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Abstract  27 

The recent development of new portable devices enables the use of near infrared 28 

spectroscopy (NIRS) technologies in on-line industrial applications. However, the 29 

numerous existing NIRS databases have been constructed with off-line laboratory 30 

instruments which required a considerable effort in terms of time, labour and costs. For 31 

this reason, the transfer of calibrations between devices of different characteristics is a 32 

clearly crucial step. The three different standardization algorithms of Slope/Bias 33 

Correction (SBC), Piecewise Direct Standardization (PDS) and Transfer by Orthogonal 34 

Projection (TOP) were tested and evaluated for transferring olives quality databases 35 

from an off-line NIRS monochromator (FOSS NIRSystem 6500) to a portable NIRS 36 

diode-array spectrometer (CORONA 45 visNIR). The results obtained showed that the 37 

use of TOP yielded the best Standard Error of Prediction (SEP) values for the fat 38 

content (1.97 %) and free acidity (2.52 %) parameters, while PDS for moisture content 39 

(2.24%). These results suggest that good calibration models for quality evaluation in 40 

intact olives can be obtained, based on spectral databases transferred between diverses 41 

NIRS spectrometers.  42 

 43 
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1. Introduction 52 

Near Infrared Spectroscopy (NIRS) has been successfully used by the olive oil 53 

sector for the quantitative analysis of the major olive constituents such as fat content 54 

and moisture in the last years (Armenta et al. 2010). For this reason, the implementation 55 

of on-line control systems in these industries is desirable in order to determine quickly 56 

and accurately the quality parameters of the olives at an initial stage of the production 57 

process that could allow control the raw material (intact olives) and consequently the 58 

final product (olive oil). However, the major part of applications have been developed 59 

under controlled laboratory environments -i.e. off-line, a great distance away from the 60 

real process in the olive mills. 61 

Nowadays, by establishment of new portable devices (such as diode array 62 

instruments) more robust, faster and better adapted to worse analysis conditions, the 63 

direct application of this technology in the olive industry is possible. However, until 64 

now, only a few studies have already been conducted for the on-line determination of 65 

chemical composition in olive oil, olive pomace and olive paste (Hermoso et al., 1999; 66 

Jiménez-Márquez et al., 2005; Gallardo-González et al., 2005).  67 

A key point concerning the implementation of NIR spectroscopy for olive 68 

process control is to demonstrate that the large data sets obtained from off-line analysis 69 

already existing, which have been developed during many years, may be used for on-70 

line industrial purposes. The construction of calibration models requires considerable 71 

time, cost and effort for the collection and the measurement of the samples (Bouveresse 72 

et al., 1998). For that reason, an easy and rapid calibration transfer (or standardisation) 73 

between instruments is necessary, in order to avoid re-measuring of the whole 74 

calibration procedure.  75 
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In the standardization process, a calibration model developed on a master 76 

instrument is modified in order to make it compatible with other multiple instruments 77 

(slave) by means of a set of mathematical and statistical procedures. However, direct 78 

transfer of calibration models obtained with one instrument on the same instrument after 79 

a period of time, or on another different equipment will usually result in erroneous 80 

predictions unless some adjustment is previously made (Andrew and Fearn, 2004). The 81 

problem of calibration transfer is a significant limitation of this technique that has been 82 

extensively reviewed (Wang et al., 1991; De Noord, 1994; Bouveresse et al., 1994; 83 

Bouveresse and Massart, 1996a; Bouveresse and Massart, 1996b; Park et al., 2001; 84 

Fearn, 2001; Feudale et al., 2002).  85 

In the literature, several standardisation procedures have been developed to deal 86 

with this important problem and allow the transfer of calibration models (De Noord, 87 

1994; Bouveresse and Massart, 1996a; Fearn, 2001; Feudale et al., 2002). There are 88 

some approaches than can be used to solve the transfer problems without the need for 89 

standardization (derivatives, multiplicative scatter correction (MSC), orthogonal signal 90 

correction (OSC), etc.) (Feudale et al., 2002). However, when the problem is not due to 91 

intensity changes in the spectra if not that is related to wavelength shifts, different 92 

standardization procedures can be applied. According to the strategy described in 93 

