
HAL Id: hal-00865065
https://hal.science/hal-00865065v1

Preprint submitted on 23 Sep 2013 (v1), last revised 25 Sep 2013 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bounds on the Cover Time of Parallel Rotor Walks
Dariusz Dereniowski, Adrian Kosowski, Dominik Pajak, Przemyslaw Uznanski

To cite this version:
Dariusz Dereniowski, Adrian Kosowski, Dominik Pajak, Przemyslaw Uznanski. Bounds on the Cover
Time of Parallel Rotor Walks. 2013. �hal-00865065v1�

https://hal.science/hal-00865065v1
https://hal.archives-ouvertes.fr

Bounds on the Cover Time of Parallel Rotor Walks

Dariusz Dereniowski∗ Adrian Kosowski† Dominik Pająk†

Przemysław Uznański†

September 23, 2013

Abstract

The rotor-router mechanism was introduced as a deterministic
alternative to the random walk in undirected graphs. In this model,
a set of k identical walkers is deployed in parallel, starting from a
chosen subset of nodes, and moving around the graph in synchronous
steps. During the process, each node maintains a cyclic ordering of
its outgoing arcs, and successively propagates walkers which visit it
along its outgoing arcs in round-robin fashion, according to the fixed
ordering.

We consider the cover time of such a system, i.e., the number of
steps after which each node has been visited by at least one walk,
regardless of the starting locations of the walks. In the case of k = 1,
Yanovski et al. (2003) and Bampas et al. (2009) showed that a single
walk achieves a cover time of exactly Θ(mD) for any n-node graph with
m edges and diameter D, and that the walker eventually stabilizes to a
traversal of an Eulerian circuit on the set of all directed edges of the
graph. For k > 1 parallel walks, no similar structural behaviour can be
observed.

In this work we provide tight bounds on the cover time of k parallel
rotor walks in a graph. We show that this cover time is at most
Θ(mD/ log k) and at least Θ(mD/k) for any graph, which corresponds
to a speedup of between Θ(log k) and Θ(k) with respect to the cover time
of a single walk. Both of these extremal values of speedup are achieved
for some graph classes. Our results hold for up to a polynomially large
number of walks, k = O(poly(n)).

∗Gdańsk University of Technology, Poland. E-mail: deren@eti.pg.gda.pl
†Inria Bordeaux Sud-Ouest, France. E-mails: {adrian.kosowski,dominik.pajak,przemyslaw.uznanski}@inria.fr

1

1 Introduction

1 In graph exploration problems, a walker or group of walkers (agents) is
placed on a node of a graph and moves between adjacent nodes, with the
goal of visiting all the nodes of the graph. The study of graph exploration
is closely linked to central problems of theoretical computer science, such
as the question of deciding if two nodes of the graph belong to the same
connected component (st-connectivity). For example, fast approaches to
connectivity testing in little memory rely on the deployment of multiple
random walks [6, 11]. In these algorithms, the initial locations of the walkers
are chosen according to a specific probability distribution.

More recently, multiple walks have been studied in a worst-case scenario
where the k agents are placed on some set of starting nodes and deployed
in parallel, in synchronous steps. The considered parameter is the cover
time of the process, i.e., the number of steps until each node of the graph
has been visited by at least one walker. Alon et al. [2], Efremenko and
Reingold [9], and Elsässer and Sauerwald [10] have studied the notion of the
speedup of the random walk for an undirected graph G, defined as the ratio
between the cover time of a k-agent walk in G for worst-case initial positions
of agents and that of a single-agent walk in G starting from a worst-case
initial position, as a function of k. A characterization of the speedup has
been achieved for many graph classeswith special properties, such as small
mixing time compared to cover time. However, a central question poised
in [2] still remains open: what are the minimum and maximum values of
speed-up of the random walk in arbitrary graphs? The smallest known value
of speedup is Θ(log k), attained e.g. for the cycle, while the largest known
value is Θ(k), attained for many graph classes, such as expanders, cliques,
and stars.

In this work, we consider a deterministic model of walks on graphs,
known as the rotor-router. The rotor-router model, introduced by Priez-
zhev et al. [14] and further popularised by James Propp, provides a mechanism
for the environment to control the movement of the agent deterministically,
mimicking the properties of exploration as the random walk. In the rotor-
router, the agent has no operational memory and the whole routing mech-
anism is provided within the environment. The edges outgoing from each
node v are arranged in a fixed cyclic order known as a port ordering, which
does not change during the exploration. Each node v maintains a pointer
which indicates the edge to be traversed by the agent during its next visit
to v. If the agent has not visited node v yet, then the pointer points to an
arbitrary edge adjacent to v. The next time when the agent enters node v, it

2

is directed along the edge indicated by the pointer, which is then advanced
to the next edge in the cyclic order of the edges adjacent to v.

For a single agent, the (deterministic) cover time of the rotor-router
and the (expected) cover time of the random walk prove to be surprisingly
convergent for many graph classes. In general, it is known that for any
n-node graph of m edges and diameter D, the cover time of the rotor-router
in a worst-case initialization is precisely Θ(mD) [16, 3]. By comparison, the
random walk satisfies an upper bound of O(mD log n) on the cover time.

