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Abstract The paper considers a linear regression model with multiple change-points occur-
ring at unknown times. The LASSO technique is very interesting since it allows the parametric
estimation, including the change-points, and automatic variable selection simultaneously. The
asymptotic properties of the LASSO-type (which has as particular case the LASSO estimator)
and of the adaptive LASSO estimators are studied. For this last estimator the oracle properties
are proved. In both cases, a model selection criterion is proposed. Numerical examples are pro-
vided showing the performances of the adaptive LASSO estimator compared to the LS estimator.

Keywords LASSO · change-points · selection criterion · asymptotic behavior · oracle properties.
Mathematics Subject Classification (2010) 62J07 · 62F12

1 Introduction

A change-point model is a model which changes at the unknown observations. Change-point
detection procedures fall into two categories: retrospective or a posteriori change detection and
on-line, sequential or a priori change detection. This paper focuses on an a posteriori change-
point problem, which arises when the data are completely known at the end of the experiment
to process. More precisely, we study the high-sized a posteriori change-point model: study a
phenomenon (dependent variable), function of one very large regressors variables number, with
unknown change-points number.
A significant advancement in variable selection in a model without change-point was realized by
Tibshirani (1996), proposing the LASSO method. Then, the estimation and model selection are
simultaneously treated as a single minimization problem. If the model have change-points, the
LASSO method would allow at the same time to estimate the parameters on every segment and
eliminate the irrelevant predictive covariates without crossing every time by a hypothesis test.
We remark that the least squares (LS) method gives nonzero estimates to all coefficients.
In this paper we propose a method for a change-points linear model with the aim of estimating
and choosing the covariates (regressors) simultaneously. The obtained results will be very useful
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for high-sized models which is often used in various fields especially in medicine, meteorology or
financial econometrics.
Concerning the LASSO method in a model without change-points, a generalization of LASSO
(L1 penalty) and ridge (L2 penalty) estimators was given in Knight and Fu (2000) by min-
imizing the residual sum of squares plus a penalty proportion to the models parameters. The
obtained estimator is called LASSO-type estimator. The ridge method has a good prediction per-
formance through a bias-variance trade-off, while the LASSO method encourages both shrinkage
and automatic variable selection simultaneously and it has very good computational properties.
Nevertheless the LASSO estimator does not satisfy the oracle properties. To remedy this in-
convenience, an adaptive LASSO estimator was proposed by Zou (2006). Recall that the oracle
properties are: the zero components of the true parameters are estimated (shrunk) as 0 with
probability tending to 1 (also called sparsity property) and the nonzero components have an
optimal estimation rate (and is asymptotically normal).
Let us give some references of recent papers on the LASSO method, with the remark that to the
author’s knowledge, the LASSO problem has not yet been addressed in a change-point model.
For the models without change-points, in the case of linear regression, Fan and Li (2001) show
that the LASSO method produces biased estimator for the large parameter regression and Zou
(2006) proves that the oracle properties do not hold for the LASSO. Pötscher and Schneider
(2009) study the distribution of the adaptive LASSO estimator in finite samples and in the
large-sample limit while Xu and Ying (2010) consider the LASSO-type penalty in a median re-
gression. In the paper of Foster et al. (2009) a LASSO random effects model is considered and in
Bickel et al. (2009), the equivalence results and sparsity oracle inequalities for the LASSO and
Dantzing estimators in a nonparametric regression model are given. Wei et al. (2011) consider
the problem of variable selection and estimation for a linear model with time-varying effects
for covariates using the group LASSO and adaptive group LASSO methods. They proved that
the obtained estimators are consistent and the adaptive group LASSO estimator has the oracle
selection property.
Seen the very interesting properties of these estimators (LASSO-type and adaptive LASSO), we
study its behavior in a model with change-points. In order to estimate the change-point number,
we also propose a model selection criterion based on LASSO-type or adaptive LASSO method.
In a multiple change-point model, the break estimation could affect the estimator properties:
variable selection on each segment, oracle properties, ... This is the main interest of this paper.
Besides, since the penalty contains the model parameters, the change-point results of the litera-
ture (see e.g. Bai (1998), Bai and Perron (1998), Koul and Qian (2002) or Ciuperca (2009)) do
not apply.
This paper considers the estimation and the selection of the significant variables in a linear
regression with multiple change-points occurring at unknown time. The study of this method
was motivated by wishes to find the properties of the estimator, particularly interesting in a
change-point model with high-sized regressors, which allows the automatic elimination of the
non significant variables on every phase, without using hypothesis test.
Two estimation methods are proposed and studied: LASSO-type (with particular cases: ridge and
LASSO method) and adaptive LASSO. The first method has the advantage that it can consider
a lower observations size with respect to model parameter number. But, under certain conditions
on design (matrix of observed regressors), the LASSO-type regression parameters estimators are
not consistent. Then, we can use the adaptive LASSO method which correctly selects variables of
nonzero coefficients with probability converging to one. On the other hand, in order to calculate
an adaptive penalization, this method can be used only if the observations size on every segment
is bigger than the parameters number in corresponding interval.
The difficulty to study a change-point model, when the number of change-points is fixed, results
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first from the dependence of the model of two parameter types: the regression parameters and
the change-points. Moreover, for multiple breaks, each middle regime has completely unknown
boundaries. Then, for the two estimators we study the asymptotic behavior: convergence rate and
asymptotic distribution. For the adaptive LASSO regression parameter estimator, we also prove
that the change-point presence in the model does not influence the oracle property: between two
consecutive breaks, nonzero parameters estimator is asymptotically normal and zero parameters
are shrunk directly to 0 with a probability converging to 1.
If the number of breaks is unknown, the problem of its estimate arises. We propose, a general
criterion to estimate the number of change-points.
Finally, numerical simulations are realized to illustrate the theoretical results and to show the
advantages of the proposed methods in terms of detection of irrelevant variables in a change-
points model and also of break number estimation.
In the present paper, as original contribution we provide statistical asymptotic properties of the
LASSO-type and adaptive LASSO estimator in a change-point model. The structure of this paper
is as follows. The model and assumptions are introduced in Section 2. In Section 3, a LASSO-
type estimator in a change-point model is proposed and its asymptotic behavior is studied.
Convergence rate, asymptotic distribution of the regression parameters and of the change-point
estimators are obtained. A model selection criterion is also studied. Next, adaptive LASSO esti-
mator and its oracle properties are given in Section 4. Section 5 reports some simulation results
which illustrate the theoretical results. Finally, Appendix contains the proofs of the results.

