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Piecewise deterministic Markov process — recent results

Romain Azaïs∗ Jean-Baptiste Bardet† Alexandre Génadot‡

Nathalie Krell§ Pierre-André Zitt¶

September 24, 2013

Abstract

We give a short overview of recent results on a specific class of Markov process: the
Piecewise Deterministic Markov Processes (PDMPs). We first recall the definition of
these processes and give some general results. On more specific cases such as the TCP
model or a model of switched vector fields, better results can be proved, especially
as regards long time behaviour. We continue our review with an infinite dimensional
example of neuronal activity. From the statistical point of view, these models pro-
vide specific challenges: we illustrate this point with the example of the estimation
of the distribution of the inter-jumping times. We conclude with a short overview on
numerical methods used for simulating PDMPs.

1 General introduction

The piecewise deterministic Markov processes (denoted PDMPs) were first introduced in
the literature by Davis ([Dav84, Dav93]). Already at this time, the theory of diffusions had
such powerful tools as the theory of Itō calculus and stochastic differential equations at its
disposal. Davis’s goal was to endow the PDMP with rather general tools. The main reason
for that was to provide a general framework, since up to then only very particular cases had
been dealt with, which turned out not to be easily generalizable.

∗Inria Bordeaux Sud-Ouest, team CQFD et Université de Bordeaux, IMB, CNRS UMR 5251, 200, Avenue
de la Vieille Tour, 33405 Talence cedex, France.

†Laboratoire de Mathématiques Raphaël Salem, Université de Rouen, Avenue de l’Université, BP 12,
76801 Saint-Etienne-du-Rouvray, France.

‡Laboratoire de Probabilités et modèles aléatoires, Université Pierre et Marie Curie, 4, place Jussieu,
75005 Paris, France.

§Université de Rennes 1, Institut de Recherche mathématique de Rennes, CNRS-UMR 6625, Campus de
Beaulieu. Bâtiment 22, 35042 Rennes Cedex, France.

¶Laboratoire d’Analyse et de Mathématiques Appliquées, Université de Marne-la-Vallée, 5, boulevard
Descartes, Cité Descartes - Champs-sur-Marne, 77454 Marne-la-Vallée Cedex 2

1



PDMPs form a family of càdlàg Markov processes involving a deterministic motion punc-
tuated by random jumps. The motion of the PDMP {X(t)}t≥0 depends on three local char-
acteristics, namely the jump rate λ, the flow φ and the transition measure Q according to
which the location of the process at the jump time is chosen. The process starts from x
and follows the flow φ(x, t) until the first jump time T1 which occurs either spontaneously
in a Poisson-like fashion with rate λ(φ(x, t)) or when the flow φ(x, t) hits the boundary of
the state-space. In both cases, the location of the process at the jump time T1, denoted by
Z1 = X(T1), is selected by the transition measure Q(φ(x, T1), ·) and the motion restarts from
this new point as before. This fully describes a piecewise continuous trajectory for {X(t)}
with jump times {Tk} and post jump locations {Zk}, and which evolves according to the
flow φ between two jumps.

These processes have been heavily studied both from a theoretical and from an applied
perspective in various domains such as communication networks with the control of conges-
tion TCP/IP (V. Dumas and al. [DGR02], V. Guillemin and al. [GRZ04]), neurobiology
for the Hodgkin-Huxley model of neuronal activity (K. Pakdaman and al. [PTW10]), reli-
ability (F. Dufour and Y. Dutuit [DD02]), biologic population models (H.G. Othmer and
al.[ODA88] as well as R. Erban and H.G. Othmer [EO05]), to present just a few examples.

The paper is organized as follows. In Section 2 we give a precise definition and some
general properties of the PDMPs. Then we illustrate the state of the art regarding PDMPs
through three specific examples: a model of switched vector fields (Section 3), the TCP
process (Section 4), and a modelization of neuronal activity (Section 5). Finally, we briefly
review some results about a non-parametric statistical method to get an estimate of the
conditional density associated with the jumps of a PDMP defined on a separable metric
space (Section 6) and we end with a survey of numerical methods in Section 7.

2 Definition and some properties of PDMPs

2.1 Definition of a PDMP.

Let M be an open subset of Rn, ∂M its boundary, M its closure and B(M) the set of real-
valued, bounded, measurable functions defined on M . A PDMP is determined by its local
characteristics (φ, λ, Q) where:

• The flow φ : Rn × R → R
n is a one-parameter group of homeomorphisms: φ is contin-

uous, φ(·, t) is an homeomorphism for each t ∈ R, satisfying the semigroup property:
φ(·, t + s) = φ(φ(·, s), t).

For each x in M , we introduce the deterministic hitting time of the boundary

t⋆(x) := inf{t > 0 : φ(x, t) ∈ ∂M}, (1)

with the convention inf ∅ = ∞.
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• The jump rate λ : M → R+ is assumed to be a measurable function satisfying

∀x ∈ M, ∃ ǫ > 0 such that
∫ ǫ

0
λ(φ(x, s))ds < ∞.

• Q is a Markov kernel on (M, B(M)) satisfying the following property:

∀x ∈ M, Q(x, M − {x}) = 1.

