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Abstract

We propose a general adaptive LASSO method for a quantile regression model. Our method
is very interesting when we know nothing about the first two moments of the model error. We
first prove that the obtained estimators satisfy the oracle properties, which involves the relevant
variable selection without using hypothesis test. Next, we study the proposed method when the
(multiphase) model changes to unknown observations called change-points. Convergence rates
of the change-points and of the regression parameters estimators in each phase are found. The
sparsity of the adaptive LASSO quantile estimators of the regression parameters is not affected
by the change-points estimation. If the phases number is unknown, a consistent criterion is
proposed. Numerical studies by Monte Carlo simulations show the performance of the proposed
method, compared to other existing methods in the literature, for models with a single phase
or for multiphase models. The adaptive LASSO quantile method performs better than known
variable selection methods, as the least squared method with adaptive LASSO penalty, L1-
method with LASSO-type penalty and quantile method with SCAD penalty.

Keywords adaptive LASSO quantile; change-point; oracle properties; variable selection;
selection criterion.
AMS Subject Classification: 62J05; 62F12.

1 Introduction

The usual case investigated in literature, for the following regression model,

Yi = Xt
iφ+ εi, i = 1, · · · , n, (1)
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is that the errors are assumed to be homoscedastic, i.e., the errors are assumed to be independent
random variables with mean zero and bounded variance. In such cases, the regression parameters
φ are estimated by the method of the least squares (LS). We will call the regression in this case,
the LS model. If the assumptions on the first two moments of the errors are not satisfied, then the
LS method is not appropriate, because it can provide bad estimators (biased, with large variance).
In the case of errors with zero mean of sign, i.e. IE[sgn(εi)] = 0, the Least Absolute Deviations
(LAD) method could be used. But, often in practice, we can not known if IE[sgn(εi)] = 0, then, a
generalization can be used by considering the quantile method. Here, we use the notation sgn(.)
for the sign function.

For a fixed quantile index(level) τ ∈ (0, 1), the τth quantile bτ of ε is:

τ = IP [ε < bτ ] = F (bτ ), bτ ∈ B ⊆ R, (2)

where F is the distribution function of the error ε and B is a real set . We use ε to denote a generic
member of the sample (εi)1≤i≤n. In order to consider a general case for model (1), the τth quantile
bτ of ε is supposed unknown.

For the model (1), Y is the response variable, φ = (φ,1, φ,2, · · · , φ,p) ∈ Γ ⊆ Rp the regression
parameters and Xi = (Xi1, · · · , Xip) the regressors. Number p of the regressors can be large. More
exactly, p does not depend on the observation number n, and p < n.

The fact that the τth quantile of ε is unknown is also often the case in a change-point model
(model with multiple phases), model defined in Section 3 by the relation (6).

We will first focus on the study of model (1), without assuming classical conditions imposed on
errors εi. The model parameters φ will be estimated initially by a method without penalty, taking
the quantile-process as objective function. Afterwards, in order to select the variables, we propose
to add to the quantile-process an adaptive general penalty of LASSO type. In these cases, we will
then refer to the model (1) as quantile regression.

Under the metric d(x, y) = | arctanx − arctan y|, for x, y ∈ R, the set R̄ ≡ R ∪ {−∞,∞} is
compact set, then, without loss of generality, we suppose that the sets B and Γ are compacts. The
τth conditional quantile function of Yi given Xi = xi is xtiφ

0 + b0τ , with b0τ the τth quantile of
ε. Then, for model (1), the unknown parameters, to estimate, knowing (Yi,Xi)1≤i≤n are the τth
quantile bτ and the regression parameters φ. Denote by b0τ , φ0 = (φ0

,1, · · · , φ0
,p) their true values,

unknown, assumed to be inner points of the sets B, Γ, respectively. The parameters bτ ,φ can be
estimated by quantile method, by minimizing the quantile-process:

(b̂n, φ̂n) ≡ arg min
(b,φ)

n∑
i=1

ρτ (Yi − b−Xt
iφ), (3)

with the function ρτ (.) : R → R defined by ρτ (r) = r[τ11r>0 − (1 − τ)11r≤0]. We call (b̂n, φ̂n) the
quantile estimators of (b0τ ,φ

0). The components of φ̂n are (φ̂n,1, · · · , φ̂n,p). By [1] these estimators
are strongly convergent and asymptotically normal:

(b̂n, φ̂n)
a.s.−→
n→∞

(b0τ ,φ
0),
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√
n(φ̂n − φ0)

L−→
n→∞

N
(

0,
τ(1− τ)

f2(b0τ )
Υ−1

)
,

with the matrix Υ defined later in the assumption (A1) and f the density function of ε.
For τ = 1/2 and b0τ = 0 we obtain the median (LAD, L1) regression, considered for instance by

[2]. For a complete review on quantile regression and on quantile estimators, the reader can see the
book of [1]. A great advantage of this method is that, compared to the classical estimation methods
(least squares or likelihood methods, for example) that are sensitive to outliers, the quantile method
provides more robust estimators. Furthermore, the imposed condition to the error distribution are
relaxed. However, like all other estimators (for example least squares, maximum likelihood estima-
tors) obtained by optimizing an objective function without penalty, the quantile estimators do not
satisfy the oracle properties. Recall that the oracle properties are: the zero components of the true
parameters are estimated (shrunk) as 0 with probability tending to 1 (also called sparsity property)
and the nonzero parameters have an optimal estimation rate (and is asymptotically normal). Thus,
the solution is to consider a penalized objective function. The parameters for which we want to have
the selection consistency property are included in the penalty. This type of penalty was introduced
by [3] for the least squares estimation framework, with a L1 penalty (obtaining thereby LASSO
estimators). Nevertheless the LASSO estimator does not always satisfy the oracle properties. To
remove this inconvenience, an adaptive LASSO estimator was proposed by [4] for the LS regression
case. Various procedures, based on LASSO framework, have been proposed and studied during
the last few years, in order to simultaneously estimate the parameters and to select significant
regressors. The considered models are either with fixed dimension p for φ or with p depending on
the sample size n, with p > n. Since the number of papers in these areas is very important in recent
years, we mention only some of them. In a median regression, [5] consider the LASSO-type penalty
and [6] proposes a L1 penalty with the possibility that the regressors number is larger than the
observation number. Always for a median model, with LASSO penalty, was considered by [7]. In a
general quantile regression, [8] propose the SCAD penalty, but which is difficult into practice with
regard to numerical algorithms and an adaptive LASSO penalty but under the assumption that
the τth quantile b0τ is known and is equal to 0. Alternatively, [9] estimate the quantile-adaptive
model-free screening frameworks using a B-spline approximation. In the paper of [10], a composite
quantile regression is considered with an adaptive LASSO penalty. The paper of [11] proposes an
estimation procedure in a semi-parametric additive partial linear models.

In this paper we first propose, for quantile model (1), a general adaptive LASSO estimator. For
this estimator, we will study the oracle properties and other behaviour properties for the estimators
and for the adaptive quantile objective function.
Afterwards, we will study for a multiphase model (i.e., a model that changes the shape to unknown
observations), if the break estimation affects the oracle properties of the regression parameter
estimators. The main theoretical difficulty of this type of model is that the estimation of the
change-point locations and of the parameters in each phase can not be performed simultaneously,
but sequentially, in the sense that we first estimate regression parameters for fixed change-points
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and then, the change-points. Finally, the estimator of the regression parameters is taken as that
corresponding to the optimal change-points. This imply that the theoretical study of obtained
estimators is very difficult, even assuming that number of phases is known.
If this number is unknown, an additional difficulty to the model study is added. In this case, a con-
sistent estimation criterion for this number is proposed in this paper. Since the LASSO techniques
are fairly recent, there are not many papers in the literature that address the breaking problem
by this estimation method. In the paper of [12], LS model is estimated by LASSO-type and by
adaptive LASSO techniques.

In [13], a quantile model with SCAD estimator and a median model with LASSO-type estimator
are studied. Apart from the fact that when the quantile model was considered, it was supposed
that the τth error quantile is known (more precisely, it was taken as 0), the SCAD method has also
the disadvantage that it is difficult to put into practice with regard to numerical algorithms. Let
us also remind the paper of [14], where a LS model with a single change-point is considered, with
a LASSO penalty, when the errors have gaussian distribution.
It is important to emphasize that the numerical studies by Monte Carlo simulations confirm the
superiority of the adaptive LASSO quantile estimators (in terms of bias, precision, of identification
of the true zeros, especially in the case when moments of errors don’t exist or when its median is
different to zero), in comparison to other variable selection estimators. In a multiphase model, if
the changes are due only to error distribution (regression parameters remain the same) the adaptive
quantile method also gives the best results.

We give some general notations. Throughout the paper, C denotes a positives generic constant
not dependent on n which may take different values in different formula or even in different parts
of the same formula. For a vector v = (v1, · · · , vp) let us denote |v| = (|v1|, · · · , |vp|). On the other
hand, ‖v‖2 is the Euclidean norm and ‖v‖1 =

∑p
j=1 |vj | the L1-norm. All vectors are column,

vt denotes the transposed of v and 1
v =

(
1
v1
, · · · , 1

vp

)
. For a strictly positive constant c, let also

denote by vc the following vector
(

1
vc1
, · · · , 1

vcp

)
. Let

L−→
n→∞

,
IP−→

n→∞
,
a.s.−→
n→∞

represent convergence in dis-

tribution, in probability and almost sure, respectively, as n→∞. For a real x, [x] is its integer part.

The paper is organized as follows. In Section 2, we introduce and study especially the ora-
cle properties of a general adaptive LASSO quantile estimator. In Section 3, the corresponding
estimator in a change-point model is defined and its asymptotic behaviors (convergence rate and
oracle properties) are studied. Section 4 proposes a consistent criterion to determine the breaking
number. In Section 5, simulation results illustrate the performance of the proposed estimators.
The adaptive LASSO quantile estimator is compared with other variable selection estimators. All
proofs are given in Section 6.
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2 Adaptive LASSO quantile for regression model

In this section we propose and study a general adaptive LASSO quantile estimator for the model
(1), estimator defined by

(b̂∗n, φ̂
∗
n) ≡ arg min

(b,φ)

(
n∑
i=1

ρτ (Yi − b−Xt
iφ) + λnω̂

t
n|φ|

)
, (4)

where ω̂n = (ω̂n,1, · · · , ω̂n,p) ≡ 1
|φ̂n|g

=
(

1
|φ̂n,1|g

, · · · , 1
|φ̂n,p|g

)
, φ̂n is the quantile estimator, defined by

(3), and g > 0 is a constant which will be later specified. The components of φ̂
∗
n are (φ̂∗n,1, · · · , φ̂∗n,p).

The positive sequence (λn)n, also called the tuning parameter, is a regularization parameter such
that λn → ∞ as n → ∞. To the author’s knowledge, for a quantile regression, three particular
penalties of the adaptive LASSO type have been previously proposed in other papers. In two pa-
pers, the case g = 2 is considered. First, [10] consider that p, the number of regression parameters,
is fixed and after, in [15], the case p = pn →∞ is studied. In the paper of [8], an adaptive LASSO
penalty with the same form as in the relation (4) is proposed, but under the assumption that the
τth quantile b0τ is known and it is equal to 0. In the paper of [16], which is a particular case to
that proposed here, always for b0τ = 0, the weight vector considered is min(

√
n, |φ̃n|−1), with φ̃n a

consistent estimator of φ0. However, their estimator has the advantage that it also applies when
the number of regressors is very large, p = O(exp(nc)), with the constant c ∈ (0, 1).

Let us consider the deterministic design matrix X ≡ (Xij) 1≤i≤n
1≤j≤p

, with Xi the ith line, corre-

sponding to the observation i.
We give now two assumptions, denoted (A1), (A2), on the design and on the errors.
For the design X, we suppose that:
(A1) n−1 max1≤i≤n Xt

iXi −→
n→∞

0 and n−1
∑n

i=1 XiX
t
i −→n→∞Υ, with Υ = (vij)1≤i,j≤p a positive defi-

nite matrix.
For the errors εi we suppose that they are independent, identically distributed, with a continuous
positive density f in a neighborhood of b0τ and:
(A2) For every e ∈ int(B), u0 ∈ R, u ∈ Rp we have

lim
n→∞

n−1
n∑
i=1

∫ u0+xtiu

0

√
n[F (e+ v/

√
n)− F (e)]dv =

1

2
f(e)(u0,u

t)

[
1 0
0 Υ

]
(u0,u

t)t.

Recall that F : B → [0, 1] is the distribution function of ε. The p regressors Xi1, · · · , Xip are
independent of the errors εi, for all i = 1, · · · , n. In fact, the design can be considered either
deterministic or random, in which case we will consider the conditional expectation. Obviously,
the first variable X1 can be equal to 1, in which case the model contains an intercept. Remark that
the assumption (A1) is standard when LASSO methods are used, see for example [4], [8] and (A2)
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is classic for a quantile regression, see for example [1].

Note that, the estimators defined by (3) or (4), depend on the value of τ and on observation
number n. For simplicity reasons, τ does not appear in the notation. The quantile estimators
(b̂n, φ̂n) found by (3), minimize the objective function

∑n
i=1[ρτ (εi − b−Xt

i(φ−φ0))− ρτ (εi − b0τ )]

and the adaptive LASSO quantile estimators (b̂∗n, φ̂
∗
n) given by (4), minimize the objective function∑n

i=1[ρτ (εi − b−Xt
i(φ− φ0))− ρτ (εi − b0τ )] + λnω̂

t
n[|φ| − |φ0|].

