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Abstract Lines classification is the central tool for visibility calculation in dimen-
sion n ≥ 2. It has been previously expressed in Grassmann Algebra, allowing to
work with any couple of 2-vectors, which may represent two real lines or not. This
article discusses about the nature of lines in the conformalmodel, searching if such
a classification is still valid inRn+1,1. First, it shows that the projective classifica-
tion can be expressed in terms of ameetoperator. Then, given two real lines, the
classification still works in the conformal model, but also allowing us to propound
some techniques to identify lines and circles among general3-vectors.

1 Introduction

1.1 Motivation

Visibility calculation is a major problem in many applications, for instance in com-
puter graphics, robotics, electromagnetic propagation simulation,et caetera. This
problem was unsolved for many years, until first advances in two dimensions ap-
pear mainly due to the particular line nature in such a space,where lines can be
associated to hyperplanes [11].

For a generalization inRn, the last 20 years have seen many advances thanks
to research in dimension three [2, 5, 9, 10, 12, 13]. This was mainly based on the
Plücker coordinates, being used instead of a well-formed definition of line space.
Later, using the Grassmann algebra and the projective model, a generalization has
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been proposed [1, 3]. This definition works in a well-defined line space, where lines
are 2-vectors.

The key element of visibility calculation is the line classification, consisting in
characterizing the relative orientation of two lines. The latter is based on a dot prod-
uct which has been proved to be equivalent to computing the orientation of the space
spanned by the two lines. One of the most important results concerns the validity
of this dot product;i.e. the product is still correct even if applied to 2-vectors not
encoding real lines at all – which are necessary to group lines in convex sets. –

The question this article aims to answer is to determine the line classification
in the conformal model, where lines are defined as particular3-vectors. This is a
necessary step in order to use a hierarchy of bounding sphereor bounding circles
around occluders, for instance to accelerate the visibility calculation in practice.

In particular, the line classification can be shown in the projective model as, in
fact, an intersection by using the appropriatejoin andmeetoperators. This is equiv-
alent to study the intersection of two 3-vectors in the conformal model, as well as
giving a characterization of lines and circles among general 3-vectors.

1.2 Outlines

This articles is organized as follows: Section 2 recalls some well-known results for
projective lines, starting from the projective model and the line classification work-
ing for any pair of 2-vectors. Then, it shows that such a classification is equivalent
to intersecting lines. Section 3 details our notation for the conformal model, and
presents the conformal line space, corresponding to the 3-vector space – which con-
tains lines, among other things. – Section 4 propounds some results to discriminate
lines and circles from other 3-vectors. Section 5 provides some preliminary results
with regard to classification of 3-vectors, starting from lines, circles, 3-blades and,
at last, 3-vectors. Finally, the last section gives some conclusions and perspectives.

It should be noticed that Geometric Algebra are considered well known by the
readers; otherwise, readers can consult Hestenes’ books [6, 7].

2 Projective Lines

2.1 Projective Model

This section briefly recalls the basics about the projectivemodel. As many authors
use their own notation, we also briefly present the one used inthis paper, mostly
based on that by Dorstet al. [4].
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The projective model is based on a Euclidean space of dimension n, denoted by
E

n, with an orthonormal basis(e1,e2, . . . ,en) completed by adding an additional
orthogonal vectore0 with positive signature – implyinge2

0 =+1. –
Any Euclidean point – in bold – is embedded in the projective model using the

following transformation:
E

n −→ R
n+1

p −→ ph = p+e0

Finally, the pseudoscalar inRn+1 is denoted byIn+1 = e0e1e2 . . .en.

2.2 Projective Lines

A line l is a subspace of dimension 1. A projective line can be defined as the linear
subspace spanned by two distinct Euclidean points belonging to l :

e0∧ (b−a) (1)

or equivalently by a point and the line directionu:

l = ah∧u = a∧u+e0∧u (2)

Sceptical readers can easily verify that these equivalent expressions correctly encode
a line. Hence, a pointx belongs to a linel if and only if:

xh∧ l = 0

In the standard approach, any pointx on the linel belongs to the linear subspace
spanned bya andb:

x = a+λ u = (1−λ )a+λ b

for a givenλ ∈ R. Then, anyone can verify pointx belongs to the line:

xh∧ l = (a+λ u+e0)∧ (a∧u+e0∧u)
= a∧e0∧u+e0∧a∧u
= 0

Conversely, assumingxh∧ l = 0 it follows:

xh∧ l = 0 ⇒ xh = µah+λ u with λ ,µ ∈ R

⇒ x+e0 = µ(a+e0)+λ u
⇒ µ = 1 andx = a+λ u.
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2.3 Projective Lines Classification

(a) Left or positive orientation (b) Incidence, or null orienta-
tion

(c) Right or negative orienta-
tion

Fig. 1 Lines classification, illustrated by the three different possible orientations of two real lines.
Notice that the two lines are oriented in the same way: They intersect – figure (b) – or twist together,
turning left (a) or right (c).