From these characteristics, it can be shown [Dav93, pp 62–66] that there exists a filtered
probability space (Ω, F , {Ft}, {Px}) such that the motion of the process {X(t)} starting
from a point x ∈ M may be constructed as follows. Consider a random variable T1 such that

Px{T1 > t} =





e−Λ(x,t) for t < t⋆(x),

0 for t ≥ t⋆(x),

where for x ∈ M and t ∈ [0, t⋆(x)]

Λ(x, t) =
∫ t

0
λ(φ(x, s))ds.

If T1 is equal to infinity, then the process X follows the flow, i.e. t ∈ R+, X(t) = φ(x, t).
Otherwise select independently a M-valued random variable (labelled Z1) having distribution
Q(φ(x, T1), ·), namely Px(Z1 ∈ A) = Q(φ(x, T1), A) for any A ∈ B(M). The trajectory of
{X(t)} starting at x, for t ∈ [0, T1], is given by

X(t) =





φ(x, t) for t < T1,

Z1 for t = T1.

Starting from X(T1) = Z1, we now select the next inter-jump time T2 − T1 and post-jump
location X(T2) = Z2 in a similar way.

This construction properly defines a Markov process {X(t)} which satisfies the strong
Markov property with jump times {Tk}k∈N (where T0 = 0). A very natural Markov chain is
linked to {X(t)}, namely the chain (Θn)n∈N defined by Θn = (Zn, Sn) with Zn = X(Tn) and
Sn = Tn − Tn−1 for n ≥ 1 and S0 = 0. Clearly, the process (Θn)n∈N is a Markov chain. This
chain will turn out to be particularly useful in the next sections (see Section 7).

Remark 1. Davis originally defined PDMPs on a disjoint union
⋃

v∈K{v} × Mv, where K is
a countable index set and, for each v, Mv is a subset of Rn. The definition above, with a
single copy of Rn, can be used without loss of generality – see Remark 24.9 in [Dav93] for
details. Depending on the process, one or the other definition may be more natural: we will
use the original definition in Section 3.
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2.2 A useful discrete process

A basic assumption in all the following will be that, for every starting point x ∈ M ,
E

{∑
k 1{t≥Tk}

}
< ∞. This ensures the non explosion of the process.

The chain Θn obtained by observing the process at jump times may not have enough
jumps to guarantee good comparison properties with the continuous time process Zt. To
address this problem, O. Costa and F Dufour introduced in [DC99] another discrete chain
as follows. The idea is to record the positions of the continuous process both at jump times
and at additional random times given by an independent Poisson process of rate 1. Formally,
first define two substochastic kernels H and J by

H(x, A) :=
∫ t⋆(x)

0
e−(s+Λ(x,s))1A(φ(x, s)) ds,

J(x, A) :=
∫ t⋆(x)

0
λ(φ(x, s))e−(s+Λ(x,s))Q(φ(x, s), A)ds + e−(t⋆(x)+Λ(x,t⋆(x)))Q(φ(x, t⋆(x)), A).

The first kernel corresponds to the additional observation times, the second one to the "real
jumps", either due to the jump rate (first term) or the hitting of the boundary (second term).
The sum G = J + H is proved in [DC99] to be a Markov kernel. We denote by {θn} the
associated Markov chain, which can be generated from the sample paths of {Xt} by adding
observation times as said before – see [CD08, Theorem 3.1] for a formal statement.

Theorem 1 (Discrete and continuous processes, [CD08]). The Markov chain {θn} and the
original process {Xt} are closely related:

1. The PDMP {X(t)} is irreducible if and only if the Markov chain {θn} is irreducible.

2. If ν is an invariant measure for {X(t)}, then ν
∑∞

0 J j is invariant for {θn} and
ν
∑∞

0 J j = ν. Conversely, if π is an invariant measure for {θn}, then πH is invariant
for {X(t)} and π

∑∞
0 J j = π.

3. The PDMP {X(t)} is recurrent if and only if the Markov chain {θn} is recurrent.

4. The PDMP {X(t)} is positive recurrent if and only if the Markov chain {θn} is recur-
rent with invariant measure π satisfying πH(M) < ∞.

5. The PDMP {X(t)} is Harris recurrent if and only if the Markov chain {θn} is Harris
recurrent.

The authors in [CD08] also give sufficient conditions on G (in a modified Foster-Lyapunov
criterion form) to ensure the existence of an invariant probability measure, positive Harris
recurrence and ergodicity for the PDMP.

In [Las04], stability and ergodicity via Meyn-Tweedie arguments are established for one
dimensional PDMPs as AIMD (Additive Increase Multiplicative Decrease) processes. Most of
these results are essentially of qualitative type, i.e. no practical information can be obtained
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on the rate of convergence to equilibrium. The papers [CMP10, FGM12] are first attempts
to get quantitative results for the long time behavior of special PDMPs: TCP (which is
defined in Section 4) for the first one and a PDMP describing the motion of a bacteria for
the second one.

