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Expressing Discrete Geometry using the
Conformal M odel

Lilian Aveneau, Eric Andres, and &téric Mora

Abstract Primitives and transformations in discrete geometry, saglines, cir-
cles, hyperspheres, hyperplanes, have been defined witsicdalinear algebra in
dimension 2 and 3, leading to different expressions andisthgos. This paper ex-
plores the use of the conformal algebra to express theseetligarimitives in arbi-
trary dimensions with a minimum of expressions and thenrélguos. Starting with
hyperspheres and hyperplanes, a generalizatidwsghere is then proposed. This
gives one simple and compact formula, valid for all georosetanformal elements
in R", from the circle to the hypersphere, and the line to the tplpae.

1 Introduction

1.1 Motivation

Discrete geometry is about handling objects and transfoomainZ" [6]. In com-
puter graphics, a discrete point will be represented bylpige voxels (pixels in
dimensions greater than two) in images. A major problem fiicdity concerns
the description of classical geometric objects in such ddydike lines, circles,
planes or spheres. Since J.-BvRilles introduced the analytical description of two
dimensional lines in 1988 [6], many different type of priivits have been described
analytically. They are typically defined as all the discneténts verifying a set of
inequalities in a classical linear algebra framework.
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For instance, a Reveilles discrete straight lin&#ris analytically defined by:
Lo = {X = (x,y) € Z?|0 < ax+ by +c < w} (1)

wherew is called the arithmetical width, a parameter controllihg thickness of
the discrete line. Here, the coefficierstsb and ¢ define the line inR?, and are
real numbers. An extension to hyperplanes is pretty sttimighard [2]. This way
of defining a 2D discrete line can be easily adapted to 2D elisaircles and ex-
tended to discrete hyperplanes and hyperspheres [1, 2]. diibete circle can be
defined as the intersection of a discrete hyperplane ancceetissphere but inter-
sections do not necessarily define objects with good priggestich as, for instance,
connectivity properties. Another representation has lir@eoduced in [7] based on
structuring elements. For instance, considering a uniesphs structuring element
(the ballB, (%) of radius %/2 for the Euclidean distana®), then the discretisation
D(F) of a Euclidean objedt is defined by:

o(F) — {X e Zlaax.F) < 3 @

= (Bz (;) @F) Nnz" (3)

The conformal algebra allows the representatiok-féats andk-spheres [3, 4, 5]
(pair points, circles, lines, hyperspheres and hyperglang. This article inves-
tigates its use to formalize and unify the definition of déterobjects. A major
advantage is the common definition of lines and circles, drtdyperspheres and
hyperplanes; another advantage comes from the definitidisofete objects in ar-
bitrary dimension in a compact form.

In this article, we cannot present all the possible discsetedefinitions using
the conformal model. So, we limit ourselves to a single stnilcg element, using
the Euclidean distance,. We propose two different discrete set definitions. The
first one uses a signed distance determination for a set gliaities, similar to
classical linear algebra; the second definition involveg one inequality using an
intersection test.

1.2 Qutlines

The rest of this article is organized as follows: the secfamecall the conformal
model basics, and our notations. Section 3 introduces g@eale sphere, starting
in dimension 3, and then extended to any dimengion 2. It presents also the
discrete hyperplane, a particular case of hypersphereayitbint at infinity. Next,
section 4 proposes a general definition for discrete roumddjscretek-spheres,
i.e. subspaces of dimensidtembedded in a Euclidean space of dimensicBome
examples are the point pair and the circle. By extensios jstalso valid for discrete
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k-flats. So, section 5 presents example for 1-sphere, firsttytive discrete circle,
which are nicely defined in any dimension> 2, and secondly the discrete line
which is a particular case of the former. The section 6 catedithis paper giving
some future work plans.

2 Conformal Model

This section briefly recalls the basics about the conformadeh As many authors
use their own notations, we also briefly present the notatised in this paper
(based mostly on those of Dorst and al. [3]).