Chauchard et al. (2004), a calibration transfer can be carried out following several 94 

modes: a priori correction consists in correcting the spectra before applying the existing 95 

calibration model; model correction consists in adapting the calibration model; a 96 

posteriori correction consists in correcting the predictions of the existing calibration 97 

model; robust modelling consists in building a model insensitive to the perturbation.  98 

In the framework of transfer between instruments, a priori correction and model 99 

correction are based on multivariate correction of the spectra. In the former mode, slave 100 
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spectra are corrected to match the master ones and inputted in the existing model. In the 101 

latter mode, the spectra of the master calibration database are corrected to match the 102 

slave ones and the model is recalibrated. Spectra multivariate correction may use a large 103 

number of techniques, such as direct standardisation (DS) (Wang et al., 1991; Greensill 104 

and Walsh, 2002; Zamora-Rojas et al., 2012), piecewise direct standardisation (PDS) 105 

(Bouveresse et al., 1996b; Park et al., 2001; Bergman et al., 2006; Fernández-Ahumada 106 

et al., 2008; Igne et al., 2009; Fernández-Pierna et al., 2010), wavelet transform (WT) 107 

(Park et al., 2001; Greensill and Walsh, 2002), finite impulse response (FIR) filtering 108 

without standards (Black et al., 1996), boxcar signal transfer (BST) (Oliveri et al., 109 

2013) or the patented method proposed by Shenk and Westerhaus (1991).  110 

In a posteriori correction, the existing master calibration is applied to a set of 111 

slave spectra for which the responses are known. A model of the prediction error is then 112 

calibrated and its inverse is applied to the future predictions. This model is generally 113 

performed by a simple univariate method such as bias/slope correction (BSC) of the 114 

predicted values (Osborne and Fearn, 1983; Jones et al., 1993; Bouveresse et al., 1998; 115 

Fearn, 2001 review; Greensill and Walsh, 2002; Bergman et al., 2006).  116 

Robust modelling consists in building the calibration in a subspace which is not 117 

affected by the influences which cause the problem of robustness. An efficient method 118 

for finding this subspace is to identify the influenced subspace and to remove it by 119 

means of an orthogonal projection. Depending on the way the detrimental subspace is 120 

identified, several methods have been proposed, as independent interference reduction 121 

(IIR) (Hansen, 2001), external parameter orthogonalization (EPO) (Roger et al., 2003), 122 

transfer by orthogonal projection (TOP) (Andrew and Fearn, 2004), dynamic orthogonal 123 

projection (DOP) (Zeaiter et al., 2006) and error removal by orthogonal subtraction 124 

(EROS) (Zhu et al., 2008).  125 
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The aim of this study was to transfer calibration models for predicting fat 126 

content, free acidity and moisture in intact olives from a NIRS monochromator (FOSS 127 

NIRSystem 6500) to a portable diode-array (CORONA 45 visNIR) instrument. In this 128 

paper, three different representative methods for calibration transfer were tested and 129 

evaluated: PDS, the most popular and widely used calibration transfer technique, for a 130 

priori and model correction; SBC, the simplest and most classical, for a posteriori 131 

correction and TOP, one of the most recently developed transfer method, for robust 132 

modeling.  133 

 134 

 135 

2. Materials and Methods 136 

 137 

2.1. Samples, spectral acquisition and reference measurements 138 

A set of 174 batches of intact olive (Olea Europaea L.) samples, each between 139 

15 and 20 kg weight, were harvested over one crop season (October-March, 2010-2011) 140 

from different plots in Andalusia (Spain).  141 

Once in the lab, the olive samples were kept under controlled refrigeration at 5ºC 142 

and 90% relative humidity. Before spectroscopic measurements were acquired, the 143 

samples were equilibrated at room temperature (25ºC).   144 

  Spectra were collected from samples in reflectance mode (Log 1/R) using two 145 

NIRS-instruments: (1) FNS-6500 SY-II scanning monochromator (FOSS NIRSystems, 146 

Silver Spring, MD, USA); and (2) CORONA 45 visNIR diode-array spectrometer (Carl 147 

Zeiss, Jena, Germany).  148 

A pre-dispersive FNS-6500 scanning monochromator provided with a transport 149 

module was used to measure all spectra in the scanning range of 400 to 2498 nm, at 2 150 
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nm interval (figure 1a). The instrument was equipped with a silicon detector in the 151 

wavelength range of 400-1100 nm and with a lead sulphide detector for the range 1100-152 