2 Model

We consider the model: Yi = fθ(Xi) + εi, for the step-function with K (K ≥ 0) change-points:

fθ(Xi) = hφ1
(Xi)11i<l1 + hφ2

(Xi)11l1≤i<l2 + · · ·+ hφK+1
(Xi)11i>lK , i = 1, · · · , n

more precisely hφ(X) = X′φ, φ ∈ Γ ⊆ R
p, Γ compact.

Up to our knowledge, no result exists in the literature on the LASSO estimation in a model
with change-points. In all previous works, where the estimation by penalization is considered in a
multi-phase model, the penalization does not contain model parameters (see Ciuperca (2011b))
and thus we cannot make model selection and the estimation simultaneously. Classically, in
the rich literature on the change-point estimation, many articles contribute to determine the
break number, to estimate the change-point location and the regression parameters (see e.g.
Bai and Perron (1998), Kim and Kim (2008) or Ciuperca (2009)). Once the asymptotic distri-
bution of estimator is proved, the hypothesis test may be performed to eliminate the irrelevant
predictive covariates. This approach requires a huge amount of computation if p or K are large.
A solution to carry out change-point analysis, perform variable selection and estimate regres-
sion parameters simultaneously was proposed by Wu (2008). Since it is necessary to calculate
all sub-models, of order 2p+4 when K = 1, the criteria considered by Wu (2008) still require
many calculations. On the other hand, if p is large compared to n, the Wu’s criteria need to be
modified.
We can also recall the paper Harchaoui and Lévy-Leduc (2010) where the estimation of the lo-
cation of change-points in one-dimensional piecewise constant in an white noise is reformulated
as a variable selection problem with a L1 penalty. Note that their model is constant between two
consecutive change-points and reformulated model is a classical linear regression without breaks.
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For the sample i, Yi denotes the response variable, Xi is a p-vector of regressors and the εi is
the error. The errors (εi)1≤i≤n are independent identically distributed(i.i.d.) random variables.
The model parameters are θ ≡ (φ1, · · · ,φK+1, l1, · · · , lK) ∈ ΓK+1 × N

K and their true values

(unknown) are θ0 ≡ (φ0
1, · · · ,φ0

K+1, l
0
1, · · · , l0K). We set: θ ≡ (θ1, θ2), with θ1 ≡ (φ1, · · · ,φK+1)

the regression parameters, θ2 ≡ (l1, · · · , lK) the change-points.
Denote by φr,k the kth component of φr and φ0

r,k the kth component of φ0
r, for r ∈ {1, · · · ,K+1},

k = 1, · · · , p.
Let us consider the deterministic design matrix X ≡ (Xij) 1≤i≤n

1≤j≤p
, Xj ′ its column j and Xi the

ith line.
We now state the assumptions under which the asymptotic properties of estimators will be de-
rived.

First, we impose the condition that the change-points are sufficiently far apart:
(H1) there exists two positive constants u, c(> 0) such that lr+1 − lr ≥ c0[n

u], for every
r = 1, · · · ,K, with l0 = 1 and lK+1 = n.
Without loss of generality, in the following we consider 3/4 ≤ u ≤ 1 and c0 = 1.

For the design X, we suppose that:
(H2) n−1 max1≤i≤n X

′
iXi −→

n→∞
0 and for any r = 1, · · · ,K + 1, the matrix

Cn,r ≡ (lr − lr−1)
−1

∑lr
i=lr−1+1 XiX

′
i −→n→∞

Cr, with Cr a non-negative definite matrix.

For the errors εi we suppose that:
(H3) ε is a random variable absolutely continuous. Moreover IE[εi] = 0 and IE[ε2i ] = σ2.

The assumption (H1) is standard for a change-point model, see Bai (1998) or Ciuperca
(2011a), while (H2) is imposed when LASSO methods are used, see for example Zou (2006)
or Knight and Fu (2000). Assumption (H3) is classic in a regression model.

The matrix Cn,r are non-singular for all n and r, while the matrix Cr can be singular. Let
us denote by C0

r the limiting matrix for the true-change-points l0r , r = 1, · · · ,K + 1. Without
loss of the generality, we assume that the regressors are centered.

To complete the model, we shall make the usual identifiability assumption that adjacent re-
gressions are different: φr 6= φr+1, r = 1, · · · ,K.

All throughout the paper, c denotes a positives generic constant. For a vector v = (v1, · · · , vp)
let us denote |v| = (|v1|, · · · , |vp|) and |v|c = (|v1|c, · · · , |vp|c). On the other hand, ‖v‖ is its Eu-
clidean norm. All vectors are column and v′ denotes the transpose of v. For a real x, [x] means
the largest integer not larger than x.

