
−−−−−−−→
Qcol∪Q′

col

Q1 ∪Q′
1, . . . , Qk−1 ∪Q′

k−1,
Q′

k,
Qk+1, . . . , Qn

and set J(t′) = (r, t, T, i+ 1) if t′ is not already in Ai+1,

3. when o = collapsek, when k = n, add t = qp
a

−−−−→
{qp′}

(∅, . . . , ∅) if it does not exist, and when k < n, for each

transition qp′
qk−→ (Qk+1, . . . , Qn) in Ai, add to Ai+1 the

transition t = qp
a

−−−→
{qk}

(∅, . . . , ∅, Qk+1, . . . , Qn) if t does not

already exist. In all cases, if t is added, set J(t) = (r, i+ 1),

4. when o = pushk
b for all transitions t = qp′

b
−−−→
Qcol

(Q1, . . . , Qn)

and T = Q1
a

−−−→
Q′

col

Q′
1 in Ai with Qcol ⊆ Qk, add to Ai+1

the transition

t
′ = qp

a
−−−→
Q′

col

(

Q
′
1, Q2, . . . , Qk ∪Qcol, . . . , Qn

)

,

and set J(t′) = (r, t, T, i+ 1) if t′ is not already in Ai+1,

5. when o = rewb for each transition t = qp′
b

−−−→
Qcol

(Q1, . . . , Qn)

in Ai, add to Ai+1 the transition t′ = qp
a

−−−→
Qcol

(Q1, . . . , Qn),

setting J(t′) = (r, t, i) when t′ is not already in Ai+1.

From A0, we iterate Ai+1 = Π(Ai) until Ai+1 = Ai. Gen-
erally, we terminate in n-EXPTIME. When A0 satisfies a “non-
alternating” property (e.g. when we’re only interested in reaching a
designated control state), we can restrict Π to only add transitions
where Qn has at most one element, giving (n−1)-EXPTIME com-
plexity. In all cases saturation is linear in the size of Σ.

4. Examples of Saturation

As an example of saturation, consider a CPDS with the run

〈p1, [b] [c] [d]〉
push2

a−−−−→ 〈p2, [ab] [c] [d]〉
push2−−−−→

〈p3, [ab] [ab] [c] [d]〉
collapse2−−−−−−→ 〈p4, [c] [d]〉

pop2−−−→ 〈p5, [d]〉 .

Figure 5 shows the sequence of saturation steps, beginning with
an accepting run of 〈p5, [d]〉 and finishing with an accepting run of
〈p1, [b] [c] [d]〉. The individual steps are explained below.

Initial Automaton We begin at the top of Figure 5 with a stack

automaton containing the transitions qp5
q1−→ ∅ and q1

d
−→
∅

∅, which

we write qp5
d
−→
∅

(∅, ∅). This gives the pictured run over 〈p5, [d]〉.

Rule (p4, c, pop2, p5) When the saturation step considers such

a pop rule, it adds qp4
c
−→
∅

(∅, {qp5}). We add such a transition

because we only require the top order-1 stack (removed by pop2)
to have the top character c (hence ∅ is the next order-1 label), and
after the pop2 the remaining stack needs to be accepted from qp5
(hence {qp5} is the next order-2 label). This new transition allows
us to construct the next run over 〈p4, [c] [d]〉 in Figure 5.

Rule (p3, a, collapse2, p4) Similarly to the pop rule above, the

saturation step adds the transition qp3
a

−−−−→
{qp4}

(∅, ∅). The addition

of such a transition allows us to construct the pictured run over

〈p3, [ab] [ab] [c] [d]〉 (collapse links omitted), recalling that ∅
∅
−→ ∅,

∅
a
−→
∅

∅ and ∅
b
−→
∅

∅ transitions are always possible due to the empty

initial set. Note that the labelling of {qp4} in the run comes from
the collapse link on the topmost a character on the stack.

Rule (p2, a, push2, p3) Consider the run from qp3 in Figure 5.
The initial transition of the run accepting the first order-1 stack is

qp3
a

−−−−→
{qp4}

(∅, ∅). We also have ∅
∅
−→ ∅ (trivially) accepting the

second order-1 stack. Any push2 predecessor of this stack must
have a top order-1 stack that could have appeared twice at the top of
the stack from qp3 . Thus, the saturation step makes the intersection
of the initial order-1 transitions of first two order-1 stacks. This
results in the transition qp2

a
−−−−−−→
{qp4}∪∅

(∅ ∪ ∅, ∅), which is used to

form the shown run over 〈p2, [ab] [c] [d]〉 (collapse links omitted).

Rule
(

p1, b, push
2
a, p2

)

The run from qp2 in Figure 5 begins with

qp2
a

−−−−→
{qp4}

(∅, ∅) and ∅
b
−→
∅

∅. Note that the push2
a gives a stack

with ab on top. Moreover, the collapse link on a should point to the
order-1 stack just below the current top one. Since the transition
from qp2 requires that the linked-to stack is accepted from qp4 , we
need this requirement in the preceding stack (accepted from qp1
and without the a on top). Thus, we move the target of the collapse
link into the order-2 destination of the new transition. That is, the

saturation step for push2
a rules creates qp1

b
−→
∅

(∅, ∅ ∪ {qp4}). This

can be used to construct an accepting run over 〈p1, [b] [c] [d]〉.

(1) qp5 q1 ∅ ∅
[1 d]1

(2) qp4 q2 ∅ {qp5} q1 ∅ ∅
[1 c]1 [1 d]1

(3) qp3 q3 ∅ ∅ ∅ ∅ ∅ ∅ {qp4} q2 ∅ {qp5} q1 ∅ ∅
[1 a b]1 [1 a b]1 [1 c]1 [1 d]1

(4) qp2 q4 ∅ ∅ {qp4} q2 ∅ {qp5} q1 ∅ ∅
[1 a b]1 [1 c]1 [1 d]1

(5) qp1 q5 ∅ {qp4} q2 ∅ {qp5} q1 ∅ ∅
[1 b]1 [1 c]1 [1 d]1

Figure 5: A sequence of saturation steps.

