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Lilian Aveneau and'\ngel F. Tenorio

Abstract Lines classification is the central tool for visibility calation in dimen-
sionn > 2. It has been previously expressed in Grassmann Algeboayiad) to
work with any couple of 2-vectors, which may represent twal li@es or not. This
article discusses about the nature of lines in the conformualel, searching if such
a classification is still valid ilR"11, First, it shows that the projective classifica-
tion can be expressed in terms ofreeetoperator. Then, given two real lines, the
classification still works in the conformal model, but aldlowing us to propound
some techniques to identify lines and circles among geevaktors.

1 Introduction

1.1 Motivation

Visibility calculation is a major problem in many appliaatis, for instance in com-
puter graphics, robotics, electromagnetic propagationukition, et caetera This
problem was unsolved for many years, until first advancesvindimensions ap-
pear mainly due to the particular line nature in such a spabere lines can be
associated to hyperplanes [11].

For a generalization ifR", the last 20 years have seen many advances thanks
to research in dimension three [2, 5, 9, 10, 12, 13]. This wamiy based on the
Plucker coordinates, being used instead of a well-formed itiefinof line space.
Later, using the Grassmann algebra and the projective madgdneralization has
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been proposed [1, 3]. This definition works in a well-defined kpace, where lines
are 2-vectors.

The key element of visibility calculation is the line cld&stion, consisting in
characterizing the relative orientation of two lines. Tatdr is based on a dot prod-
uct which has been proved to be equivalent to computing tleetation of the space
spanned by the two lines. One of the most important resutiseros the validity
of this dot productj.e. the product is still correct even if applied to 2-vectors not
encoding real lines at all — which are necessary to groug iimeonvex sets. —

The question this article aims to answer is to determine itlee dlassification
in the conformal model, where lines are defined as parti@tegctors. This is a
necessary step in order to use a hierarchy of bounding spindreunding circles
around occluders, for instance to accelerate the visitwhiculation in practice.

In particular, the line classification can be shown in thggative model as, in
fact, an intersection by using the appropri@ie andmeetoperators. This is equiv-
alent to study the intersection of two 3-vectors in the camfal model, as well as
giving a characterization of lines and circles among gdriexectors.

1.2 QOutlines

This articles is organized as follows: Section 2 recalls sevall-known results for
projective lines, starting from the projective model anel lihe classification work-
ing for any pair of 2-vectors. Then, it shows that such a diassion is equivalent
to intersecting lines. Section 3 details our notation far tonformal model, and
presents the conformal line space, corresponding to trec®wspace — which con-
tains lines, among other things. — Section 4 propounds semts to discriminate
lines and circles from other 3-vectors. Section 5 provideaespreliminary results
with regard to classification of 3-vectors, starting fromek, circles, 3-blades and,
at last, 3-vectors. Finally, the last section gives somelkmsions and perspectives.
It should be noticed that Geometric Algebra are considereltl kmown by the

readers; otherwise, readers can consult Hestenes’ bopKk [6

2 Projective Lines

2.1 Projective Model

This section briefly recalls the basics about the projectieelel. As many authors
use their own notation, we also briefly present the one usékisnpaper, mostly
based on that by Dorst al.[4].
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The projective model is based on a Euclidean space of dimensdenoted by
E", with an orthonormal basiées, e, ...,e,) completed by adding an additional
orthogonal vectoey with positive signature — implyingg = +1. —

Any Euclidean point — in bold — is embedded in the projectivedei using the
following transformation:

EM — Rn+1
P — Ph=pP+6&

Finally, the pseudoscalar ™! is denoted by, 1 = ee1e. .. €.