After from these general notations, in every section we shall give the notations used for each
method.

3 LASSO-type estimators

In this section we define and study the LASSO-type estimators in a change-point model.
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3.1 Notations

Under assumption (H1), between two consecutive change-points lr−1 and lr we consider a positive
sequence λn,(lr−1,lr) → ∞ for n → ∞ to control the amount of regularization applied to the
estimators. Based on the LASSO-type method introduced by Knight and Fu (2000) in a model
without breaks, let us consider the penalized sum:

Tn(K, θ1, θ2) ≡
n
∑

i=1

K+1
∑

r=1



(Yi −X′
iφr)

2 +
λn,(lr−1,lr)

lr − lr−1

p
∑

j=1

|φr,j |γ


 11lr1≤i<lr ,

For the tuning parameter λn,(lr−1,lr) = O(lr − lr−1)
1/2 and γ > 0, denote then the minimum of

the penalized sum of the residuals squared for each fixed breaks l1, · · · , lK+1:

S(l1, · · · , lK) ≡ inf
θ1

Tn(K, θ1, θ2), (1)

with l0 = 1 and lK+1 = n. For K fixed, we define the LASSO-type (or Bridge) estimator of
(θ0

1, θ
0
2) as a point

(θ̂
s

1n, θ̂
s

2n) = argmin
(θ1,θ2)

Tn(K, θ1, θ2).

More exactly we denote: θ̂
s

1n ≡ (φ̂
s

1n, · · · , φ̂
s

K+1,n) the regression parameter estimator and

θ̂2n ≡ (l̂s1, · · · , l̂sK) the LASSO-type estimator for the change-points. Obviously

θ̂2n = argmin(l1,··· ,lK)∈NK S(l1, · · · , lK).

We remark two particular cases: for γ = 2 we obtain the ridge estimator and for γ = 1 the
LASSO estimator.

The construction of the estimators has two stages: first we search the regression parameters
estimators and then we localize the change-points. Then, first, between every break lr−1 and lr,
we calculate the LASSO-type estimator of φr by:

φ̂
s

(lr−1,lr) = argmin
φ

[

lr
∑

i=lr−1+1

(Yi −X′
iφ)

2 + λn;(lr−1,lr)

p
∑

k=1

|φ,k|γ ],

φ̂s
(lr−1,lr),k

its kth component and the corresponding forecast Ŷ s
(lr−1,lr),j

= X′
jφ̂

s

(lr−1,lr). The re-

gression parameters estimators are: θ̂
s

1n(θ2) = (θ̂
s

(l0,l1), θ̂
s

(l1,l2), · · · , θ̂
s

(lK ,lK+1)). After we calculate
the change-points estimators:

θ̂
s

2n = argmin
θ2∈NK

Tn(K, θ̂
s

1n(θ2), θ2)

Also θ̂
s

1n = θ
s
1n(θ̂

s

2n).

Note that in order to take into account the sample size in every segment (phase), the tuning
parameter λn,(lr−1,lr) varies from a segment to the other one with the interval length lr − lr−1.

For the true values of parameters (φ0
1, · · · ,φ0

K+1, l
0
1, · · · , l0K), we consider the equivalent sum of

(1): S0 ≡ ∑n
i=1 ε

2
i +

∑K+1
r=1 λn;(l0r−1,l

0
r)

∑p
j=1 |φ0

r,j |γ , where φ0
r,j denotes the jth component of φ0

r .
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For every sample, we consider the difference of the squared errors by taking some parameter
and true parameter in the model. So, for two parameters φ and φ

0, we define the function:

ηi(φ;φ
0) ≡ (εi −X ′

i(φ− φ0))2 − ε2i , i = 1, · · · , n.

When a LASSO-type method is considered, for the model between two consecutive change-points
j1 < j2, a penalization term is added:

ηsi;(j1,j2)(φ;φ
0) ≡ ηi(φ;φ

0) +
λn;(j1,j2)

j2 − j1

[

p
∑

k=1

|φ,k|γ −
p

∑

k=1

|φ0
,k|γ

]

, for i = j1 + 1, · · · , j2,

with φ,k and φ0
,k the kth component of φ, respectively of φ0. We denote ηsi (φ;φ

0) ≡ ηsi;(0,n)(φ;φ
0)

and λn ≡ λn;(0,n).

Once the LASSO-type estimators and notations being introduced, we can study the asymp-
totic behavior of the estimators. First, supposing that the change-points number is known, we
consider the corresponding convergence rate, which will allow us to derive the asymptotic distri-
bution of the estimators. We propose a consistently estimator for the case when the number K
is unknown.

3.2 Asymptotic behavior

Following result implies that the penalized sum S of (1), optimized with respect to the regression
parameters, is of order OIP (n

α), with α > 1/2 arbitrary.

Lemma 1 Under assumptions (H2), (H3), if λn;(j1,j2) = O(n1/2), for two points j1, j2 ∈ {1, · · · , n},
γ > 0, φ0 the true value of the parameter, for all α > 1/2 we have:

sup
0≤j1<j2≤n

∣

∣

∣

∣

∣

∣

inf
φ

j2
∑

i=j1+1

ηsi;(j1,j2)(φ,φ
0)

∣

∣

∣

∣

∣

∣

= OIP

(

max(λn;(j1,j2), n
α)
)

= OIP (n
α).

Convergence rate of the LASSO-type estimator is of order n−1/2 (see Knight and Fu, 2000). We
study then, by the following Lemma, the penalized sum for a LASSO-type method in a model
without change-points, when the regression parameters are not in a n−1/2-neighborhood of the
true value parameter.