3 Regularity and general convergence results for Markov

switching systems

3.1 The Markov switching model

We consider a subclass of PDMP sometimes known as “Markov switching model”. The
“natural” state space of this process is the product space R

d × {1, . . . , n} — as was said in
Remark 1, this fits within the general theory described above. To define the process, consider
n vector fields F 1, F 2, . . . , F n on R

d. These fields define flows φi via the ODE:

dyt

dt
= F i(yt)dt.

To simplify matters we suppose that the F i are C1 and that there is a compact set K ⊂ R
d

that is left invariant by all flows (nasty things may occur if this is not the case, see e.g.
[BLBMZ12a]).

We also suppose that we are given n2 nonnegative functions λij : Rd → R (the jump
rates), such that λii(y) = 0, and for any given y, (λij(y))i,j is irreducible.

The Markov switching model is a process Xt = (Yt, It) ∈ R
d × {1, 2, · · ·n} defined infor-

mally as follows:

• Yt is driven by the vector field F It ,

• if It = i and Yt = y, It jumps to j with rate λi,j(y).

The corresponding generator is:

Lf(y, i) = F i · ∇xf +
∑

j

λij(y)(f(y, j) − f(y, i)).

This process can be constructed as described in Section 2. Another possible way is to
generate a Poisson process with a high enough intensity to “propose” jump times, and to
accept or reject these jumps with probabilities depending only on the values of λij(y) at the
current point (see Section 2 of [BLBMZ12b] for details). This naturally defines a discrete
process X̃n (a Markov chain), which turns out to be an alternative to the chain θn defined
above, in the sense that results similar to Theorem 1 hold.

In this model, the trajectory of the “position” Yt ∈ R
d does not jump, it evolves contin-

uously. The jumps only occur on the discrete part It, the one that dictates which (deter-
ministic) dynamics the position must follow. Let us also note that there are no “boundary
jumps” in this model: for every x = (y, i), the quantity t⋆(x) defined by (1) is infinite.
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Many questions that seem intractable for fully general PDMPs can be answered in this
restricted framework. In particular, a kind of regularity for the law of (Yt, It) can be es-
tablished if the vector fields satisfy a condition that closely resembles Hörmander’s classical
condition for diffusion. These results are described in the following section. In the next one
we discuss results on the “infinite time” behaviour of the process: once more, exponential
convergence to equilibrium can be proved under fairly weak assumptions.

3.2 Regularity results

We are interested here in criteria that guarantee a regularity for the law of the continuous
part, Yt.

For the sake of comparison, let Bt = (B1
t , . . . , Bn

t ) be an n-dimensional Brownian motion,
and consider the solution of the following (Stratonovich) SDE:

dYt = F 0(Yt)dt +
n∑

i=1

F i(Yt) ◦ dBi
t.

Depending on the F i, the law of Yt may or may not have a density with respect to Lebesgue
measure. For example, if the F i are constant, the law is regular if and only if the F i span R

d.
For non-constant fields there is a well-known criterion for regularity, known as Hörmander’s
criterion, and expressed in terms of the F i and their iterated Lie brackets. Thanks to this
criterion, one may prove that the law of a kinetic process (Y, V ) driven only by a Brownian
motion on its velocity is immediately absolutely continuous, with a regular density (see e.g.
[Vil09]).

In our case, there is no hope for such a strong result. Indeed, the probability that (Yt, It)
has not jumped at all between 0 and t is strictly positive, therefore the law of Yt has a
singular part – we will see a similar phenomenon in the study of the TCP process with the
lower bound (5).

However, let us define the following families of vector fields:

V0 = {F i − F j, i 6= j},

∀i ≥ 0, Vi+1 = Vi ∪ {[F i, G], G ∈ Vi}.

With these notations the following result holds:

Theorem 2 (Absolute continuity, [BH12, BLBMZ12b]). Suppose there is a point p ∈ R
d and

an integer k such that the “bracket condition” holds, i.e. the iterated Lie brackets {V (p), V ∈
Vk} span R

d. Then there is a time t > 0, a strictly positive η, and two probability measures
νc

t , νr
t on R

d × {1, . . . , n} such that:

• the law µt of Yt starting from p can be written as µt = ηνc
t + (1 − η)νr

t ,

• the “continuous” part νc
t is absolutely continuous with respect to the product of the

Lebesgue measure on R
d and the counting measure on {1, . . . , n}.

Similar results are obtained in [BH12, BLBMZ12b] for the discrete chain Z̃n; they involve
another (weaker) bracket condition.
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3.3 Invariant measures and convergence

To study the long time behaviour of (Yt, It), it is natural to look for an analogue of the ω-limit
set (defined when there is only one flow). To that end, first define the positive trajectory of
y as the set

γ+(y) =
⋃

m∈N

{
φim

tm
(· · · (φi1t1(y))·)

∣∣∣(i1, . . . , im) ∈ {1, . . . , n}m; (t1, . . . , tm) ∈ R
m
+

}
.

That is, γ+(y) is the set of points reachable from y by a trajectory of the process. Recall that
all the F i leave a compact set K invariant. The right limit set to consider is the accessible
set, the (possibly empty) compact set Γ ⊂ K defined as

Γ =
⋂

x∈K

γ+(x).

Informally this is the set of points that are (approximately) reachable from anywhere in K
by following the flows.