5. Initial Forward Analysis

In this section we distinguish an error state perr and we are in-
terested only in whether C can reach a configuration of the form
〈perr , w〉 (hence our A0 is “non-alternating”). This suffices to cap-
ture the same safety (reachability) properties of recursion schemes
as TRecS. We fix a stack-automaton E recognising all error config-
urations (those with the state perr). We write Post∗C for the set of
configurations reachable by C from the initial configuration. This
set cannot be represented precisely by a stack automaton [5] (for
instance using push2, we can create [[an]1[a

n]1]2 from [[an]1]2
for any n ≥ 0). We summarise our approach then give details in
Sections 5.1, 5.2 and 5.3.

It is generally completely impractical to compute Pre∗C(E)
in full (most non-trivial examples considered in our experiments
would time-out). For our saturation algorithm to be usable in prac-
tice, it is therefore essential that the search space is restricted, which
we achieve by means of an initial forward analysis of the CPDS.
Ideally we would compute only Pre∗C(E)∩Post∗C . Since this can-
not be represented by an automaton, we instead compute a suffi-
cient approximation T (ideally a strict subset of Pre∗C(E)) where:

Pre
∗
C(E) ∩ Post

∗
C ⊆ T ⊆ Pre

∗
C(E).

The initial configuration will belong to T iff it can reach a configu-
ration recognised by E . Computing such a T is much more feasible.

We first compute an over-approximation of Post∗C. For this we
use a summary algorithm [34] (that happens to be precise at order-
1) from which we extract an over-approximation of the set of CPDS
rules that may be used on a run to perr . Let C′ be the (smaller)
CPDS containing only these rules. That is, we remove all rules
that we know cannot appear on a run to perr . We could thus take
T = Pre∗C′(E) (computable by saturation for C′) since it satisfies
the conditions above. This is what we meant by ‘pruning’ the CPDS
(1a in the list on page 2)

However, we further improve performance by computing an
even smaller T (1b in the list on page 2). We extract contextual
information from our over-approximation of Post∗C about how
pops and collapses might be used during a run to perr . Our C′

is then restricted to a model C′′ that ‘guards’ its rules by these
contextual constraints. Taking T = Pre∗C′′(E) we have a T smaller
than Pre∗C′(E), but still satisfying our sufficient conditions. In fact,
C′′ will be a ‘guarded CPDS’ (defined in the next subsection). We
cannot compute Pre∗C′′(E) precisely for a guarded CPDS, but we
can adjust saturation to compute T such that Pre∗C′′(E) ⊆ T ⊆
Pre∗C′(E). This set will thus also satisfy our sufficient conditions.

5.1 Guarded Destruction

An order-n guarded CPDS (n-GCPDS) is an n-CPDS where con-
ventional popk and collapsek operations are replaced by guarded

operations of the form popSk and collapseSk where S ⊆ Σ. These
operations may only be fired if the resulting stack has a member of

S on top. That is, for o ∈ {collapsek, popk | 1 ≤ k ≤ n}:

o
S(u) :=

{

o(u) if o(u) defined and top1(o(u)) ∈ S

undefined otherwise .

Note, we do not guard the other stack operations since these them-
selves guarantee the symbol on top of the new stack (e.g. when a
transition (p, a, push2, p

′) fires it must always result in a stack with

a on top, and (p, a, pushb
k, p

′) produces a stack with b on top).
Given a GCPDS C, we write Triv(C) for the ordinary CPDS that

is the trivialisation of C, obtained by replacing each popSk (resp.
collapseSk) in the rules of C with popk (resp. collapsek).

We modify the saturation algorithm to use ‘guarded’ saturation
steps for pop and collapse rules. Other saturation steps are un-
changed. Non-trivial guards reduce the size of the stack-automaton
constructed by avoiding certain additions that are only relevant for
unreachable (and hence uninteresting) configurations in the pre-
image. This thus improves performance.

1. when o = popSk , for each qp′
qk−→ (Qk+1, . . . , Qn) in A such

that there is a transition of the form qk
b
−→ (, . . . ,) in A such

that b ∈ S, add qp
a
−→
∅

(∅, . . . , ∅, {qk} , Qk+1, . . . , Qn) to A′,

3. when o = collapseSk , for each qp′
qk−→ (Qk+1, . . . , Qn) in A

such that there is a transition of the form qk
b
−→ (, . . . ,) in A

with b ∈ S, add qp
a

−−−→
{qk}

(∅, . . . , ∅, Qk+1, . . . , Qn) to A′.

E.g., suppose that an ordinary (non-guarded) 2-CPDS has rules
(p1, c, collapse2, p) and (p2, d, collapse2, p

′). The original satu-
ration algorithm would process these rules to add the transitions:

qp1
c

−−−→
{qp}

(∅, ∅) and qp2
d

−−−−→
{qp′}

(∅, ∅)

Now suppose that the saturation algorithm has produced two

transitions of the form qp
a
−→ (,) and qp′

b
−→ (,). If a

GCPDS had, for example, the rules (p1, c, collapse
{a}
2 , p) and

(p2, d, collapse
{b}
2 , p′), then these same two transitions would be

added by the modified saturation algorithm. On the other hand,

the rules (p1, c, collapse
{a}
2 , p) and (p2, d, collapse

{a}
2 , p′) would

only result in the first of the two transitions being added.

Lemma 5.1. The revised saturation algorithm applied to E (for
a GCPDS C) gives a stack automaton recognising T such that
Pre∗C(E) ⊆ T ⊆ Pre∗

Triv(C)(E)

Remark 5.1. The algorithm may result in a stack-automaton
recognising configurations that do not belong to Pre∗C(E) (al-
though still in Pre∗

Triv(C)(E)). This is because a state qk having

a transition qk
b
−→ (, . . . ,) may also have another transition

qk
b′

−→ (, . . . ,) with b 6= b′ (and so it might recognise a stack

from which a popk, say, guarded by b cannot be performed).

Remark 5.2. The above modification to the naive saturation algo-
rithm can also be easily incorporated into the efficient fixed point
algorithm described in Section 7.

5.2 Approximate Reachability Graphs

We now give an overview of the summary algorithm used to obtain
an over-approximation of Post∗C and thus compute the GCPDS C′′

mentioned previously. We refer the reader to the long version of this
paper for details, including a formal account of the invariants on the
graph maintained by the algorithm. For simplicity, we assume that
a stack symbol uniquely determines the order of any link that it
emits (which is the case for a CPDS obtained from a HORS).