Lemma 2 Under assumptions (H2), (H3), if λn = o(n), then there exists ǫ > 0 such that:

lim inf
n→∞

inf
‖φ−φ0‖≥n−1/2

n−1
n
∑

i=1

ηsi (φ,φ
0) > ǫ.

This result is useful to prove the following two Lemmas. These indicate that when the data are
from two different models, the LASSO-type estimator in a model with a change-point is close to
the parameter of the model where most of the data came.
For u ∈ [ 34 , 1) in assumption (H1), v ∈ (0, 1

4 ), let us consider a constant δ such that:

δ ∈ (0, u− 3v). (2)

For the following lemma, the size sample of model is n1 + n2.
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Lemma 3 Under assumptions (H2), (H3), for all n1, n2 ∈ N such that n1 ≥ nu, with 3/4 ≤
u ≤ 1, n2 ≤ nv, v < 1/4, let be the model:

Yi = X′
iφ

0
1 + εi, i = 1, · · · , n1

Yi = X′
iφ

0
2 + εi, i = n1 + 1, · · · , n1 + n2

with φ0
1 6= φ0

2. We set: As
n1+n2

(φ) ≡ ∑n1

i=1 η
s
i;(0,n1)

(φ;φ0
1) +

∑n1+n2

i=n1+1 η
s
i;(n1,n1+n2)

(φ;φ0
2) and

φ̂
s

n1+n2
≡ argminφAs

n1+n2
(φ). Under condition (2) we have:

(i) ‖φ̂s

n1+n2
− φ0

1‖ ≤ n
−1/2
1 n

v+δ
2u

1 ≤ n−(u−v−δ)/2 .

(ii)
∑n1

i=1 η
s
i;(0,n1)

(φ̂
s

n1+n2
;φ0

1) = OIP (1).

Similarly, it have that:

Lemma 4 Consider the model:

Yi = X′
iφ

0
1 + εi, i = 1, · · · , k

Yi = X′
iφ

0
2 + εi, i = k + 1, · · · , k + n2

with k ∈ [an1, n1], a ∈ (0, 1). Under the same conditions as in the Lemma 3 we have:

(i) supan1≤k≤n2
‖φ̂s

k+n2
− φ0

1‖ ≤ n−(u−v−δ)/2.

(ii) supan1≤k≤n2

∣

∣

∣

∑k
i=1 ηi(φ̂

s

k+n2
,φ0

1)
∣

∣

∣ = OIP (1).

The proofs of all Lemmas are given in Appendix.

Suppose first that the change-point numberK is known. We start by studying the convergence
rate of the change-point LASSO-type estimator. The proof of Theorem 1 (given in Appendix)
is split into three steps. first, using Lemma 1, we prove that the change-point estimators are
to a smaller distance n1/2 from the true values. This implies that between two consecutive true
change-points l0r , l

0
r+1, there are at most two change-point estimators. This allows to prove, using

also Lemma 3, the step 2: the change-point estimators are at a smaller distance than n1/4 of true
values. Finally, also using Lemma 4, the Theorem 1 is proved.

Theorem 1 Under assumptions (H1)-(H3) we have l̂sr − l0r = OIP (1), for every r = 1, · · · ,K.

Combining Theorem 1 and the fact that the convergence rate of LASSO-type estimators in
a model without change-points is n−1/2 allow us to have immediately the convergence rate for
the regression parameter estimator:

Corollary 1 Under assumptions (H1)-(H3) we have ‖φ̂s

(l̂sr,l̂
s
r−1)

− φ0
r‖ = (l0r − l0r−1)

−1/2OIP (1),

for all r = 1, · · · ,K + 1.

These results imply that the LASSO-type penalization does not have influence on convergence
rate, which is the same as by LS method (see Kim and Kim, 2008): of order (l0r − l0r−1)

−1/2 for
the regression parameters and n−1 (after a change of variable) for the change-point estimators.
The following theorem, whose proof is given in Appendix, using Theorem 1, gives the asymptotic
distribution of the LASSO-type estimators for the change-points. This result implies that the
asymptotic distribution is the same as for change-points estimators by LS method and it depends
on the errors (εi), the design (Xi) around every true change-point and on the difference (φ0

r+1−
φ0

r).

Remark 1 Since the matrix of assumption (H2) can not be full rank, the limiting distribution of
the change-point estimators can not be the argmax of a Wiener process with shift, unlike the LS
estimator (see Bai and Perron, 1998).
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Theorem 2 Under assumptions (H1)-(H3), for each r = 1, · · · ,K, we have that l̂sr−l0r converges

in distribution for n → ∞ to argminj∈Z Z
(r)
j , with Z

(r)
0 = 0 and

- for j = 1, 2, · · · , Z(r)
j =

∑l0r+j

i=l0r+1 ηi(φ
0
r;φ

0
r+1);

- for j = −1,−2, · · · , Z(r)
j =

∑l0r
i=l0r+j ηi(φ

0
r+1;φ

0
r).

The asymptotic distribution of LASSO-type estimators for the regression parameters is given
by the following result. For the particular case γ = 1, the LASSO estimator is asymptotically
normal for the nonzero true regression coefficients. Note also that, as Knight and Fu (2000)

indicate it, for γ ≥ 1, the estimator φ̂
s

(l̂sr−1,l̂
s
r)

for the nonzero coefficients can be asymptotically

biased.