Line classification gives the relative orientation of two lines with respect to each
other, as depicted in Fig. 1. In Fig. 1(a), the lines twist to the left; in Fig. 1(b), they
intersect each other; in Fig. 1(c), each line turns on right around the other.

These three orientations are directly related to the orientation of the subspace
spanned by the two lines and consequently directly related to the intersection of
lines. By using themeetoperator, denoted by∨, we propose to compute such an
orientation as follows:

l1∨ l2 = (l1
∗∧ l2

∗)∗

l1∨ l2 =
((

l1⌋J−1
)
∧
(
l2⌋J−1

))
⌋J−1

= α

(3)

whereJ is thejoin, andα ∈R is null. When the two lines intersect, thenα = 0 since
the spanned subspace is empty. Whenα is strictly negative or positive, the lines do
not intersect each other but are twisting. As depicted in Fig. 1, the two lines are then
oriented and pass either left or right each other [1].

Let us note that the dualization involved in Equation (3) does not use the pseudo-
scalarIn+1 as join, but a normalized version ofl1 ∧ l2. Obviously, if this join is
null, the lines are intersecting. To avoid such a test and supplementary calculations,
Aveneauet al. [1] use a dualization by the pseudoscalar and a particular application
from the(n−1)-vector space to the 2-vector one, leading to a correct innerproduct.

Here, we just compute the un-normalisedjoin value:

l1∧ l2 = (a∧u+e0∧u)∧ (b∧v+e0∧v)

= (a∧b+e0∧ (b−a))∧v∧u

It appears to indicate that in a 3-dimensional Euclidean space, thejoin corresponds
to the pseudoscalarI4, to emphasize the fact that the intersection leads toα = 0,
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for both intersecting lines –i.e. b−a= 0 – and parallel ones –i.e. u∧ v = 0. – In
dimensionn ≥ 4, thejoin does not correspond to the pseudoscalarIn+1. Indeed, it
can be simplified as:

l1∧ l2 = (a∧b+e0∧ (b−a))∧v∧u

∼ In
4 = ∑

0≤i< j<k<l≤n

eiejekel

As conclusion, thejoin operatorIn
4 leads to a correct line classification in dimension

n≥ 3.

3 Conformal Lines

3.1 Conformal Model

This section briefly recalls the basics about the conformal model. As many authors
use their own notation, we also briefly present that used in this paper – mostly based
on Dorstet al. [4]. –

The conformal model is based on a Euclidean space of dimension n, denoted
by E

n with an orthonormal basis(e1,e2, . . . ,en) which is completed by adding two
orthonormal vectorse+ ande− with positive and negative signatures, respectively.
The particular vectors representing the origin and the infinity of E

n are denoted
respectively byno =

1
2 (e++e−) andn∞ = e−−e+. Any Euclidean point – in bold

– can be embedded into the conformal model using the following transformation:

E
n −→ R

n+1,1

p −→ p= F(p) = no+p+ 1
2p2n∞

(4)

To avoid mistakes in distance calculations, we will respectthe following normalisa-
tion condition:

n∞ · p=−1 (5)

The Euclidean and conformal pseudoscalars are respectively denoted byIn = e1∧
e2∧ . . .∧en andIn+1,1 = no∧ In∧n∞.

3.2 Conformal Line Space

A conformal line is a particular 3-vector [4, 14]; the line passing through the con-
formal pointp with directionu is expressed as:

p∧u∧n∞ (6)
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Readers can recognize here the projective line,wedgedwith the infinite conformal
point.

Therefore, all projective lines are embedded into the conformal 3-vector space.
Nevertheless, not all 3-vectors encode real lines. This is also true with 2-vectors
in the projective model. Then, we retrieve the same exceptions, corresponding to
non decomposable 2-vectors. With the conformal model, we find new exceptions,
corresponding to:

• Circles, defined as the outer product of three conformal points, with real lines as
particular cases.

• General 3-vectors, not encoding circles or lines, independently on they are 3-
blades or not.