2.2 Projective Lines

Aline | is a subspace of dimension 1. A projective line can be defisdgtdalinear
subspace spanned by two distinct Euclidean points belgrtgih

e (b-a) 1)
or equivalently by a point and the line directian
l=ahAu=aAu+eAuU (2)

Sceptical readers can easily verify that these equivalgmessions correctly encode
aline. Hence, a point belongs to a ling if and only if:

XhAl=0

In the standard approach, any poinbn the linel belongs to the linear subspace
spanned by andb:
x=a+Au=(1-A)a+Ab

for a givenA € R. Then, anyone can verify poirtbelongs to the line:
Xh Al = (a+Au+e)A(aAu+eAu)

=aAgAU+eAanu
=0

Conversely, assuming Al = 0 it follows:
Xh Al =0= X, =puap+Auwith A,y eR

= X+e& = H(a+e)+Au
= pu=1andx=a+Au.
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2.3 Projective Lines Classification

L LA

(a) Left or positive orientation (b) Incidence, or null orienta- (c) Right or negative orienta-
tion tion

Fig. 1 Lines classification, illustrated by the three different possdsientations of two real lines.
Notice that the two lines are oriented in the same way: Theydate — figure (b) — or twist together,
turning left (a) or right (c).

Line classification gives the relative orientation of twaels with respect to each
other, as depicted in Fig. 1. In Fig. 1(a), the lines twisthe keft; in Fig. 1(b), they
intersect each other; in Fig. 1(c), each line turns on rigbtiad the other.

These three orientations are directly related to the atent of the subspace
spanned by the two lines and consequently directly relaietthe intersection of
lines. By using themeetoperator, denoted by, we propose to compute such an
orientation as follows:

|1\/|2—(|1*/\| *) 3)
l1VIp = ( 11371 A (I2)371)) )37t

whereld is thejoin, anda € R is null. When the two lines intersect, them= 0 since
the spanned subspace is empty. Wheis strictly negative or positive, the lines do
not intersect each other but are twisting. As depicted in Eithe two lines are then
oriented and pass either left or right each other [1].

Let us note that the dualization involved in Equation (3)slnet use the pseudo-
scalarl,; 1 asjoin, but a normalized version df A l,. Obviously, if thisjoin is
null, the lines are intersecting. To avoid such a test anglsapentary calculations,
Aveneatet al.[1] use a dualization by the pseudoscalar and a particulalicagion
from the(n— 1)-vector space to the 2-vector one, leading to a correct ipregtuct.

Here, we just compute the un-normaligeth value:

1Al = (@Au+eAU)A(DAV+HEAV)
= (aAb+eA(b—a))AVAuU

It appears to indicate that in a 3-dimensional Euclidearcep#ejoin corresponds
to the pseudoscalds, to emphasize the fact that the intersection leads te 0,
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for both intersecting lines £e.b —a = 0 — and parallel onesie.uAv =0.—In
dimensionn > 4, thejoin does not correspond to the pseudoschlas. Indeed, it
can be simplified as:

1Al = (aAb+eA(b—a)) AVAU

~lg = Ek CIOTEXC)
O<i<j<k<l<n

As conclusion, thgoin operatoi ) leads to a correct line classification in dimension
n>3.

3 Conformal Lines

3.1 Conformal Model

This section briefly recalls the basics about the conformadeh As many authors
use their own notation, we also briefly present that useds$mpidper — mostly based
on Dorstet al.[4]. —

The conformal model is based on a Euclidean space of dimemsidenoted
by E" with an orthonormal basie, e, .. .,e,) which is completed by adding two
orthonormal vectorg, ande_ with positive and negative signatures, respectively.
The particular vectors representing the origin and the iigfiof E" are denoted
respectively byn, = % (e +e_) andn, = e_ —e;. Any Euclidean point — in bold
— can be embedded into the conformal model using the follpwiznsformation:

ED , Rn+1.1

4
p — p=F(p)=no+p+3p"N @

To avoid mistakes in distance calculations, we will respleetfollowing normalisa-
tion condition:
No-P=-1 (5)

The Euclidean and conformal pseudoscalars are respgctieebted by, = e; A
e&A...Aeyandlny11 =No Alp AN.

3.2 Conformal Line Space

A conformal line is a particular 3-vector [4, 14]; the linessang through the con-
formal pointp with directionu is expressed as:

PAUA Ne (6)
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Readers can recognize here the projective ivegedwith the infinite conformal
point.

Therefore, all projective lines are embedded into the aonéb 3-vector space.
Nevertheless, not all 3-vectors encode real lines. Thidsis tue with 2-vectors
in the projective model. Then, we retrieve the same excegtioorresponding to
non decomposable 2-vectors. With the conformal model, werfew exceptions,
corresponding to:

e Circles, defined as the outer product of three conformaltppiwith real lines as
particular cases.

e General 3-vectors, not encoding circles or lines, indepetig on they are 3-
blades or not.