The behavior of the rotor-router model with multiple agents appears to be
much more complicated. Since the parallel walkers interact with the pointers
of a single rotor-router system, they cannot be considered independent (in
contrast to the case of parallel random walks). In the first work on the topic,
Yanovski et al. [16] showed that adding a new agent to a rotor-router system
with k agents cannot increase the cover time, and showed experimental
evidence suggesting that a speedup does indeed occur. Klasing et al. [13]
have provided the first evidence of speedup, showing that for the special case
when G is a cycle, a k-agent system explores an n-node cycle Θ(log k) times
more quickly than a single agent system.

In this work we completely resolve the question of the possible range of
speedups of the parallel rotor-router model in a graph, showing that its value
is between Θ(log k) and Θ(k), for any graph. Both of these bounds are tight.
Thus, the proven range of speedup for the rotor-router corresponds precisely
to the conjectured range of speedup for the random walk.

1.1 Related work

The rotor-router model. Studies of the rotor-router started with
works of Wagner et al. [15] who showed that in this model, starting from
an arbitrary configuration (arbitrary cyclic orders of edges, arbitrary initial
values of the port pointers and an arbitrary starting node) the agent covers
all m edges of an n-node graph within O(nm) steps. Bhatt et al. [5] showed
later that within O(nm) steps the agent not only covers all edges but enters
(establishes) an Eulerian cycle. More precisely, after the initial stabilization
period of O(nm) steps, the agent keeps repeating the same Eulerian cycle of
the directed symmetric version ~G of graph ~G (see Section 3 for a definition).
Subsequently, Yanovski et al. [16] and Bampas et al. [3] showed that the
Eulerian cycle is in the worst case entered within Θ(mD) steps in a graph of
diameter D. Considerations of specific graph classes were performed in [12].
Robustness properties of the rotor-router were further studied in [4], who
considered the time required for the rotor-router to stabilize to a (new)

3

Eulerian cycle after an edge is added or removed from the graph. Regarding
the terminology, we note that the rotor-router model has also been referred
to as the Propp machine [3] or Edge Ant Walk algorithm [15, 16], and has
also been described in [5] in terms of traversing a maze and marking edges
with pebbles. Studies of the multi-agent rotor-router was performed by
Yanovski et al. [16] and Klasing et al. [13], and its speedup was considered
for both worst-case and best-case scenarios.

A variant of the multi-agent rotor-router mechanism has been extensively
studied in a different setting, in the context of balancing the workload in
a network. The single agent is replaced with a number of agents, referred
to as tokens. Cooper and Spencer [7] study d-dimensional grid graphs and
show a constant bound on the discrepancy, defined as the difference between
the number of tokens at a given node v in the rotor-router model and the
expected number of tokens at v in the random-walk model. Subsequently,
Doerr and Friedrich [8] analyze in more detail the distribution of tokens in the
rotor-router mechanism on the 2-dimensional grid. Akbari and Berenbrink [1]
showed an upper bound of O(log3/2 n) on the discrepancy for hypercubes
and a bound of O(1) for a constant-dimensional torus.

Parallel random walks. Alon et al. [2] introduced the notion of the
speed-up of k independent random walks as the ratio of the cover time of
a single walk to the cover time of k random walks. They conjectured that
the speed-up is between log k and k for any graph. The speedup was shown
to be k for many graph classes, such as complete graphs [2], d-dimensional
grids [2, 10], hypercubes [2, 10], expanders [2, 10], and different models of
random graphs [2, 10]. For the cycle, the speed-up is equal to log k [2].
For general graphs, an upper bound min{k log n, k2} on the speed-up was
obtained by Efremenko et al. [9]. Independently, Elsässer et al. [10] showed
the k log n upper bound. Another measure studied by Efremenko et al. [9]
concerns the speedup with respect to a different exploration parameter —
the maximing hitting time, i.e., the maximum over all pairs of nodes of the
graph of the expected time required by the walk to move from one node
to the other. For this parameter, they show a bound on speedup of O(k),
mentioning that it is tight in many graph classes.

1.2 Our results and overview of the paper

In this work we establish bounds on the minimum and maximum possible
cover time for a worst-case initialization of a k-rotor-router system in a graph
G with m edges and diameter D.

4

We start by providing a formal definition of the rotor-router model and
recalling its basic properties in Section 2. In Section 3, we first prove that the
cover time tC satisfies tC ∈ O(mD/ log k), when k < 216D. We then extend
this result to the case of k ∈ O(poly(n)), i.e., k < nc for some absolute
constant c. The main part of our proofs relies on a global analysis of the
number of visits to edges in successive time steps, depending on the number
of times that these edges have been traversed in the past. We first prove a
stronger version of local structural lemmas proposed by Yanovski et al. [16],
and apply them within a global amortization argument over all time steps
and all edges in the graph. The extension to the case of k ∈ O(poly(n))
relies on a variant of a similar amortized analysis, and also makes use of a
technique known as delayed deployments introduced by Klasing et al. [13],
which we briefly recall in Section 2. We remark that by [13], a cover time
of Θ(mD/ log k) is achieved when G is a cycle with all agents starting from
one node, when k < n1/11.

In Section 4, we show a complementary lower bound on the cover time of
the k-agent rotor-router in worst case initialization, namely, tC ∈ Ω(mD/k).
As a starting point, the proof uses a decomposition of the edge set of a graph,
introduced by Bampas et al. [3], into a “heavy part” containing a constant
proportion of the edges and a “deep part”, having diameter linear in D. The
main part of the analysis is to show that an appropriate initialization of k
agents in the heavy part takes a long time to reach the most distant nodes of
the deep part. The argument also takes advantage of the delayed deployment
technique. We close the section by remarking that a cover time of Θ(mD/k)
is, in fact, achieved for some graphs, such as stars.