An approximate reachability graph for C is a structure (H,E)
describing an over-approximation of the reachable configurations
of C. The set of nodes of the graph H consists of heads of the
CPDS, where a head is a pair (p, a) ∈ P × Σ and describes con-
figurations of the form 〈p, u〉 where top1(u) = a. The set E con-
tains directed edges ((p, a), r, (p′, a′)) labelled by rules of C. Such
edges over-approximate the transitions that C might make using a
rule r from a configuration described by (p, a) to one described by
(p′, a′). For example, suppose that C is order-2 and has, amongst
others, the rules r1 := (p1, b, push2, p2), r2 := (p2, b, push

2
c, p3)

and r3 := (p3, c, pop1, p4) so that it can perform transitions:
〈

p1,

[[

b
a

]]〉

r1−−→

〈

p2,

[[

b
a

] [

b
a

]]〉

r2−−→

〈

p3,

c
b
a

 b
a

〉

r3−−→

〈

p4,

 b
a

 b
a

〉

where the first configuration mentioned here is reachable. We
should then have edges ((p1, b), r1, (p2, b)), ((p2, b), r2, (p3, c))
and ((p3, c), r3, (p4, b)) in E. We denote the configurations above
C1, C2, C3 and C4 respectively, with respective stacks s1, s2, s3, s4.

Such a graph can be computed using an approximate summary
algorithm, which builds up an object (H,E,B,U) consisting of an
approximate reachability graph together with two additional com-
ponents. B is a map assigning each head h in the graph a set B(h)
of stack descriptors, which are (n+ 1)-tuples (hn, . . . , h1, hc) of
heads. In the following, we refer to hk as the order-k component
and hc the collapse component. Roughly speaking, hk describes
at which head the new topk-stack resulting from a popk operation
(applied to a configuration with head h) may have been created,
and hc does likewise for a collapse operation. (We will use ⊥ in
place of a head to indicate when popk or collapse is undefined.)

Consider C3 = 〈p3, s3〉 from the example above. This has
control-state p3 and top stack symbol c and so is associated with the
head (p3, c). Thus B((p3, c)) should contain the stack-descriptor
((p1, b), (p2, b), (p1, b)), which describes s3. The first (order-2)
component is because top2(s3) was created by a push2 operation
from a configuration with head (p1, b). The second (order-1) com-
ponent is because the top symbol was created via an order-1 push
from (p2, b). Finally, the order-2 link from the top of s3 points to a
stack occurring on top of a configuration at the head (p1, b), giving
rise to the final (collapse) component describing the collapse link.

Tracking this information allows the summary algorithm to pro-
cess the rule r3 to obtain a description of C4 from the description
of C3. Since this rule performs a pop1, it can look at the order-1
component of the stack descriptor to see the head (p2, b), telling us
that pop1 results in b being on top of the stack. Since the rule r3
moves into control-state p4, this tells us that the new head should
be (p4, b). It also tells us that certain pieces of information in

B((p2, b)) are relevant to the description of top2(s4) contained in
B((p4, b)). First remark that this situation only occurs for the popk
and collapsek operations. To keep track of these correlations, we
use the component U of the graph.

The component U is a set of approximate higher-order sum-
mary edges. A summary edge describes how information contained
in stack descriptors should be shared between heads. An order-
k summary edge from a head h to a head h′ is a triple of the
form (h, (h′

n, . . . , h
′
k+1) , h

′) where each h′
i is a head. Such a sum-

mary edge is added when processing either a popk or a collapsek
operation on an order-k link. Intuitively such a summary edge
means that if (hn, . . . , hk+1, hk, . . . , h1, hc) ∈ B(h), then we
should also have (h′

n, . . . , h
′
k+1, hk, . . . , h1, hc) ∈ B(h′). To con-

tinue our example, the r3 rule (which performs a pop1 operation)
from C3 to C4 means U should contain an order-1 summary edge
((p2, b), ((p1, b)) , (p4, b)). Since pop1 is an order-1 operation, we
have pop2(s3) = pop2(s4). Hence (p1, b) (the order-2 component
of the stack descriptor for s3) should also be the first component
of a stack descriptor for s4. However, since top1(s4) was created
at a configuration with head (p2, b), the order-1 and collapse com-
ponents of such a stack descriptor for s4 should be inherited from
a stack descriptor in B((p2, b)). In general if we go from a con-
figuration (p, s) with h to a configuration (p′, s′) with head h′

by the popk operation or collapsek on an order-k link, we have
that popk+1(s) = popk+1(s

′) and hence we have a summary edge
(h, (h′

n, . . . , h
′
k+1) , h

′)
The construction of the approximate reachability graph is de-

scribed in algorithms 1, 2, 3 and 4. The main work is done in
the function ProcessHeadWithDescriptor. In particular, this is
where summary edges are added for the popk and collapsek oper-
ations. A fully worked example is given in the long version.

5.3 Extracting the Guarded CPDA

Let G = (H,E) be an approximate reachability graph for C.
Let Heads(E) be the set of heads of error configurations, i.e.
Heads(E) := {(perr , a) | a ∈ Σ}. We do a simple backwards
reachability computation on the finite graph G to compute the set
BackRules(G), which is defined to be the smallest set satisfying:

BackRules(G) =

{

e ∈ E

∣

∣

∣

∣

e = (h, r, h′) ∈ E for some
h′ ∈ Heads(E)

}

∪

{

e ∈ E

∣

∣

∣

∣

e = (h, r, h′) ∈ E for some
(h′, ,) ∈ BackRules(G)

}

The CPDS rules occurring in the triples in BackRules(G) can be
used to define a pruned CPDS C′ that reaches an error state if and
only if the original also does. However, the approximate reacha-
bility graph provides enough information to construct a guarded
CPDS C′′ whose guards are non-trivial. It should be clear that the
following set BackRulesG(G) of guarded rules can be computed:

(

p, a, o
′
, p

′)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(, (p, a, o, p′) ,) ∈ BackRules(G) and

o′ =

oS if o is a pop or a collapse and S

=

{

b

∣

∣

∣

∣

∣

((p, a), r, (p′, b))

∈ E

}

with r = (p, a, o, p′)

o if o is a rewrite or push

These rules define a GCPDS on which C-SHORe finally per-
forms saturation.