The conformal model is based on a Euclidean space of dimemsidenoted
by E" with an orthonormal basige, e, .. .,€,) which is completed by adding two
vectorse; ande_ with respective positive and negative signature. The @aer
vectors representing the origin and the infinity are denogsgectively byng =
1 (ey +e_) andn, = e_ —e,. These two vectors are null, sinog=n2 = 0. Any
Euclidean point (in bold) can be embedded into the conformadlel using the
following transformation:

1
P=F(p) =no+p+ 5PN @)
In this paper, the following normalisation condition ispested:
No-p=—1 )

Using the relatiom, - n, = —1, this normalisation condition allows to compute the
Euclidean distancd, between two given Euclidean poirdasandb using the scalar
product:

a-b

(No+a+ 82N /2) - (Mo + b+ b?Ne /2)
b2 b2
= No-No+No-b+5Ng N +a-No+a-b+%a-Ne
a2 a2 a?b?
+%Neo Mo+ 5 Neo - D+ 27 Neo - Noo

_ap 1o 15,
=a-b 2a 2b
:—%(a—b)z

The Euclidean and conformal pseudoscalars are respgctieabted byl, = e; A
e A...Aeyandlpi11 = NoAlp AN,
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3 Discrete Spheresand Planes

3.1 Discrete Spheres centered at the origin

In discrete geometry [1], using a Euclidean distance, anmediional sphere cen-
tered atc with radiusr can be defined as the set of discrete point close to the Eu-
clidean sphere, as:

{pezn(r—d?<lc—pP < (r+d)’} (6)

where the widthld € R™* is a positive real number, smaller than

Hence, a point lies in the discrete sphere if it is inside @®igone with radius
r +d, and outside a smaller one with radius d.

We propose to define a discrete sphere using the conformatinmod similar
spirit. For instance, using a sphe3gcentered at the originpand with radius 1, the
intersection with a poinp is:

1

S"-Fp) =3

(1-p?%) (7)
Since we are interested in the sign of this expression toratpéhe interior and
exterior of the sphere, it can be reduced te 2. When this last expression is
positive, therp? < 1, and s is inside the sphere; conversely, when it is negative
we havep? > 1, andp is outside.

In the general case, we define the following two spheres:

Serid” =C— 2(r+d)%ne and Ser-d" =C— 2(r —d)%ne

Now, we can check the distances, using two inner products:

Servd P = % ((r +d)?—|p —CIZ) (8)
S o= (-2 Jp—cf) ©

As with (7), when (8) is negative, it is obvious that the Edeln poinp is outside
the sphere defined by the centaand the radius+ d. So, to find the discrete points
corresponding to the discrete sphere, this intersecticst bripositive.

For the second sphere of radius d, and assuming << r, the same reasoning
applied to (9) means that searching for Euclidean pointsideithe corresponding
sphere implies a negative intersection value. To summan&, a discrete sphere
centered at with radiusr is:

{peZ’|S - P<0andS .q*-p>0}
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Fig. 1 A discrete sphere i3 with centerc = (6,6,6) and radiug =5

As a result example, the Fig. 1 shows the discretization gfteere defined in the
conformal model.

3.2 Discrete Hyperplanes iiR"

A plane is a particular sphere, passing through the infirdiatd3, 5]. Therefore,
it is the outer product betweem, andn conformal points. By duality, it can be
expressed in any dimension as the 1-vector:

mT=n+ 0w

wheren is the Euclidean normal vector, addhe distance to the origin alonyg
For a given widthd, using two orthogonal translations dh and —dn, we can
enclose all the points of its discretization. Then the diszhyperplane is:
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Fig. 2 A discrete plane irR®, with normaln = (2,1,1) and distance to origin-5. The discrete
width isv/2/2.

{peZ(n+(d—d)nw)-p<0and(n+(d+d)n) - p>0}

4 Discreterounds

4.1 General definition

A k-sphere, or round according to Dorst's denomination [3f loa defined as the
outer product betweédk+ 2 linearly independent conformal points representing Eu-
clidean points:

Hk=P1N\ .. N\ Pry2

A hypersphere is then @ — 1)-sphere or round, while a point pair is a 0-sphere.
A k-sphere can be also defined as the intersection between asplipes and a
Euclidean flaA of dimensiork:
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= (C+PNes/2) A (—CJ (A\knm»

whereA, denotes the grade involution of the fkat, so thatAy = (—1)KA. A first
example is the point pair, obtained by intersecting a linerfa dimensional flat
space) and a hypersphere, or simply as the wedge betweemhi@mal points; a
second example is the circle, using a two dimensional flatesfa plane in dimen-
sionn = 3), or equivalently wedging three conformal points.