To simplify the notations, in what follows we denote b0τ by b0.

Then, let us first define two stochastic processes, necessary to study the objective functions
and to analyze the behavior of the corresponding estimators obtained by quantile and by adaptive
LASSO quantile methods, respectively. For b ∈ B, φ ∈ Γ we define, for each observation i ∈
{1, · · · , n}, the following random process:

R
(τ)
i (b,φ; b0,φ0) ≡ ρτ (εi − b−Xt

i(φ− φ0))− ρτ (εi − b0) (5)

and for two observations l and k between 0 and n, with l < k, we define also the corresponding
process, taking an adaptive LASSO penalty:

R
(τ,λ)
i;(l,k)(b,φ; b0,φ0) ≡ R(τ)

i (b,φ; b0,φ0) +
λ(l,k)

k − l
ω̂t(l,k)(|φ| − |φ

0|), i = l + 1, · · · , k,

with λ(l;k) the tuning parameter, dependent of position of l and k. The weight vector ω̂(l;k) =

|φ̂(l;k)|−g is obtained considering φ̂(l;k) the quantile estimator of φ calculated by (3) on the samples
l + 1, l + 2, · · · , k:

(b̂(l;k), φ̂(l;k)) = arg min
(b,φ)

k∑
i=l+1

ρτ (Yi − b−Xt
iφ).

For l = 0 and k = n, the tuning parameter λ(0,n) becomes λn and ω̂(0,n), (b̂(0,n), φ̂(0,n)), (b̂∗(0,n), φ̂
∗
(0,n))

become ω̂n, (b̂n, φ̂n), (b̂∗n, φ̂
∗
n) respectively.

We note that the estimators obtained by (3) are in fact the parameters that minimize in (b,φ)

the random process
∑n

i=1R
(τ)
i (b,φ; b0,φ0) and the penalized estimators obtained by relation (4)

are the ones that minimize
∑n

i=1R
(τ,λ)
i;(0,n)(b,φ; b0,φ0).

In the following Lemma we prove that, if in a model, either the τth quantile or the regression
parameters are different to the true values, then the observation number for which |b−b0|+ |Xt

i(φ−
φ0)| exceeds a threshold, is large.
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Lemma 2.1 Under assumption (A1), if b 6= b0 or φ 6= φ0, then there exists δ > 0 such that for
the following set Nn ≡ Card{i ∈ {1, · · · , n}; |b− b0|+ |Xt

i(φ− φ0)| > δ} we have that there exists
an ε0 > 0 such that Nn > nε0, for n large enough.

In the following subsection we prove that, the adaptive LASSO estimator for the regression
parameters satisfies the oracle properties: nonzero estimators are asymptotically normal and zero
parameters are shrunk directly to 0 with a probability converging to 1 as n tends to infinity.

2.1 Oracle properties

First of all, let us formulate the Karush-Kuhn-Tucker (KKT) optimality conditions, needed to
prove the oracle properties. Note that for a real x, we use the notation sgn(x) for the sign function
sgn(x) ≡ x/|x| when x 6= 0 and sgn(0) = 0. Let the set index

Â∗n ≡ {j ∈ {1, · · · , p}; φ̂∗n,j 6= 0}

of nonzero components of the adaptive (LASSO) quantile estimator of the regression parameter.

Proposition 2.2 Under assumptions (A1), (A2), for g > 0, if (λn) is a sequence such that λn →
∞, n−1/2λn → 0 and n(g−1)/2λn →∞, as n→∞, then:
(i) for all j ∈ Â∗n we have: τ

∑n
i=1Xij −

∑n
i=1Xij11Yi<Xt

iφ̂
∗
n

= nω̂n,jsgn(φ̂∗,j).

(ii) for all j 6∈ Â∗n we have
∣∣∣τ∑n

i=1Xij −
∑n

i=1Xij11Yi<Xt
iφ̂
∗
n

∣∣∣ ≤ nω̂n,j.
In addition to the set Â∗n, let us consider the set

A0 ≡ {j ∈ {1, · · · , p};φ0
,j 6= 0}

with the index of nonzero components of the true regression parameters. Throughout the paper,
we denote by φA0 the sub-vector of φ containing the corresponding components of A0. In the same

way, we consider φ̂
∗
Â∗n , φ̂

∗
A0 subvectors of φ̂

∗
n with the index in the sets Â∗n, A0, respectively.

With these notations and with Proposition 2.2, we can now state the main result of this section
on the oracle properties of the adaptive LASSO quantile estimator. We comment that even if the
τth quantile is unknown, the assumptions are the same as in the known case of [8] where b0 was
considered zero. In the paper of [16] the particular case ω̂n,j = min(

√
n, |φ̃n,j |−1), with φ̃n,j a

consistent estimator of φ0
,j , is considered. In the present paper we consider ω̂n,j = |φ̂n,j |−g, with

φ̂n,j the quantile estimator.

Theorem 2.3 Under assumptions (A1), (A2), for a power g > 0, if (λn) is a sequence as in the

Proposition 2.2, then the estimator φ̂
∗
n satisfies the oracle properties:

(i)
√
n(φ̂

∗
A0 − φ0

A0)
L−→

n→∞
N
(
0, τ(1−τ)

f2(b0)
Υ−1
A0

)
, where ΥA0 contains the elements of the matrix Υ,

defined in assumption (A1), with the index in the set A0: ΥA0 ≡ (vij)i,j∈A0.

(ii) If moreover ng/2−1λn →∞, then IP [Â∗n = A0]→ 1, as n→∞.
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As a consequence of this Theorem, emphasize the fact that the convergence rate of the adaptive
LASSO quantile estimators b̂∗n and φ̂

∗
n has the order n−1/2.

The condition ng/2−1λn →∞ on Theorem 2.3(ii) is stronger than that of Proposition 2.2, where
n(g−1)/2λn → ∞, as n → ∞, is supposed. The importance of this condition for sparsity property
will be studied in Section 5, by Monte Carlo simulations. Note that, the condition ng/2−1λn →∞
on Theorem 2.3(ii) implies g > 1.

Remark 2.4 In the particular case b0τ = 0, the Normal asymptotic law of Theorem 2.3(i) is the
same that obtained by [8] by the SCAD estimation method. If, moreover, τ = 1/2, we obtain the
same law that [5] using a LASSO-type penalty.

Remark 2.5 Compared with the adaptive LASSO estimator for a LS model (see [4]), the fact that
the conditions on ε are weakened (no assumption on existence of the first two order moments and
nor IE[ε] = 0), implies that in our case, in order to have the sparsity, the sequence (λn) and the
constant g must verify the additional condition ng/2−1λn →∞ beside to claim (i).

2.2 Behavior study for R
(τ)
i and R

(τ,λ)
i

The obtained results in this subsection on the random processes R
(τ)
i and R

(τ,λ)
i which intervene

in the corresponding objective functions, will be necessary to study the behavior of the multiphase

model. By the following Proposition, we show that the process R
(τ)
i (b,φ; b0,φ0) has a positive

expected value for any parameter (b,φ) ∈ B × Γ.

Proposition 2.6 For all parameters b ∈ B, φ ∈ Γ, we have that IE[R
(τ)
i (b,φ; b0,φ0)] ≥ 0.

The penalty order, which is involved in the expression of R
(τ,λ)
i;(l;k), is obtained by the following

result. It depends of the power g considered for the weights ω̂(l;k).

Lemma 2.7 Under assumptions (A1), (A2), for all 0 ≤ l < k ≤ n, if λ(l;k) = o(n1/2), then,

λ(l;k)‖ω̂(l;k)‖2 = oIP (n(1+g)/2).

In order to study the multiphase model, the following result studies the objective function
behavior between two observations sufficiently far apart.

Lemma 2.8 For 1 ≤ l < k ≤ n such that k − l → ∞, as n → ∞, under assumptions (A1) and

(A2), if λ(l;k) = o(n1/2), for all α > 1/2, we have sup0≤l<k≤n

∣∣∣infb,φ
∑k

i=lR
(τ,λ)
i;(l;k)(b,φ; b0,φ0)

∣∣∣ =

min(oIP (n(1+g)/2), OP (nα)).

8



For notational simplicity, we will denote the sum of the processes R
(τ)
i on the observations

1, · · · , n by:

R(τ)
n (b,φ; b0,φ0) ≡

n∑
i=1

R
(τ)
i (b,φ; b0,φ0).

Let us consider a positive deterministic sequence (cn), such that either it converges to 0, such
that nc2

n/ log n → ∞ as n → ∞, or it is constant cn = c. For a such sequence (cn), consider
following sub-region of the set B × Γ:

Ωn ≡ {(b,φ) ∈ B × Γ; |b− b0| ≤ cn, ‖φ− φ0‖2 ≤ cn}

and Ωc
n = {(b,φ) ∈ B × Γ; min(|b− b0|, ‖φ− φ0‖2) > cn} its complementary set.

The following Lemma shows that for all n large enough, the supremum of the difference between

R(τ)
n and its expectation, when the parameters are in a neighborhood of the true values, converges

to 0 in probability, with the rate (nc2
n)−1.

Lemma 2.9 Under assumptions (A1), (A2), then there exists a strictly positive constant C1 > 0
such that for all ε > 0, there exists a nε ∈ N such that, for n ≥ nε, following inequality holds

IP

[
sup

(b,φ)∈Ωn

∣∣∣∣ 1

nc2
n

[
R(τ)
n (b,φ; b0,φ0)− IE[R(τ)

n (b,φ; b0,φ0)]
]∣∣∣∣ > ε

]
≤ exp(−ε2nc2

nC1).

The following Lemma gives the behavior of the penalized objective function
∑n

i=1R
(τ,λ)
i;(0,n)(b,φ; b0,φ0)

on the complementary of the set Ωn. We obtain that the infimum of this process is strictly positive.

Lemma 2.10 Let us consider a positive deterministic sequence (cn) such that either it converges
to 0, with nc2

n/ log n → ∞ as n → ∞, or cn = c. If the tuning parameter sequence verifies
λnn

−1c−2
n → 0, under assumptions (A1), (A2), then we have that there exists ε1 > 0 such that,

with the probability 1:

lim inf
n→∞

(
inf

(b,φ)∈Ωcn

1

nc2
n

n∑
i=1

R
(τ,λ)
i;(0,n)(b,φ; b0,φ0)

)
> ε1.

An example of a sequence cn and of tuning parameter λn is λn = n2/5 and c2
n = n−3/5(log n)2.

Remark 2.11 Using Lemma 2.10, by similar technique to one used in the paper of [12], for Lemma
3 and 4, we obtain their equivalent. That is, if the data come from two different models, the adaptive
LASSO quantile estimator is close to the parameter of the model from where most of the data came.
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With these results, we can now consider a model with several phases. First, the number of
phases is considered known, and afterward the number of changes will be assumed unknown. We
will prove that the regression parameters of each phase and the change-points l0r−1, l0r are estimated

by consistent adaptive LASSO quantile estimators, with rate of convergence, (l0r − l0r−1)−1/2, (l0r −
l0r−1)−1, respectively. A very interesting result is that oracle properties of the adaptive LASSO
quantile estimators for the regression parameters are not affected by the change-point estimation.

3 Adaptive LASSO quantile for multiphase model

Let us now consider a model with K+1 phases, i.e. the model changes to the observations l1, · · · , lK
with 1 < l1 < l2 < · · · < lK < n. Initially, we suppose that the change number K is known. If
K is unknown, which is the most frequent case in practice, we shall give in the following section a
criterion to estimate the number K.

The model with K + 1 phases has the form:

Yi = Xt
iφ1111≤i<l1 + Xt

iφ211l1≤i<l2 + · · ·+ Xt
iφK+111lK≤i≤n + εi, i = 1, · · · , n. (6)

The parameters of model (6) are (b1, · · · , bK+1) the τth quantile of ε on each phase, (φ1, · · · ,φK+1)
the corresponding regression parameters and (l1, · · · , lK) the change-points (breaks). The true val-
ues of these parameters are (b01, · · · , b0K+1), (φ0

1, · · · ,φ0
K+1) and (l01, · · · , l0K) respectively.

Let us notice that with regard to the paper of [13] where 0 was always the τth quantile, here
quantiles can change from one phase to another. In fact, in the present paper, from one phase
to the other, either the regression parameters change, or the τth quantiles change, or both types
of parameters changes simultaneously. To the author knowledge, this double possibility of change
has not been addressed anywhere in the literature. Moreover, in the paper of [13], the proposed
penalty for a quantile multiphase model, with the τth quantile known, is SCAD (Smoothly Clipped
Absolute Deviation), which produces difficulties of point of view numerical programming. In the
particular case of a median multiphase model, [13] considers a LASSO-type estimator in order to
avoid the numerical disadvantage generated by the SCAD method. On the other hand, in view of
simulations presented in Section 5, for median multiphase model, the results obtained by SCAD
method are poorer than by a LASSO-type method. This justify the interest to consider an adaptive
LASSO method for a quantile multiphase model. Moreover, the simulations presented in Section
5 will show the performance of the proposed method, especially in the case of not homoscedastic
error or when the change occurs in the τth quantile and not in the regression parameters.

Concerning the change-points (l1, · · · , lK), we suppose that a phase is long enough:
(A3) lr+1 − lr ≥ na, a > 1/2, for all r = 0, · · · ,K, with l0 = 1 and lK+1 = n.