Table 1 contains a summary of our results on the speed-up of the k-
agent rotor-router, compared to corresponding results from the literature
for parallel random walks. Note that for a deterministic process such as the
rotor-router, the notions of cover time and maximum hitting are equivalent,
and hence we only refer to cover times.

2 Model and preliminaries

Let G = (V,E) be an undirected connected graph with n nodes, m edges
and diameter D. We denote the neighborhood of a node v ∈ V by Γ(v). The
directed graph ~G = (V, ~E) is the directed symmetric version of G, where the
set of arcs ~E = {(v, u) : {v, u} ∈ E}. We will denote arc (v, u) by v → u.

5

Table 1: A comparison of values of speed-up for k-agent exploration with the
rotor-router and parallel random walks. All results hold at least for k ≤ n,
except for those cited from [13] which hold for k ≤ n1/11.

Graph class
Speedup of Rotor-Router Speedup of Random Walk

for cover time for cover time for max hitting time

General case: Ω(log k), O(k) (Thm. 3.7, 4.1) O(k2), O(k log n) [9, 10] O(k) [10]

Cycle: Θ(log k) [13] Θ(log k) [2] Θ(log k) [2]

Star: Θ(k) (Prop. 4.2) Θ(k) [2] Θ(k) [2]

Model definition. We consider the rotor-router model (on graph G)
with k ≥ 1 indistinguishable agents, which run in steps, synchronized by
a global clock. In each step, each agent moves in discrete steps from node
to node along the arcs of graph ~G. A configuration at the current step is
defined as a triple ((ρv)v∈V , (πv)v∈V , {r1, . . . , rk}), where ρv is a cyclic order
of the arcs (in graph ~G) outgoing from node v, πv is an arc outgoing from
node v, which is referred to as the (current) port pointer at node v, and
{r1, . . . , rk} is the (multi-)set of nodes currently containing an agent. For
each node v ∈ V , the cyclic order ρv of the arcs outgoing from v is fixed at
the beginning of exploration and does not change in any way from step to
step.

For an arc v → u, let next(v → u) denote the arc next after arc (v → u) in
the cyclic order ρv. The exploration starts from some initial configuration and
then keeps running in all future rounds, without ever terminating. During
the current step, first each agent i is moved from node ri traversing the
arc πri , and then the port pointer πri at node ri is advanced to the next
arc outgoing from ri (that is, πri becomes next(πri)). This is performed
sequentially for all k agents. Note that the order in which agents are released
within the same step is irrelevant from the perspective of the system, since
agents are indistinguishable. For example, if a node v contained two agents
at the start of a step, then it will send one of the agents along the arc πv,
and the other along the arc (v, next(πv)).

Notation. We will denote by a(t)(e) the number of agents traversing
directed arc e ∈ ~E during step t + 1. We recall that multiple agents
traversing one arc e ∈ ~E in the same time step t are considered to move
simultaneously. By d(t)(e) we denote the number of traversals of directed
arc e ∈ ~E till the end of step t, d(t)(e) =

∑
t′∈[0,t) a

(t′)(e). For a node v ∈ V ,

6

let d(t)(v) = minw∈Γ(v){d(t)(v → w)} be the number of fully completed
rotations of the rotor at node v at the end of step t. We note that for any
arc u→ v ∈ ~E, 0 ≤ d(t)(u→ v)− d(t)(u) ≤ 1 [16].

We also denote V
(t)
i = {v ∈ V : d(t)(v) ≤ i} and E

(t)
i = {e ∈ ~E :

d(t)(e) ≤ i}. N+ denotes the set of positive integers, and N = N+ ∪ {0}. We
also introduce compact notation for discrete intervals of integers: [a, b] ≡
{a, a+1, . . . , b}, and [a, b) ≡ [a, b−1], for a, b ∈ N. Given a graph G = (V,E)
and a subset X ⊆ V , G[X] denotes the subgraph of G induced by X,
G[X] = (X, {{u, v} ∈ E

∣∣ u, v ∈ X}).
Delayed deployment technique. In some of the proofs, we will make

use of modified executions of the k-agent rotor-router system called delayed
deployments [13], in which some agents may be stopped at a node, skipping
their move for some number of rounds. Formally, a delayed deployment D of
k agents is defined as a function D : V ×N→ N, where D(v, t) ≥ 0 represents
the number of agents which are stopped in node v in step t of the execution
of the system. (The unmodified rotor-router system, denoted R, corresponds
to the deployment R(v, t) = 0, for all v and t). Delayed deployments may be
conveniently viewed as algorithmic procedures for delaying agents, and are
introduced for purposes of analysis, only. The following lemma relates the
cover time of the rotor-router system to that of its delayed deployment.

Lemma 2.1. [13] Let R be a k-rotor router system with an arbitrarily
chosen initialization, and let D be any delayed deployment of R. Suppose
that deployment D covers all the nodes of the graph after T rounds, and in
at least τ of these rounds, all k agents were active in D. Then, the cover
time tC of the rotor-router system R can be bounded by: τ ≤ tC ≤ T.