This set is deeply connected with the invariant measures of the process. Let Pinv be the
set of probability measures that are invariant for the process, and let E = {1, . . . , n} be the
finite index set.

Proposition 1 (Limit set and support of invariant measures).

(i) If Γ 6= ∅ then Γ × E ⊂ supp(µ) for all µ ∈ Pinv and there exists µ ∈ Pinv such that
supp(µ) = Γ × E.

(ii) If Γ has nonempty interior, then Γ × E = supp(µ) for all µ ∈ Pinv.

(iii) Suppose that Pinv is a singleton {π}. Then supp(π) = Γ × E.

Once more, similar statements hold for the invariant measures of the discrete chain Z̃n.
A usual way of proving convergence to equilibrium for Markov chains or processes, fol-

lowing the classical idea of the Foster-Lyapunov criterion, is to identify a “good” subset A
of the state space, satisfying two properties:

• the process has a tendency to return to A;

• for any x, y in A, the laws of the process starting from x and y are similar in some
sense.

If these two properties hold, one can construct a coupling between trajectories in three steps:

• wait for the two processes to come back to A;

• once they are in A, using the second property to try to couple them;

• if the coupling fails, go back to step 1.
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In the classical case of a discrete Markov chain, A will usually be a single point so that
the second property will be trivial; the “tendency to return” will typically follow from the
existence of a Lyapunov function. This type of technique is refined and generalized for
Markov chains on general state spaces in the renowned book by Meyn and Tweedie [MT93].

In our case, without additional assumptions, we cannot hope to find a Lyapunov function.
However, if Γ is not empty, and if p is a point in Γ, we can prove — using compactness
arguments — that the process will visit infinitely often any neighborhood of p.

To use the heuristics above, it remains to show that two copies of the process, starting
from a point near p, have a good chance to couple. This is where the regularity results may
be used: two variables with strictly positive density can be coupled with positive probability.
This is the main idea of the proof of:

Theorem 3 (Exponential convergence, [BLBMZ12b]). Suppose that the “bracket condition”
of Theorem 2 is satisfied at a point p ∈ Γ. Then there exists a unique invariant probability
measure µ, its support is Γ × {1, . . . , n}, and Xt = (Yt, It) converges exponentially fast in
total variation norm:

∃ α > 0, C > 0, ‖L(Xt) − π‖TV ≤ C exp(−αt). (2)

These convergence results are quite general. However, there is no hope to find reasonable
convergence rates by this approach, since we used compactness arguments. In particular
cases, one can often use the specific structure of the process to prove much better bounds.
This is done in the Markov switching case under additional assumptions in [BLBMZ12c]. The
next section describes similar results for the slightly different case of the TCP window-size
process.

4 Explicit convergence rates via coupling

Beyond the problems of existence, uniqueness, and regularity of an invariant probability
measure, an important and challenging question is to get explicit and efficient rates of con-
vergence to equilibrium for PDMPs. It seems hard to address the problem via spectral meth-
ods since a PDMP is generally, and inherently, non reversible (see however [GM13, MM13]
for positive results in this direction). As mentioned previously, coupling methods “à la”
Meyn-Tweedie can be applied but hardly give efficient rates of convergence. We will present
here a specific method that allows to treat one specific (and relatively simple) example of
PDMP, the so-called TCP window-size process.

4.1 The TCP window-size process

The TCP window-size process appears as a scaling limit of the transmission rate of a server
uploading packets on the Internet according to the algorithm used in the TCP (Transmission
Control Protocol) in order to avoid congestions (see [DGR02] for details on this scaling limit).
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This process X = {Xt}t≥0 has [0, ∞) as state space and its infinitesimal generator is given,
for any smooth function f : [0, ∞) → R, by

Lf(x) = f ′(x) + x(f(x/2) − f(x)). (3)

This means that the transmission rate is increased linearly when there is no congestion, and
divided by two in case of congestion. A congestion occurs at random times, with rate given
by the value of the transmission rate. This process is rather simple and its stationary regime
is well understood: it is ergodic and admits a unique invariant probability measure µ, with
an explicit density (see [DGR02]). Getting an explicit speed of convergence is however not
so simple, since the TCP process is irreversible but also because, in some sense, it “lacks
randomness” (the only randomness comes from the jump times), what makes any coupling
procedure delicate, particularly for convergence in total variation norm. In the following,
the semigroup associated to the TCP process will be denoted {Pt}t≥0.

4.2 Speed of convergence in Wasserstein distance

The speed of convergence in Wasserstein distance can be dealt with using a coupling first
introduced in [CMP10]. This is a Markov process on R

2
+ whose marginals are two TCP

processes, and which is defined by its generator as follows: if x ≥ y,

Lf(x, y) = (∂x + ∂y)f(x, y) + y
(
f(x/2, y/2) − f(x, y)

)
+ (x − y)

(
f(x/2, y) − f(x, y)