For fixed change-points (l1, · · · , lK), the objective function is minimized with respect to the τth
quantiles and regression parameters of the K+1 phases. Let us denote the objective function value

10



by

S∗(l1, · · · , lK) ≡ inf
(φ1, · · · ,φK+1)
(b1, · · · , bK+1)

K+1∑
r=1

[

lr∑
i=lr−1+1

ρτ (Yi − br −Xt
iφr) + λ(lr−1;lr)ω̂

t
(lr−1;lr)

|φr|]. (7)

The tuning parameters λ(lr−1;lr) vary from a phase to the other one with the interval length lr−lr−1.

The weight vector is ω̂t(lr−1;lr)
= |φ̂(lr−1;lr)|

−g, with φ̂(lr−1;lr) the quantile estimator of φr calculated
by quantile method, on the observations lr−1 + 1, · · · , lr.

Then the adaptive LASSO quantile estimators for the change-points are the minimizers of the
function S∗:

(l̂∗1, · · · , l̂∗K) ≡ arg min
(l1,··· ,lK)

S∗(l1, · · · , lK).

The adaptive LASSO quantile estimator for the regression parameters is φ̂
∗
(l̂∗r−1;l̂∗r) and for the τth

quantile is b̂∗
(l̂∗r−1;l̂∗r)

, for each r = 1, · · · ,K + 1:

((b̂∗
(l̂∗0 ;l̂∗1)

, φ̂
∗
(l̂∗0 ;l̂∗1)), · · · , (b̂∗(l̂∗K ;l̂∗K+1)

, φ̂
∗
(l̂∗K ;l̂∗K+1))) =

arg min
(φ1, · · · ,φK+1)
(b1, · · · , bK+1)

∑K+1
r=1 [

∑l̂∗r
i=l̂∗r−1+1

ρτ (Yi − br −Xt
iφr) + λ(l̂∗r−1;l̂∗r)ω̂

t
(l̂∗r−1;l̂∗r)

|φr|].

In the next result we show that if in a phase we take in the place of the true parameters those
of the nearby phase, then, we obtain, with a probability close to 1, different values for the objective
function (without penalty).

Lemma 3.1 Under assumptions (A1), (A2), for r = 1, · · · ,K, if lr is such that lr < l0r , lr − l0r =
O(1), we have that there exists two strictly positive constants η, C1, such that

IP

 l0r∑
i=lr+1

[ρτ (εi − b0r+1 −Xt
i(φ

0
r+1 − φ0

r))− ρτ (εi − b0r)] ≥ η(l0r − lr)

 ≥ 1− exp(−C1(l0r − lr)).

Let us now formulate the equivalent to assumption (A1) in the case of a model with (K + 1)
phases, when the change-points are sufficiently far apart, i.e. lr − lr−1 converges to infinity as
n→∞:

(A1bis) (lr − lr−1)−1 maxlr−1<i≤lr Xt
iXi → 0 for n → ∞. We suppose that for each phase

we have that the matrix (lr − lr−1)−1
∑lr

i=lr−1+1 XiX
t
i converges to Υr, as n → ∞, with Υr a

positive definite matrix. Let us denote by Υ0
r the limiting matrix for the true change-points l0r ,

11



r = 1, · · · ,K. We also denote by v0
r,kj the (k, j)th component of matrix Υ0

r .

Following result gives the convergence rate of the adaptive LASSO quantile estimator of the
change-points. The proof is quite technical, that is why we will divide it into three parts. You can
not directly show that the distance between the estimator and the true value of the corresponding
change-point is finished. This is why we first show that this distance is less than [n1/2], afterward
less than [n1/4] and at the end that it is bounded.

Theorem 3.2 Under assumptions (A1bis), (A2), (A3), if the tuning parameter (λ(lr−1,lr))1≤r≤K+1

is a sequence, depending on n, converging to zero, such that (lr − lr−1)1/2λ(lr−1,lr) →∞ and if (cn)
is another deterministic sequence (cn), such that cn → 0, nc2

n/ log n → ∞ and λnc
−2
n → 0, as

n→∞, then we have l̂∗r − l0r = OIP (1) for each r = 1, · · · ,K.

If instead of the parameters l1, · · · , lK we consider the reparametrization θr = lr/n ∈ (0, 1),
with 0 < θ1 < θ2 < · · · θK < 1, the adaptive LASSO quantile estimators are θ̂∗r = l̂∗r/n, which
have a convergence rate of order n−1. This is the classical rate convergence for the change-point
estimators, when the number of regressors is not dependent on n. See for example the paper of [17]
for the LAD estimators, or the paper of [18] for penalized LAD estimators, but not with adaptive
type or LASSO penalty. For the LS method, without penalty, the reader can see [19].

Concerning the estimators φ̂
∗
(l̂∗r−1;l̂∗r), in view of the results obtained in Section 2 and of Theorem

3.2, we have that its convergence rate is of order (l0r − l0r−1)1/2.

For r = 1, · · · ,K + 1 and j = 1, · · · , p, denote by:
φr,j the jth component of the true value φ0

r ,

φ̂∗
(l0r−1;l0r),j

the jth component of the adaptive LASSO estimator φ̂
∗
(l0r−1;l0r),

φ̂∗(l∗r−1;l∗r),j the jth component of the adaptive LASSO estimator φ̂
∗
(l∗r−1;l∗r).

The following Theorem shows that the oracle properties are preserved in a multiphase model.
For each two consecutive true change-points l0r−1, l0r consider the set with the index of nonzero
components of the true regression parameters

A0
r ≡ {j ∈ {1, · · · , p};φ0

r,j 6= 0}

and following set when only the regression parameters are estimated

Â0
n,r ≡ {j ∈ {1, · · · , p}; φ̂∗(l0r−1,l

0
r),j 6= 0}.

Consider also the similar index set corresponding to the adaptive LASSO quantile estimators l̂∗r−1,

l̂∗r of the change-points:
Â∗n,r ≡ {j ∈ {1, · · · , p}; φ̂∗(l̂∗r−1,l̂

∗
r),j
6= 0}.
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In the following theorem, the matrix Υ0
A0
r

contains the elements of matrix Υr, the vectors
(
φ̂
∗
(l̂∗r−1;l̂∗r) − φ0

r

)
A0
r

,(
φ̂
∗
(l̂∗r−1;l̂∗r) − φ0

r

)
A0
r

are subvectors of
(
φ̂
∗
(l̂∗r−1;l̂∗r) − φ0

r

)
,
(
φ̂
∗
(l̂∗r−1;l̂∗r) − φ0

r

)
, respectively, all with the

index in the set A0
r .

Theorem 3.3 Under assumptions (A1bis), (A2), (A3), for a power g > 0 the tuning param-
eter sequence (λ(lr−1,lr))1≤r≤K+1 on each interval (lr−1, lr) as in Theorem 3.2 and also (lr −
lr−1)(g−1)/2λ(lr−1,lr) →∞, as n→∞, we have

(i) (l̂∗r−l̂∗r−1)1/2
(
φ̂
∗
(l̂∗r−1;l̂∗r) − φ0

r

)
A0
r

= (l0r−l0r−1)1/2
(
φ̂
∗
(l̂∗r−1;l̂∗r) − φ0

r

)
A0
r

(1+oIP (1))
L−→

n→∞
N
(
0, (τ(1− τ))f−2(b0r)(Υ

0
A0
r
)−1
)

.

(ii) If the tuning parameter λ(lr−1,lr) satisfies more (lr − lr−1)g/2−1λ(lr−1,lr) →∞, as n→∞, then,

for every r = 1, · · · ,K, we have limn→∞ IP
[
Â0
n,r = Â∗n,r = A0

r

]
= 1.

4 Selection criterion of the number of phases

Let us now give a criterion to estimate the true change-points number, noted K0, of the model (6).
First give some notations and an additional assumption.

Concerning the distribution of error (εi), we suppose that
(A4) 0 < IE[ρτ (ε− b0r)] and IE[ρ2

τ (ε− b0r)] <∞ for all r = 1, · · · ,K0.

If b0r = 0, then the first part of the assumption (A4) amounts to imposing that the mean of |ε|
is bounded and strictly positive. In fact, since |ρτ (ε − b0r) − ρτ (ε)| ≤ |b0r | with probability 1, and
since b0r belongs to a compact set, the assumption (A4) implies that IE[ρτ (ε)] <∞.
The condition IE[ρ2

τ (ε−b0r)] <∞ is necessary to define a consistent criterion in case when the error
distribution changes at the observation l0r , for r = 1, · · · ,K0.

For any number K of changes, we calculate the sum S∗(l1, · · · , lK), defined by the relation (7),
and the corresponding change-point estimators thereby:

(l̂∗1,K , · · · , l̂∗K,K) ≡ arg min
(l1,··· ,lK)

S∗(l1, · · · , lK).

Let us consider the objective function divided by the observation number ŝ∗K ≡ n−1S∗(l̂∗1,K , · · · , l̂∗K,K).
In order to find the estimator of K, let us consider following criterion

B(K) ≡ n log ŝ∗K +G(K, pK)Bn, (8)

where (Bn) is a deterministic sequence converging to infinity such that Bnn
−a → 0, Bnn

−1/2 →∞
as n → ∞. The constant a is that of the supposition (A3). The penalty G(K, p) is a function
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such that G(K1, p) ≤ G(K2, p), for all K1 ≤ K2 and optionally depending on the number p of
parameters to be estimated.

By the proof of Theorem 4.1, we have that ŝ∗K0 converges in probability to
∑K0+1

r=1 IE[ρτ (ε+b0r)].
Then, in order that the proposed criterion is well defined, it is necessary to impose the condition
that each IE[ρτ (ε+ b0r)] is strictly positive and bounded.

We consider as an estimator for K0, the number of change-points that minimizes the criterion
B(K), so

K̂∗n ≡ arg min
K

(n log ŝ∗K +G(K, p)Bn) . (9)

This type of criterion for choosing the change-point number was introduced, as a Schwarz crite-
rion, by [20] for a constant model, scalar, in each phase, with G(K, p) = K. It was after considered,
for an without penalty median model, by [17]. Other information criterion are used to detect the
change number in the papers [21], [22], [23]. In the paper of [24], the empirical likelihood test was
considered to detect a single change against no-change in a linear regression. [25] consider likelihood
ratio type statistic to test the null hypothesis of K changes, against the alternative hypothesis of
(K+1) changes under the assumptions that the errors have mean 0 and bounded variance. But this
approach type has the disadvantage that it must perform successive test to find the true number
K0 of the change-points. The only case when two changes are tested agains no changes is the
particular case of the epidemic charge model. See for example the paper of [26] for the epidemic
change in a constant model.

We prove now that K̂∗n obtained by the relation (9) is a weakly convergent estimator for K0.

Theorem 4.1 Under assumptions (A1bis), (A2)-(A4), if the deterministic sequence (Bn) converg-

ing to infinity is such that n−aBn → 0, n−1/2Bn →∞, as n→∞, then we have that K̂∗n
IP−→

n→∞
K0.

Remark 4.2 In view of the proof of Theorem 4.1, for a fixed index τ , when the error quantile does
not change from one phase to the other, then for assumption (A4) we require only 0 < IE[ρτ (ε −
b0r)] <∞.

5 Simulations

All simulations were performed using the R language. The program codes are available from the
author. First we compare the results of the proposed method with other existing in the literature
for a model with a single phase. After, the best three methods are studied for a multiphase model.

5.1 Models with a single phase

The samples were generated from the following model with a single phase: Yi = Xt
iφ

0 + εi, i =
1, · · · , n, with φ0 = (1, 0, 4, 0,−3, 5, 6, 0,−1, 0), X = (X1, · · · , X10), X3 ∼ N (2, 1), X4 ∼ N (−1, 1),
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X5 ∼ N (1, 1) and Xj ∼ N (0, 1) for j ∈ {1, 2, 6, 7, 8, 9, 10}. For the errors ε, three distributions
were first considered: standard Normal N (0, 1), exponential Exp(−4.5, 1) with the density function
exp(−(x+ 4.5))11x>−4.5, and Cauchy C(0, 1). The sample size is n = 200.

The percentage of zero coefficients correctly estimated to zero (true 0) and the percentage
of nonzero coefficients estimated to zero (false 0) are computed by four methods: least squares
model with adaptive LASSO penalty, median model with LASSO-type penalty, quantile model
with adaptive LASSO and SCAD penalties.
Recall (see the paper of [4]) that the adaptive LASSO estimators for the regression parameters in
a LS model, are the minimizers of the following objective function

n∑
i=1

(Yi −Xiφ)2 + λn$̂n|φ|,

with the adaptive weight p-vector $̂n considered here that |φ̂LSn |−χ. Precise that φ̂
LS

n is the LS
estimator of φ. The adaptive LASSO estimator for LS model has the sparsity property if λn →∞,
n−1/2λn → 0 and n(χ−1)/2λn →∞, as n→∞. We consider then the tuning parameter λn = n2/5

and the power χ = 9/40.
The SCAD estimator for a quantile model (see [8]) is the minimizer of the following objective
function

n∑
i=1

[ρτ (Yi −Xtφ) +

p∑
j=1

pλn(|φ,j |)],

with penalty pλn(|φ,j |) defined by its first derivative

p′λn(|φ,j |) = λn{11|φ,j |≤λn +
(a1λn − |φ,j |)+

(a− 1)λn
11|φ,j |>λn},

for all j = 1, · · · , p, with λn > 0, a1 > 2 deterministic tuning parameters. We take here, for the

SCAD method, the tuning parameters a1 = 5 and λn = 1/|φ̂QLASSOn |. The estimator φ̂
QLASSO

n of
φ is the minimizer of the objective function

∑n
i=1[ρτ (Yi −Xtφ) + λn|φ|, with λn = log n · 1p.