3 Upper bound on cover time

In this section, we will show that a k-agent parallel rotor-router system
explores a graph in O(mD/ log k) steps, regardless of initialization. We start
by providing an informal intuition of the main idea of the proof. After some
initialization phase of duration t0, but before exploration is completed at
time tC , we consider a shortest path connecting the arc of the graph which
has already been visited many times at time t0, with an arc which will remain
unvisited at time tC . We look at the number of visits to consecutive arcs on
this path. It turns out that the rotor-router admits a property which can be
informally stated as follows: if, up to some step t of exploration, an arc el+1

of the considered path has been traversed more times than the next arc el on

7

the path by some difference of δ, then in the next step t+ 1 of exploration,
at least δ − O(1) agents will traverse arcs which have, so far, been visited
not more often (up to a constant additive factor) than el. In this way, the
larger the discrepancy between the number of visits to adjacent arcs, the
more activity will the rotor-router perform to even out this discrepancy, by
traversing under-visited arcs. This load-balancing behavior of the system
will be shown to account for the (log k)-speedup in cover time with respect
to the case of a single agent.

We start by proving two structural lemmas which generalize the results
of Yanovski et al. [16, Theorem 2]. The first lemma establishes a connection
between the existence of an arc entering a subset of nodes S ⊆ V that has
been traversed more times than all arcs outgoing from S, and the number of
agents currently located within set S.

Lemma 3.1. For any time t ∈ N and d ∈ N, consider the partition of the
set of nodes V = S ∪ T such that each node in set S (set T) has completed
at most d (more than d) full cycles of if its rotor, S = V

(t)
d and T = V \ S.

Suppose that for some nodes v ∈ S, u ∈ T , and some δ ∈ N, there exists an
arc u→ v, such that d(t)(u→ v) ≥ d+ δ. Then, the set of arcs having their
tail at a node of S will be traversed by at least δ−1 agents in total in step t+1.

By an application of the above lemma, we obtain the key property of a
pair of consecutive arcs which have a different number of traversals at time t.

Lemma 3.2. Let G = (V,E) be any undirected graph and let e2 = u → v,
e1 = v → w be two consecutive arcs of ~G. Fix a time step t ∈ N+. Then, for
any x ≥ d(t)(e1) + 1, the number of agents that traverse arcs from set E(t)

x

in time step t+ 1 satisfies:∑
e∈E(t)

x
a(t)(e) ≥ d(t)(e2)− d(t)(e1)− 1.

The property of the rotor-router captured by the above lemma is, in
fact, sufficient to prove the main results of the section, following the general
approach outlined at the beginning of the section. To show a bound of
tC ∈ O(mD/ log k), we will apply two separate arguments, first one for the
range of relative small k (k ∈ 2O(D), which corresponds to tC ∈ Ω(m)), and
then one for values of k which are larger, but polynomially bounded with
respect to n.

Theorem 3.3. Let G = (V,E) be any undirected graph with arbitrary ini-
tialization of pointers and let D be the diameter of G. If k ≤ 216D, then a
team of k agents performing in parallel the rotor-router movement explores G
in less than 500mD/ log k steps, regardless of the initial positions of agents.

8

Proof. First, assume that k > 2160 and fix b = b(log k)/2c. Consider the
first t0 steps, where t0 = d2b+1mD/ke. Since in every step exactly k arcs
are traversed by agents, the total number of arc traversals during the first t0
steps is at least 2b+1mD. We have 2m arcs in total. Thus, there exists an
arc e′ such that d(t0)(e′) ≥ 2bD. These first t0 steps we will call as a form of
setup stage, after which we begin to analyze the behavior of the rotor-router
process.

Denote by tC the cover time of G with k agents for a given initialization.
We will assume that tC > t0, i.e., at least one arc of the graph has not been
explored at time t0; otherwise, tC ≤ t0 = d2b+1mD/ke ≤ d2mD/

√
ke, since

b = b(log k)/2c, and the claim of the theorem holds for all k.
Take e′′ ∈ ~E to be an arc which is explored for the first time in step tC ,

i.e., such that d(tC−1)(e′′) = 0. Since the diameter of G is D, there exists
a path P = 〈e′′ = e1, e2, . . . eD′ = e′〉 such that D′ ≤ D + 2, and for each
l ∈ [1, D′], el = vl+1 → vl where vl, vl+1 ∈ V .

Fix a time step t ∈ [t0, tC). We will place some of the arcs of path P
in groups (buckets) I1, I2, . . . , Ib, such that all arcs in bucket Ii have been
traversed between 2i−1D and 2iD times until step t. Formally, denote:

Ii =
{
l : d(t)(el) ∈ [2i−1D, 2iD)

}
⊆ [1, D′], for i ∈ [1, b].

We now analyze which buckets successive arcs of the path P fall into.
For l ∈ [1, D′), define

∆l =

{
[d(t)(el), d

(t)(el+1)), if d(t)(el) < d(t)(el+1),

∅, otherwise.

Note that the union of all ∆l covers the interval [0, 2bD), since for any
x ∈ [0, 2bD) there exists l∗ ∈ [1, D′) such that x ∈ ∆l∗ because d(t)(e1) = 0
and d(t)(eD′) ≥ 2bD (see Fig. 1 for an illustration). The intuition of the
proof is now as follows: Since there are at most D′ non-empty intervals ∆l

spanning the total range [0, 2bD) of all buckets I1, I2, . . . , Ib, in a constant
proportion of all buckets Ii, the average length of an intervals ∆l starting
in bucket Ii will be at least |Ii|b/D = 2i−1b, up to a constant factor. The
existence of such long intervals ∆l beginning in Ii will allow us to exploit
Lemma 3.2 to show that arcs el, el+1 differ in the number of traversals by a
constant times 2i−1b. This implies that for the considered bucket indices i,
the number of agents active at time t on edges from buckets I1, . . . , Ii will be
at least 2i−1b, up to constant factors and minor shifts at bucket boundaries.
We now proceed to formalize the above arguments.