)
, (4)

and it is given by the symmetric expression if x > y. In words, with a rate equal to the
minimum of the two coordinates, both trajectories jump simultaneously, and with a rate
equal to the difference between the two coordinates the higher trajectory jumps alone (and
the lower one never jumps alone). It induces problems since the higher trajectory may jump
alone even when the distance between both trajectories is small (hence at a small but positive
rate), increasing dramatically this distance. This can also be seen on computation, noting
that this dynamics does not contract the distance between trajectories in Lp distance, for
any p ≥ 1. However, one gets (non uniform) contraction for p = 1/2. Working this out,
and using also a bound on any moment of the process at any time uniformly in the starting
point, one finally gets the following result:

Theorem 4 (Explicit rate for TCP in Wasserstein distance, [BCG+13]). Let c =
√

2(3 +√
3)/8 ≈ 0.84 and λ =

√
2(1 − √

c) ≈ 0.12. For any λ̃ < λ, any p ≥ 1 and any t0 > 0, there
is a constant C = C(p, λ̃, t0) such that, for any initial probability measures ν and ν̃ and any
t ≥ t0,

Wp(νPt, ν̃Pt) ≤ C exp

(
− λ̃

p
t

)
.

This result can be compared to numerical simulations: the exponential rate of convergence
for the W1 Wasserstein distance to the invariant measure is about 1.6, and the one for the
L1 distance between both coordinates of the coupling we used is about 0.5 (which means
that one cannot do better using this coupling).
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4.3 Speed of convergence in total variation norm

Let us first note that, even starting from two arbitrarily close initial conditions, there is a
positive probability that two TCP processes never have jumped before a given time t, which
gives an immediate and striking lower bound for the total variation distance between laws
at time t. To be more specific, the first jump time T1 of the TCP process starting from x is
characterized by pt(x) = P{T1 ≥ t} = e−t2/2−xt. This implies that

‖δxPt − δyPt‖TV ≥ pt(x) ∨ pt(y) = e−t2/2−(x∧y)t . (5)

Consequently, this distance is not tending to 0 as y tends to x. Nevertheless, it can be shown
that, for y close to x, the distance is really on the order of this lower bound. To note that,
we construct a coupling which tries to stick two TCP processes in one jump. Indeed, assume
that x > y and denote by T x

1 the first jump time of the process starting from x and T y
1 , T y

2

the two first jump times of a TCP process starting from y. Then if these random variables
satisfy the two relations

T x
1 = T y

1 + x − y (6)

and T y
2 −T y

1 ≥ x−y, both processes are at the same position at time T x
1 , hence can be coupled

from this time. The higher probability of getting (6) is an optimal coupling probability for
two measures with density, it can hence be computed explicitly, and gives an upper bound
on the order of (5).

We finally can construct a coupling in the following way: for any ε > 0, we use the
dynamical coupling defined in (4) during a time t1 on the order of log(1/ε) to try to make

the trajectories ε close; we then try to stick them in a time t2 on the order of
√

log(1/ε).
Taking ε to 0 gives the following result:

Theorem 5 (Explicit rate for TCP in total variation, [BCG+13]). Let λ as defined in
Theorem 4. For any λ̃ < λ and any t0 > 0, there exists C such that, for any initial
probability measures ν and ν̃ and any t ≥ t0,

‖νPt − ν̃Pt‖TV ≤ C exp

(
−2λ̃

3
t

)
.

4.4 Application to other processes

This strategy (first apply a coupling which is efficient for the Wasserstein distance, then stick
the trajectories in one single attempt) can also be used for other processes. We can treat for
example the case of the TCP process with constant jump rate, with generator

Lf(x) = f ′(x) + r(f(x/2) − f(x)), (7)

r > 0 being fixed. This gives a purely probabilistic proof (and slightly better constants) of
results first obtained in an analytic way by Perthame and Ryzhik in [PR05].

The same idea can also be applied to diffusion processes, associating recent results from
[Ebe11, BGG12] on the convergence in Wasserstein distance with results on the regularity of
the semigroup at small time from [Wan10]. The reader is referred to [BCG+13] for details.
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5 Infinite dimensional PDMP

5.1 Spatially extended conductance based neuron model

The intrinsic variability of a large class of biological systems is the subject of an intensive
area of research since a few years. Spatially extended conductance based models of biological
excitable membranes, and more particularly of neuronal membranes [HH52], are considered,
at an appropriate scale, as hybrid stochastic models [Aus08, FWL05]. More precisely, these
models can be regarded as belonging to the subclass of stochastic hybrid models consisting
of PDMPs [BR11].

The neurons are the basic building blocks of the nervous systems. They are, roughly
speaking, made of three parts: the dendrites, the soma and the axon. In the present discus-
sion, we focus our attention on the axon, also referred as nerve fiber. The main role of the
axon is to transmit, for example to another neuron, the signal it received from the soma.
This electrical signal is called the nerve impulse or the action potential or the spike. The
target neuron may be far from the neuron which emits the spike, therefore the nerve fiber
is often much longer than width and for mathematical convenience we model the axon by
a segment, here the segment I = [0, 1]. As for all biological cells, the neuronal membrane
allows the exchanges of ions between the internal and the external cellular media through
the ionic channels. We assume that these ionic channels are disposed at discrete location
along the axon: at a location zi ∈ Z is a ionic channel where Z is a finite subset of (0, 1)
of cardinality N . When an ionic channel is open, it allows a flow of ions to enter or leave
the cell, that is, it allows a current to pass. We denote by ξ ∈ E, where E is a finite state
space, the state of the channel at location zi. Basically a state is to be open or closed. When
open, an ionic channel in the state ξ allows the ions of a certain specie associated to ξ to
pass through the membrane. If we write u(zi) for the local potential of the neuronal mem-
brane, often called the trans-membrane potential, then the current which passes through the
membrane is given by