4 Lines and Circles Recognition

This section explores the recognition of a 3-blade, engpdim object but not its
dual.

4.1 Recognizing a Line

Let us take a line passing througtwith directionu:
PAUANG =No AUA N +PAUA N,

Then, a first and obvious necessary condition to be a lingjrsidrom a 3-vector
M, consists to check if it contains an infinite part:

noo/\MZO

But this condition is not sufficient, since we only retrieve tprojective 2-vector
part, with its exceptions — for non-blade elements. —

Therefore, while a line is a flat, we can verify that a 3-vedtbencodes a line
using the well-known conditions about flats in conformal milof]. Hence, the
following lemma allows to determine whether a 3-vector elesoa line or not:

Lemma 1 (3-vectors encoding lines)A 3-vector M encodes a line in the conformal
model if and only if the following three conditions are sfi¢id:

1. M is a 3-blade —i.e. fully factorisable. —
2. M is factorisable by g —i.e. M Ane, =0. —
3. The direction of M is non null ke. n, |M # 0. —

Conditions 2 and 3 imply tha¥! is a flat, while the first one verifies it is a blade.
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4.2 Recognizing a Circle

In the same spirit, since a circle is a round [4], we can chkalBivector encodes a
circle, giving us the following lemma:

Lemma 2 (3-vectors encoding circles)A 3-vector M encodes a circle in the con-
formal model if and only if the following four conditions asatisfied:

1. M is a 3-blade +.e. fully factorisable. —

2. M is not factorisable bygf—i.e.M An, # 0. —
3. The direction of M is not null £e.n, |M # 0. —
4. The square of M is not nullie. M? # 0. —

The last three conditions involve that the 3-vector is a thand so a circle. The
first one is equivalent to be a blade.

5 Orientation of 3-vectors

This section extends the previous works on line classificdti the projective model
to the conformal space. The purpose is to show that the adtos between two
lines or — by extension — two 3-vectors, computes the oriemtaf them. As in the
projective case, the choice of tfwn operator is crucial again.

5.1 Orientation of two lines

This section aims to determine the orientation of two linesoeled as 3-blades in
the conformal model. In fact, this is trivial since such ldadontain all projective
2-blades. Hence, the projective classification is stillblisaBut, a naive approach
is not very powerful, since it consists in extracting theedtion and the location of
each line, and then in applying the projective solution.

Consequently, we need a more efficient and direct approactexample, inter-
secting the two lines [8] and giving the following well-knowesult:

IVl — 0 ifthe lines intersect
LY279 an., ifthe lines do not intersect

where themeetoperator is calculated using@in similar to that used in the projec-
tive model:
_ l1iA(nofl2)
(11 (Mo)12))?

Indeed, whilen,, appears in each line, we need to remove one occurrence. The
left contraction byn., cannot be used, sine® is a null vector. Using the relation
No N = Np - Nwe = —1, the contraction by, allows to canceh.:
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NoJl2 = No| (No+0) AV AN
=VA(No+0q)

This leads to the following un-normalis¢ain value:

1A (No]l2) = (No+P) AUANL AVA (No+0)
=N AUAVA(NpA(Q—P)+PAQ)
~ Moo (134 1ol3)

where the bold-vectorsl} contain only Euclidean basis vectors, as in the projective
model — without the vectogy: —

k= Y 8,

1<ii<ip<...<ig<n

This intersection is not a conformal point, but a scalar iplidtd by the point at
infinity, which always belongs to the intersection of twoelin This scalar is pro-
portional to the minimal distance between the two lines, arnented in the same
way as the projective model. Hence, we retrieve the prejectiodel orientation of
lines, which still can be used in the conformal model. Thi&uteis not so surpris-
ing, while projective lines are directly embedded into thaformal line space — or
3-vector space. —

Note that, according to [4], for retrieving the intersentfint of two intersecting
lines, it suffices to use anothgin: When the two lines are not equal, a solution
consists in using their common plane [14].