Theorem 3 Under assumptions (H1)-(H3), if the matrix C0
r = limn→∞

1
l0r−l0r−1

∑l0r
i=lr−1+1 XiX

′
i

are not singular then: (l̂sr−l̂sr−1)
1/2(φ̂

s

(l̂sr−1,l̂
s
r)
−φ0

r) = (l0r−l0r−1)
1/2(φ̂

s

(l̂sr−1,l̂
s
r)
−φ0

r)(1+oIP (1))
L−→

n→∞
argminu∈Rp Vr(u) with Vr(u) defined by:
(i) if γ > 1, Vr(u) = −2u′

Wr + u
′
C

0
ru + λ0

r

∑p
k=1 uksgn(φ

0
r,k)|φ0

r,k|γ−1, with 0 ≤ λ0
r =

limn→∞ λn;(l̂sr−1,l̂
s
r)
/(l̂sr − l̂sr−1)

1/2.

(ii) if γ = 1, Vr(u) = −2u′
Wr + u

′
C

0
ru + λ0

r

∑p
k=1[uksgn(φ

0
r,k)11φ0

r,k 6=0 + |uk|11φ0
r,k=0], with

0 ≤ λ0
r = limn→∞ λn;(l̂sr−1,l̂

s
r)
/(l̂sr − l̂sr−1)

1/2.

(iii) if γ < 1 and λn;(l̂sr−1,l̂
s
r)
/(l̂sr−l̂sr−1)

γ/2 IP−→
n→∞

λ0
r ≥ 0, Vr(u) = −2u′

Wr+u
′
C

0
ru+λ0

r

∑p
k=1 |uk|γ11φ0

k=0,

In the three cases, the random p-vector Wr is the same: N (0, σ2
C

0
r).

We observe that the asymptotic distributions of LASSO-type estimators for the change-points
does not depend on the tuning parameter λn,(lr−1,lr) while for the regression parameters this se-

quence intervenes. This is due to the constraint λn;(lr−1,lr) = O(n1/2) and to the fact that the
convergence rate of the change-point estimators is of order n−1.

3.3 Choice of change-point number

Suppose now that we don’t known a priori the change-point number which is quite often the case
in practice. Then we introduce a criterion which is going to allow to estimate the number K0 of
the change-points. Intuitively, the true K0 will be the one which minimize the function S (or its
log) with respect to K. In order to take into account the model complexity, the criterion is pe-
nalized by an increasing function in K and model parameter number. The penalization depends
also on the sample size.

For a fixed change-points number K, let us denote ŝK ≡ S(l̂s1,K , · · · , lsK,K)/n, where the func-
tion S is defined by (1). The criterion consistency is established below with proof in Appendix.
The demonstration idea is to prove that the change-point estimator is strictly larger or smaller
than the true value with a probability converging to zero.

Theorem 4 Let K̂n be the value of K that minimizes B(K) = n log ŝK + G(K, pK)Bn, with

pK =
∑K+1

r=1

∑p
j=1 11φ0

r,j 6=0, function G(K, pK) increasing in K, (Bn) a deterministic sequence

such that Bn → ∞, Bnn
−3/4 → 0 and Bnn

−1/2 → ∞ for n → ∞. Then IP [K̂n = K0] → 1 for
n → ∞.
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The function G is a generic factor on a penalty Bn. If on every segment (phase) all variables
are significant, taking G(K, pK) = K, we obtain the Schwarz criterion proposed by Yao (1988).
Concretely in practice, we begins by finding K using the proposed criterion. Afterthat their
locations and the regression parameters on the segments defined by the change-points are esti-
mated by minimizing the function Tn with respect to θ1. Finally, the function S given by (1) is
minimized with respect to θ2.

4 Adaptive LASSO

As mentioned in Introduction, in a model without change-points, the LASSO-type estimator has
the oracle properties for γ ∈ (0, 1) only, but it is not continuous. On the other hand, the LASSO
estimator (for γ = 1) is continuous but does not satisfy the oracle properties. To remedy these
inconveniences, Zou (2006) proposed an adaptive LASSO estimator. These properties are all
the most interesting in a change-point model, since they allow to select the significant predictive
variables on every phrase without realizing the hypothesis tests. We propose the adaptive LASSO
estimator for a model with change-points.

4.1 Notations

In a similar way to the LASSO-type method, between two consecutive change-points lr−1 and
lr, we define the regression parameters estimators by adaptive LASSO method:

φ̂
s∗
(lr−1,lr) = argmin

φ

[

lr
∑

i=lr−1+1

(Yi −X′
iφ)

2 + λn;(lr−1,lr)

p
∑

k=1

ŵ(lr−1,lr),k|φ,k|], (3)

with φ̂s∗
(lr−1,lr),k

its kth component, ŵ(lr−1,lr) ≡ |φ̂(lr−1,lr)|−g, ŵ(lr−1,lr),k the kth component of

ŵ(lr−1,lr) and φ̂(lr−1,lr) is LS estimator of φ calculated between lr−1 and lr. The constant g
is positive and will be later specified. As for the LASSO-type estimator, the tuning parameter
λn;(lr−1,lr) depends of the sample size in every segment.

Now, the penalized sum for the true parameters is: S∗
0 ≡ ∑n

i=1 ε
2
i+

∑K+1
r=1 λn,(l0r−1,l

0
r)

∑p
k=1 ŵ(l0r−1,l

0
r),k

|φ0
r,k|.

Consider the sum with an adaptive penalization:

S∗(l1, · · · , lK) ≡ inf
θ1

K+1
∑

r=1





lr
∑

i=lr−1+1

(Yi −X′
iφr)

2 + λn,(lr−1,lr)

p
∑

k=1

ŵ(lr−1,lr),k|φr,k|



 .