cξ(vξ − u(zi))

where cξ is the conductance of the ionic channel in state ξ and vξ the associated driven
potential. The quantities cξ and vξ are both real constants, the first being positive. The sign
of vξ − u(zi) tells us if the ions corresponding to the state ξ are leaving or entering the cell.
The rate at which the channel at location zi goes from one state ξ to another state ζ depends
on the local trans-membrane potential u(zi) and is denoted in the sequel by qξζ(u(zi)). For
example, when the local potential u(zi) is high, the ionic channels in a specific state ξ will
have the tendency to open whereas when u(zi) is low, the ionic channels in the same state ξ
will have the tendency to close. This is this mechanism which allows the creation of an action
potential and gradually its propagation along the axon. Let C be the capacitance of the
axon membrane, a the radius of the axon and R its internal resistance, this three quantities
being positive constants. The classical conductance based model for the propagation of the
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nerve impulse is the cable equation

C∂tu =
a

2R
∆u +

1

N

∑

i∈Z

cr(i)(vr(i) − u(zi))δzi
+ I (8)

where r(i) denotes the state of the channel at location zi. The dynamic of the channel r(i)
is given by

P [rt+h(i) = ζ |rt(i) = ξ] = qξζ(ut(zi))h + o(h) (9)

where the ionic channels {r(i), i ∈ Z} evolve independently over infinitesimal time-scales.
The quantity I in (8) corresponds to the impulse received by the axon. Since it does not affect
our analysis, we state I = 0 in the sequel. At last, the Partial Differential Equation (8) has
to be endowed with boundary conditions and we consider in the present paper zero Dirichlet
boundary conditions.

Let us be more specific about the assumptions on the jump rates of the ionic channels.
We assume that the function qξζ are smooth and take values between two fixed positive
constants. This assumption certainly holds in the classical models for excitable membrane
such as the Hodgkin-Huxley model, Morris-Lecar model or models in Calcium dynamics. To
gain a more accurate insight in conductance based neuron model we refer to the classical
book [Hil84].

Let us denote by r = (r(i), i ∈ Z) the configuration of the whole ionic channels: it is a
jump process with values in EN . For a given fixed trans-membrane potential u, r follows
the following dynamic. For r ∈ EN , the total rate of leaving state r is given by

Λ(u, r) =
∑

i∈Z

∑

ξ 6=r(i)

qr(i),ξ(u(zi))

and, if another state r′ differs from r only by the component r(i0), then r′ is reached with
probability

Q(u, r)({r′}) =
qr(i0),r′(i0)(u(zi0

))

Λ(u, r)

If r′ differs from r by two or more components then Q(u, r)({r′}) = 0. Between each jump
of the process r, the potential u follows the deterministic dynamic induced by the PDE (8).
For a fixed time horizon T , the process ((ut, rt), t ∈ [0, T ]) described this way is a piecewise
deterministic process (PDP) with values in the infinite dimensional space1 H1

0 (I)×EN . This
PDP is Markov — and therefore a PDMP — if one chooses an appropriate filtration:

Theorem 6 ([BR11]). There exists a filtered probability space satisfying the usual conditions
such that the process (ut, rt) is a homogeneous Markov process on H1

0 (I) × EN ,

1H1

0
(I) denotes the usual Sobolev space of functions in L2(I) with first derivative in the sens of the

distributions also in L2(I) and with trace equals to zero on the boundary {0, 1} of I.
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5.2 Singular perturbation of conductance based neuron model

In this section we consider the spatially extended conductance based model of the previous
section as a slow-fast system: some states of the ion channels communicate faster between
them than others. This phenomenon is intrinsic to classical neuron model, see [Hil84].
Mathematically, this leads to introduce a parameter ǫ > 0, destined to be small, in equations
(8) and (9). For the states which communicate at a faster rate, we say that they communicate
at the usual rate divided by ǫ.

The state space E is therefore partitioned into different classes of states which cluster
the states communicating at a high rate. This kind of description is usual, see for example
[FGC10]. We regroup our states in classes making a partition of the state space E into

E = E1 ⊔ · · · ⊔ El

where l ∈ {1, 2, · · · } is the number of classes. Inside a class Ej, the states communicate
faster at jump rates of order 1

ǫ
. States of different classes communicate at the usual rate of

order 1. For ǫ > 0 fixed, we denote by (uǫ, rǫ) the modification of the PDMP introduced in
the previous section with now two time scales. The new equations for the two time-scales
model are

C∂tu
ǫ =

a

2R
∆uǫ +

1

N

∑

i∈Z

crǫ(i)(vrǫ(i) − uǫ(zi))δzi
(10)

that is there is no changes in the form of the equation on the potential whereas the dynamic
of the channel rǫ(i) is given by