4 Lines and Circles Recognition

This section explores the recognition of a 3-blade, encoding an object but not its
dual.

4.1 Recognizing a Line

Let us take a line passing throughp with directionu:

p∧u∧n∞ = no∧u∧n∞ +p∧u∧n∞

Then, a first and obvious necessary condition to be a line, starting from a 3-vector
M, consists to check if it contains an infinite part:

n∞ ∧M = 0

But this condition is not sufficient, since we only retrieve the projective 2-vector
part, with its exceptions – for non-blade elements. –

Therefore, while a line is a flat, we can verify that a 3-vectorM encodes a line
using the well-known conditions about flats in conformal model [4]. Hence, the
following lemma allows to determine whether a 3-vector encodes a line or not:

Lemma 1 (3-vectors encoding lines).A 3-vector M encodes a line in the conformal
model if and only if the following three conditions are satisfied:

1. M is a 3-blade – i.e. fully factorisable. –
2. M is factorisable by n∞ – i.e.M∧n∞ = 0. –
3. The direction of M is non null –i.e.n∞⌋M 6= 0. –

Conditions 2 and 3 imply thatM is a flat, while the first one verifies it is a blade.
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4.2 Recognizing a Circle

In the same spirit, since a circle is a round [4], we can check if a 3-vector encodes a
circle, giving us the following lemma:

Lemma 2 (3-vectors encoding circles).A 3-vector M encodes a circle in the con-
formal model if and only if the following four conditions aresatisfied:

1. M is a 3-blade –i.e. fully factorisable. –
2. M is not factorisable by n∞ – i.e.M∧n∞ 6= 0. –
3. The direction of M is not null –i.e.n∞⌋M 6= 0. –
4. The square of M is not null –i.e.M2 6= 0. –

The last three conditions involve that the 3-vector is a round, and so a circle. The
first one is equivalent to be a blade.

5 Orientation of 3-vectors

This section extends the previous works on line classification in the projective model
to the conformal space. The purpose is to show that the intersection between two
lines or – by extension – two 3-vectors, computes the orientation of them. As in the
projective case, the choice of thejoin operator is crucial again.

5.1 Orientation of two lines

This section aims to determine the orientation of two lines encoded as 3-blades in
the conformal model. In fact, this is trivial since such blades contain all projective
2-blades. Hence, the projective classification is still usable. But, a naive approach
is not very powerful, since it consists in extracting the direction and the location of
each line, and then in applying the projective solution.

Consequently, we need a more efficient and direct approach. For example, inter-
secting the two lines [8] and giving the following well-known result:

l1∨ l2 =

{
0 if the lines intersect
αn∞ if the lines do not intersect

where themeetoperator is calculated using ajoin similar to that used in the projec-
tive model:

J =
l1∧ (no⌋l2)

(l1∧ (no⌋l2))
2

Indeed, whilen∞ appears in each line, we need to remove one occurrence. The
left contraction byn∞ cannot be used, sincen∞ is a null vector. Using the relation
no⌋n∞ = no ·n∞ =−1, the contraction byno allows to canceln∞:
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no⌋l2 = no⌋(no+q)∧v∧n∞

= v∧ (no+q)

This leads to the following un-normalisedjoin value:

l1∧ (no⌋l2) = (no+p)∧u∧n∞ ∧v∧ (no+q)

= n∞ ∧u∧v∧ (no∧ (q−p)+p∧q)

∼ n∞ (In
4+noIn

3)

where the boldk-vectorsIn
k contain only Euclidean basis vectors, as in the projective

model – without the vectore0: –

In
k = ∑

1≤i1<i2<...<ik≤n

ei1ei2 . . .eik

This intersection is not a conformal point, but a scalar multiplied by the point at
infinity, which always belongs to the intersection of two lines. This scalar is pro-
portional to the minimal distance between the two lines, andoriented in the same
way as the projective model. Hence, we retrieve the projective model orientation of
lines, which still can be used in the conformal model. This result is not so surpris-
ing, while projective lines are directly embedded into the conformal line space – or
3-vector space. –

Note that, according to [4], for retrieving the intersection point of two intersecting
lines, it suffices to use anotherjoin: When the two lines are not equal, a solution
consists in using their common plane [14].