Lemma 5.2. The GCPDS C′′ defined using BackRulesG(G) sat-
isfies: Post∗C ∩ Pre∗C(E) ⊆ Pre∗C′′(E) ⊆ Pre∗C(E)

Algorithm 1 The Approximate Summary Algorithm

Require: An n-CPDS with rules R and heads P × Σ and initial
configuration 〈p0, [· · · [a0]1 · · ·]n〉

Ensure: The creation of a structure (H,E,B,U) where (H,E) is
an approximate reachability graph and U is a set of approximate
higher-order summary edges.

Set H := {(p0, a0)} and set E, B and U to be empty
Call AddStackDescriptor((p0, a0), (⊥, . . . ,⊥,⊥))
return Done, (H,E,B,U) will now be as required

Algorithm 2 AddStackDescriptor(h, (hn, . . . , h1, hc))

Require: A head h ∈ H and a stack descriptor (hn, . . . , h1, hc)
Ensure: (hn, . . . , h1, hc) ∈ B(h) and all additions to B(h′) for

all h′ ∈ H needed to respect summary edges are made.

if (hn, . . . , h1, hc) ∈ B(h) then
return Done (Nothing to do)

Add (hn, . . . , h1, hc) to B(h)
Call ProcessHeadWithDescriptor(h, (hn, . . . , h1, hc))
for h′ ∈ H such that (h, (h′

n, . . . , h
′
k+1) , h

′) ∈ U do

Call AddStackDescriptor(h′, (h′
n, . . . , h

′
k+1, hk, . . . , h1, hc))

return Done

Algorithm 3 ProcessHeadWithDescriptor(h, (hn, . . . , h1, hc))

Require: A head h := (p, a) ∈ H and a stack descriptor
(hn, . . . , h1, hc) ∈ B(h)

Ensure: All necessary modifications to the graph are made so that
it is consistent with (hn, . . . , h1, hc) ∈ B(h). In particular this
is the procedure that processes the CPDS rules from h (with
respect to a stack described by h and the stack descriptor).

for o and p′ such that r = (p, a, o, p′) ∈ R do
if o = rewb then

Add (p′, b) to H and ((p, a), r, (p′, b)) to E
Call AddStackDescriptor((p′, b), (hn, . . . , h1, hc))

else if o = pushk
b then

Add (p′, b) to H and ((p, a), r, (p′, b)) to E
Call AddStackDescriptor((p′, b), (hn, . . . , h2, (p, a), hk))

else if o = pushk then
Add (p′, a) to H and ((p, a), r, (p′, a)) to E
Call AddStackDescriptor((p′, a), (hn, . . . , hk+1, (p, a),

hk−1, . . . , h1, hc))
else if o = popk with hk = (pk, ak) where ak 6= ⊥ then

Add (p′, ak) to H and ((p, a), r, (p′, ak)) to E
Call AddSummary((pk, ak), (hn, . . . , hk+1) , (p

′, ak))
else if o = collapsek, hc = (pc, ac) and ac 6= ⊥ then

Add (pc, ac) to H and ((p, a), r, (p′, ac)) to E
Call AddSummary((pc, ac), (hn, . . . , hk+1) , (p

′, ac))
return Done

6. Counter Example Generation

In this section, we describe an algorithm that given a CPDS C
and a stack automaton A0 such that a configuration 〈p,w〉 of C
belongs Pre∗C(A0), constructs a sequence of rules of C which when
applied from 〈p,w〉 leads to a configuration in L(A0). In practice,
we use the algorithm with A0 accepting the set of all configurations
starting with some error state perr. The output is a counter-example
showing how the CPDS can reach this error state.

The algorithm itself is a natural one and the full details are given
in the full version of this paper. We describe it informally here by
means of the example in Figure 5, described in Section 4.

To construct a trace from 〈p1, [b] [c] [d]〉 to 〈p5, [d]〉 we first note
that, when adding the initial transition of the pictured run from qp1 ,
the saturation step marked that the transition was added due to the

Algorithm 4 AddSummary(h, (h′
n, . . . , hk+1) , h

′)

Require: An approximate higher-order summary edge
(h, (h′

n, . . . , hk+1) , h
′)

Ensure: (h, (h′
n, . . . , h

′
k+1) , h

′) ∈ U and that all necessary stack

descriptors are added to the appropriate B(h′′) for h′′ ∈ H so
that all summary edges (including the new one) are respected.

if (h, (h′
n, . . . , h

′
k+1) , h

′) ∈ U then
return Done (Nothing to do)

Add (h, (h′
n, . . . , h

′
k+1) , h

′) to U
for (hn, . . . , hk+1, hk, . . . , h1, hc) ∈ B(h) do

AddStackDescriptor(h′, (h′
n, . . . , h

′
k+1, hk, . . . , h1, hc))

return Done

rule
(

p1, b, push
2
a, p2

)

. If we apply this rule to 〈p1, [b] [c] [d]〉 we
obtain 〈p2, [ab] [c] [d]〉 (collapse links omitted). Furthermore, the
justifications added during the saturation step tell us which transi-
tions to use to construct the pictured run from qp2 . Hence, we have
completed the first step of counter example extraction and moved
one step closer to the target configuration. To continue, we con-
sider the initial transition of the run from qp2 . Again, the justifica-
tions added during saturation tell us which CPDS rule to apply and
which stack automaton transitions to use to build an accepting run
of the next configuration. Thus, we follow the justifications back to
a run of A0, constructing a complete trace on the way.

The main technical difficulty lies in proving that the reasoning
outlined above leads to a terminating algorithm. For example, we
need to prove that following the justifications does not result us
following a loop indefinitely. Since the stack may shrink and grow
during a run, this is a non-trivial property. To prove it, we require a
subtle relation on runs over higher-order collapsible stacks.