2498 nm. A rectangular natural product cell with a window surface of 94.9 cm2 was 153 

used in order to carried out the analysis of the samples. Each spectrum was the average 154 

of 32 scans. Three different charges of each sample were scanned as replicates and the 155 

average spectrum was used for calculations. Spectra were recorded using ISIScan v. 156 

1.26 software (Infrasoft International LLC, State College, PA, USA). 157 

The second instrument was a post-dispersive single-beam diode array  (DA) 158 

spectrometer, CORONA 45 visNIR, working in the range from 380 to 1690 nm, with a 159 

spectral wavelength interval of 2 nm (figure 1b). The DA device was equipped with a 160 

silicon diode array (Hamamatsu S 3904) for the range 380-950 nm and an InGaAs array 161 

for the range 950-1690. The NIRS instrument was mounted on a bracket over a 162 

conveyor belt set and spectra were obtained during the movement of the samples 163 

underneath the spectrometer. The optimisation of acquisition parameters were described 164 

in detail by Salguero-Chaparro et al. (2012). The distance from the sample surface to 165 

the sensing head was approximately 13 mm and the conveyor belt speed was fixed to 166 

0.1 ms-1. White and black spectral references were collected manually. With an 167 

integration time of 5 s, 10 scans were averaged for each measurement. A total of thirty 168 

spectra of the same sample were acquired and the mean spectrum was used for data 169 

processing. All spectra were recorded using CORA software version 3.2.2. (Carl Zeiss, 170 

Inc.). 171 

Reference values for fat and moisture content in olive samples were determined 172 

using official analysis methods. Fat content was obtained on olive oil samples extracted 173 

by Soxhlet, according to the UNE 55030 procedure (AENOR, 1961), free acidity was 174 

determined by acid-base titration according to Regulation EEC/2568/91 of the European 175 
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Union Commission (EC, 2003) and the moisture content was measured by oven drying 176 

to constant weight at 105 ºC (AENOR, 1973).  177 

 178 

2.2. Sample sets selection 179 

Before the calibration, test and standards sets from the two instruments were 180 

selected, the spectra obtained from the FNS and CORONA equipments were previously 181 

reduced to the same 646 data points (400-1690 nm). No wavelength interpolation was 182 

needed because the wavelength intervals of the two devices matched. Then, raw spectral 183 

data were corrected for baseline and scattering effect using the Savitzky-Golay 184 

(SavGol) algorithm (21-point window, 3rd-order polynomial and 2nd-order derivative) 185 

(Savitzky and Golay, 1964).  186 

After spectral data preprocessing, the 174 samples obtained from each 187 

spectrophotometer, forming the original dataset Xo (174 x 646), Yo (174 x 3), were divided into 188 

three groups: calibration (Xc, Yc), standards (Xs, Ys) and test (Xt, Yt). For the 189 

construction of these sets, Principal Component Analysis (PCA) was used. This 190 

algorithm was applied on the centred Yo matrix and then, the scores of the first 191 

component was sorted in increasing order. Calibration, standards and test samples were 192 

then drawn regularly from this ranking, in the following proportions: 61% (106 193 

samples), 6% (10 samples) and 33% (58 samples), respectively.  194 

 195 

2.3. Development of NIRS calibration models 196 

Partial least squares regression (PLSR) with leave-one-out cross validation 197 

(LOOCV) was used for model calibration on Xc and Yc. Models having as many as 20 198 

latent variables (LVs) were considered and the optimal model was determined by 199 

choosing the number of LVs that gave the minimum in the standard error of cross-200 
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validation (SECV). Coefficient of determination (R2) between lab-measured and 201 

predicted values was also reported for the optimal model. 202 

Once the best calibration model for the prediction of fat, free acidity and 203 

moisture content constructed based on one instrument were selected, it was then applied 204 

on Xt, Yt of the other instrument. Here, quantitative PLS models were carried out with 205 

and without (models 1, M1) the prior performance of standardization procedures.  206 

 207 

2.4. Calibration transfer techniques 208 

Slope/bias correction (SBC), piecewise direct standardization (PDS) and transfer 209 

by orthogonal projection (TOP) methods were evaluated to transfer calibration models 210 

from one instrument to another. In this study, FNS-6500 instrument was used as the 211 

master and the CORONA 45 visNIR as the slave device.  212 

 213 

2.4.1. Slope/bias correction 214 

Using the standard sets (Xs and Ys), an SBC was carried out (models 2, M2). For 215 

each response (fat content, free acidity and moisture), the model calibrated on the 216 

master was applied on Xs and ys (174 x 1) of the slave instrument, yielding prediction ŷs. 217 