5.2 Orientation of two Circles or a Circle and a Line

This section aims to determine the orientation between two circles and, by exten-
sion, a line and a circle. Any circle can be defined as the wedgebetween 3 of its
points, or as the intersection between a hypersphere and a 2-dimensional flat [4].
Although intuitively the intersection between two circlesshould be a point pair for
n = 3, using the conformal pseudoscalarI4,1 as join, the intersection with another
circle or line produces a 1-vector. Indeed, there exist two intersection points only
when the intersection between one circle and the supportinghyperplane of the sec-
ond belongs to the second circle too. For this situation, thedual must be computed
with the other supporting plane asjoin.

Nevertheless, in the general 3-dimensional case [14] the intersection is the fol-
lowing:

C1∨C2 = X whereX2 = 0 if circles have one intersection

C1∨C2 = X whereX2 6= 0 if circles have no intersection

C1∨C2 = 0 if circles have two intersections
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The non-intersection case resembles to that appearing for two lines: Let us verify
if X2 denotes an orientation between the circles. Indeed, we can be interested in
determining if the circles are interwoven or not, or alternatively if a line passes
through a disc or outside. In fact, this is the case and can be used to compute a
fast ray-tracing intersection test including discs – by avoiding the calculation of the
ray-plane intersection, – or even to accelerate triangle orpolygon intersection with
a bounding circle.

Now, in an arbitrary dimensionn, let us calculate thejoin of two circles:

C1∧C2 = (a∧b∧c)∧ (d∧e∧ f )

=
(
no+a+a2n∞/2

)
∧
(
no+b+b2n∞/2

)
∧
(
no+c+c2n∞/2

)

∧
(
no+d+d2n∞/2

)
∧
(
no+e+e2n∞/2

)
∧
(
no+ f + f 2n∞/2

)

∼ In
6+noIn

5+noIn
4n∞ + In

5n∞

This, of course, should be used carefully in dimensionn≤ 4. For instance, forn= 3,
thejoin of two general circles is the conformal pseudoscalarnoI3

3n∞ = I3+1,1, i.e. the
conformal space itself. In higher dimension, this does not remain true.

To calculate the orientation of a line and a circle, thejoin is the following:

C∧ l = (a∧b∧c)∧ (no+p)∧u∧n∞

=
(
no+a+a2n∞/2

)
∧
(
no+b+b2n∞/2

)
∧
(
no+c+c2n∞/2

)

∧(no+p)∧u∧n∞

∼ (In
5+noIn

4)n∞

We retrieve the infinite pointn∞ as factor, and a 5-vector withoutn∞. This resembles
to the last part of thejoin obtained for intersecting two circles, and that obtained for
two lines with a lower dimension.

5.3 3-blades Orientation

This section extends the orientation for general 3-blades,not necessarily encoding
lines or circles. In fact, the various types of 3-blades are already well-known. In [4],
they were categorized as follows:

• Directions or dual directions –i.e.En∞ or−E⋆n∞. –
• Lines or 1-flats –i.e. Tp[no∧ (un∞)] whereu is a Euclidean vector. –
• Real or imaginary circles or rounds –i.e. Tp[(no+ρ2n∞/2)E]. –
• Dual flats –i.e. Tp[Ê⋆]. –
• Tangents and dual tangents –i.e. Tp[noE] or Tp[noE⋆(−1)n]. –

whereTp is a translation,E a Euclideank-vector fork = 2 or k = 3, E⋆ is the dual
of E in the Euclidean space, and the wide hat denotes a grade involution.
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For each type of 3-blade, it is always possible to calculate the maximumjoin as
we do it for circles, and then to deduce the correctmeetgiving the orientation of
the subspace they span. These can be calculated once and thenstored to be applied
later, after the recognition of 3-blades.

6 Conclusions

This article propounds a generalization of the line classification, or orientation, us-
ing the conformal model. The goal is to use this classification for visibility calcula-
tions or ray-tracing, for instance.

First, it shows that line classification in the projective model corresponds to an
intersection. This result is easier understand and to provethan the previous solution
in [1]. Some criteria are presented to determine if a given 3-vector is a line, or a cir-
cle. Then, the intersection between two 3-vectors is studied by considering different
cases, like line with line, or circle with either line or circle.

As main result, we can exhibit a process to determine the orientation of the sub-
space resulting in the intersection of 3-vectors.

As future work, we might use these results in a new visibilitycalculation frame-
work, where the various occluders can be grouped together into some spheres of
circles, leading to a bounding hierarchy, and then allowingto speed up the com-
putation times. Moreover, we also might use these results toaccelerate ray-tracing,
to accelerate the intersection of a ray with a triangle usingits bounding circle for
instance.
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