This allows us to define the adaptive LASSO estimator for the change-points: (l̂s∗1 , · · · , l̂s∗K ) ≡
argmin(l1,··· ,lK)∈NK S∗(l1, · · · , lK) and for the regression parameters, using (3): φ̂

s∗
(l̂s∗r−1,l̂

s∗
r ), for

each r = 1, · · · ,K + 1.

We define, between two consecutive change-points j1 < j2, for φ
0 the true value of the

parameters, following penalized difference:

ηs∗i;(j1,j2)(φ;φ
0) = ηi(φ;φ

0) +
λn,(j1,j2)

j2 − j1

p
∑

k=1

ŵ(j1,j2),k[|φ,k| − |φ0
,k|]
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with φ,k and φ0
,k the kth component of φ, respectively of φ0.

In order to study the oracle properties, for each two consecutive true change-points l0r−1, l
0
r ,

consider the set
A∗

(l0r−1,l
0
r)

≡ {k ∈ {1, · · · , p};φ0
r,k 6= 0}

with the index of nonzero components of the true regression parameters. Since in practical
problems, we don’t known the true value of the change-points, but their estimators, we consider
the similar set of index, corresponding to the adaptive LASSO estimators l̂s∗r−1, l̂

s∗
r of the change-

points:
A∗

n,(l̂s∗r−1,l̂
s∗
r )

≡ {k ∈ {1, · · · , p}; φ̂s∗
(l̂s∗r−1,l̂

s∗
r ),k

6= 0}
will be abbreviated A∗

r for convenience. For simplicity we denote by φA∗
r
the sub-vector of φ

containing the corresponding components of A∗
r . We also denote by C0

r,kj the (k, j)th component

of matrix C0
r .

4.2 Asymptotic behavior

By the Lemmas 5 and 6 we prove that the adaptive penalization is not a bigger order than the
minimized squares sum.

Lemma 5 Let the model Y = Xφ+ε, with Y a n×1 vector of Yi and X a n×p matrix. If φ0 is
the true value of the parameter φ, under assumptions (H2), (H3), for g ∈ (0, 1

4 ), 0 ≤ j1 < j2 ≤ n,

λn,(j1,j2) = o(n1/2), we have: λn,(j1,j2)ŵ(j1,j2) = OIP (n
1+g
2 ).

Following lemmas are needed to the proofs for the adaptive LASSO results. In fact, they study
the adaptive LASSO estimator in a model without change-point and they are the equivalent of
the Lemmas 1-3.

Lemma 6 For two points j1, j2 ∈ {0, 1, · · · , n}, φ0 the true value of the parameters, under
assumptions (H2), (H3), if λn,(j1,j2) = o(n1/2), then, for all g ∈ (0, 1

4 ) we have:

sup
0≤j1<j2≤n

∣

∣

∣

∣

∣

∣

inf
φ

j2
∑

i=j1+1

ηs∗i;(j1,j2)(φ;φ
0)

∣

∣

∣

∣

∣

∣

= OIP (n
1+g
2 ).

Lemma 7 Under assumptions (H2), (H3), if λn = o(n1/2), then there exists ǫ > 0 such that:

lim inf
n→∞

inf
‖φ−φ0‖≥n−1/2

n−1
n
∑

i=1

ηs∗i;(0,n)(φ;φ
0) > ǫ.

Lemma 8 For all n1, n2 ∈ N such that n1 ≥ nu, with 3/4 ≤ u ≤ 1, n2 ≤ nv, v < 1/4, let us
consider the model:

Yi = X′
iφ

0
1 + εi, i = 1, · · · , n1

Yi = X′
iφ

0
2 + εi, i = n1 + 1, · · · , n1 + n2

with the assumption φ0
1 6= φ0

2. Consider A
s∗
n1+n2

(φ) ≡ ∑n1

i=1 η
s∗
i;(0,n1)

(φ,φ0
1)+

∑n1+n2

i=n1+1 η
s∗
i;(n1,n1+n2)

(φ;φ0
2)

and φ̂
s∗
n1+n2

≡ argminφAs∗
n1+n2

(φ). Under the condition (2) and assumptions (H2), (H3), we
have:

(i) ‖φ̂s∗
n1+n2

− φ0
1‖ ≤ n

−1/2
1 n

v+δ
2u
1 ≤ n−(u−v−δ)/2 .

(ii)
∑n1

i=1 η
s∗
i;(0,n1)

(φ̂
s∗
n1+n2

;φ0
1) = OIP (1).
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The equivalent of the Lemma 4 is also valid for the adaptive LASSO estimators.

As in Section 3, let us first suppose that the change-point number K is fixed. By the same
arguments used in the proof of Theorem 1, using now Lemmas 6 and 8, we have following theorem
which gives the convergence rate of the adaptive LASSO estimators for the change-points. The
proof is omitted.

Theorem 5 Under assumptions (H1)-(H3), for all g ∈ (0, 14 ), we have l̂s∗r − l0r = OIP (1), for
each r = 1, · · · ,K.

In order to work in a bounded interval, we can consider τ0r ≡ l0r/n and τ̂s∗r ≡ l̂s∗r /n its es-
timator. Then, Theorem 5 implies that τ̂s∗r converges in probability to τ0r with the convergence
rate n−1. It is the same convergence rate as by the LS method (see Bai and Perron, 1998).

We need that g ∈ (0, 1
4 ) since the equivalent of the relation (11), for samples between two true

change-points, is −OIP (n
1+g
2 ) which must be ≪ OIP ([n

ρ]). This will imply that every change-
point estimator is to a distance strictly smaller than nρ with respect to the true value. The
constant 1/4 results from the supposition that the constant u of assumption (H1) is larger than
3/4. In fact, the satisfied condition by positive constant g is: g + u < 1. In a model without
change-points the constant g can take any positive value, while in a change-point model it de-
pends on the distance between the change-points.