P

[
rǫ

t+h(i) = ζ |rǫ
t(i) = ξ

]
= qǫ

ξζ(uǫ
t(zi))h + o(h) (11)

where qǫ
ξζ = 1

ǫ
qξζ if ξ and ζ are in the same class and qǫ

ξζ = qξζ otherwise.
For any fixed potential u(zi) = y we assume that the jump process r(i) restricted to the

class Ej is irreducible and has therefore a unique quasi-stationary distribution µj(y). The
measure µj(y) does not depend on i because when the potential is held fixed to y, all the
channels {r(i), i ∈ Z} have same law. The main idea is that when ǫ goes to zero, the fast
components of the system (10)-(11) reach their stationary behavior that can be viewed as
an averaged dynamic. For the jump process r with a potential held fixed to y, this leads to
consider the averaged jump process r̄ = (r̄(i), i ∈ Z) with values in {1, · · · , l}N and jump
rates between two different classes given by

q̄l1l2(y) =
∑

ζ∈El1

∑

ξ∈El2

qζξ(y)µl1(y)(ζ)

q̄l1l2(y) is indeed the sum of the rate of jumps from one state ζ in El1 to a state ξ in El2

averaged against the quasi-stationary measure associated to the class El1 . The same idea
can be applied to the equation on the potential (10) and furthermore we have the following
result.
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Theorem 7 ([GT12]). The process (uǫ
t, t ∈ [0, T ]) converges in law in C([0, T ], H1

0(I)) when
ǫ goes to zero toward the process u solution of

C∂tu =
a

2R
∆u + Ḡr̄(u) (12)

with zero Dirichlet boundary conditions. The averaged reaction term is given by

1

N

∑

i∈Z

l∑

j=1

1j(r̄(i))
∑

ξ∈Ej

µj(u(zi))(ξ)cξ(vξ − u(zi))δzi

and the dynamic of the averaged ionic channels is

P [r̄t+h(i) = l2|r̄t(i) = l1] = q̄l1l2(ut(zi))h + o(h) (13)

The above theorem can be seen as a law of large number as ǫ tends to zero. To continue
our analysis, we study the fluctuations around the averaged limit with a Central Limit
Theorem (CLT).

Theorem 8. The fluctuations zǫ = u−uǫ√
ǫ

converge in law in C([0, T ], H1
0(I)) when ǫ goes to

zero toward a process z corresponding to the solution of a Hybrid Stochastic Partial Differ-
ential Equation (HSPDE).

One of the main advantages of considering the averaged model (12)-(13) instead of the
two time-scales model (10)-(11) is that the dynamic of the ionic channels is simplified: the
state space for the averaged ionic channels has a smaller cardinality than the original state
space. Averaging reduces in this case the dimension of the model. This can be very useful
for simulations or bifurcation analysis. However, we notice that the averaged PDE on the
potential (12) may appear to be much more non linear than in the non averaged case (10).
We also remark that the error made by averaging is controlled by the CLT and that an
associated Langevin equation can be derived. The Langevin approximation consists also in
a HSPDE. If well posed and tractable, the Langevin approximation may be regarded as a
good compromise between the two-time scales and the averaged model.

6 Estimation of the distribution of the inter-jumping

times

This section is dedicated to nonparametric statistics for piecewise deterministic Markov
processes. A suitable choice of the state space and the main characteristics of the process
provide stochastic models covering a large number of applications, in reliability for instance
or in biology as mentioned before. In this context, it seems essential to develop estimation
methods for this class of processes.

14



In this part, we consider a piecewise deterministic Markov process {X(t)} defined on
an open subset X of a separable metric space (E , d). The conditional distribution of the
inter-jumping time Si+1 given the previous post-jump location Zi is given by

∀t ≥ 0, P [Si+1 > t|Zi] = exp
(

−
∫ t

0
λ(φ(Zi, s)) ds

)
1{0≤t<t⋆(Zi)},

where we recall that t⋆(x) is the deterministic exit time from X starting from x. One may
associate with the compound function λ ◦ φ the conditional density f of the inter-jumping
times, given for any (x, t) ∈ X × R+ by:

f(x, t) = λ(φ(x, t)) exp
(

−
∫ t

0
λ(φ(x, s)) ds

)
.

We investigate here the nonparametric estimation of f(x, t) for any x ∈ X and 0 ≤ t < t⋆(x)
from the observation of one trajectory of the process within a long time. In the context of
piecewise deterministic Markov processes, all the randomness is contained in the embedded
Markov chain (Zn, Sn). As a consequence, our statistics may be computed from the post-
jump locations Zn and the inter-jumping times Sn. A precise formulation of the results and
the investigated methods may be found in [ADGP12a]. The general framework of metric
state space has been chosen in order to provide an estimate which could be computed in
applications involving state spaces of the form X = E × M , where M is continuous and E
is discrete.