The LASSO-type estimator for a median model (see [5]), is the minimizer of the following objective
function

n∑
i=1

|Yi −Xt
iφ|+ λtn|φ|,

with the tuning parameter λn a random p-vector. We take here λn = n2/5 1

|φ̂QLASSOn |
.

For adaptive LASSO quantile method, given by relation (4), we consider two values for the
power g: a value greater than 1 and another smaller than 1. The tuning parameter is λn = n2/5.

The results obtained by these four methods are presented in Tables 1-3 for 1000 Monte Carlo
replications. For some distributions or some quantile index, there is numerical problems (the

15



Table 1: Model with a single phase. Percentage true 0 and of false 0 by LS+adaptiveLASSO, QUAN-
TILE+adaptiveLASSO, QUANTILE+SCAD, LAD+LASSOtype methods for n = 200, εi ∼ N (0, 1).

τ ↓ Method → LS+aLASSO QUANT+aLASSO QUANT+aLASSO QUANT+SCAD LAD+LASSOtype
parameters → χ = 9/40 g1 = 12.25/10 g2 = 9/40

0.15 % of trues 0 1 1 0.77 0.47 0.99
% of false 0 0.005 0 0 0 0

0.50 % of trues 0 1 1 0.64 0.55 0.99
% of false 0 0.01 0 0 0 0

0.95 % of trues 0 1 1 0.93 ??? 0.99
% of false 0 0.01 0 0 ??? 0

Table 2: Model with a single phase. Percentage true 0 and of false 0 by adaptive LASSO least squares, adaptive
LASSO quantile, QUANTILE+SCAD, LAD+LASSOtype methods for n = 200, εi ∼ Exp(−4.5, 1).

τ ↓ Method → LS+aLASSO QUANT+aLASSO QUANT+aLASSO QUANT+SCAD LAD+LASSOtype
parameters → χ = 9/40 g1 = 12.25/10 g2 = 9/40

0.15 % of trues 0 0.99 1 0.88 0.28 0.66
% of false 0 0.01 0 0 0 0

0.50 % of trues 0 1 1 0.71 0.28 0.67
% of false 0 0.01 0 0 0 0

0.95 % of trues 0 1 0.99 0.90 ??? 0.67
% of false 0 0.01 0.02 0.01 ??? 0

function rq of the package quantreg of R language does not respond) for the SCAD method. Then,
in Tables 1-3, this is symbolised by ”???”. The numerical problems of the SCAD method have been
also identified by [5] who proposed the LASSO-type penalty for median regression.

5.1.1 Sparsity property

For the adaptive LASSO quantile method proposed in this paper, considering three error distribu-
tions, we deduce from Tables 1-3 that the sparsity is not satisfied when the power g of the adaptive
weight is smaller than 1. This is in concordance with the condition imposed in statement (ii) of the
Theorem 2.3: ng/2−1λn → ∞. In all of the above simulations, we have the following conclusions:
for g > 1, the performance of the adaptive LASSO quantile estimations are always better than
the SCAD, median (LAD) model with LASSO-type penalty and adaptive LASSO (for LS model)
estimators, for the heavy-tailed errors.

In view of the obtained results, presented in Tables 1-3, the penalty SCAD and the parameter
g < 1 for the adaptive LASSO quantile methods are abandoned.

Based on 1000 Monte-Carlo replications, in Figures 1, 2, 3, 4 we represent the graph of the
percentages of true 0 and of false 0 obtained by three estimation methods:

• for LS model with adaptive LASSO penalty (dotted line),
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Table 3: Model with a single phase. Percentage true 0 and of false 0 by LS+adaptiveLASSO, QUAN-
TILE+adaptiveLASSO, QUANTILE+SCAD, LAD+LASSOtype methods for n = 200, εi ∼ C(0, 1).

τ ↓ Method → LS+aLASSO QUANT+aLASSO QUANT+aLASSO QUANT+SCAD LAD+LASSOtype
parameters → χ = 9/40 g1 = 12.25/10 g2 = 9/40

0.15 % of trues 0 0.43 0.93 0.69 ??? 0.99
% of false 0 0.08 0.03 0.025 ??? 0

0.50 % of trues 0 0.44 0.99 0.64 ??? 0.98
% of false 0 0.08 0 0 ??? 0

0.95 % of trues 0 0.43 0.66 0.77 ??? 0.98
% of false 0 0.08 0.24 0.28 ??? 0

• for quantile model with adaptive LASSO penalty (solid line),

• for median model with LASSO-type penalty (long dash line),

each for errors with four possible distributions: Normal, Exponential, Cauchy and Exp(−4.5, 1) +
C(0, 2).
For Gaussian errors, these three methods give very satisfactory results (see Figure 1). For Exponen-
tial errors Exp(−4.5, 1), the LASSO-type method does not well identify the true zeros (see Figure
2) since this method is build for median regression. For Cauchy errors C(0, 1) (then moments of
errors don’t exist) the adaptive LASSO method for LS model provides estimates that don’t have
the sparsity property (see Figure 3). The superiority of the adaptive LASSO quantile method is
considerably higher when errors are a sum of Exponential and Cauchy laws (see Figure 4).

We note that, in Figures 1-4, for the LS model with adaptive LASSO penalty (dotted line), the
quantile index τ is not useful, the represented values of the true or false zeros are in fact Monte
Carlo replications.

5.1.2 Conclusion

In conclusion, for an uniphase model, adaptive LASSO quantile method provides very satisfactory
results of sparsity for each distribution error, tacking as quantile index τ ∈ [0.4; 0.6].

For the sparsity property, the power g of the relation (4), should be greater than 1. Condition
on g in concordance with the condition imposed in statement (ii) of Theorem 2.3.

The quantile model with SCAD penalty gives bad sparsity results, and moreover, it has numerical
problems.

Concerning the sparsity, the adaptive LASSO quantile model, the adaptive LASSO method for
LS model and LASSO-type method for median model, give very satisfactory results for Gaussian
errors. The adaptive LASSO quantile method stands out to be the best method, in terms of variable
selection, when moments of errors don’t exist or when median of errors is different to zero.
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Figure 1: Percentage of true 0 and of
false 0 by LS+aLASSO, QUANTILE+aLASSO,
LAD+LASSOtype methods, εi ∼ N (0, 1).

Figure 2: Percentage of true 0 and of false
0 by LS+aLASSO, QUANTILE+aLASSO,
LAD+LASSOtype methods, εi ∼ Exp(−4.5, 1).
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Figure 3: Percentage of true 0 and of
false 0 by LS+aLASSO, QUANTILE+aLASSO,
LAD+LASSOtype methods, εi ∼ C(0, 1).

Figure 4: Percentage of true 0 and of false
0 by LS+aLASSO, QUANTILE+aLASSO,
LAD+LASSOtype methods, εi ∼ Exp(−4.5, 1) +
C(0, 2).

5.2 Multiphase models

In view of the results for uniphase model, we will consider in this subsection only three estimation
methods: adaptive LASSO quantile, adaptive LASSO for LS model and LASSO-type for median
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model. For each of the three methods, we have considered the same powers, tuning parameters
as is the previous sub-section, with the only difference that instead of n we take lr − lr−1, for
r = 1, · · · ,K + 1. The quantile index τ for quantile model with adaptive LASSO penalty is con-
sidered 0.55.

5.2.1 Fixed phase number

We consider that the change number is known and it is equal to two (three phases). The true
change-points are in l01 = 30, l02 = 100 for n = 200 observations. In Tables 4 and 5, we present
simulation results for models with regression parameters which differ from one phase to the other:
φ0

1 = (1, 0, 4, 0,−3, 5, 6, 0,−1, 0), φ0
2 = (0, 3,−4,−3, 0, 1, 2,−3, 0, 10), φ0

3 = (1, 3, 4, 0, 0, 1, 0, 0, 0, 1).
The random vector X is as in the Subsection 5.1.

In Tables 6 and 7, we present simulation results when the regression parameters for the first
two phases are the same (φ0

1 = φ0
2) and only the error distributions are different. In Tables 4

and 6 we present the percentage of true and of false zero, in each interval, for the three methods,
when different error distributions are in each phase. In Tables 5 and 7 we give the median of the
change-points estimations by the three methods. In order to simply the presentation, in these four
tables, it was noted by aQ the adapted LASSO quantile method, by Lt the LASSO-type method
for median model and by aLS the adaptive LASSO method for LS model. We calculate bias of the
each estimates, the mean of the differences (φ̂ − φ0)A0 and the approximation of the estimation
variances 1/M‖(φ̂−φ0)A0‖22, with M the Monte Carlo replications number, and with A0 the index
set of the nonzero true values. In Tables 4 - 7, the law E1 is Exp(−4.5, 1), E2 is Exp(1.5, 1), E3 is
Exp(−6.5, 1). The Cauchy distribution is C(0, 1) and Gaussian distribution is N (0, 1).

Comparison of the obtained results by the three estimation methods.
For phases where error distributions are exponential or Cauchy, the adaptive LASSO quantile

method gives the best results in terms of true zeros or false zeros percentage, bias and precision of
the nonzero parameters.

Note that, in all situations when the regression parameters are different from one phase to the
other, by the three methods, the median of the change-points estimations coincides or is very close
to the true value.

Comparing the last three rows of the Tables 5 and 7, we conclude that the adaptive LASSO
method for LS model gives less accurate change-points estimates when the change-point is between
two phases with the same regression parameters and error distributions are two exponential law.
Generally, for the LS model with adaptive LASSO penalty, satisfactory results are obtained in a
phase with Gaussian errors, while for Exponential or Cauchy distributions, poor results are ob-
tained. Recall that for a model with a single phase, the adaptive LASSO method for LS model
gave satisfactory results for Gaussian and Exponential errors, and poor results for Cauchy errors
(see Tables 1, 2, 3).
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By LASSO-type method, the phases with Exponential errors are poorly estimated.
Comparing the Tables 4 with 6 and Tables 5 with 7, we deduce that selection percentage of the

true zeros by adaptive LASSO quantile method decreases slightly for the first phase when φ0
1 = φ0

2.
However, this method is better than two other methods, especially with regards to the bias and
precision of estimators for the nonzero regression parameters.

Conclusion
To conclude, by the adaptive LASSO quantile and LASSO-type methods, the change-points

estimation did not affect the sparsity property of the regression parameter estimates. On the other
hand, the adaptive LASSO quantile estimators for the nonzero regression parameters are more
accurate (in terms of bias and variance) than corresponding LASSO-type estimators.

5.2.2 Estimation of the change-point number

In Table 8 we give results, after 100 Monte Carlo replications, in order to estimate the number of
phases using relation (9). There was one change-point to the observation l01 = 30 for a total of 100
observations. The change in the model is due either to the change in the regression parameters
(φ0

1 6= φ0
2) or to the change in quantile of the error (for the same index τ).

We compare the criterion proposed in this paper for the adaptive LASSO quantile method with
the criterion proposed in the paper of [12], for the adaptive LASSO method for LS model. In the
paper of [13], where the LASSO-type method for a median model with change-points has been
studied, there is no criterion proposed to estimate the true number of change-points. Therefore,
we propose here a criterion of the same shape as for the adaptive LASSO quantile method: to the
corresponding penalized objective function add a term of the form G(K, p)Bn with G(K, p) = K
and the sequence Bn = n5/8. The criterion values for the three methods are calculated for K ∈
{0, 1, 2, 3}. For the adaptive LASSO quantile method we consider τ = 0.55.

From Table 8, we deduce that, the criteria associated to the three methods choose correctly
the change-point number when the change is due to the regression parameters. On the other
hand, when the change is due only to the quantile, i.e. φ0

1 = φ0
2 = (1, 0, 4, 0,−3, 5, 6, 0,−1, 0),

then, if the errors come from the same distribution (Exponential) but with different quantiles, the
criterion for the adaptive LASSO quantile method does not identify whenever the change (only
62/100), the criterion for the LASSO-type method never identifies the change, while that for the
adaptive LASSO method for LS model identifies 10/100. The results improve for adaptive LASSO
quantile and LASSO-type methods when the errors of the two phases have different distributions
(Exponential and Gaussian).
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Table 4: Model with three phases. φ0
1 6= φ0

2 6= φ0
3. Percentage true 0 and of false 0 by adaptive LASSO quantile,

LASSO-type for median model and adaptive LASSO for LS model.
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Table 5: Model with three phases. φ0
1 6= φ0

2 6= φ0
3. Summary statistics by adaptive LASSO quantile, LASSO-type

for median model and adaptive LASSO for LS model.

error distribution median(l̂1) median(l̂2) mean(φ̂− φ0)A0 mean|(φ̂− φ0)A0 | 1/M‖(φ̂− φ0)A0‖22
aQ Lt aLS aQ Lt aLS aQ Lt aLS aQ Lt aLS aQ Lt aLS

ε1, ε2, ε3 ∼ E1 30 30 30 100 100 100 -0.03 -0.25 -0.31 0.15 0.49 0.65 0.90 7.5 10.3
ε1, ε2, ε3 ∼ N 30 31 31 100 100 100 -0.02 -0.03 -0.31 0.17 0.17 0.65 1 1.12 9.8

ε1, ε2,∼ E1, ε3 ∼ N 30 30 30 100 100 100 -0.03 -0.17 -0.31 0.16 0.26 0.64 0.94 2.87 9.9
ε1, ε3,∼ E1, ε2 ∼ N 31 30 31 100 100 100 -0.02 -0.22 -0.32 0.16 0.38 0.64 0.93 5.7 9.8
ε1, ε3,∼ N , ε2 ∼ E1 30 30 30 100 100 100 -0.03 -0.08 -0.29 0.16 0.28 0.64 0.96 3 9.5
ε1, ε3,∼ E1, ε2 ∼ C 31 31 31 100 100 100 -0.05 -0.25 -0.37 0.26 0.49 4.8 2.7 7.5 41478
ε1, ε3,∼ E2, ε2 ∼ E1 30 30 30 100 100 100 -0.02 0.03 -0.28 0.15 0.40 0.64 0.84 5.08 10.01
ε1, ε3,∼ E3, ε2 ∼ E1 30 30 31 100 100 100 -0.03 -0.34 -0.34 0.15 0.62 0.68 0.87 13.2 11.9
ε1 ∼ E3, ε2, ε3 ∼ E1 30 30 31 100 100 100 -0.02 -0.31 -0.34 0.15 0.56 0.68 0.81 10.7 11.6

6 Proofs

For the convenience of the reader, recall first a lemma due to [2].