6.1 A Well-Founded Relation on Stack Automaton Runs

We aim to define a well-founded relation over runs of the stack
automaton A constructed by saturation from C and A0. To do this
we represent a run over a stack as another stack of (sets of) tran-
sitions of A. This can be obtained by replacing each instance of a
stack character with the set of order-1 transitions that read it. This
is formally defined in the full version of the paper and described
by example here. Consider the run over [[b] [c] [d]] from qp1 in Fig-
ure 5. We can represent this run as the stack [[{t1}] [{t2}] [{t3}]]

where t1 = q5
b
−→
∅

∅, t2 = q2
c
−→
∅

∅ and t3 = q1
d
−→
∅

∅. Note that

since q5 uniquely labels the order-2 transition qp1
q5−→ {qp4} (and

similarly for the transitions from qp4 and qp5) we do not need to
explicitly store these transitions in our stack representation of runs.

Using this representation, we can define by induction a relation
→֒k on the order-k runs of A. Note that this is not an order relation
as it is not always transitive. There are several cases to →֒k.

1. For k = 1, we say w′ →֒1 w if for some i ≥ 0, w contains
strictly fewer transitions in∆1 justified at step i than w′ and that
for all j > i they both contain the same number of transitions
in ∆1 justified at step j.

2. For k > 1, we say u = [uℓ . . . u1]k →֒k v = [vℓ′ . . . v1]k if

(a) ℓ′ < ℓ and ui = vi for i ∈ [1, ℓ′ − 1] and either uℓ′ = vℓ′
or uℓ′ →֒k−1 vℓ′ , or

(b) ℓ′ ≥ ℓ and ui = vi for i ∈ [1, ℓ − 1] and uℓ →֒k−1 vi for
all i ∈ [ℓ, ℓ′].

Lemma 6.1. For all k ∈ [1, n], the relation →֒k is well-founded.
Namely there is no infinite sequence w0 →֒k w1 →֒k w2 →֒k · · · .

It is possible to show that by following the justifications, from
stack w to a w′, we always have w →֒n w′. Since this relation is
well-founded, the witness generation algorithm always terminates.

7. Efficient Fixed Point Computation

We introduce an efficient method of computing the fixed point in
Section 3, inspired by Schwoon et al.’s algorithm for alternating
(order-1) pushdown systems [36]. Rather than checking all CPDS
rules at each iteration, we fully process all consequences of each
new transition at once. New transitions are kept in a set ∆new

(implemented as a stack), processed, then moved to a set ∆done,
which forms the transition relation of the final stack automaton.
We assume w.l.o.g. that a character’s link order is determined by
the character. This is true of all CPDSs obtained from HORSs.

In most cases, new transitions only depend on a single existing
transition, hence processing the consequences of a new transition
is straightforward. The key difficulty is the push rules, which de-
pend on sets of existing transitions. Given a rule (p, a, pushk, p

′),

processing t = qp′
a

−−−→
Qcol

(Q1, . . . , Qk, . . . , Qn) ‘once and once

only’ must somehow include adding a new transition whenever

there is a set of transitions of the form Qk
a

−−−→
Q′

col

(Q′
1, . . . , Q

′
k)

in Ai either now or in the future. When t is processed, we there-
fore create a trip-wire, consisting of a source and target. A target

collects transitions from a given set of states (such as Qk above),
whilst a source describes how such a collection could be used to
form a new transition according to a push saturation step.

Definition 7.1. An order-k source for k ≥ 1 is defined as a tuple

(qk, qk−1, a,Qk) in Qk × Q⊥
k−1 × Σ × 2Qk where Q⊥

0 := {⊥}
and Q⊥

i = Qi ∪ {⊥} for i ≥ 1. An order-k target is a tuple

(Qk, Q
C
k , Qlbl , Q

′
k) ∈ 2Qk × 2Qk × 2Qk−1 × 2Qk

if k ≥ 2, and if k = 1

(Q1, Q
C
1 , a,Qcol, Q

′
1) ∈

n
⋃

k′=2

(

2Q1 × 2Q1 × Σ× 2Qk′ × 2Q1

)

.

The set QC
k is a countdown containing states in Qk still awaiting

a transition. We always have QC
k ⊆ Qk and

(

Qk \QC
k

) Qlbl−−→

Q′
k. Likewise, an order-1 target (Q1, Q

C
1 , a,Qcol, Q1) will satisfy

(Q1 \Q
C
1)

a
−−−→
Qcol

Q′
1. A target is complete if QC

k = ∅ or QC
1 = ∅.

A trip-wire of order-k is an order-k source-target pair of the
form ((, , , Qk), (Qk, , ,)) when k ≥ 2 or
((, , a,Qk), (Qk, , a, ,)) when k = 1. When the target in a
trip-wire is complete, the action specified by its source is triggered,
which we now sketch.

An order-k source for k ≥ 2 describes how an order-(k − 1)
source should be created from a complete target, propagating the
computation to the level below, and an order-1 source describes
how a new long-form transition should be created from a complete
target. That is, when we have (qk, , a,Qk) (we hide the second
component for simplicity of description) and (Qk, ∅, Qlbl , Q

′
k) this

means we’ve found a set of transitions witnessing Qk
Qlbl−−→ Q′

k

and should now look for transitions from Qlbl . Hence the algorithm
creates a new source and target for the order-(k− 1) state-set Qlbl .
When this process reaches order-1, a new transition is created. This
results in the construction of the t′ from a push saturation step.

Algorithm 5 gives the main loop and introduces the global sets
∆done and ∆new , and two arrays Usrc[k] and Utarg[k] containing
sources and targets for each order. Omitted are loops processing
popn and collapsen rules like the naive algorithm. Algorithm 6
gives the main steps processing a new transition. We present only
two CPDS rule cases here. In most cases a new transition is cre-
ated, however, for push rules we create a trip-wire. Remaining al-
gorithms, definitions, justification handling, and proofs are given in
the long version of this paper. We describe some informally below.

In create trip wire we create a trip-wire with a new target
(Qk, Qk, ∅, ∅). This is added using an add target procedure which
also checks ∆done to create further targets. E.g., a new target
(

Qk, Q
C
k , Qlbl , Q

′
k

)

combines with an existing qk
qk−1
−−−→ Q′′

k to

create a new target
(

Q,QC
k \ {qk} , Qlbl ∪ {qk−1} , Q

′
k ∪Q′′

k

)

.
(This step corrects a bug in the algorithm of Schwoon et al.) Simi-
larly update trip wires updates existing targets by new transitions.
In all cases, when a source and matching complete target are cre-
ated, we perform the propagations described above.

