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Expressing Discrete Geometry using the
Conformal Model

Lilian Aveneau, Eric Andres, and Fréd́eric Mora

Abstract Primitives and transformations in discrete geometry, suchas lines, cir-
cles, hyperspheres, hyperplanes, have been defined with classical linear algebra in
dimension 2 and 3, leading to different expressions and algorithms. This paper ex-
plores the use of the conformal algebra to express these discrete primitives in arbi-
trary dimensions with a minimum of expressions and then algorithms. Starting with
hyperspheres and hyperplanes, a generalization tok-sphere is then proposed. This
gives one simple and compact formula, valid for all geometric conformal elements
in R

n, from the circle to the hypersphere, and the line to the hyperplane.

1 Introduction

1.1 Motivation

Discrete geometry is about handling objects and transformations inZn [6]. In com-
puter graphics, a discrete point will be represented by pixels or voxels (pixels in
dimensions greater than two) in images. A major problem or difficulty concerns
the description of classical geometric objects in such a world, like lines, circles,
planes or spheres. Since J.-P. Réveillès introduced the analytical description of two
dimensional lines in 1988 [6], many different type of primitives have been described
analytically. They are typically defined as all the discretepoints verifying a set of
inequalities in a classical linear algebra framework.
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For instance, a Reveilles discrete straight line inZ
2 is analytically defined by:

L2 =
{

X = (x,y) ∈ Z
2|0≤ ax+by+ c < ω

}
(1)

whereω is called the arithmetical width, a parameter controlling the thickness of
the discrete line. Here, the coefficientsa, b and c define the line inR2, and are
real numbers. An extension to hyperplanes is pretty straightforward [2]. This way
of defining a 2D discrete line can be easily adapted to 2D discrete circles and ex-
tended to discrete hyperplanes and hyperspheres [1, 2]. A 3Ddiscrete circle can be
defined as the intersection of a discrete hyperplane and a discrete sphere but inter-
sections do not necessarily define objects with good properties such as, for instance,
connectivity properties. Another representation has beenintroduced in [7] based on
structuring elements. For instance, considering a unit sphere as structuring element
(the ballB2

(
1
2

)
of radius 1/2 for the Euclidean distanced2), then the discretisation

D(F) of a Euclidean objectF is defined by:

D(F) =

{
X ∈ Z

n|d2(X ,F)≤ 1
2

}
(2)

=

(
B2

(
1
2

)
⊕F

)
∩Z

n (3)

The conformal algebra allows the representation ofk-flats andk-spheres [3, 4, 5]
(pair points, circles, lines, hyperspheres and hyperplanes, ...). This article inves-
tigates its use to formalize and unify the definition of discrete objects. A major
advantage is the common definition of lines and circles, and of hyperspheres and
hyperplanes; another advantage comes from the definition ofdiscrete objects in ar-
bitrary dimension in a compact form.

In this article, we cannot present all the possible discreteset definitions using
the conformal model. So, we limit ourselves to a single structuring element, using
the Euclidean distanced2. We propose two different discrete set definitions. The
first one uses a signed distance determination for a set of inequalities, similar to
classical linear algebra; the second definition involves only one inequality using an
intersection test.

1.2 Outlines

The rest of this article is organized as follows: the section2 recall the conformal
model basics, and our notations. Section 3 introduces the discrete sphere, starting
in dimension 3, and then extended to any dimensionn ≥ 2. It presents also the
discrete hyperplane, a particular case of hypersphere witha point at infinity. Next,
section 4 proposes a general definition for discrete rounds,or discretek-spheres,
i.e. subspaces of dimensionk embedded in a Euclidean space of dimensionn. Some
examples are the point pair and the circle. By extension, this is also valid for discrete
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k-flats. So, section 5 presents example for 1-sphere, firstly with the discrete circle,
which are nicely defined in any dimensionn ≥ 2, and secondly the discrete line
which is a particular case of the former. The section 6 concludes this paper giving
some future work plans.

2 Conformal Model

This section briefly recalls the basics about the conformal model. As many authors
use their own notations, we also briefly present the notations used in this paper
(based mostly on those of Dorst and al. [3]).