Lemma 6.1 ([2], Lemma 1)
Let Zi be a sequence of independent random variables with mean zero and |Zi| ≤ β for some β > 0.
Let also V ≥

∑n
i=1 IE[Z2

i ]. Then for all 0 < s < 1 and 0 ≤ z ≤ V/(sβ), we have

IP

[∣∣∣∣∣
n∑
i=1

Zi

∣∣∣∣∣ > z

]
≤ 2 exp

(
−z2s(1− s)/V

)
. (10)

This section is divided into two subsections. In the first subsection we give the proofs of all
Theorems and Propositions. In the second subsection, we present the lemma proofs.

6.1 Proposition and Theorem proofs

Proof of Proposition 2.2 (i) For all j ∈ A∗n, the estimator φ̂∗n,j is the solution of the equation:

0 =
∑n

i=1
∂R

(τ,λ)
i (b,φ;b0,φ0)

∂φ,j
. By elementary algebra we obtain that

n∑
i=1

∂R
(τ,λ)
i (b,φ; b0,φ0)

∂φ,j
= −τXij +Xij11Yi<Xt

iφ
+ λnω̂n,jsgn(φ,j)

and the assertion affirmation (i) follows.
(ii) In this case, the subgradient set ∂‖0j‖1 is the closed interval [−1, 1]. Then

0 ∈
n∑
i=1

∂R
(τ,λ)
i (b,φ; b0,φ0)

∂φ,j
= −τXij +Xij11Yi<Xt

iφ
+ λnω̂n,j [−1, 1].
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Table 6: Model with three phases. φ0
2 = φ0

1, φ
0
2 6= φ0

3. Percentage true 0 and of false 0 by adaptive LASSO quantile,
LASSO-type for median model and adaptive LASSO for LS model.
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Table 7: Model with three phases. φ0
2 = φ0

1, φ
0
2 6= φ0

3. Summary statistics by adaptive LASSO quantile, LASSO-
type for median model and adaptive LASSO for LS model, n = 200, l01 = 30, l02 = 100.

error distribution median(l̂1) median(l̂2) mean(φ̂− φ0)A0 mean|(φ̂− φ0)A0 | 1/M‖(φ̂− φ0)A0‖22
aQ Lt aLS aQ Lt aLS aQ Lt aLS aQ Lt aLS aQ Lt aLS

ε1, ε3,∼ E1, ε2 ∼ N 32 31 28 100 100 100 -0.04 -0.23 -0.33 0.15 0.43 0.63 0.79 6.1 8.8
ε1, ε3,∼ N , ε2 ∼ E1 28 30 26 100 100 100 -0.04 -0.12 -0.32 0.22 0.29 0.65 2.3 3.06 9.6
ε1, ε3,∼ E1, ε2 ∼ C 31 31 39 100 100 99 -0.06 -0.22 -0.35 0.28 0.44 1.32 3.2 6.1 316
ε1, ε3,∼ E2, ε2 ∼ E1 32 31 30 100 100 100 -0.07 -0.007 -0.29 0.25 0.42 0.64 3.2 5.2 9.2
ε1, ε3,∼ E3, ε2 ∼ E1 31 30 25 101 100 100 -0.04 -0.45 -0.38 0.19 0.71 0.72 1.66 16.9 12.45
ε1 ∼ E3, ε2, ε3 ∼ E1 34 30 27 100 100 100 -0.05 -0.37 -0.38 0.22 0.63 0.74 2.9 13.4 13

Table 8: Results on the choice of the change-point number by the criteria associated to the methods: adaptive
LASSO quantile, adaptive LASSO for LS model and LASSO-type for median(LAD) model, K0 = 1. 100 Monte
Carlo replications. Number of K̂ = 0,1,2,3 for 100 Monte Carlo replications.

φ1,φ2 error distribution QUANT+aLASSO LS+aLASSO LAD+LASSOtype

number of K̂ = number of K̂ = number of K̂ =
0 1 2 3 0 1 2 3 0 1 2 3

φ0
1 = φ0

2 ε1 ∼ E1, ε2 ∼ E3 36 62 1 1 88 10 1 1 100 0 0 0
ε1 ∼ E1, ε2 ∼ N (0, 1) 0 99 1 0 54 66 0 0 1 99 0 0

φ0
1 6= φ0

2 ε1 ∼ E1, ε2 ∼ E3 0 100 0 0 0 100 0 0 0 100 0 0
ε1 ∼ E1, ε2 ∼ N (0, 1) 0 100 0 0 0 100 0 0 0 100 0 0

This leads conclusion. �

Proof of Theorem 2.3 (i) We reparameterize the model: un =
√
n(φ̂

∗
n−φ0) and u0,n =

√
n(b̂∗n−

b0). Then (u0,n,un) is the minimizer of the criterion

n∑
i=1

[
ρτ

(
εi − b0 − n−1/2(u0,n + Xt

iun)
)
− ρτ (εi − b0)

]
+ λnω̂

t
n[|φ0 + unn

−1/2| − |φ0|].

The rest of the proof is similar as that of Theorem 4.1 in the paper of [10] and we omit it. With
the remark that in our case (more general than in [10]) the supposition n(g−1)/2λn →∞ is required
to prove, in the case φ0

,j = 0 and un,j 6= 0, that

λn√
n|φ̂n|g

√
n

(∣∣∣∣φ0
,j +

un,j√
n

∣∣∣∣− |φ0
,j |
)

IP−→
n→∞

∞.

(ii) If j ∈ A0, then φ0
,j 6= 0. Since φ̂∗n,j is the corresponding estimator of φ0

,j , and is asymptotically

normal, thus j ∈ Â∗n with probability tending to 1. Then limn→∞ IP [Â∗n ⊇ A0] = 1.
For the reverse inclusion, we show that if j 6∈ A0 then j 6∈ Â∗n. Let us calculate IP [j ∈ Â∗n, j 6∈ A0].
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Since j ∈ A∗n it follows from the KKT optimality conditions of the Proposition 2.2(i), that

τ
n∑
i=1

Xij −
n∑
i=1

Xij11Yi<Xt
iφ̂
∗
n

= λnω̂n,jsgn(φ̂∗n,j),

which implies that

λnω̂n,j < 2

n∑
i=1

|Xij |. (11)

For the left member of the last inequality, we have

λnω̂n,j
n

= λn
1

|n1/2φ̂n,j |g
· n

g/2

n
, (12)

where φ̂n,j is the quantile estimator of φ0
,j . On the other hand, since j 6∈ A0, we have that φ0

,j = 0.

Using the fact that φ̂n,j is strongly consistent and asymptotically normal, we have that for all ε > 0,
there exists ηε > 0 such that

IP [n−1/2|φ̂n,j |−1 > ηε] > 1− ε. (13)

Since ng/2−1λn → ∞, with the relation (13), we obtain that (12) converges to infinity with
probability converging to 1 as n → ∞. On the other hand, by the Cauchy-Schwarz inequality

n−1
∑n

i=1 |Xij | ≤
(
n−1

∑n
i=1X

2
ij

)1/2
, which is bounded with probability converging 1, by assump-

tion (A1). Taking into account (11), we obtain that (12) is bounded. Contradiction. This completes
the proof. �

Proof of Proposition 2.6 Let us denote hi = b0 − b+ Xt
i(φ

0 − φ). Then

IE[R
(τ)
i (b,φ; b0,φ0)] =

∫
R

[ρτ (u+ hi)− ρτ (u)]dF (u+ b0).

If hi ≤ 0. By elementary calculations we obtain
∫ 0
−∞[ρτ (x−hi)−ρτ (x)]dF (x+b0) = −τ(1−τ)hi

and also
∫∞

0 [ρτ (x − hi) − ρτ (x)]dF (x + b0) = τ(1 − τ)hi −
∫ −hi

0 [hi(1 − τ) + τhi + x]dF (x + b0).

Then, in this case IE[R
(τ)
i (b,φ; b0,φ0)] =

∫ −hi
0 [−x+ |hi|]dF (x+ b0).

If hi > 0. By similar calculations as above we obtain that IE[R
(τ)
i (b,φ; b0,φ0)] =

∫ 0
−hi [x +

|hi|]dF (x+ b0).
Thus, we can write all this in a more condensed rule:

IE[R
(τ)
i (b,φ; b0,φ0)] ≥ 11hi>0

|hi|
2

∫ 0

−hi
2

dF (x+ b0) + 11hi≤0
|hi|
2

∫ −hi
2

0
dF (x+ b0)
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=
|hi|
2

[
11hi>0[F (b0)− F (b0 − hi/2)] + 11hi≤0[F (b0 − hi/2)− F (b0)]

]
≥ 0.

�

Proof of Theorem 3.2. Step I. We prove that, with probability approaching 1, the adaptive

LASSO quantile change-point estimators are to a smaller distance than [n1/2]. For this purpose,
let us consider the constant % ∈ (α,min(1, (1 + g)/2)), with α > 1/2 as in Lemma 2.8. We will
prove that: IP [|l̂∗r − l0r | > n%]→ 0 as n→∞, for each r = 1, · · · ,K.
Consider the set of change-points, all close to the true points at a distance less [n%]:

L(%) ≡ {(l1, · · · , lK);
K∑
r=

|lr − l0r | ≤ [n%]}.

Consider a subset of its complementary, for some r ∈ {1, · · · ,K}:

Lcr(%) ≡ {(l1, · · · , lK); |lt − l0r | > n%,∀t = 1, · · · ,K},

with all the change-points to a distance of l0r greater than [n%]. By the definition of the objective
function S∗ we have, for all (l1, · · · , lK) ∈ Lcr(%), with probability 1:

S∗(l1, · · · , lK) ≥ S∗(l1, · · · , lK , l01, · · · , l0r−1, l
0
r − [nρ], l0r + [nρ], l0r+1, · · · , l0K) ≡

K+2∑
q=1

Tq, (14)

where Tq are, for q ∈ {1, · · · , r − 1, r + 1, · · · ,K + 2}, the penalized sums involving observations
between l0q−1 and l0q . Tr is the penalized sum involving observations between l0r−1 and l0r − [n%] and

Tr+1 between l0r + [n%] and l0r+1; TK+2 is calculated between l0r − [n%] and l0r + [n%]. Note that the
sum S∗(l1, · · · , lK , l01, · · · , l0r−1, l

0
r − [nρ], l0r + [nρ], l0r+1, · · · , l0K) is the extension of the definition (7)

for 2K + 1 change-points: l1, · · · , lK , l01, · · · , l0r−1, l
0
r − [nρ], l0r + [nρ], l0r+1, · · · , l0K .

Since (l1, · · · , lK) ∈ Lcr(%), all change-points l1, · · · , lK are in T1, · · · , Tr−1, · · · , TK+1 and none in
TK+2. For each q ∈ {1, · · · , r − 1, r + 1, · · · ,K + 2}, let us consider the points between two true
consecutive change-points k1,q < · · · < kJ(q),q ≡ {l1, · · · , lK} ∩ {j; l0q−1 < j ≤ l0q}. The number J(q)
is greater (or equal) than zero and smaller (or equal) than K, with the property that for q 6= q′,
J(q) 6= J(q′). The penalized sum Tq can be written

Tq =

J(q)+1∑
j=1

min
bj ,φj

[

kj,q∑
i=kj−1,q+1

ρτ (εi − bj −Xt
i(φj − φ0

q)) + λ(kj−1,q ;kj,q)ω̂
t
(kj−1,q ;kj,q)

|φj |].