Proposition 7.1. Given a CPDS C and stack automaton A0, let A
be the result of Algorithm 5. We have L(A) = Pre∗C(A0).

8. Experimental Results

We compared C-SHORe with the current state-of-the-art verifica-
tion tools for higher-order recursion schemes (HORS): TRecS [23],
GTRecS2 [26] (the successor of [25]), and TravMC [28]. Bench-
marks are from the TRecS and TravMC benchmark suites, plus
several larger examples provided by Kobayashi. The majority of
the TravMC benchmarks were translated into HORS from an ex-
tended formalism, HORS with Case statements (HORSC), using a
script by Kobayashi. For fairness, all tools in our experiments took
a pure HORS as input. However, the authors of TravMC report that
TravMC performs faster on the original HORSC examples than on
their HORS translations.

In all cases, the benchmarks consist of a HORS (generating
a computation tree) and a property automaton. In the case of C-
SHORe, the property automaton is a regular automaton describing
branches of the generated tree that are considered errors. Thus, fol-
lowing the intuition in Section 2, we can construct a reachability
query over a CPDS, where the reachability of a control state perr
indicates an erroneous branch (see [10] for more details). All other
tools check co-reachability properties of HORS and thus the prop-
erty automaton describes only valid branches of the computation
tree. In all cases, it was straightforward to translate between the
co-reachability and reachability properties.

The experiments were run on a Dell Latitude e6320 laptop with
4Gb of RAM and four 2.7GHz Intel i7-2620M cores. We ran C-
SHORe on OpenJDK 7.0 with IcedTea7 replacing binary plugs,
using the argument “-Xmx” to limit RAM usage to 2.5Gb. As ad-
vised by the TravMC developers, we ran TravMC on the Mono JIT
Compiler version 3.0.3 with no command line arguments. Finally
TRecS (version 1.34) and GTRecS2 (version 3.17) were compiled
with the OCaml version 4.00.1 compilers. On negative examples,
GTRecS2 was run with its -neg argument. We used the “ulimit”
command to limit memory usage to 2.5Gb and set a CPU timeout
of 600 seconds (per benchmark). The given runtimes were reported
by the respective tools and are the means of three separate runs
on each example. Note that C-SHORe was run until the automaton
was completely saturated.

Table 1 shows trials where at least one tool took over 1s. This
is because virtual machine “warm-up” and HORS to CPDS con-
version can skew the results on small benchmarks. Full results are
in the full paper. Examples violating their property are marked
“(bug)”. The order (Ord) and size (Sz) of the schemes were re-
ported by TRecS. We show reported times in seconds for TRecS
(T), GTRecS2 (G), TravMC (TMC) and C-SHORe (C) where “—
” means analysis failed. For C-SHORe, we report the times for
HORS to CPDS translation (Ctran), CPDS analysis (Ccpds), and
building the approximation graph (Capprox). Capprox is part of
Ccpds, and the full time (C) is the sum of Ctran and Ccpds.

Of 26 benchmarks, C-SHORe performed best on 5 examples. In
6 cases, C-SHORe was the slowest. In particular, C-SHORe does
not perform well on exp4-1 and exp4-5. These belong to a class
of benchmarks that stress higher-order model-checkers and indi-

Algorithm 5 Computing Pre∗C(A0)

Let ∆done = ∅, ∆new =
⋃

n≥k≥1 ∆k,

Usrc[k] = ∅, Utarg[k] = {(∅, ∅, ∅, ∅)}
for each n ≥ k > 1 and Utarg[1] =
{(∅, ∅, a, ∅, ∅) | a ∈ Σ}.
. . .
while ∃t ∈ ∆new do

update rules(t); update trip wires(t); move
t from ∆new to ∆done

Algorithm 6 update rules(t)

if t is an order-k transition for 2 ≤ k ≤ n of the form qp′Qn···Qk+1
−−→ Qk then

for p ∈ P and a ∈ Σ such that r := (p, a, popk, p
′) ∈ R do

add to worklist

(

qp
a

−−−→
Qcol

(∅, . . . , ∅,
{

qp′Qn···Qk+1

}

,Qk+1, . . . ,Qn), r

)

for p ∈ P and a ∈ Σ such that r := (p, a, pushk, p
′) ∈ R do

create trip wire
(

qp,Qn,...,Qk+1
, qp′,Qn,...,Qk+1,Qk

, a,Qk, (r, t)
)

· · ·

Benchmark file Ord Sz T TMC G C Ctran Ccpds Capprox ✓/ ✗

order5 5 52 0.007 0.039 — 0.415 0.057 0.358 0.205
order5-2 5 40 0.022 0.084 — 0.305 0.050 0.255 0.157
order5-variant 5 55 0.019 0.039 1.519 0.427 0.057 0.370 0.177
filepath 2 5956 210.102 — — 0.397 0.168 0.229 0.221 ✓

filter-nonzero (bug) 5 484 0.006 0.115 0.182 1.443 0.100 1.344 1.006 ✗

filter-nonzero-1 5 890 0.176 211.907 — 4.492 0.159 4.332 3.484
map-head-filter-1 3 880 0.141 1.343 — 0.400 0.119 0.281 0.273
map-plusone-1 5 459 0.030 0.736 — 1.247 0.119 1.128 0.908
map-plusone-2 5 704 1.358 13.962 — 2.634 0.142 2.491 2.183
exp4-1 4 31 — 0.047 0.114 — 0.039 — 0.240 ✗

exp4-5 4 55 — — 0.818 — 0.046 — 2.128 ✗

cfa-life2 14 7648 — — — — 0.479 — —
cfa-matrix-1 8 2944 16.937 — — 19.230 0.332 18.898 18.892
cfa-psdes 7 1819 17.654 — — 1.920 0.273 1.647 1.640 ✓

dna 2 411 0.031 0.263 0.046 6.918 0.175 6.743 6.206 ✗

fibstring 4 29 — 74.569 0.114 — 0.042 — 0.256 ✗

fold fun list 7 1346 0.519 — — 1.356 0.202 1.154 1.147
fold right 5 1310 31.624 — — 1.255 0.191 1.064 1.043 ✓

jwig-cal main 2 7627 0.062 0.052 0.161 3.802 3.739 0.063 0.057 ✗

l 3 35 — 15.743 0.010 0.248 0.042 0.206 0.199
search-e-church (bug) 6 837 0.012 0.258 — 4.741 0.155 4.586 1.760
specialize cps coerce1-c 3 2731 — — — 1.131 0.293 0.838 0.830 ✓

tak (bug) 8 451 — 3.945 — 41.772 0.136 41.636 34.855
xhtmlf-div-2 (bug) 2 3003 0.234 — 39.961 2.743 2.303 0.440 0.422
xhtmlf-m-church 2 3027 0.238 — 8.420 2.708 2.319 0.389 0.382
zip 4 2952 22.251 — — 3.356 0.295 3.061 1.609 ✓