Slope and bias coefficients (b, b0) were calculated by a linear regression between 218 

predicted and actual values of ys. The model was then tested on the test sets (Xt, yt) of 219 

the slave device and the yt predicted (ŷt) was corrected (ŷtc) as follows (1): 220 

 221 

ŷtc = (ŷt – b0) / b         (1) 222 

 223 

2.4.2. Piecewise Direct Standardization  224 
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In this work, two different PDS approaches were evaluated. In the first of them, 225 

called as PDS1, XtXs spectra from the slave instrument were corrected, yielding 226 

standardized XtXs, in order to become closer to the output from the master device 227 

(models 3, M3). For that, a transformation matrix was constructed using Xs of both 228 

equipments. A new LOOCV-PLS model was calibrated on XcXs and YcYs of the master 229 

device and then, it was tested on the standardized XtXs and YtYs from the slave 230 

instrument.  231 

In the second approach, considered as PDS2, Xs spectra of the two instruments 232 

were again applied to correct the XcXs spectra from the master device. Xs spectra from 233 

the slave and the standardized XcXs spectra obtained were then used to build a new 234 

LOOCV-PLS model. Finally, the model obtained was tested on XtYt from the slave 235 

device (models 4, M4).  236 

Different window sizes (WS) were tested (5, 9 and 31) and optimized in order to 237 

compute the transformation matrix using the Xs samples. 238 

 239 

2.4.3. Transfer by orthogonal projection 240 

TOP method was also evaluated as a standardization procedure (models 5, M5). 241 

Firstly, the difference between the same Xs samples measured on both instruments was 242 

used to build a matrix of differences (D). Then, a singular value decomposition (SVD) 243 

of D yielded its k main principal directions, in the matrix P; spectra from master 244 

instrument were projected orthogonally to P; a LOOCV-PLS model was then built on 245 

the orthogonalized spectra, using a maximum of 20 latent variables. The optimum 246 

number k of loadings and l of latent variables were selected on the basis of the 247 

minimum value obtained for SECV. Once selected the k and l values, the master 248 

database was orthogonalized to the k first directions of D and a PLS model was 249 
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recalibrated on this base using l latent variables and tested on the samples of the slave 250 

instrument.   251 

 252 

 2.5. Computing and model evaluation 253 

Computation procedure was performed using the chemometric software Matlab 254 

ver. 7.0 (The Mathworks Inc., Natick, MA, USA) and several routines created by the 255 

authors, based on algorithms from the PLS Toolbox ver. 3.5 (EigenvectorResearch, Inc., 256 

Manson, WA, USA). 257 

The performance of the prediction models was evaluated by the R2, bias and 258 

standard error of prediction (SEP). The higher R2 and the lower SEP, the better the 259 

robustness.   260 

 261 

 262 

3. Results and discussion 263 

 264 

Figure 2 presents the raw spectra of 9 samples drawn randomly from the original 265 

database, and measured by the CORONA (fig.2A) and the FNS (fig. 2B) spectrometers, 266 

respectively. On the common part of both figures, some major bands can be observed. 267 

The main one appears around 1450 nm. It is attributed to the first overtone of the O-H 268 

bond stretching in Osborne et al. (1993), and is mainly due to water absorption. The 269 

second one is very sharp, but appears only on some spectra, at 675 nm. It is classically 270 

attributed to the chlorophyll (a and b), as in Solovchenko et al. (2010). At 1215 nm, one 271 

can observe a band attributed in Osborne et al. (1993) to the second overtone of the C-H 272 

bond stretching and is certainly due to the oleic acids of the olive oil. The last 273 

significant band is located around 980 nm, and is assigned to the second overtone of the 274 
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O-H bond stretching in Osborne et al. (1993), and also due to water absorption. One can 275 

also notice that the spectra recorded by both devices are impacted by a strong baseline 276 

addition, which is due to the light scattering. Indeed, a large part of the photons which 277 

are not collected by the sensors, and consequently considered as absorbed, are actually 278 

scattered. This phenomenon, which causes a multiplicative effect on the signal, appears 279 

additive after the log transform. Considering the visible part of the spectra on both 280 

figures, two groups of spectra can be clearly distinguished. Some spectra present a very 281 

high and relatively flat absorption. They correspond to very mature fruits, mainly black 282 

and very absorbent in the whole visible range. The other ones present two main 283 

absorbance bands, in the blue (450 nm) and in the far red (675 nm) which can be 284 

assigned both to chlorophyll, and producing the green color of the non mature olives. 285 