It is obvious that

0 ≥ Tq −
J(q)+1∑
j=1

[

kj,q∑
i=kj−1,q+1

ρτ (εi − b0q) + λ(kj−1,q ;kj,q)ω̂
t
(kj−1,q ;kj,q)

|φ0
t |]
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≥ −2(K + 1) sup
0≤l<k≤n,k−l=dn

| inf
b,φ

k∑
i=l+1

R
(τ,λ)
i,(l;k)(b,φ; b0,φ0)|,

with l and k two observations without any change between they, b0,φ0 the true values of the
parameters on this interval and dn a convergent sequence to ∞ when n converges to ∞. Due to
Lemma 2.8,

2(K + 1) sup
0≤l<k≤n,k−l=dn

| inf
b,φ

k∑
i=l+1

R
(τ,λ)
i,(l;k)(b,φ; b0,φ0)| = −min(OIP (nα), oIP (n(1+g)/2)). (15)

For the observations between l0r − [n%] and l0r + [n%], we have that:

Tr −
J(r)+1∑
j=1

[

kj,r∑
i=kj1,r+1

ρτ (εi − b0r) + λ(kj−1,r;kj,r)ω̂
t
(kj−1,r;kj,r)

|φ0
r |+ λ(kj−1,r;kj,r)ω̂

t
(kj−1,r;kj,r)

|φ0
r+1|]

=

J(r)+1∑
j=1

min
bj ,φj

[

kj,r∑
i=kj1,r+1

ρτ (εi − bj −Xt
i(φj − φ0

t ))− ρτ (εi − b0r) + λ(kj−1,t;kj,t)ω̂
t
(kj−1,t;kj,t)

|φj |]

−λ(kj−1,r;kj,r)ω̂
t
(kj−1,r;kj,r)

[|φ0
r |+ |φ0

r+1|].

But for (l1, · · · , lK) ∈ Lcr(%), there is no other change-point between l0r − [n%] and l0r + [n%], so this
last relation is in fact

min
b,φ

[

l0r∑
i=l0r−[n%]+1

R
(τ,λ)
i;(l0r−[n%];l0r)

(b,φ; b0r ,φ
0
r) +

l0r+[n%]∑
i=l0r+1

R
(τ,λ)
i;(l0r ;l0r+[n%])

(b,φ; b0r+1,φ
0
r+1)]. (16)

Since to left and to right of l0r we have different models, then (b0r ,φ
0
r) 6= (b0r+1,φ

0
r+1). This implies

that for the (b,φ) which minimizes (16) we have either |b− b0r |+ ‖φ−φ0
r‖2 > c > 0 or |b− b0r+1|+

‖φ − φ0
r+1‖2 > c > 0. Without loss of generality, consider the last case. Using Lemma 2.10 for

cn = c > 0 on the interval (l0r , l
0
r + [n%]), we obtain that, there exists ε > 0 such that

c−1[n%]−1

l0r+[n%]∑
i=l0r+1

R
(τ,λ)
i;(l0r ;l0r+[n%])

(b,φ; b0r+1,φ
0
r+1) > ε > 0.

Thus

inf
b,φ

l0r+[n%]∑
i=l0r+1

R
(τ,λ)
i;(l0r ;l0r+[n%])

(b,φ; b0r+1,φ
0
r+1) ≥ OIP (n%) > 0. (17)
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Figure 5:

Then, taking into account the relations (14), (15), (16), (17) and the fact that by definition of
S∗, we have that S∗(l̂∗, · · · , l̂∗K) ≤ S∗0 with probability 1, we obtain that S∗(l1, · · · , lK) − S∗0
is greater than

∑K+2
q=1 Tq − S∗0 which is greater than −min(OIP (nα), oIP (n(1+g)/2)) + OIP (n%) +∑K+2

q=1

∑J(q)+1
j=1 λ(kj−1,q ,kj,q)ω̂(kj−1,q ,kj,q) −

∑K+1
r=1 λ(l0r−1,l

0
r)ω̂

t
(l0r−1;l0r)|φ

0
r | = OIP (n%) + oIP (n(g+1)/2) =

OIP (n%) > 0. Then, for n→∞,

IP [ min
(l1,··· ,lK)∈Lcr(%)

S∗(l1, · · · , lK) > S∗0 ]→ 1.

On the other hand, since (l̂∗, · · · , l̂∗K) are the change-points estimators, we have that S∗(l̂∗1, · · · , l̂∗K) ≤
S∗0 , with probability 1. These last two relations imply

IP [(l̂∗1, · · · , l̂∗K) ∈ Lcr(%)]→ 0, as n→∞, for every r = 1, · · · ,K.

Step II. We show that for all ν < 1/4, for every r = 1, · · · ,K we have IP [|l̂∗r − l0r | > nν ] → 0, as
n→∞.

By Step I, we have IP [(l̂∗1, · · · , l̂∗K) ∈ L(%)] → 1, as n → ∞. Consider then the change-points
(l1, · · · , lK) belonging to the set L(%) and (l1, · · · , lK) ∈ Lcr(ν), where Lcr(ν) is similar to the set
Lcr(%) with ν instead of %. For these change-points, there is a similar relation to (14) for the
objective function S∗. For q 6= r − 1, r, by assumption (A3), using step I, we have that there are
at most two points lq and lq+1 between l0q and l0q+1. Suppose that there are two points lq and lq+1

between l0q and l0q+1 (see Figure 5). If there is a single point or no point the approach is the same.
Let us define the following sums

D(l0q , l
0
q+1) ≡ infb,φ{

∑lq
i=l0q+1

ρτ (εi − b−Xt
i(φ− φ0

q+1)) + λ(l0q ;lq)ω̂
t
(l0q ;lq)

|φ|}

+ infb,φ{
∑lq+1

i=lq+1 ρτ (εi − b−Xt
i(φ− φ0

q+1)) + λ(lq ;lq+1)ω̂
t
(lq ;lq+1)|φ|}

+ infb,φ{
∑l0q+1

i=lq+1+1 ρτ (εi − b−Xt
i(φ− φ0

q+1)) + λ(lq+1;l0q+1)ω̂
t
(lq+1;l0q+1)|φ|}.

The sums D(l0r−1, l
0
r − [nν ]), D(l0r + [nν ], l0r+1), D(l0r − [nν ], l0r + [nν ]) can be defined in the same way.

Then, for the difference between the following two objective functions

S∗(l1, · · · , lK , l01, · · · , l0r−1, l
0
r − [nν ], l0r + [nν ], l0r+1, · · · , l0K)− S∗0 ,
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we focus on what happens between two change-points. This last difference can be written

∑
q 6=r−1,r

{
D(l0q , l

0
q+1) −

∑l0q+1

i=l0q+1
ρτ (εi − b0q+1)− λ(l0q ;l0q+1)ω̂

t
(l0q ;l0q+1)|φ

0
q+1|

}
+
{
D(l0r−1, l

0
r − [nν ])−

∑l0r−[nν ]

i=l0r−1+1
ρτ (εi − b0r) −λ(l0r−1;l0r−[nν ])ω̂

t
(l0r−1;l0r−[nν ])|φ

0
r |
}

+

{
D(l0r + [nν ], l0r+1)−

∑l0r+1

i=l0r+[nν ]+1
ρτ (εi − b0r+1) −λ(l0r+[nν ];l0r+1)ω̂

t
(l0r+[nν ];l0r+1)|φ

0
r+1|

}
+
{
D(l0r − [nν ], l0r + [nν ]) −

∑l0r+[nν ]
i=l0r+1

ρτ (εi − b0r+1) −λ(l0r ;l0r+[nν ])ω̂
t
(l0r ;l0r+[nν ])|φ

0
r+1|

−
∑l0r

i=l0r−[nν ]+1
ρτ (εi − b0r) −λ(l0r−[nν ];l0r)ω̂

t
(l0r−[nν ];l0r)|φ

0
r |
}
≡ D1 +D2 +D3 +D4.

By Remark 2.11, we have that D1, D2, D3 = OIP (1).
For D4 we have by the definition of sums D that D(l0r − [nν ], l0r + [nν ]) is equal to

infb,φ{
∑l0r

i=l0r−[nν ]+1
ρτ (εi − b−Xt

i(φ− φ0
r)) + λ(l0r−[nν ];l0r)ω̂

t
(l0r−[nν ];l0r)|φ|

+
∑l0r+[nν ]

i=l0r+1
ρτ (εi − b−Xt

i(φ
0
r+1)) + λ(l0r ;l0r+[nν ])ω̂

t
(l0r ;l0r+[nν ])|φ|}.

Applying Lemma 2.10 for cn = c on the one of the intervals (l0r − [nν ]; l0r) or (l0r ; l
0
r + [nν ]), (it is

the one where |b − b0| + ‖φ − φ0‖2 > c̃ > 0), we have D4 = OIP (nν) > 0. Then, with probability
converging to 1, as n→∞, we have

inf
(l1,··· ,lK)∈Lcr(ν)

[
S∗(l1, · · · , lK , l01, · · · , l0r−1, l

0
r − [nν ], l0r + [nν ], l0r+1, · · · , l0K)− S∗0

]
> OIP (nν). (18)

Therefore, we have proved that IP [(l̂∗1, · · · , l̂∗K) ∈ Lcr(ν)]→ 0, as n→∞.

Step III. We now prove that l̂∗r − l0r = OIP (1), for each r = 1, · · · ,K.

Let the set: L(ν) ≡
{

(l1, · · · , lK); |lt − l0t | < [nν ], ∀t = 1, · · · ,K
}

with ν < 1/4. As a consequence

of the Step II, for n large, the estimator (l̂∗1, · · · , l̂∗K) belongs to L(ν) with a probability tending to
1. We use the reduction to absurdity method, supposing that there exists a change-point estimator
at an unbounded distance from the true value. Consider then, for aM1 > 0 (to be determine later)
the following set:

Lr(ν,M1) ≡
{

(l1, · · · lK) ∈ L(ν); lr − l0r < −M1

}
.

The case lr−l0r >M1 is similar. We shall find aM1 such that the probability that the change-point
estimator belongs to the set Lr(ν,M1) converges to 0.
Consider two vectors of change-points (m1, · · · ,mK) ∈ L(ν) and (l1, · · · , lK) ∈ Lr(ν,M1) such
that mt = lt for t 6= r and mr = l0r . We have for the difference of the corresponding objective
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functions:

S∗(l1, · · · , lK)− S∗(m1, · · · ,mK) = {
∑lr

i=lr−1+1[ρτ (Yi − b̂∗(lr−1,lr)
−Xt

iφ̂
∗
(lr−1,lr))

−ρτ (Yi − b̂∗(lr−1,l0r) −Xt
iφ̂
∗
(lr−1,l0r))] + λ(lr−1,lr)ω̂

t
(lr−1,lr)

|φ̂∗(lr−1,lr)| − λ(lr−1,l0r)ω̂
t
(lr−1,l0r)|φ̂

∗
(lr−1,l0r)|}

+{
∑l0r

i=lr+1[ρτ (Yi − b̂∗(lr,lr+1) −Xt
iφ̂
∗
(lr,lr+1))− ρτ (Yi − b̂∗(lr−1,l0r) −Xt

iφ̂
∗
(lr−1,l0r))]}

+{
∑lr+1

i=l0r+1
[ρτ (Yi − b̂∗(lr,lr+1) −Xt

iφ̂
∗
(lr,lr+1))− ρτ (Yi − b̂∗(l0r ,lr+1) −Xt

iφ̂
∗
(l0r ,lr+1))]

+λ(lr,lr+1)ω̂
t
(lr,lr+1)|φ̂

∗
(lr,lr+1)| − λ(l0r ,lr+1)ω̂

t
(l0r ,lr+1)|φ̂

∗
(l0r ,lr+1)|}

≡ {S11 + S12}+ {S21}+ {S31 + S32}.

Taking into account Remark 2.11, is easily obtained that S11 = OIP (1), uniformly in M1. Taking
into account that λ(lr−1,lr) = O((lr − lr−1)1/2) together the properties of strong convergence of

the quantile estimator φ̂(lr−1,lr) and of adaptive quantile estimator φ̂
∗
(lr−1,lr), we obtain that S12 =

oIP (l0 − lr). Similarly, we have that S31 = OIP (1) and S32 = oIP (l0 − lr).
It remains to study the most difficult part, that is, S21, which can be written

S21 =
∑l0r

i=lr+1R
(τ)
i (b0r+1,φ

0
r+1; b0r ,φ

0
r) −

∑l0r
i=lr+1[ρτ (εi − b̂∗(lr,lr+1) − Xt

i(φ̂
∗
(lr,lr+1) − φ0

r)) − ρτ (εi −

b0r+1 −Xt
i(φ

0
r+1 − φ0

r))] −
∑l0r

i=lr+1R
(τ)
i (b̂∗(lr−1,l0r), φ̂

∗
(lr−1,l0r); b

0
r ,φ

0
r) ≡ S211 − S212 − S213.

For S212 and S213 we use the inequalities∣∣∣∣ρτ (r1)− ρτ (r2)

r1 − r2

∣∣∣∣ ≤ max(τ, 1− τ) < 1

and we obtain that |S212| is smaller than

l0r∑
i=lr+1

|b0r+1−b̂∗(lr,lr+1)+Xt
i(φ

0
r+1−φ̂

∗
(lr,lr+1))| ≤ |b0r+1−b̂∗(lr,lr+1)|(l

0
r−lr)+‖φ0

r+1−φ̂
∗
(lr,lr+1)‖2

l0r∑
i=lr+1

‖Xi‖2

that is, using Remark 2.11, of order oIP (1). We obtain analogously |S213| = oIP (1). For S211,
combining the relation (43) for cn = c = max(|b0r − b0r+1|, ‖φ0

r − φ0
r+1‖2) together with Lemma 3.1

yield that S211 ≥ (l0r − lr)η ≥M1η, with probability converging to 1 as M1 →∞.
Choosing M1 > 0 such that S211 ≥ max(|S21|, |S11|, |S31|, |S32|) we have that

lim
n→∞

IP [(l̂∗1, · · · , l̂∗K) ∈ Lr(ν,M1)] = 0.