The conformal model is based on a Euclidean space of dimension n, denoted
by E

n with an orthonormal basis(e1,e2, . . . ,en) which is completed by adding two
vectorse+ ande− with respective positive and negative signature. The particular
vectors representing the origin and the infinity are denotedrespectively byno =
1
2 (e++ e−) andn∞ = e−− e+. These two vectors are null, sincen2

o = n2
∞ = 0. Any

Euclidean point (in bold) can be embedded into the conformalmodel using the
following transformation:

p = F(p) = no +p+
1
2

p2n∞ (4)

In this paper, the following normalisation condition is respected:

n∞ · p =−1 (5)

Using the relationno ·n∞ =−1, this normalisation condition allows to compute the
Euclidean distanced2 between two given Euclidean pointsa andb using the scalar
product:

a ·b =
(
no +a+a2n∞/2

)
·
(
no +b+b2n∞/2

)

= no ·no +no ·b+ b2

2 no ·n∞ +a ·no +a ·b+ b2

2 a ·n∞

+ a2

2 n∞ ·no +
a2

2 n∞ ·b+ a2b2

4 n∞ ·n∞

= a ·b− 1
2

a2− 1
2

b2

= −1
2
(a−b)2

The Euclidean and conformal pseudoscalars are respectively denoted byIn = e1∧
e2∧ . . .∧ en andIn+1,1 = no ∧ In ∧n∞.
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3 Discrete Spheres and Planes

3.1 Discrete Spheres centered at the origin

In discrete geometry [1], using a Euclidean distance, a n-dimensional sphere cen-
tered atc with radiusr can be defined as the set of discrete point close to the Eu-
clidean sphere, as:

{
p ∈ Z

n|(r−d)2 ≤ |c−p|2 < (r+d)2
}

(6)

where the widthd ∈ R
+,∗ is a positive real number, smaller thanr.

Hence, a point lies in the discrete sphere if it is inside a bigger one with radius
r+d, and outside a smaller one with radiusr−d.

We propose to define a discrete sphere using the conformal model in a similar
spirit. For instance, using a sphereS1 centered at the originnoand with radius 1, the
intersection with a pointp is:

S1
∗ ·F(p) =

1
2

(
1−p2) (7)

Since we are interested in the sign of this expression to separate the interior and
exterior of the sphere, it can be reduced to 1− p2. When this last expression is
positive, thenp2 < 1, and sop is inside the sphere; conversely, when it is negative
we havep2 > 1, andp is outside.

In the general case, we define the following two spheres:

Sc,r+d
∗ = c− 1

2(r+d)2n∞ and Sc,r−d
∗ = c− 1

2(r−d)2n∞

Now, we can check the distances, using two inner products:

Sc,r+d
∗ · p =

1
2

(
(r+d)2−|p− c|2

)
(8)

Sc,r−d
∗ · p =

1
2

(
(r−d)2−|p− c|2

)
(9)

As with (7), when (8) is negative, it is obvious that the Euclidean pointp is outside
the sphere defined by the centerc and the radiusr+d. So, to find the discrete points
corresponding to the discrete sphere, this intersection must be positive.

For the second sphere of radiusr−d, and assumingd << r, the same reasoning
applied to (9) means that searching for Euclidean points outside the corresponding
sphere implies a negative intersection value. To summarise, in R

n, a discrete sphere
centered atc with radiusr is:

{
p ∈ Z

n
∣∣Sc,(r−d)

∗ · p < 0 andSc,(r+d)
∗ · p ≥ 0

}
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Fig. 1 A discrete sphere inR3 with centerc = (6,6,6) and radiusr = 5

As a result example, the Fig. 1 shows the discretization of a sphere defined in the
conformal model.

3.2 Discrete Hyperplanes inRn

A plane is a particular sphere, passing through the infinite point [3, 5]. Therefore,
it is the outer product betweenn∞ and n conformal points. By duality, it can be
expressed in any dimension as the 1-vector:

π= n+δn∞

wheren is the Euclidean normal vector, andδ the distance to the origin alongn.
For a given widthd, using two orthogonal translations ofdn and−dn, we can

enclose all the points of its discretization. Then the discrete hyperplane is:
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Fig. 2 A discrete plane inR3, with normaln = (2,1,1) and distance to origin−5. The discrete
width is

√
2/2.

{p ∈ Z
n|(n+(δ −d)n∞) · p < 0 and(n+(δ +d)n∞) · p ≥ 0}

4 Discrete rounds

4.1 General definition

A k-sphere, or round according to Dorst’s denomination [3], can be defined as the
outer product betweenk+2 linearly independent conformal points representing Eu-
clidean points:

Rk = p1∧ . . .∧ pk+2

A hypersphere is then a(n− 1)-sphere or round, while a point pair is a 0-sphere.
A k-sphere can be also defined as the intersection between a hypersphere and a
Euclidean flatAk of dimensionk:
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Rk =
(
c+ρ2n∞/2

)
∧
(
−c

⌋(
Âkn∞

))

whereÂk denotes the grade involution of the flatAk, so that̂Ak = (−1)kAk. A first
example is the point pair, obtained by intersecting a line (aone dimensional flat
space) and a hypersphere, or simply as the wedge between two conformal points; a
second example is the circle, using a two dimensional flat space (a plane in dimen-
sionn = 3), or equivalently wedging three conformal points.