Comparing the two figures provides some other rough observations. The main 286 

bands (1450, 675, 1215 and 980 nm) are very similar on both devices. On the contrary, 287 

the vertical ordering of the spectra differs. The visible part differs between the two 288 

devices. Some bands appear on the FNS spectra for the more mature fruits at 560 and 289 

630 nm. They could traduce a balance between pigments related to chlorophyll and 290 

anthocyanin. Contrarily, the spectra collected by the CORONA appear in the same zone 291 

flatter and noisier. One can see a sharp break on both figures; between 980 and 982 nm 292 

for the CORONA and between 1098 and 1100 nm for the FNS. Both are due to the 293 

change of sensor inside the spectrometers and would cause a strong difference to be 294 

compensated in the transfer procedure.  295 

Table 1 gives a statistical summary of the chemical composition of the subsets 296 

formed. The main goal was to build sets with comparable ranges for all the 3 responses. 297 

As can be observed, the mean and standard deviation (SD) for fat content and moisture 298 

parameters showed very similar results in all three sets of calibration, test and standards. 299 
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However, for acidity property, significant differences were appreciated between the 300 

standards set and the calibration-test sets.    301 

The calibration statistics of all the models developed are shown in table 2, which 302 

presents for each parameter measured the best prediction in each situation, showing the 303 

number of PLS factors or latent variables (LVs), the window-size (WS), the k value, the 304 

coefficient of calibration (r2) and prediction (R2), the bias, the standard error of 305 

calibration (SEC), of cross-validation (SECV), the standard error of prediction (SEP) 306 

corrected for bias (SEPc) and the SEP.  307 

As can be observed in table 2, the LOOCV-PLS equations for the prediction of 308 

fat and moisture content based on spectra collected with the FNS instrument and applied 309 

to the spectra collected with the CORONA device (models 1), without the performance 310 

of any standardization procedure, gave a model with 4 LVs and a SEP=2.67 % to the fat 311 

content parameter and a model with 7 LVs and a SEP=3.45 % to the moisture content. 312 

However, for free acidity, it was observed that the model 1 provided a very poor 313 

predictive capacity for this parameter (R2 < 0.5 and SEP value > 11%). It should be 314 

noted that the high SEP and bias values (1.61 % for fat content, 10.3 % for free acidity 315 

and 1.75 % for moisture content) obtained in these models reveal the need for applying 316 

a standardization procedure between spectrophotometers.  317 

Table 2 also shows the results of the SBC, PDS and TOP methods applied in 318 

order to transfer of calibrations for the three parameters.  319 

The effect of slope/bias correction using 10 samples for the transfer is shown in 320 

models 2. As expected, the values of bias for the predictions achieved for all properties 321 

were considerably lower in these models than those obtained in the previous models 1. 322 

For fat content, a bias of 0.41 % and a SEP of 2.54 % were obtained.  For free acidity, 323 

SEP and bias values were enormously reduced in both models, achieving a bias of -1.18 324 
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% and a SEP of 3.61 %. Finally, for moisture parameter a bias of 0.34 % and a SEP of 325 

3.00 %. were obtained.  326 

For PDS1 and PDS2, the results obtained from models 3 and 4 are shown, in the 327 

same way, in table 2. As mentioned above (section 2.4.2), the window size (WS) was 328 

optimized in order to compute the transformation matrix using the standards samples. 329 

For the calibration transfer using PDS1, the lowest SEP values in models 3 for fat 330 

content, free acidity and moisture were found when a WS of 31, 9 and 5 wavelengths 331 

were chosen, respectively. Concerning the results obtained in PDS2 (models 4), similar 332 

values were obtained. For fat content, the lowest SEP value was obtained with a WS of 333 

31 and it was slightly higher (2.78 %) than the ones obtained in PDS1 (SEP=2.31 %). 334 