Theorem 5 combined with the oracle properties of adaptive LASSO estimator in a model

without change-points (see Zou, 2006) yield that the convergence rate of φ̂
s∗
(l̂s∗r−1,l̂

s∗
r ) to the φ0

r is

of order (l0r − l0r−1)
−1/2, the same for the LASSO-type estimator and by LS method (see Bai and

Perron, 1998).

Remark 2 By similar arguments used for the proof of Theorem 2 we can prove that the asymp-
totic distribution of differences l̂s∗r − l0r is the same as for the LASSO-type estimators.

The presence of change-points in the model makes that the important oracle properties of
the adaptive LASSO estimator for the regression parameters are not obvious.

The following result proves that on every segment, the adaptive LASSO estimator for the
regression parameters has the oracle properties: nonzero parameters estimator on each estimated
segment is asymptotically normal and zero parameters are shrunk directly to 0 with a probability
converging to 1.

Theorem 6 Under assumptions (H1)-(H3), g ∈ (0, 1
4 ), if λn,(l0r−1,l

0
r)
(l0r − l0r−1)

−1/2 → 0 and

λn,(l0r−1,l
0
r)
(l0r − l0r−1)

(g−1)/2 → ∞ for n → ∞, then:

(i) (l̂s∗r −l̂s∗r−1)
1/2(φ̂

s∗
(l̂sr−1,l̂

s∗
r )−φ0

r)A∗
r
= (l0r−l0r−1)

1/2(φ̂
s∗
(l̂s∗r−1,l̂

s∗
r )−φ0

r)A∗
r
(1+oIP (1))

L−→
n→∞

N (0, σ2(Ω0
r)

−1),

where for qr = Card{A∗
(l0r−1,l

0
r)
}, Ω0

r = (C0
r,kj)k,j∈A∗

(l0
r−1

,l0r)
is a qr × qr matrix.

(ii) limn→∞ IP [A∗
n,(l̂s∗r−1,l̂

s∗
r )

= A∗
n,(l0r−1,l

0
r)

= A∗
(l0r−1,l

0
r)
] = 1.

Theorem 6 is proved in Appendix. The demonstration is based on the Lemma 5, the Karush-
Kuhn-Tucker (KKT) conditions and the oracle properties in a model without change-points.
Note that, for nonzero coefficients their estimators are asymptotically unbiased.
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Let us make vary the change-point number K. Choosing

(l̂s∗1,K , · · · , l̂s∗K,K) ≡ argmin
(l1,··· ,lK)

S∗(l1, · · · , lK)

and ŝ∗K ≡ S∗(l̂s∗1,K , · · · , ls∗K,K)/n, similarly to the Theorem 4 and its proof, we can define a con-

sistent criterion for the change-point number: K̂∗
n = argminK(n log ŝ∗K + G(K, pK)Bn), with

function G and sequence Bn as in Theorem 4.

Remark 3 Since, on every segment, the adaptive LASSO estimator of the regression parameter
has the oracle properties, we can consider instead of pK its estimator

p̂K =

K+1
∑

r=1

p
∑

j=1

11φ̂s∗
(l̂s∗r1

,l̂s∗r ),j
6=0,

which was not possible for the LASSO estimator (γ = 1) studied in Section 3. Then the adaptive
LASSO criterion is more interesting numerically.

Remark 4 If p is large compared to n, or more precisely for (K + 1)p ≥ n, there exists at least
a segment where the LS estimator cannot be calculated. Then the adaptive LASSO estimator
cannot be calculated also, and in this case, the LASSO-type method must be used.

5 Simulations

To illustrate the theoretical results and to compare the performances of the adaptive LASSO
method with classical LS method in a change-point model we perform a simulation study. By
these simulations, we show the advantages of the proposed method in terms of detection of ir-
relevant predictive variables. The obtained results proves that the proposed method will be very
useful for an high-sized change-point model.
All simulations were performed using the R language. To calculate the adaptive LASSO estima-
tions, the function lqa of the package lqa was used.

First, the number of phases is assumed to be known.We consider 10 latent variablesX1, · · · , X10

with X3 ∼ N (2, 1), X4 ∼ N (4, 1), X5 ∼ N (1, 1) and Xj ∼ N (0, 1) for j ∈ {1, 2, 6, 7, 8, 9, 10}.
The models contain two change-points (three phases) and the errors are Gaussian standardized.
The true values of the regression parameters (coefficients) on the three segments are respectively:
(1, 0, 4, 0,−3, 5, 6, 0,−1, 0), (0, 3,−4,−3, 0, 1, 2,−3, 0, 10), (1, 3, 4, 0, 0, 1, 0, 0, 0, 1). The tuning pa-
rameter λn;(lr−1,lr) is (lr − lr−1)

ρ and the two change-points can vary in the interval [1, n]. For
adaptive LASSO method, various values for the parameters g and ρ are considered. Recall that
g is the power of the adaptive penalization ŵ(lr−1,lr) ≡ |φ̂(lr−1,lr)|−g in relation (3) and ρ is the
power for the tuning parameter λn;(lr−1,lr) = (lr − lr−1)

ρ on each interval [lr−1, lr] The sample
size n varies from 35 to 400. The classical LS method is also considered. For each model, we gen-
erated 500 Monte-Carlo random samples of size n. The percentage of zero coefficients incorrectly
estimated to zero(true 0) and the percentage of nonzero coefficients estimated to zero(false 0)
are computed (see Tables 1-5). Since the asymptotic distribution of the change-points estima-
tors can not be symmetric, in each table we also give the median of the change-point estimations.