Table 1: Comparison of model-checking tools. Shown in bold are the two fixed-parameter tractable algorithms, GTRecS2 and C-SHORe.

cate that our tool currently does not always scale well. However,
C-SHORe seems to show a more promising capacity to scale on
larger HORS produced by tools such as MoCHi [27], which are
particularly pertinent in that they are generated by an actual soft-
ware verification tool. We also note that C-SHORe timed out on the
fewest examples despite not always terminating in the fastest time.

It is also very important to note that C-SHORe and GTRecS2
are the only implemented fixed-parameter tractable algorithms
in the literature for HORS model-checking of which we are
aware (both TRecS and TravMC have worst-case run-times non-
elementary in the size of the recursion scheme). Moreover, C-
SHORe generally performs much better than GTRecS2. Thus not
only does C-SHORe’s performance seem promising when com-
pared to the competition, there is also theoretical reason to suggest
that the approach could in principle be scalable, in contrast to some
of the alternatives. Thus initial work justifies further investigation
into saturation based algorithms for higher-order model-checking.

Finally, we remark that without the forwards analysis described
in Section 5, all shown examples except filepath timed out. We
also note that we did not implement a naive version of the saturation
algorithm, where after each change to the stack automaton, each
rule of the CPDS is checked for further updates. However, experi-

ence implementing PDSolver [15] (for order-1 pushdown systems)
indicates that the naive approach is at least an order of magnitude
slower than the techniques [36] we generalised in Section 7.

9. Related Work

The saturation technique has proved popular in the literature. It was
introduced by Bouajjani et al. [4] and Finkel et al. [13] and based
on a string rewriting algorithm by Benois [3]. It has since been ex-
tended to Büchi games [8], parity and µ-calculus conditions [15],
and concurrent systems [1, 37], as well as weighted pushdown sys-
tems [31]. In addition to various implementations, efficient versions
of these algorithms have also been developed [12, 36].

The saturation algorithm for CPDS that we introduced in [7],
extending and improving [14] (and [5]), follows a number of papers
solving parity games on the configuration graphs of higher-order
automata [6, 9, 11, 16]. While only handling reachability, saturation
lends itself well to implementation. This paper describes such a
practical incarnation and a number of significant optimisations,
such as using a forwards analysis to guide the backward search.

This latter point is an important way in which C-SHORe differs
from previous model-checkers for HORS, which employ intersec-
tion types and propagate information purely in a forward direction.

This is related to the fact that the latter accept ‘co-reachability prop-
erties’ (represented by trivial Büchi automata) as input, expressing
the complement of properties taken by C-SHORe.

Indeed it would be interesting to investigate in more detail how
approximate forward and backward analyses of varying degrees of
accuracy could be combined for efficiency. It would also be helpful
to more closely analyse the relationship between CPDS and type-
based algorithms allowing a transfer of ideas. In any case, this paper
shows that saturation-based algorithms for HORS/CPDS perform
sufficiently well in practice to warrant further study.

To finish, we briefly mention several approaches to analysing
higher-order programs with differing aims to ours. In static anal-
ysis, k-CFA [35] and CFA2 [39] perform an over-approximative
analysis of higher-order languages with at-most first-order granu-
larity. Similarly Jhala et al. use refinement types to analyse OCaml
programs by reducing the problem to first-order model-checking,
which is thus incomplete [19]. Finally, Hopkins et al. have pro-
duced tools for equivalence checking fragments of ML and Ideal-
ized Algol up to order-3 [17, 18].

10. Conclusion

We have considered the problem of verifying safety properties of
a model that can be used to precisely capture control-flow in the
presence of higher-order recursion. Whilst previous approaches
to such an analysis are based on higher-order recursion schemes
and intersection types, our approach is based on automata and
saturation techniques previously only applied in practice to the
first-order case. At a more conceptual level, our algorithm works
by propagating information backwards from error states towards
the initial state. Moreover, it combines this with an approximate
forward analysis to gather information that guides the backward
search. In contrast, the preceding type-based algorithms all work
by propagating information purely in a forward direction.

Our preliminary work brings new techniques to the table for
tackling a problem, which in contrast to its first-order counterpart,
has proven difficult to solve in a scalable manner. Our algorithm
has the advantage that it accurately models higher-order recursion
whilst also being fixed-parameter tractable, therefore giving a the-
oretical reason for hope that it could scale. In contrast TRecS and
TravMC have worst-case run-times non-elementary in the size of
the recursion scheme. Our tool also seems to work significantly bet-
ter in practice than GTRecS2, the only other HORS model-checker
in the literature that does enjoy fixed-parameter tractability.

We therefore believe that a C-SHORe-like approach shows
much promise and warrants further investigation.

Acknowledgments

We are extremely to Robin Neatherway and Naoki Kobayashi for
help with benchmarking, Łukasz Kaiser for web-hosting, and for
discussions with Stefan Schwoon. Supported by Fond. Sci. Math.
Paris, AMIS (ANR 2010 JCJC 0203 01 AMIS), FREC (ANR
2010 BLAN 0202 02 FREC), VAPF (Région IdF), and EPSRC
(EP/K009907/1).

References
[1] M. F. Atig. Global model checking of ordered multi-pushdown sys-

tems. In FSTTCS, 2010.
[2] T. Ball and S. K. Rajamani. The SLAM project: Debugging system

software via static analysis. In POPL, 2002.
[3] M. Benois. Parties rationnelles du groupe libre. Comptes-Rendus de

l’Acamdémie des Sciences de Paris, Série A, 269:1188–1190, 1969.
[4] A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of

pushdown automata: Application to model-checking. In CONCUR,
1997.