For acidity parameter, although a higher R2 value was obtained in model 4, the lowest 335 

SEP value was achieved in model 3 (SEP=2.92 %). Finally, in moisture case, the SEP 336 

value in model 4 result in 2.36 % using a WS of 31 wavelengths.  337 

Both PDS transfer methods have been applied using the standards set (10 338 

samples) and applied to the test set (58 samples). Figure 3 shows the mean square error 339 

(reconstruction error) before and after the PDS processing for the test set using a WS of 340 

5. The discontinuous line corresponds to the reconstruction error between the spectra 341 

measured with both devices before standardization, whereas the other line shows the 342 

result after the standardization process. As can be observed from the figure 3, PDS 343 

transfer allows reconstruction error to be reduced for the test set, indicating the correct 344 

performance of the proposed methodology.   345 

 For TOP method (models 5), a low-SECV basin, with SECV level of 1.80 % fat, 346 

was described by k=3 and lv=8, achieving a R2 and a SEP value of 0.87 and 1.97 %, 347 

respectively. For acidity property, the optimal SECV close to 3.00 % oleic acid, was 348 

seen for k=5 and lv=5. In this case, a R2 and SEP values of 0.66 and 2.52 %, 349 
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respectively, were obtained. Finally, the best moisture prediction (R2 =  0.92 and SEP = 350 

2.93 %) was carried out with k=5 using lv=8 in this model 5.  351 

Figure 4 shows the spectra of two standards samples (#141 and #56), collected 352 

by the two devices, before (original spectra) and after the TOP processing (to k=1 and 353 

k=5). The effect was remarkable. As can be observed in figure 4, the two original 354 

spectra (2nd derivative) of a same sample acquired with both spectrometers, showed 355 

several differences in the visible region, specially between wavelengths of 675-775 nm 356 

and between the wavelengths of 960-980 nm and 1450-1550 nm. After TOP, most were 357 

corrected using a k value of 1. Only, for #56, differences observed in visible region were 358 

not completely corrected with k=1. These differences totally disappeared when a k=5 359 

was used.  360 

 361 

3.1. Comparison of  transfer methods  362 

All three transfer methods (SBC, PDS and TOP) worked well for transferring of 363 

the present NIRS calibrations for fat, free acidity and moisture content in intact olives. 364 

For fat parameter, the best calibration transfer performance was found when the 365 

TOP procedure was applied (model 5). Note that the SEP value after TOP 366 

standardization was significantly lower (1.97 %) using 8 latent variables than the error 367 

obtained in the original calibration (model 1) with LVs=4 (SEP=2.67 %). Additionally, 368 

as can be observed in table 2, the R2 values increased from 0.84 in M1 to 0.87 in M5 369 

and the bias values decreased from 1.61 % in M1 to 0.26 % in M5. 370 

 In the same way, the application of TOP algorithm allowed to obtain the best 371 

prediction results for the free acidity property. The SEP value obtained (table 2) 372 

indicated that the prediction of acidity was greatly improved using TOP transferred 373 
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rather than untransferred models. The prediction performed in M5 gave a SEP of 2.52 374 

%, a bias of -0.36 % and a R2 of 0.66, using only 5 latent variables.   375 

 Finally, for moisture parameter, it can be seen that although the fitting of the 376 

models was slightly better using TOP algorithm, the predictive ability of the model 377 

developed with the PDS1 method (model 3), was better. The initial SEP of 3.45 % and 378 

the bias value of 1.75 % obtained in M1 were highly reduced until reach a SEP=2.24 % 379 

and a bias= -0.57 with  a WS of 5 and using only 7 latent variables.  380 

Figure 5 shows the test results of the three best models achieved from the FNS 381 

master instrument for each one of the parameters evaluated.  382 

 383 

 384 

Conclusions 385 

Slope/bias correction (SBC), piecewise direct standardization (PDS) or transfer 386 

by orthogonal projection (TOP) can be used for transferring multivariate calibrations 387 

models for the prediction of fat content, free acidity and moisture on intact olives 388 

between a pre- and a post- dispersive NIRS spectrophotometer.  389 

From this study, it can be possible to affirm that the use of these standardization 390 

procedures allows that the huge databases on intact olives built over several years with 391 

an off-line instrument can be successfully transferred to new hand-held devices that 392 

could be implanted at mill level.    393 

 394 
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