9

Figure 1: An illustration of sets Ii and ∆l in the proof of Theorem 3.3.

For i ∈ [1, b], denote by Xi the set of intervals ∆l beginning in bucket Ii:
Xi =

⋃
l∈Ii ∆l . Consider any x ∈ [0, 2bd), and let l∗ be such that x ∈ ∆l∗ .

We have d(t)(el∗) ≤ x < 2bD, hence l∗ ∈ Ii∗ , for some i∗ ∈ [1, b], and x ∈ Xi∗ .
It follows that:

[0, 2bD) ⊆
⋃

i∈[1,b]

Xi. (1)

For i ∈ N, denote by a(t)
i the number of agents that traverse arcs from set

E
(t)

2iD
in step t+ 1, a(t)

i ≡
∑

e∈E(t)

2iD

a(t)(e), and let a(t)
−1 = 0. (We remark that

E
(t)

2iD
⊇ I1 ∪ . . . ∪ Ii.) First, note that for all i ∈ [1, b] and for l ∈ Ii, we have

d(t)(el) < 2iD. So, by Lemma 3.2:

a
(t)
i ≥ d

(t)(el+1)− d(t)(el)− 1 = |∆l| − 1 =⇒ |∆l| ≤ a
(t)
i + 1. (2)

Now, observe that for any i ∈ [1, b]:

maxXi = max
l∈Ii

(max ∆l) ≤ max
l∈Ii

(
d(t)(el) + |∆l| − 1

)
< 2iD + a

(t)
i , (3)

where we took into account inequality (2) and that d(t)(el) < 2iD for l ∈ Ii.
Next, we will show that for all i ∈ [1, b]:

2i−1D − a(t)
i−1 ≤ |Xi| ≤ |Ii|(a(t)

i + 1). (4)

The right inequality in (4) is proved as follows: |Xi| ≤
∑

l∈Ii |∆l| ≤ |Ii|(a
(t)
i +

1), where the latter inequality is a consequence of (2).
We now prove the left inequality in (4). If a(t)

i−1 ≥ 2i−1D, then the bound

is trivial. In the case when a
(t)
i−1 < 2i−1D, we will first prove that:

[2i−1D + ai−1, 2
iD) ⊆ Xi. (5)

10

To this end, take any x ∈ [2i−1D + ai−1, 2
iD) and observe that by (1), there

exists some j ∈ [1, b] such that x ∈ Xj . Moreover, note that:

1. For any j < i, x /∈ Xj , because, by (3), maxXj < 2jD + a
(t)
j ≤

2i−1D + a
(t)
i−1 ≤ x.

2. For any j > i, x /∈ Xj , because: minXj = minl∈Ij ,∆l 6=∅min ∆l =

minl∈Ij ,∆l 6=∅ d
(t)(el) ≥ 2j−1D ≥ 2jD > x.

Thus, x ∈ Xi, and (5) follows. Equation (5) implies that |Xi| ≥ 2i−1D−a(t)
i−1,

which completes the proof of (4). Next, by (4),

|Ii| ≥
2i−1D − a(t)

i−1

a
(t)
i + 1

for all i ∈ [1, b].

The buckets I1, I2, . . . , Ib are pairwise disjoint by definition and contain at
most D′ elements altogether, which gives:

D + 2 ≥ D′ ≥
b∑

i=1

|Ii| ≥
b∑

i=1

2i−1D − a(t)
i−1

a
(t)
i + 1

≥
b∑

i=1

2i−1D

a
(t)
i + 1

− b,

where in the last inequality we used the fact that a(t)
i ≥ a

(t)
i−1 for i ∈ [2, b].

Dividing the sum in the last inequality by bD, we get the following expression
for the arithmetic average:

1

b

b∑
i=1

2i−1

a
(t)
i + 1

≤ D + b+ 2

bD
=

1

b
+

1 + 2/b

D
<

9.2

b
,

where in the last inequality we took into account that k ≤ 216D and
b ≤ (log k)/2 by assumption, hence D ≥ (log k)/16 ≥ b/8, and that
b = b(log k)/2c ≥ 80. All the elements of the considered sum are positive,
hence by Markov’s inequality, there exists a subset of indices S(t) ⊆ [1, b],
with |S| ≥ b/2, such that for all j ∈ S(t) we have:

2j−1

a
(t)
j + 1

≤ 2 · 1

b

b∑
i=1

2i−1

a
(t)
i + 1

≤ 18.4

b
.

This implies that for all j ∈ S(t):

a
(t)
j ≥

b

18.4
· 2j−1 − 1 >

b

25
· 2j−1, (6)

11

where we again took into account that b ≥ 80.
Fix t1 = d100mD/be. We now prove that

tC ≤ t0 + 2t1 + 4m. (7)

Suppose, by contradiction, that tC > t0 + 2t1 + 4m. We will say that an
index j ∈ [1, b] is good after time t if j ∈ S(t). Since for all t ∈ [t0, tC) we
have |S(t)| ≥ b/2 and S(t) ⊆ [1, b], by the pigeon-hole principle there must
exist an index j∗ that is good in at least (tC − t0)/2 = t1 + 2m steps in
[t0, tC); we will call these steps good steps.