Let us notice thatk-flats are particular rounds, and then can also be constructed
using these two definitions. Using the former, ak-flat is expressed wedgingk+ 1
points withn∞; equivalently, with the later definition, it is defined usingan infinite
radius hypersphere.

The most important thing to notice here, is that according toDorst [3], the inter-
section of ak-sphere and a hypersphere is a(k−1)-sphere.

4.2 Discrete rounds

A discrete round results from the Minkowski sum using the round as Euclidean ob-
ject F . Using a hypersphere as structuring element, we can easily check if a given
point p lies into the discrete round by verifying that the sphere centered onp in-
tersects thek-sphere in a real(k− 1)-sphere. The intersection calculation is well-
known, and consists in the inner product of one element with the dual of the other.
Here, we use the dual of the sphere, encoded as its center minus the infinity multi-
plied by the square radius over two:

{
p ∈ Z

n
∣∣(p−d2n∞/2) ·Rk is a real round

}
(10)

whered is the radius of the structuring element (i.e. a hypersphere). Let us notice
that this approach is also usable for an hypersphereF , giving us a second method to
obtain its discrete representation.

So the last question to answer is what is a real round, with respect to an imaginary
one? Again, the solution is well-known [3]: a real round has apositive square radius,
while an imaginary has a negative one. The square radius of a roundRk is computed
by:

ρ2 =
RkR̂k

(n∞⌋Rk)
2 (11)

Hence, a discrete roundRk can be rewritten as:
{

p ∈ Z
n
∣∣∣(−1)k−1[(p−d2n∞/2) ·Rk

]2 ≥ 0
}

(12)

The sign(−1)k−1 appears due to the calculation of a(k− 1)-round radius with a
grade involution, using (11). Indeed, the intersection between a hypersphere and a
k-sphere is a(k−1)-round.
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Fig. 3 Example of circleR3, centered atc = (1,1,2), in a plane(e1+ e2)∧ (2e1+ e3), and with
radiusr =

√
6/2. The discrete point radius isd = 5/7.

5 Discrete Circles and Lines

A circle can be defined as the intersection of a sphere and a plane containing the
center of the former. If one attempts to compute the discretecircle using the inter-
section of the discrete sphere and plane, the result will be erroneous: obviously, it
will not correspond to the Minkowski sum by a sphere of radiusd. Hence, except
for the two dimensional case, it is not equal to a discrete circle.

We propose here a robust and correct definition, using the conformal definition
of circle, and by extension of line, and the general discreteset given by (12).

Contrary to the hypersphere, a conformal circle is always defined with 3 confor-
mal points, and notn+1. So, in any dimension, a conformal circle is still a 3-vector.

Then, we can generalize the 2 dimensional case toR
n, either using some rotation

before the translation to the center of the circle, or directly by defining the circle as
the 3-vector through three given Euclidean points.

Hence, the discrete circle passing through the Euclidean points p1, p2 andp3 is:
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{
p ∈ Z

n
∣∣∣
[
(p1∧ p2∧ p3) ·

(
p−d2n∞/2

)]2 ≥ 0
}

(13)

Fig. 4 Example of discrete lineR3, passing through(−10,−10,−9) and(10,10,10), calculated
with the width

√
2/2.

Lines are a particular case of circles passing through the infinity point n∞. So the
equation (13) is valid, albeit one of the three point is equalto n∞. It follows that the
discrete line inRn, passing througha and thenb is:

{
p ∈ Z

n
∣∣∣
[
(a∧b∧n∞) ·

(
p−d2n∞/2

)]2 ≥ 0
}

(14)

As examples of result inR3, the Fig. 3 shows a discrete circle, while Fig. 4
depicts a discrete line, made using conformal model calculation only.
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6 Conclusions

This article proposes definitions of discrete objects, including hypersphere and hy-
perplane, andk-sphere. Even if they do not come with efficient algorithms for con-
structing the sets, they are valid in any dimensionn ≥ 2, and allow unification be-
tween circles and lines, and between spheres and planes.

Later, as perspectives, we plan to work on some extensions. First, we aim to
work with other structuring element in the Minkowski sum, for instance one rep-
resenting ad1 distance; this should be done using translation and hyperplane with
eachRn basis element as normal vector. This might allow us to study new types of
discretization, using the conformal formalization.

Another perspective is the k-spheres recognition inR
n; actually, there exist some

performant algorithms to recognize lines in 2 or 3 dimensions. Using classical ge-
ometry, they do not seem to be naturally extended in dimension n, or applied to
circles in 2 dimensions, or be used for rounds. Our goal is then to extend them using
our discretization, and the fact that lines and circles are similar, and that circles are
round, leading to a single algorithm working with any kind ofcircles and in any
dimension.
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