Which proves that l̂∗r − l0r = OIP (1), for each r = 1, · · · ,K. �

Proof of Theorem 3.3 (i) This assertion follows immediately from Theorem 2.3(i) and Theorem
3.2.

(ii) The consistency of the variable selection in a model with one phase, property established
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Figure 6:

Figure 7:

by Theorem 2.3(ii), implies that

lim
n→∞

IP
[
Â0
n,r = A0

r

]
= 1. (19)

It remains to prove that limn→∞ IP
[
Â0
n,r = Â∗n,r

]
= 1. The general case is considered in the

early, that is presented in Figure 6.
If j ∈ Â0

n,r, thus, using (19), we have that j ∈ A0
r with probability tending to 1, which implies

that φ0
r,j 6= 0. Moreover, using the result proved in the previous question (i), and the fact that the

adaptive LASSO quantile estimator φ̂∗
(l̂∗r−1;l̂∗r),j

of the jth component of the regression parameter φ0
r ,

calculated between the corresponding adaptive LASSO quantile estimators of the change-points, is

asymptotically normal, we obtain that φ̂∗
(l̂∗r−1;l̂∗r);j

IP−→
n→∞

φ0
r,j 6= 0. Then,

lim
n→∞

IP

[
φ̂∗

(l̂∗r−1;l̂∗r);j
6= 0

]
= 1, i.e. IP [j ∈ Â∗n,r]→ 1.

Thus IP [Â0
n,r ⊆ Â∗n,r]→ 1.

There, remains now the most difficult part: to prove that, if the index j 6∈ Â0
r , then j 6∈ Â∗n,r (in

fact, in view of (19), we must show that if the true component is zero, the corresponding estimators
don’t converge to 0 and for a fixed n, the component φ̂∗

(l̂∗r−1;l̂∗r);j
6= 0). We will then calculate

IP [j 6∈ A0
r , j ∈ Â∗n,r] (see Figure 7). Since j ∈ Â∗n,r, by KKT optimality condition, Proposition

2.2(i), we have

τ

l̂∗r∑
i=l̂∗r−1+1

Xij −
l̂∗r∑

i=l̂∗r−1+1

Xij11Yi<Xt
iφ̂
∗
(l̂∗r−1;l̂

∗
r)

= λ(l̂∗r−1;l̂∗r)ω̂(l̂∗r−1;l̂∗r),jsgn(φ̂∗
(l̂∗r−1;l̂∗r),j

).
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Then

λ(l̂∗r−1;l̂∗r)ω̂(l̂∗r−1;l̂∗r),j =

∣∣∣∣∣∣∣τ
l̂∗r∑

i=l̂∗r−1+1

Xij −
l̂∗r∑

i=l̂∗r−1+1

Xij11Yi<Xt
iφ̂
∗
(l̂∗r−1;l̂

∗
r)

∣∣∣∣∣∣∣ < 2

l̂∗r∑
i=l̂∗r−1+1

|Xij |. (20)

On the other hand

λ(l̂∗r−1;l̂∗r)ω̂(l̂∗r−1;l̂∗r),j

l̂∗r − l̂∗r−1

=
λ(l̂∗r−1;l̂∗r)

|(l̂∗r − l̂∗r−1)1/2φ̂(l̂∗r−1;l̂∗r),j |g
·

(l̂∗r − l̂∗r−1)g/2

l̂∗r − l̂∗r−1

, (21)

where φ̂(l̂∗r−1;l̂∗r),j is the quantile estimator of φ0
r,j . Since j ∈ A0

r , we have that φ0
r,j 6= 0. On the

other hand, taking into account Theorem 3.2 and the fact that the quantile estimator φ̂(l̂∗r−1;l̂∗r),j is

strongly consistent and asymptotically normal, we have that for all ε > 0, there exists ηε > 0 such
that

IP [
(

(l̂∗r − l̂∗r−1)1/2|φ̂(l̂∗r−1;l̂∗r),j |
)−1

> ηε] > 1− ε. (22)

Since (lr − lr−1)g/2−1λ(lr−1,lr) →∞, together with the relation (22), we obtain that (21) converges
to infinity with probability converging to 1 as n → ∞. On the other hand, an application of
Cauchy-Schwarz’s inequality yields that

(l̂∗r − l̂∗r−1)−1

l̂∗r∑
i=l̂∗r−1+1

|Xij | ≤

(l̂∗r − l̂∗r−1)−1

l̂∗r∑
i=l̂∗r−1+1

X2
ij


1/2

,

wich is bounded with probability converging to 1, from assumption (A1). Taking into account (20),
we obtain that (21) is bounded. Contradiction. Then

IP [j 6∈ A0
r , j ∈ Â∗n,r]→ 0, as n→∞.

Which implies that IP [Â∗n,r ⊆ A0
r ]→ 1 and in view of relation (19), we have that IP [Â∗n,r ⊆ Â0

n,r]→
1, as n→∞. �

Proof of Theorem 4.1 For K0 the true number of changes, let us define the objective function
calculated for the true values of the parameters. Only the weights are estimated:

S0 ≡
n∑
i=1

K0+1∑
r=1

ρτ (εi − b0r11l0r−1≤i<l0r ) +

K0+1∑
r=1

λ(l0r−1;l0r)ω̂
t
(l0r−1;l0r)|φ

0
r |, (23)

with ω̂t(l0r−1;l0r) = |φ̂(l0r−1;l0r)|−g , calculated on the basis of the quantile estimator, on the observations

between l0r−1 et l0r .
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We will first study the behavior of ŝ∗K0 for the true number of phases. Using Lemma 2.8, for
α > 1/2, we have for the difference between the objective function S∗ calculated for the adaptive
LASSO change-points estimators and the sum calculated for the true values:

S∗(l̂∗1,K0 , · · · , l̂∗K0,K0)− S0 = min(oIP (n(1+g)/2), OIP (nα)). (24)

Then

ŝ∗K0 = n−1S∗(l̂∗1,K0 , · · · , l̂∗K0,K0)− n−1S0 + n−1S0 = min(oIP (n(g−1)/2), OIP (nα−1/2)) + n−1S0.

By the weak law of large numbers, using assumption (A4) and the independence of (εi), we have

n−1S0
IP−→

n→∞

K0+1∑
r=1

IE[ρτ (ε− b0r)].

Thus,

ŝ∗K0
IP−→

n→∞

K0+1∑
r=1

IE[ρτ (ε− b0r)] > 0. (25)

Now, we show that
IP [K̂∗n < K0]→ 0, as n→∞. (26)

In order to prove (26), consider K any change-point number , with K < K0. Then

B(K)−B(K0) = n log

(
1 +

ŝ∗K − ŝ∗K0

ŝ∗
K0

)
+Bn[G(K, p)−G(K0, p)].

Two cases are possible concerning (ŝ∗K − ŝ∗K0)/ŝ∗K0 .

• If (ŝ∗K − ŝ∗K0)/ŝ∗K0 is great (≥ C > 0), then, since ŝ∗K0 > ε2 > 0, we have that there exists
ε1 > 0 such that ŝ∗K − ŝ∗K0 > ε1 > 0 for any n large enough. Then

IP [arg min
K

ŝ∗K < K0]→ 0, for n→∞

and the relation (26) follows.

• If (ŝ∗K − ŝ∗K0)/ŝ∗K0 = oIP (1), then, using the fact that for x close to 0 we have log(1 + x) ' x,
we have

B(K)−B(K0) = n
ŝ∗K − ŝ∗K0

ŝ∗
K0

(1 + oIP (1)) +Bn[G(K, p)−G(K0, p)]. (27)

We will study in this case the first term of the right side of the relation (27). Recall that
the constant a ∈ (1/2, 1) is that of the assumption (A3). Similarly of the relation (18), since
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between any two consecutive change-points lr−1 and lr there are at least [na] observations
and since when K < K0 there is at least a non estimated true change-point, we obtain that

S∗(l̂∗1,K , · · · , l̂∗K,K)− S0 > Cna. (28)

Then, n(ŝ∗K − ŝ∗K0)/ŝ∗K0 = [S∗(l̂∗1,K , · · · , l̂∗K,K)− S0 − S∗(l̂∗1,K0 , · · · , l̂∗K0,K0) + S0]/ŝ∗K0 . Using

relations (24), (25), for a > α > 1/2, we obtain

n(ŝ∗K − ŝ∗K0)/ŝ∗K0 > C[OIP (na)−OIP (nα)] = OIP (na). (29)

Using the relations (27), (29), the fact that Bn = o(na) and since the function G is increasing
in K, we obtain that for K < K0 we have B(K)− B(K0) > OIP (na)− oIP (na)→∞. Thus,
the relation (26) follows.

We finally consider the case K > K0, cases wherein, given the definition of S∗ and of the
change-points estimators, we have

S0 ≥ S∗(l01, · · · , l0K0) ≥ S∗(l̂∗1,K0 , · · · , l̂∗K0,K0) ≥ S∗(l̂∗1,K , · · · , l̂∗K,K)

≥ S∗(l̂∗1,K , · · · , l̂∗K,K , l01, · · · , l0K0)
(30)

Then, by similar calculations as for the inequality (18) of Theorem 3.2, we have that for the last
term of (30):

S∗(l̂∗1,K , · · · , l̂∗K,K , l01, · · · , l0K0)− S0 > OIP (nν), for ν < 1/4.

Thus 0 ≥ ŝ∗K0 − ŝ∗K = OIP (nν−1). Since G(K, p) increases in K, together nα � Bn � na and the
relation (25), we have that

n log ŝ∗K0 − n log ŝ∗K = n(ŝ∗K0 − ŝ∗K)(1 + oIP (1)) = OIP (nν).

In fact, it’s the penalty that takes over in this case K > K0. In this circumstance, we have
G(K, p) ≥ G(K0, p) and then Bn[G(K, p) − G(K0, p)] ≥ CBn > O(n1/2). Hence, we have for the
difference between the values of the two criteria B(K)−B(K0)� −OIP (nν)+O(n1/2) = O(n1/2)→
∞ as n→∞. Then, for large enough n, n log ŝ∗K +G(K, p) > n log ŝ∗K0 +G(K0, p) implying

IP [K̂n > K0]→ 0, as n→∞. (31)

The Theorem follows from relations (26) and (31). �
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6.2 Lemma proofs

Proof of Lemma 2.1 Consider the notations φ̃ ≡ (b− b0,φ−φ0), wi = (1,Xt
i) and afterward we

apply Lemma 8 of [17]. �

Proof of Lemma 2.7
Case I: there exists a deterministic sequence (dn) that tends to infinity, as n → ∞, such that

(k − l) ≥ dn.
By the definition of ω̂(l;k) = |φ̂(l;k)|−g, if there exists a component j of the quantile estimator such

that φ̂(l;k),j → 0 (or a subsequence), then, since IP [φ̂(l;k),j = 0] = 0 and ω̂(l;k),j = |φ̂(l,k),j |−g, using

the asymptotic normality of φ̂(l;k) we have that φ̂(l,k),j = OIP (k − l)−1/2 = OIP (n−1/2). Thus,

λ(l;k)ω̂(l;k),j = o(n1/2)OIP (ng/2) = oIP (n(1+g)/2). If the j-th component is such that φ̂(l;k),j ≥ c > 0

then λ(l;k)ω̂(l;k),j = oIP (n1/2).
Case II. If (k − l) does not converge with n to infinity, then, we can extract a bounded sub-

sequence. Let us suppose that 0 ≤ l < k ≤ c. Since IP [φ̂(l;k),j = 0] = 0, we have in this case

λ(l;k)ω̂(l;k),j = oIP (n1/2). �

Proof of Lemma 2.8 Let us denote the difference k − l by dn. Taking into account Lemma 2.7,

then Lemma 2.8 is proven if an equivalent result for R
(τ)
i is showed:

sup
0≤l<k≤n

∣∣∣∣∣inf
b,φ

k∑
i=l+1

R
(τ)
i (b,φ; b0,φ0)

∣∣∣∣∣ = OIP (nα), α > 1/2. (32)

Let us consider the random processes

H
(τ)
i (b,φ; b0,φ0) ≡ R(τ)

i (b,φ; b0,φ0) + [τ11εi>b0 − (1− τ)11εi≤b0 ]Xt
i(φ− φ0).

Obviously IE[τ11εi>b0 − (1− τ)11εi≤b0 ] = (1− τ)IP [εi ≤ b0]− τIP [εi > b0] = 0.
On the other hand, we have, for all b1, b2 ∈ B and φ1,φ2 ∈ Γ, that

H
(τ)
i (b1,φ1; b0,φ0) − H

(τ)
i (b2,φ2; b0,φ0) = ρτ (εi − b1 − Xt

i(φ1 − φ0)) − ρτ (εi − b2 − Xt
i(φ2 −

φ0)) + [τ11εi>b0 − (1 − τ)11εi≤b0 ]Xt
i(φ1 − φ2). But, generally, for all r1, r2 ∈ R we have that

|ρτ (r1)− ρτ (r2)| < |r1 − r2|. Thus

|ρτ (εi − b1 −Xt
i(φ1 − φ0))− ρτ (εi − b2 −Xt

i(φ2 − φ0))| < |Xt
i(φ1 − φ2) + b1 − b2|.