For an arc e of the graph, we denote by te the so called exit time step
for arc e, after which the total number of visits to arc e of the graph for the
first time exceeds 2j

∗
D: d(te)(e) ≤ 2j

∗
D < d(te+1)(e). The set of all exit time

steps, taken over all arcs of the graph, is denoted T̂ = {te : e ∈ ~E}. Note
that e ∈ E(t)

2j∗D
if and only if t ≤ te, and therefore we may write:

∑
t∈[0,tC)\T̂

a
(t)
j∗ =

∑
t∈[0,tC)\T̂

∑
e∈E(t)

2j
∗
D

a(t)(e) ≤
∑
e∈ ~E

te−1∑
t=0

a(t)(e) =
∑
e∈ ~E

d(te)(e) ≤ 2m·2j∗D.

(8)
Now, recall that there are at least t1 + 2m good time steps t ∈ [t0, tC) for
which index j∗ satisfies (6), and that |T̂ | ≤ 2m. It follows that:∑

t∈[0,tC)\T̂

a
(t)
j∗ > t1 ·

b

25
· 2j∗−1 =

⌈
100mD

b

⌉
b

25
· 2j∗−1 ≥ 2m · 2j∗D,

a contradiction with (8). Thus, we have proved (7).
By (7), we obtain

tC ≤ t0 + 2t1 + 4m =

⌈
2b+1mD

k

⌉
+ 2

⌈
100mD

b

⌉
+ 4m ≤

≤ mD

log k

(
2b+1 log k

k
+

200 log k

b
+

4 log k

D
+

3 log k

mD

)
(9)

Taking into account that b = b(log k)/2c, k ≤ 216D, and k > 2160, we obtain
that the expression in the above bracket can be bounded by a constant,
giving: tC < 500 mD

log k . This completes the proof for the case k > 2160.
Suppose now that k ≤ 2160. Yanovski et al. [16] showed that a single

agent explores the graph in at most 2mD steps regardless of the initialization,
and moreover, that adding agents cannot decrease the number of traversals
on any edge. We thus trivially obtain the claim: tC ≤ 2mD < 500 mD

log k .

12

We now consider the case when k ≥ 216D. Here, we first make the
additional assumption that each agent starts from a distinct node. We show
that additional assumption implies that no arc is traversed by more than
one agent in a single step. The proof then proceeds along similar lines as
that of Theorem 3.3, and we show that in many time steps t, there exists a
pair of arcs el+1, el in P with a large difference in the number of traversals
up to time t. However, instead of counting the number of long arcs on path
P belonging to a bucket Ii, in this proof we take advantage of the fact that
the length of the path D′ ≤ D + 2 is small compared to log k, which can be
used to infer the existence of the sought arc pairs.

Lemma 3.4. Let G = (V,E) be any undirected graph with arbitrary ini-
tialization of pointers and let D be the diameter of G. If k ≥ 216D, then a
team of k agents performing parallel rotor-router movement, with each agent
starting from a distinct node of the graph, explores G in time 16mD/ log k.

It remains to consider the case not covered by the above lemma, when
not all agents start from distinct positions. In fact, we will reduce such a
case to the one already considered by making use of the concept of delayed
deployments discussed in Section 2.

Lemma 3.5. Let R and R′ be two starting configurations of the k-agent
rotor-router system with cover times tC and t′C , respectively. Suppose that
there exists a delayed deployment D of R whose execution transforms the
starting configuration of R into the starting configuration of R′ in t̂ time
steps. Then, tC ≤ t̂+ t′C .

The next lemma provides an upper bound on the time of transforming a
rotor-router configuration with at most n agents into one in which agents
occupy distinct starting nodes.

Lemma 3.6. For any initialization R of the rotor-router system with k
agents, k ≤ n, there exists a delayed deployment D of R which terminates
in a configuration in which all agents occupy distinct positions after t̂ ≤ k4

steps.

When 1 < k ≤ dn1/5e, we can bound the time t̂ in the above lemma as:
t̂ ≤ k4 ≤ 32n/k ≤ 64m/k ≤ 128 mD

log k .
Combining the above result with Lemmas 3.4 and 3.5, we obtain that

for any rotor router initialization with k agents, k ≤ dn1/5e and k ≥ 216D,
exploration is completed within time tC = t̂+t′C ≤ 128 mD

log k+16 mD
log k = 144 mD

log k .
On the other hand, when k < 216D, by Theorem 3.3, the cover time is

13

tC ≤ 500 mD
log k . It follows that the bound tC ≤ 500 mD

log k holds for all starting

configurations with k ≤ dn1/5e.
When k > dn1/5e, we can make use of a result of Yanovski et al. [16],

stating that the worst-case initialization of a rotor-router system with k
agents cannot have greater cover time than the worst-case initialization of a
system with k′ < k agents. Putting k′ = dn1/5e, for any k > dn1/5e we obtain:
tC ≤ 500 mD

log k′ ≤ 2500 mD
logn . Finally, combining the results for k ≤ dn1/5e and

k > dn1/5e gives the following theorem.

Theorem 3.7. Let G = (V,E) be any undirected graph with arbitrary
initialization of pointers and let D be the diameter of G. A team of k
agents performing in parallel the rotor-router movement explores G in time
max{500mD/ log k, 2500mD/ log n}, regardless of the initial positions of
agents. In particular, if k ≤ nc for some c > 0, then the cover time is at
most 2500c ·mD/ log k.