5.2 Orientation of two Circles or a Circle and a Line

This section aims to determine the orientation between fwabes and, by exten-
sion, a line and a circle. Any circle can be defined as the wédgween 3 of its
points, or as the intersection between a hypersphere andiméhsional flat [4].
Although intuitively the intersection between two circlEsould be a point pair for
n = 3, using the conformal pseudoscalai asjoin, the intersection with another
circle or line produces a 1-vector. Indeed, there exist twtersection points only
when the intersection between one circle and the suppdmtipgrplane of the sec-
ond belongs to the second circle too. For this situationdtre must be computed
with the other supporting plane gsn.

Nevertheless, in the general 3-dimensional case [14] tieesection is the fol-
lowing:

C1 VG, = X whereX? = 0 if circles have one intersection
C1VC, = X whereX? £ 0 if circles have no intersection
C, VG, = 0 if circles have two intersections
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The non-intersection case resembles to that appearingddirtes: Let us verify
if X2 denotes an orientation between the circles. Indeed, we edntérested in
determining if the circles are interwoven or not, or altérmy if a line passes
through a disc or outside. In fact, this is the case and cansbd to compute a
fast ray-tracing intersection test including discs — byidivig the calculation of the
ray-plane intersection, — or even to accelerate triangf@bygon intersection with
a bounding circle.

Now, in an arbitrary dimension, let us calculate thpin of two circles:

CiAC; = (aAbAC)A(dAeA )
= (No+a+aNw/2) A (No+b+b%Nes /2) A (N + C+ CNeo /2)
A (No+d+d%N/2) A (No+ €+ €N /2) A (Mo + + 200/ 2)
~ 1§+ Nol§+ Nol N + 18N
This, of course, should be used carefully in dimengigh4. For instance, fon = 3,
thejoin of two general circles is the conformal pseudosca;ﬁ@nm =l3;411,i.e.the

conformal space itself. In higher dimension, this does aotain true.
To calculate the orientation of a line and a circle, jibia is the following:

CAl = (aAnbAC)A(No+P) AUA N
= (No+a+a’Nw/2) A (No+b +b%Nes /2) A (Ng +C+ CNeo /2)
A(No+P) AUA NG
~ (I5+ ol 3) Neo

We retrieve the infinite point., as factor, and a 5-vector withong . This resembles
to the last part of th@in obtained for intersecting two circles, and that obtained fo
two lines with a lower dimension.

5.3 3-blades Orientation

This section extends the orientation for general 3-bladesnecessarily encoding
lines or circles. In fact, the various types of 3-blades é&eaay well-known. In [4],
they were categorized as follows:

¢ Directions or dual directions ie. En, or —E*ne. —

e Lines or 1-flats +.e. Ty[no A (Unw)] Whereu is a Euclidean vector. —
e Real or imaginary circles or rounds.e. Tp[(no + p?Nw /2)E]. —

e Dual flats —.e. Tp[E;]. -

e Tangents and dual tangentse: Tp[NoE] or Ty[NoE*(—1)"]. —

whereT, is a translationE a Euclideark-vector fork = 2 ork = 3, E* is the dual
of E in the Euclidean space, and the wide hat denotes a gradeiiorol
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For each type of 3-blade, it is always possible to calculaemiaximumoin as
we do it for circles, and then to deduce the cormaetetgiving the orientation of
the subspace they span. These can be calculated once arsidrezhto be applied
later, after the recognition of 3-blades.

6 Conclusions

This article propounds a generalization of the line clasaiion, or orientation, us-
ing the conformal model. The goal is to use this classificetiw visibility calcula-
tions or ray-tracing, for instance.

First, it shows that line classification in the projectivedebcorresponds to an
intersection. This result is easier understand and to pgiaethe previous solution
in [1]. Some criteria are presented to determine if a givere@or is a line, or a cir-
cle. Then, the intersection between two 3-vectors is stlioyeconsidering different
cases, like line with line, or circle with either line or dec

As main result, we can exhibit a process to determine th@atien of the sub-
space resulting in the intersection of 3-vectors.

As future work, we might use these results in a new visibi#yculation frame-
work, where the various occluders can be grouped togetiersome spheres of
circles, leading to a bounding hierarchy, and then allowimgpeed up the com-
putation times. Moreover, we also might use these resulisdelerate ray-tracing,
to accelerate the intersection of a ray with a triangle ugimépounding circle for
instance.
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