This study is premised on a previous work of Azaïs and al. In [ADGP12b], the authors
investigate the nonparametric estimation of the jump rate for a class of nonhomogeneous
marked renewal processes. This kind of stochastic models may be directly related with piece-
wise deterministic Markov processes with constant flow. For this class of processes, one may
exhibit some continuous-time martingales, which appear in the well-known framework of
Aalen’s multiplicative intensity model (see [Aal75, Aal77, Aal78]). Nevertheless, this idea is
not relevant for studying the estimation of the jump rate for piecewise deterministic Markov
processes, since the conditional independence E [g(Zn+1)|Zn] = E [g(Zn+1)|Zn, Sn+1] is not
satisfied in the general case. Consequently, we propose to examine the conditional distri-
bution of Sn+1 given the previous post-jump location Zn and the next post-jump location
Zn+1. We prove that there exists, under some regularity assumptions, a mapping λ̃ from
X × X × R+ into R+, such that for any t ≥ 0,

P [Sn+1 > t|Zn, Zn+1] = exp
(

−
∫ t

0
λ̃(Zn, Zn+1, s) ds

)
1{0≤t<t⋆(Zn)}.

In addition, we state that there exists a structure of continuous-time martingale, which is
similar to the one of the multiplicative intensity model. Thanks to these considerations, we
provide a way to estimate an approximation l of the jump rate λ̃.

Our strategy for estimating the conditional probability density function f(x, t) consists
in the introduction of a partition (Bk) of the state space and two functions l(A, Bk, t) and
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H(A, Bk, t), where A is a set containing x. (The set A is not allowed to intersect the boundary
of the state space X .) They provide a way to approximate the function of interest. Indeed,
f(x, t) is close to ∑

k

l(A, Bk, t)H(A, Bk, t),

if the partition (Bk) and the set A are thin enough. One may give an interpretation of
these two functions. First, l(A, Bk, t) is an approximation of the jump rate λ̃(x, y, t) of the
inter-jumping time Sn+1 given Zn = x and Zn+1 = y, under the stationary regime, for x ∈ A
and y ∈ Bk. Roughly speaking, l(A, Bk, t) may be seen as the jump rate from A to Bk

at time t under the stationary regime. Furthermore, H(A, Bk, t) is exactly the conditional
probability Pν [Sn+1 > t, Zn+1 ∈ Bk|Zn ∈ A], where ν denotes the invariant measure of the
Markov chain (Zn). We propose to estimate both the functions l(A, Bk, t) and H(A, Bk, t)
in order to provide a consistent estimator of the density of interest f(x, t).

Firstly, our work is inspired by the smoothing methods proposed by Ramlau-Hansen in
[RH83] and the previous work of Azaïs et al. [ADGP12b]. We provide a nonparametric
kernel estimator l̂n(A, Bk, t) of l(A, Bk, t). The keystone to state the consistency of this
estimator lies in the structure of continuous-time martingale mentioned above. Furthermore,
we estimate the conditional probability H(A, Bk, t) by its empirical version

Ĥn(A, Bk, t) =

∑n−1
i=0 1{Zi+1∈Bk}1{Si+1>t}1{Zi∈A}∑n−1

i=0 1{Zi∈A}
.

The error between the function of interest and its estimate breaks down into two parts:
a deterministic error caused by the approximation of f(x, t) and a stochastic one in the
estimation of this approximation. Our major result of consistency is stated in the following
proposition.

Proposition 2. For any ε, η > 0, there exist an integer N , a set A and a partition (Bk) such
that, for any n ≥ N and 0 < r1 < r2 < infx∈A t⋆(x),

P

[
sup

r1≤t≤r2

∣∣∣∣∣f(x, t) −
∑

k

l̂n(A, Bk, t)Ĥn(A, Bk, t)

∣∣∣∣∣ > η

]
< ε.

In addition, one may state the uniform convergence on every compact subset K ⊂ X .
This nonparametric estimator of the conditional distribution of the inter-jumping times is
easy to compute from the observation of the embedded chain (Zn, Sn) within a long time.
However, the choice of the set A and the partition (Bk) remains an open issue.

7 Numerical methods.

A lot of numerical methods have been developed recently to simulate diffusion processes
and compute expectations, stopping times and other interesting quantities (see references in
[dSDG10] for example). But since PDMPs are in essence discontinuous at random times,
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these results turn out to be too specific to be applied to them. Besides, another important
source of complication is the fact that the transition semigroup {Pt}t∈R+

of {X(t)} cannot be
explicitly computed from the local characteristics (φ, λ, Q) of the PDMP (see [DC99, CD08]).
Therefore, it turns out to be hard to give an explicit expression for the Markov kernel P
associated with the Markov chain {X(t)}. Also, the Markov chain {X(t)} is, in general, not
even a Feller chain (see [Dav93], pages 76 and 77).

On the other hand, PDMPs exhibit some nice specific properties. For instance, all the
randomness of the process can be described by the discrete time (continuous state space)
Markov chain {Θn} of the post jump locations and inter-jump times.

There exist essentially two families of numerical methods. The first one is based on
the discretization the Markov kernel Q [CD88, CD89, Cos93]. The second one relies on a
discretization of the Markov chain {Θn} using quantization [Pag98].

Thanks to these methods one can solve optimal stopping problems [CD88, dSDG10,
Gug86], impulse control problems [Cos93, CD89, dSD12], approximate distributions of exit
times [BDSD12b] and compute expectations of functionals of PDMP’s [BdSD12a].
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