Theorems 3.3 and 3.7 imply that the cover time of the rotor-router is
O(mD/ log k) for all graphs, whenever k ∈ 2O(D) or k ∈ O(poly(n)). On
the other hand, the cover time of the rotor-router is trivially lower-bounded
as Ω(D) for a team of agents starting from a single node, regardless of the
number of agents. It follows that it is not possible to extend the bound of
O(mD/ log k) on cover time beyond the range k ∈ 2O(n). We leave as open
the question of whether the considered bound can be achieved for the (rather
special) range of values of k not covered by Theorems 3.3 and 3.7.

4 Lower bound on cover time

Theorem 4.1. Let G = (V,E) be any undirected graph of diameter D.
There exists a port labeling of the edges of G, an initialization of pointers
and an assignment of starting positions to a team of k agents, such that the
exploration performed in parallel with the rotor-router movement has cover
time tC ≥ 1

4mD/k.

Proof. If k > m, we make all agents start from an arbitrarily chosen single
node, and choose an arbitrary pointer initialization. In such scenario, the
exploration will be completed after time at least D > mD

k . Thus, we can
safely assume that k ≤ m.

For any graph G = (V,E), as shown in [3, Theorem 2], there exists a
partition of the edge set E = E1∪E2, such that (see Fig. 2 for an illustration):

(i) |E1| ≥ m
2 ,

14

Figure 2: Graph decomposition used in the proof of Theorem 4.1.

(ii) there exist V1 ⊆ V and V2 ⊆ V such that the subgraphs H1 = G[V1]
and H2 = G[V2] are connected and their edge sets are E1 and E2,
respectively,

(iii) there exists a node v ∈ V2 being at distance at least D
2 from each node

of H1.

Denote by F ⊂ E2 the set of edges incident to some node from H1.
Now, let C = {e1, e2, . . . , e2|E1|} be a directed Eulerian cycle in ~H1 (the

bidirected subgraph corresponding to H1) traversing every edge in E1 exactly

once in each direction. To simplify notation, let ∆ =
⌊

2|E1|
k

⌋
.

We choose an arbitrary set of indexes 1 = j1 < j2 < . . . < jk ≤ 2|E1|
such that they are spread (almost-)equidistantly in {1, . . . , 2|E1|}, that is:

∀1≤i<k ji+1 − ji ∈ {∆,∆ + 1} and j1 − jk + 2|E1| ∈ {∆,∆ + 1} .

This is possible because, due to (i), 2|E1| ≥ k.
We partition E1 into ∆ sets S1, . . . , S∆ of size k:

Si+1 = {ej1+i, ej2+i, . . . , ejk+i} , for 0 ≤ i < ∆,

and one set for all remaining edges: R = E1 \
⋃∆

t=1 St.
We choose the starting positions of k agents, the port assignment, and

the initialization of pointers for the edges in E1 such that in their first
∆ + 1 steps, the k agents traverse all edges in E1 in the following delayed
deployment: for each t ∈ {1, . . . ,∆}, in the t-th step, exactly the edges in St
are traversed, whereas in the (∆ + 1)-th step we delay some agents so that
exactly the edges in R are traversed. We achieve this by setting outgoing
ports so that, for every node u in H1, we order the edges in E1 incident to u
by assigning smaller ports to edges in St than to the edges in St+1, for each
t ∈ {1, . . . ,∆}, where S∆+1 = R. Such a port ordering is enough to explore

15

the graph H1, with delayed deployment, with the property that every edge
is visited once every ∆ + 1 steps.

Now we assign ports to the edges in F . To this end, we consider the
subgraph of G, denoted by G̃, consisting of the edges in E1 ∪ F . In other
words, we take H1 (together with the port assignment obtained above) and
we add the edges in F , obtaining G̃. Note that, by (ii), each edge in F has
one endpoint in V1 and the other endpoint in V \ V1. The ports in F are
determined by analyzing the behavior of agents in the graph G̃ in the delayed
deployment described above. Whenever any set of agents are about to leave
H1 and traverse any edge from F , we select a single agent in a deterministic
way (for example, by choosing the agent located on a node with the smallest
index, having indexes assigned to nodes). We stop all other agents and
perform traversals only with the selected agent, until it returns to H1. We
set the ports of the edges in F so that whenever an agent leaves H1 through
an edge (v → u) ∈ F (v ∈ V1, u /∈ V1), it returns to H1 through the edge
(u→ v) (we call this property the property of return). Having the property
of return, we achieve that the agents patrol E1, and whenever an agent is
about to leave H1, the other agents are delayed until the agent returns to the
same node. Since the selection of agents is done deterministically, the edges
in F are always traversed in separated periods of time (when one agent is
traversing edges from F , all other agents are stopped) in a cyclic fashion, i.e.,

the sequence of traversal of the edges in F is
(
f1, f

′
1, f2, f

′
2, . . . , f|F |, f

′
|F |

)∗
,

where f ′ means the reversed edge to an edge f , i.e., if f = (u → v), then
f ′ = (v → u). Denote fi = (ui → vi) for each i ∈ {1, . . . , |F |}.

It remains to assign port labels to the edges in E2 \ F , and to initialize
the pointers for the nodes in V \ V (G̃). This is done by first constructing a
multigraph G′ and then by analyzing a single agent movement in G′. The
node set of G′ is {h} ∪ (V \ V1). For each (u → v) ∈ E2 \ F , let (u → v)
be an edge of G′, and for each i ∈ {1, . . . , |F |}, let (h, vi) and (vi, h) be the
edges of G′. In other words, we construct G′ by taking G, leaving the edges
in E \ E1 untouched, and contracting (identifying) the nodes of H1 into the
single node h. (The loops at h formed by the edges in E1 are discarded.)
For each i ∈ {1,|F |}, the ports of (h→ vi) and (vi → h) equal the ports
of (ui, vi) and (vi, ui), respectively.