[5] A. Bouajjani and A. Meyer. Symbolic Reachability Analysis of
Higher-Order Context-Free Processes. In FSTTCS, 2004.

[6] C. H. Broadbent, A. Carayol, C.-H. L. Ong, and O. Serre. Recursion
schemes and logical reflection. In LICS, 2010.

[7] C. H. Broadbent, A. Carayol, M. Hague, and O. Serre. A saturation
method for collapsible pushdown systems. In ICALP, 2012.

[8] T. Cachat. Games on Pushdown Graphs and Extensions. PhD thesis,
RWTH Aachen, 2003.

[9] T. Cachat. Higher order pushdown automata, the Caucal hierarchy of
graphs and parity games. In ICALP, 2003.

[10] A. Carayol and O. Serre. Collapsible pushdown automata and labeled
recursion schemes: Equivalence, safety and effective selection. In
LICS, 2012.

[11] A. Carayol, M. Hague, A. Meyer, C.-H. L. Ong, and O. Serre. Winning
Regions of Higher-Order Pushdown Games. In LICS, 2008.

[12] J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon. Efficient
algorithms for model checking pushdown systems. In CAV, 2000.

[13] A. Finkel, B. Willems, and P. Wolper. A direct symbolic approach to
model checking pushdown systems. In INFINITY, 1997.

[14] M. Hague and C.-H. L. Ong. Symbolic backwards-reachability analy-
sis for higher-order pushdown systems. Logical Methods in Computer
Science, 4(4), 2008.

[15] M. Hague and C.-H. L. Ong. Analysing mu-calculus properties of
pushdown systems. In SPIN, 2010.

[16] M. Hague, A. S. Murawski, C.-H. L. Ong, and O. Serre. Collapsible
pushdown automata and recursion schemes. In LICS, 2008.

[17] D. Hopkins and C.-H. L. Ong. Homer: A higher-order observational
equivalence model checker. In CAV, 2009.

[18] D. Hopkins, A. S. Murawski, and C.-H. L. Ong. Hector: An equiva-
lence checker for a higher-order fragment of ml. In CAV, 2012.

[19] R. Jhala, R. Majumdar, and A. Rybalchenko. Hmc: Verifying func-
tional programs using abstract interpreters. In CAV, 2011.

[20] N. D. Jones and S. S. Muchnick. Even simple programs are hard to
analyze. J. ACM, 24:338–350, April 1977.

[21] T. Knapik, D. Niwinski, P. Urzyczyn, and I. Walukiewicz. Unsafe
grammars and panic automata. In ICALP, 2005.

[22] N. Kobayashi. Types and higher-order recursion schemes for verifica-
tion of higher-order programs. In POPL, 2009.

[23] N. Kobayashi. Model-checking higher-order functions. In PPDP,
2009.

[24] N. Kobayashi. Higher-order model checking: From theory to practice.
In LICS, 2011.

[25] N. Kobayashi. A practical linear time algorithm for trivial automata
model checking of higher-order recursion schemes. In FOSSACS,
2011.

[26] N. Kobayashi. GTRECS2: A model checker for recursion
schemes based on games and types. A tool available at
http://www-kb.is.s.u-tokyo.ac.jp/~koba/gtrecs2/, 2012.

[27] N. Kobayashi, R. Sato, and H. Unno. Predicate abstraction and cegar
for higher-order model checking. In PLDI, 2011.

[28] R. P. Neatherway, S. J. Ramsay, and C.-H. L. Ong. A traversal-based
algorithm for higher-order model checking. In ICFP, 2012.

[29] C.-H. L. Ong. On model-checking trees generated by higher-order
recursion schemes. In LICS, 2006.

[30] C.-H. L. Ong and S. J. Ramsay. Verifying higher-order functional
programs with pattern-matching algebraic data types. In POPL, 2011.

[31] T. W. Reps, S. Schwoon, S. Jha, and D. Melski. Weighted pushdown
systems and their application to interprocedural dataflow analysis. Sci.
Comput. Program., 58(1-2):206–263, 2005.

[32] S. Salvati and I. Walukiewicz. Recursive schemes, krivine machines,
and collapsible pushdown automata. In RP, 2012.

[33] S. Schwoon. Model-checking Pushdown Systems. PhD thesis, Techni-
cal University of Munich, 2002.

[34] M. Sharir and A. Pnueli. Two approaches to interprocedural data flow
analysis, chapter 7, pages 189–234. Prentice-Hall, 1981.

[35] O. Shivers. Control-Flow Analysis of Higher-Order Languages. PhD
thesis, Carnegie-Mellon University, 1991.

[36] D. Suwimonteerabuth, S. Schwoon, and J. Esparza. Efficient algo-
rithms for alternating pushdown systems with an application to the
computation of certificate chains. In ATVA, 2006.

[37] D. Suwimonteerabuth, J. Esparza, and S. Schwoon. Symbolic context-
bounded analysis of multithreaded java programs. In SPIN, 2008.

[38] H. Unno, N. Tabuchi, and N. Kobayashi. Verification of tree-
processing programs via higher-order model checking. In APLAS,
2010.

[39] D. Vardoulakis. CFA2: Pushdown-Flow Analysis for Higher-Order
Languages. PhD thesis, Northeastern University, Boston, 2012.

[40] D. Vardoulakis and O. Shivers. Pushdown flow analysis of first-class
control. In ICFP, 2011.

http://www-kb.is.s.u-tokyo.ac.jp/~koba/gtrecs2/

	Introduction
	Modelling Higher-Order Programs
	Higher-Order Recursion Schemes
	Collapsible Pushdown Automata
	Collapsible Pushdown Systems

	Preliminaries
	Collapsible Pushdown Systems
	Higher-Order Collapsible Stacks and Their Operations
	Collapsible Pushdown Systems

	Representing Sets of Stacks
	Representing Transitions and States
	Representing Sets of Transitions

	Representing Sets of Configurations
	Basic Saturation Algorithm

	Examples of Saturation
	Initial Forward Analysis
	Guarded Destruction
	Approximate Reachability Graphs
	Extracting the Guarded CPDA

	Counter Example Generation
	A Well-Founded Relation on Stack Automaton Runs

	Efficient Fixed Point Computation
	Experimental Results
	Related Work
	Conclusion