If the parameters b1, b2,φ1,φ2 are such that ‖φ1 − φ2‖2 ≤ Cn−1/2, |b1 − b2| ≤ Cn−1/2, since
IE[τ11εi>b0 − (1− τ)11εi≤b0 ] = 0, we have, using assumption (A1), that∑n

i=1

{
ρτ (εi − b1 −Xt

i(φ1 − φ0))− ρτ (εi − b2 −Xt
i(φ2 − φ0))

−IE[ρτ (εi − b1 −Xt
i(φ1 − φ0))] + IE[ρτ (εi − b2 −Xt

i(φ2 − φ0))]
}

≤ C
∑n

i=1 |b1 − b2|+ C
∑n

i=1 ‖Xi‖2 · ‖φ2 − φ1‖2 = OIP (n1/2).

(33)
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On the other hand, by Proposition 2.6, we have that IE[R
(τ)
i (b,φ; b0,φ0)] ≥ 0, which means, taking

into account the fact that R
(τ)
i (b0,φ0; b0,φ0) = 0, that, for k − l = dn →∞, we have

0 ≥ inf
b,φ

k∑
i=l+1

R
(τ)
i (b,φ; b0,φ0) ≥ inf

b,φ

k∑
i=l+1

[R
(τ)
i (b,φ; b0,φ0)− IE[R

(τ)
i (b,φ; b0,φ0)]].

Thus

| inf
b,φ

k∑
i=l+1

R
(τ)
i (b,φ; b0,φ0)| ≤ sup

b,φ
|

k∑
i=l+1

[R
(τ)
i (b,φ; b0,φ0)− IE[R

(τ)
i (b,φ; b0,φ0)]]|.

Then, for dn →∞, we have

sup
0≤l<k≤n,k−l=dn

∣∣∣∣∣inf
b,φ

k∑
i=l+1

R
(τ)
i (b,φ; b0,φ0)

∣∣∣∣∣ ≤ 2 sup
dn≤k≤n

ζk, (34)

with ζk ≡ supb,φ |
∑k

i=1[R
(τ)
i (b,φ; b0,φ0)−IE[R

(τ)
i (b,φ; b0,φ0)]]|. Thus, by Proposition 2.6, {ζk,Fk}

is a submartingale, where Fk ≡ σ − field{ε1, · · · , εk}. Which means, by Doob’s inequality, for
α > 1/2, that:

IP

[
sup

dn≤k≤n
ζk > nα

]
≤ IP

[
sup

1≤k≤n
ζk > nα

]
≤ n−αmCmIE[ζmn ], (35)

for some Cm > 0, and m > 1 determined later.
Now divide the parameter set B×Γ in n(1+p)/2 cells, such that the diameter of each cell is less than
n−1/2. Thus, for (b1,φ1), (b2,φ2) in the same cell, we have:∑n

i=1

[
R

(τ)
i (b1,φ1; b0,φ0)− IE[R

(τ)
i (b1,φ1; b0,φ0)]−R(τ)

i (b2,φ2; b0,φ0) + IE[R
(τ)
i (b2,φ2; b0,φ0)]

]
≤
∣∣∣∑n

i=1

[
H

(τ)
i (b1,φ1; b0,φ0)− IE[H

(τ)
i (b1,φ1; b0,φ0)]−H(τ)

i (b2,φ2; b0,φ0)

+ IE[H
(τ)
i (b2,φ2; b0,φ0)]

]∣∣∣+
∣∣∑n

i=1DiX
t
i(φ1 − φ2)

∣∣ ≤ Cn1/2,

(36)
where the last inequality follows from (33). Let be now (bj ,φj) in the jth cell, j = 1, · · · , cpn(1+p)/2.
Then, as in the paper of [17], Lemma 3, we have

ζmn ≤ C sup
j
|
n∑
i=1

[R
(τ)
i (bj ,φj ; b

0,φ0)− IE[R
(τ)
i (bj ,φj ; b

0,φ0)]]|m + Cnm/2.

Since R
(τ)
i (bj ,φj ; b

0,φ0)− IE[R
(τ)
i (bj ,φj ; b

0,φ0)] is a bounded martingale difference, for each fixed

j ∈ {1, · · · , cpn(1+p)/2}, we have

IE[|
n∑
i=1

(R
(τ)
i (bj ,φj ; b

0,φ0)− IE[R
(τ)
i (bj ,φj ; b

0,φ0)])|m] ≤ Cnm/2.
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Then IE[ζmn ] ≤ OIP (n
1+p
2 )nm/2 +OIP (nm/2) = OIP (n

m+p+1
2 ).

Thus, choosing m such that m > p+1
2α+1 , the right-hand side of (35) converges to 0. Furthermore,

taking into account (34), (35) and (36) we obtain the claim (32). �

Proof of Lemma 2.9 Let us consider the set Ωn written as an union of subsets Ωn =
⋃Cpn(p+1)/2

j=1 Cnj ,
with Cp a bounded positive constant, and

Cnj ≡ {(b,φ) ∈ Ωn; |b− b′|+ ‖φ− φ′‖2 ≤ cnn−1/2, for all (b′,φ′) ∈ Cnj }.

For (b1,φ1), (b2,φ2) ∈ Cnj , as in the proof of Lemma 2.8, relation (36), we have that (nc2
n)−1|R(τ)

n (b1,φ1; b0,φ0)−
IE[R(τ)

n (b2,φ2; b0,φ0)]−R(τ)
n (b2,φ2; b0,φ0)+IE[R(τ)

n (b2,φ2; b0,φ0)]| ≤ C(|b1−b2|−‖φ1−φ2‖2)c−2
n ≤

Cn−1/2c−1
n → 0, as n→∞. Then, for all (b1,φ1), (b2,φ2) ∈ Cnj ,

limn→∞
1
nc2n

∣∣∣R(τ)
n (b1,φ1; b0,φ0)− IE[R(τ)

n (b2,φ2; b0,φ0)]−R(τ)
n (b2,φ2; b0,φ0)

+ IE[R(τ)
n (b2,φ2; b0,φ0)]

∣∣∣ = 0.
(37)

For (bj ,φj) ∈ Cnj , for all j = 1, · · · , Cpn(1+p)/2, we have that the probability

IP [supj |(nc2
n)−1[R(τ)

n (bj ,φj ; b
0,φ0)− IE[R(τ)

n (bj ,φj ; b
0,φ0)]]| > ε]

≤
∑Cpn(1+p)/2

j=1 IP
[∣∣∣R(τ)

n (bj ,φj ; b
0,φ0)− IE[R(τ)

n (bj ,φj ; b
0,φ0)]

∣∣∣ > nc2
nε
]
.

(38)

But, by assumption (A1), we have that

R
(τ)
i (bj ,φj ; b

0,φ0)− IE[R
(τ)
i (bj ,φj ; b

0,φ0)] ≤ C[|bj − b0|+ ‖φj − φ0‖2] ≤ Ccn.

Then V ar[R
(τ)
i (bj ,φj ; b

0,φ0)] ≤ C2c2
n uniformly in bj and φj . We apply Lemma 6.1, for β = Ccn,

V = C2nc2
n, s = 1/2, z = nc2

nε and we obtain

IP [|R(τ)
n (bj ,φj ; b

0,φ0)− IE[R(τ)
n (bj ,φj ; b

0,φ0)]| > nc2
nε] ≤ 2 exp(−ε2nc2

nC). (39)

The statement of Lemma 6.1 is given at the beginning of Section 6. Relation (39) and the fact that
nc2

n/ log n → ∞ imply that the right-hand side of (38) is bounded by 2Cpn
(1+p)/2 exp(−ε2nc2

nC)
which is smaller than exp(−ε2nc2

nC/2), for any large enough n.
Then, for all (bj ,φj) ∈ Cnj , for all j = 1, · · · , Cpn(1+p)/2, we have

lim
n→∞

IP

[
sup
j

∣∣∣(nc2
n)−1[R(τ)

n (bj ,φj ; b
0,φ0)− IE[R(τ)

n (bj ,φj ; b
0,φ0)]

]∣∣∣∣∣ > ε] = 0. (40)

The Lemma follows from (37) and (40). �
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Proof of Lemma 2.10 By the proof of Proposition 2.6, using assumption (A2), we have

IE[R(τ)
n (b0 + u0/

√
n,φ0 + u/

√
n; b0,φ0)] =

1

2n
f(b0)(u0,u

t)

[
n 0
0
∑n

i=1 XiX
t
i

]
(u0,u

t)t(1 + o(1)),

with u0 ∈ R and u ∈ Rp in open sets. For a sequence (cn) converging to zero but with a slower
rate than n−1/2, we have

IE

[∫ (u0+Xt
iu)cn

0
[11εi≤b0+t − 11εi≤b0 ]dt

]
=

∫ u0+Xt
iu

0
cn[F (b0 + cnv)− F (b0)]dv.

Thus

IE[R(τ)
n ((b0 + u0)cn, (φ

0 + u)cn; b0,φ0)] = cn

n∑
i=1

∫ u0+Xt
iu

0
[F (b0 + cnv)− F (b0)]dv

= c2
n

f(b0)

2
(u0,u

t)

[
n 0
0
∑n

i=1 XiX
t
i

]
(u0,u

t)t(1 + o(1)).

By Lemma 2.9, using the Borel-Cantelli lemma, we have that for any ε2 > 0

lim sup
n→∞

(
sup

(b,φ)∈Ωn

∣∣∣∣ 1

nc2
n

[
R(τ)
n (b,φ; b0,φ0)− IE[R(τ)

n (b,φ; b0,φ0)]
]∣∣∣∣
)
≤ ε2, a.s. (41)

But, the function R
(τ)
i (b,φ; b0,φ0) is convex in b and φ, therefore also its sum R(τ)

n . Since

R(τ)
n (b0,φ0; b0,φ0) = 0, using assumption (A1) and relation (41), by a similar argument as in Re-

mark 4 of [17], we obtain that the infimum of (b,φ) ∈ Ωc
n is attained on the boundary: |b− b0| = cn

and ‖φ− φ0‖2 = cn.
Then, let us consider the scalar u0 and the p-vector u, each of euclidean norm 1: |u0| = 1,

‖u‖2 = 1. Using assumption (A1), we have that:

IE
[
R(τ)
n ((b0 + u0)cn, (φ

0 + u)cn; b0,φ0)]dt
]

= nc2
n

f(b0)

2
(C + o(1)), (42)

with C > 0.
Then, considering ε2 = Cf(b0)/4 in (41), taking into account the relation (42), we obtain that
there exists ε3 > 0 (we can consider by example ε3 = ε2) such that, with the probability 1:

lim inf
n→∞

(
inf

(b,φ)∈Ωcn

1

nc2
n

R(τ)
n (b,φ; b0,φ0)

)
≥ ε3, (43)
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knowing that inf(b,φ)∈Ωcn
is in fact the infimum on the boundary of the set Ωc

n.
To finish the lemma, we take into account that:

inf
(b,φ)∈Ωcn

1

nc2
n

n∑
i=1

R
(τ,λ)
i (b,φ; b0,φ0)

≥ inf
(b,φ)∈Ωcn

1

nc2
n

R(τ)
n (b,φ; b0,φ0)− λn

nc2
n

sup
(b,φ)∈Ωcn

(|ω̂t(0;n)| ·
∣∣|φ| − |φ0|

∣∣)
≥ inf

(b,φ)∈Ωcn

1

nc2
n

R(τ)
n (b,φ; b0,φ0)− λn

nc2
n

‖ω̂t(0;n)‖1C+, (44)

with C+ a positive constant. The first term of the right-hand side of (44) is greater than ε3 by
the relation (43). Since λn(nc2

n)−1 →∞ as n→∞, Γ a compact set, thus the second term of the
right-hand side of (44) converges to 0, and then it is smaller than ε3/2 for n large enough. Thus,
the Lemma is proved by taking ε1 = ε3/2.

Let us note that the adaptive weight ω̂t(0;n) is calculated on all observations, without imposing

the constraint that ‖φ− φ0‖2 ≥ cn. �

Proof of Lemma 3.1 By similar calculations to the proof of Proposition 2.6, we obtain that

IE[R
(τ)
i (b0r + µ,φ0

r ; b
0
r ,φ

0
r)] =

∫ 0

−|µ|
[x+ µ]dF (x+ b0r)

is a positive function for any µ ∈ B and a increasing function in |µ|, with a single zero for µ = 0.
By Lemma 2.1, there exists at least (l0r − lr)ε0 observations, for some ε0 > 0, and some δ > 0, such
that |b0r+1 − b0r |+ |Xt

i(φ
0
r+1)− φ0

r)| > δ. Then

IE

 l0r∑
i=lr+1

R
(τ)
i (b0r+1,φ

0
r+1; b0r ,φ

0
r)

 ≥ (l0r − lr)ε0
∫ 0

−δ
[x+ δ]dF (x+ b0r).

By Lemma 2.9, for φ0 = φ0
r , φ = φ0

r+1 and cn = max(|b0r+1− b0r |, ‖φ0
r+1)−φ0

r‖2), we have that for
all ε > 0 such that

IP [|
l0r∑

i=lr+1

R
(τ)
i (b0r+1,φ

0
r+1; b0r ,φ

0
r)− IE[

l0r∑
i=lr+1

R
(τ)
i (b0r+1,φ

0
r+1; b0r ,φ

0
r)]| > ε(l0r − lr)]

≤ exp(−Cε(l0r − lr)). We take ε = 2−1ε0
∫ 0
−δ[x+ δ]dF (x+ b0r) and η = 2−1ε0

∫ 0
−δ[x+ δ]dF (x+ b0r).

Then the Lemma follows. �
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