We set the remaining ports in G′ and pointer initialization so that a
single agent that starts at h explores G′ in the following way:

(a) The edges in F are traversed according to the order(
(h→ v1), (v1 → h), (h→ v2), (v2 → h), . . . , (h→ v|F |), (v|F | → h)

)
.

16

Later on, we use the port labeling of G′ to assign port labels to the edges
in E2 in G, and the above allows us to maintain the return property in
G.

(b) The agent requires D/2 traversals through each of the edges in F . This
follows from the fact that, due to (iii), there exists a node in G′ being
at distance at least D/2 from h.

The above process assigns port labels to the edges in E2 and sets initial
values of all pointers in G′, which completes the construction of G and the
initial setup of the rotor-router.

Now we analyze the delayed deployment performed by the k agents in
G. We divide the exploration of G into phases. The i-th phase starts in the
step in which each edge in S1 is traversed for the i-th time, and ends in the
step preceding the beginning of the (i+ 1)-th stage. Note that each stage
contains at lest ∆ steps in which all agent move simultaneously. By (a),
the property of return holds in G, and therefore each edge in F is traversed
exactly once in each phase. Thus, by (b), at least D/2 phases are required
in the delayed deployment to explore G. This means that we need τ steps in
which all agents move simultaneously to fully explore the graph G, where:

τ ≥ ∆ ·D/2 =
⌊

2|E1|
k

⌋
·D/2 ≥

⌊
m
k

⌋
·D/2 ≥ 1

4mD/k

We can now apply Lemma 2.1 for the considered deployment, obtaining that
the cover time of G is tC ≥ τ ≥ 1

4mD/k.

The bound in Theorem 4.1 is asymptotically tight for some graph classes,
for example for stars. We leave the following simple observation without
proof.

Proposition 4.2. Let G be a star on n nodes. A team of k ≤ n agents
covers G in time tC ≤ 2dn/ke, for any initialization of the rotor-router and
any initial positions of agents.

References

[1] Hoda Akbari and Petra Berenbrink. Parallel rotor walks on finite graphs
and applications in discrete load balancing. In SPAA, pages 186–195,
2013.

[2] Noga Alon, Chen Avin, Michal Koucký, Gady Kozma, Zvi Lotker, and
Mark R. Tuttle. Many random walks are faster than one. Combinatorics,
Probability & Computing, 20(4):481–502, 2011.

17

[3] Evangelos Bampas, Leszek Gasieniec, Nicolas Hanusse, David Ilcinkas,
Ralf Klasing, and Adrian Kosowski. Euler tour lock-in problem in the
rotor-router model. In DISC, pages 423–435, 2009.

[4] Evangelos Bampas, Leszek Gasieniec, Ralf Klasing, Adrian Kosowski,
and Tomasz Radzik. Robustness of the rotor-router mechanism. In
OPODIS, pages 345–358, 2009.

[5] S. N. Bhatt, S. Even, D. S. Greenberg, and R. Tayar. Traversing directed
eulerian mazes. J. Graph Algorithms Appl., 6(2):157–173, 2002.

[6] Andrei Z. Broder, Prabhakar Raghavan, Robert W. Taylor, Anna R.
Karlin, Anna R. Karlin, Eli Upfal, and Eli Upfal. Trading space for
time in undirected s-t connectivity. In In Proceedings of the Twenty
First Annual ACM Symposium on Theory of Computing, pages 543–549,
1991.

[7] J. N. Cooper and J. Spencer. Simulating a random walk with constant
error. Combinatorics, Probability & Computing, 15(6):815–822, 2006.

[8] B. Doerr and T. Friedrich. Deterministic random walks on the two-
dimensional grid. Combinatorics, Probability & Computing, 18(1-2):123–
144, 2009.

[9] Klim Efremenko and Omer Reingold. How well do random walks
parallelize? In APPROX-RANDOM, pages 476–489, 2009.

[10] Robert Elsässer and Thomas Sauerwald. Tight bounds for the cover
time of multiple random walks. Theor. Comput. Sci., 412(24):2623–2641,
2011.

[11] Uriel Feige. A Spectrum of TimeSpace Trade-offs for Undirected s-t
Connectivity. Journal of Computer and System Sciences, 54(2):305 –
316, 1997.

[12] Tobias Friedrich and Thomas Sauerwald. The cover time of deterministic
random walks. In COCOON, pages 130–139, 2010.

[13] Ralf Klasing, Adrian Kosowski, Dominik Pajak, and Thomas Sauerwald.
The multi-agent rotor-router on the ring: a deterministic alternative to
parallel random walks. In PODC, pages 365–374, 2013.

[14] V.B. Priezzhev, D. Dhar, A. Dhar, and S. Krishnamurthy. Eulerian walk-
ers as a model of self-organized criticality. Phys. Rev. Lett., 77(25):5079–
5082, Dec 1996.

18

[15] I. A. Wagner, M. Lindenbaum, and A. M. Bruckstein. Distributed
covering by ant-robots using evaporating traces. IEEE Trans. Robotics
and Automation, 15:918–933, 1999.

[16] V. Yanovski, I. A. Wagner, and A. M. Bruckstein. A distributed ant
algorithm for efficiently patrolling a network. Algorithmica, 37(3):165–
186, 2003.

19