Let us notice thak-flats are particular rounds, and then can also be constructe
using these two definitions. Using the formerk-8at is expressed wedginig+ 1
points withne; equivalently, with the later definition, it is defined usiag infinite
radius hypersphere.

The most important thing to notice here, is that accordingdest [3], the inter-
section of &-sphere and a hypersphere i&a- 1)-sphere.

4.2 Discrete rounds

A discrete round results from the Minkowski sum using thenbas Euclidean ob-
jectF. Using a hypersphere as structuring element, we can edsilkdf a given
point p lies into the discrete round by verifying that the sphereteed onp in-
tersects th&-sphere in a realk — 1)-sphere. The intersection calculation is well-
known, and consists in the inner product of one element wighdual of the other.
Here, we use the dual of the sphere, encoded as its centes thiinfinity multi-
plied by the square radius over two:

{p€Z"|(p—d’ne/2) - Z is areal round (10)

whered is the radius of the structuring element(a hypersphere). Let us notice
that this approach is also usable for an hyperspRergving us a second method to
obtain its discrete representation.

So the last question to answer is what is a real round, wiheietgo an imaginary
one? Again, the solution is well-known [3]: a real round ha®sitive square radius,
while an imaginary has a negative one. The square radiusoofralZ is computed
by:

2 _ % (11)
(Neo ] %)
Hence, a discrete rouri#, can be rewritten as:
{pezr|(-0*[(p-c?na/2)- 2" 2 0} (12)

The sign(—1)k-1 appears due to the calculation ofla— 1)-round radius with a
grade involution, using (11). Indeed, the intersectiomieein a hypersphere and a
k-sphere is ¢k — 1)-round.
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Fig. 3 Example of circleR?, centered at = (1,1,2), in a plane(e; + &) A (21 + €3), and with
radiusr = v/6/2. The discrete point radius é= 5/7.

5 Discrete Circlesand Lines

A circle can be defined as the intersection of a sphere andne jglantaining the
center of the former. If one attempts to compute the disaietde using the inter-
section of the discrete sphere and plane, the result willrfmneous: obviously, it
will not correspond to the Minkowski sum by a sphere of radiusience, except
for the two dimensional case, it is not equal to a discretdeir
We propose here a robust and correct definition, using théoooal definition
of circle, and by extension of line, and the general discsetegyiven by (12).
Contrary to the hypersphere, a conformal circle is alwaysed with 3 confor-
mal points, and nat+ 1. So, in any dimension, a conformal circle is still a 3-vecto
Then, we can generalize the 2 dimensional cag&'t@ither using some rotation
before the translation to the center of the circle, or diyday defining the circle as
the 3-vector through three given Euclidean points.

Hence, the discrete circle passing through the Euclidearigm, p, andps is:
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{pez”|[(prnpenpa)- (p-ne/2))*> 0} (13)

Fig. 4 Example of discrete lin®S, passing througli—10, —10, —9) and(10,10,10), calculated
with the width/2/2.

Lines are a particular case of circles passing through fivétinpoint n,. So the
equation (13) is valid, albeit one of the three point is edqaal,. It follows that the
discrete line inR", passing through and therb is:

{pEZ” [(a/\b/\nm)-(pfdznm/Z)]ZEO} (14)

As examples of result ifR3, the Fig. 3 shows a discrete circle, while Fig. 4
depicts a discrete line, made using conformal model caiomn@nly.
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6 Conclusions

This article proposes definitions of discrete objects udirig hypersphere and hy-
perplane, an#t-sphere. Even if they do not come with efficient algorithmsdon-
structing the sets, they are valid in any dimension 2, and allow unification be-
tween circles and lines, and between spheres and planes.

Later, as perspectives, we plan to work on some extensidrs, #e aim to
work with other structuring element in the Minkowski sumr fostance one rep-
resenting al; distance; this should be done using translation and hyaeeplvith
eachR" basis element as normal vector. This might allow us to stualy types of
discretization, using the conformal formalization.

Another perspective is the k-spheres recognitioRTnactually, there exist some
performant algorithms to recognize lines in 2 or 3 dimensidgsing classical ge-
ometry, they do not seem to be naturally extended in dimensier applied to
circles in 2 dimensions, or be used for rounds. Our goal is thextend them using
our discretization, and the fact that lines and circles andlar, and that circles are
round, leading to a single algorithm working with any kindadfcles and in any
dimension.
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