We obtain that, if there are segments with a small sample size, the detection percentage of
the true zeros is relatively low and that of detection of the false zeros is high. The same results
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Table 1 Median of change-points estimations, percentage of true 0 and of false 0 by adaptive LASSO and LS
methods for n = 50, K = 2, l0

1
= 20, l0

2
= 35.

(g, ρ) = ( 1
7
, 13

28
) ( 1

6
, 11

24
) ( 1

5
, 9

20
) ( 9

40
, 2

5
) LS

median of (l̂s∗
1

, l̂s∗
2
) (20,35) (20,35) (20,35) (20,35) (20,35)

% of trues 0 77 78 77 77 0
% of false 0 22 22 20 18 0

Table 2 Median of change-points estimations, percentage of true 0 and of false 0 by adaptive LASSO and LS
methods for n = 100, K = 2, l0

1
= 20, l0

2
= 85.

(g, ρ) = ( 1
7
, 13

28
) ( 1

6
, 11

24
) ( 1

5
, 9

20
) ( 9

40
, 2

5
) ( 2

5
, 7

20
) LS

median of (l̂s∗
1
, l̂s∗

2
) (20,85) (20,85) (20,85) (20,85) (20,85) (20,85)

% of trues 0 86 87 88 88 89 0
% of false 0 18 18 17 14 12 0

Table 3 Median of change-points estimations, percentage of true 0 and of false 0 by adaptive LASSO and LS
methods for n = 400, K = 2, l0

1
= 20, l0

2
= 385.

(g, ρ) = ( 1
6
, 11

24
) ( 1

5
, 9

20
) ( 9

40
, 2

5
) LS

median of (l̂s∗
1
, l̂s∗

2
) (20,385) (20,385) (20,385) (20,385)

% of trues 0 90 90 90 0
% of false 0 16 16 12 0

Table 4 Median of change-points estimations, percentage of true 0 and of false 0 by adaptive LASSO and LS
methods for n = 500, K = 2, l0

1
= 200, l0

2
= 400.

(g, ρ) = ( 1
6
, 11

24
) ( 1

5
, 9

20
) ( 9

40
, 2

5
) LS

median of (l̂s∗
1

, l̂s∗
2
) (200,400) (200,400) (200,400) (200,400)

% of trues 0 99.9 99.9 100 0
% of false 0 9.5 8 4 0

were obtained in the simulations of Zou (2006) for a model without change-points (for a model
without change-point with a sample size equal to 60, four covariates, the largest percentage ob-
tained by Zou to detect the zeros was 73%). We observe that the detection rate of the true 0
varies more with the sample size on every segment than with the parameters g or ρ. This rate
increases slightly with g and it does not depend on the location of change-points: equidistant
or not. Recall that the performances of criteria proposed by Wu (2008) have varied with the
change-point location for fixed n. In all cases, even for a small number of observations, the me-
dian of the obtained estimations coincides with the true values of the change-points.
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Table 5 Median of change-points estimations, percentage of true 0 and of false 0 by adaptive LASSO and LS
methods for n = 1500, K = 2, l0

1
= 200, l0

2
= 400.

(g, ρ) = ( 1
6
, 11

24
) ( 1

5
, 9

20
) ( 9

40
, 2

5
) LS

median of (l̂s∗
1
, l̂s∗

2
) (200,400) (200,400) (200,400) (200,400)

% of trues 0 100 100 100 0
% of false 0 4.9 3.5 2.3 0

Hence, when the sample size increases, the adaptive LASSO method tends to select the true
model. The penalization absence means that the LS method do not exhibit this good property
in the sense that all estimations are non-zero and in order to identify the 0 parameters some
supplementary hypothesis test on every phase are necessary.

In order to illustrate the model selection criterion, we now simulate a linear model with
one change-point: Yi = Xiφ

0
1111≤i<l01

+ Xiφ
0
211l01≤i≤n + εi, i = 1, · · · , n, with n = 100, φ0

1 =

(1, 0, 4, 0,−3, 5, 6, 0,−1, 0), φ0
2 = (1, 3, 4, 0, 0, 1, 0, 0, 0, 1) and l01 = 35. The criterion B(K) for

adaptive method is computed for Bn = n5/8, G(K, pK) = K and the parameters for the adap-
tive LASSO are g = 1/5, ρ = 9/20. For this model 200 Monte Carlo samples of size n are
generated for regressor X and error ε. We obtain that argminK∈{0,1,2,3}B(K) = 1 for each
Monte Carlo model replication.

Conclusion By these simulations we showed advantages of the proposed (adaptive LASSO)
method in terms of detection of irrelevant variables in a model with change-points and also of
break number estimation. For a large enough sample size the adaptive LASSO method selects
the true model, independently of change-point location. On the other hand, the constant g affects
slightly the detection of the true 0 parameters. The change-points are correctly estimated.

6 Appendix

Here we present the proofs of the results stated in Section 3 and 4. We first give the proofs of
Lemmas which are useful to prove the main results.

6.1 Proofs of Lemmas

The first four lemmas concern the LASSO-type estimator.
Proof of Lemma 1 We first show that:

sup
0≤j1<j2≤n

| inf
φ

j2
∑

i=j1+1

ηi(φ;φ
0)| = OIP (n

α). (4)

Since IE[εi] = 0, IE[ηi(φ;φ
0)] ≥ 0 and ηi(φ

0;φ0) = 0, it holds that: 0 ≥ infφ
∑k

i=l ηi(φ;φ
0) ≥

infφ
∑k

i=l[ηi(φ;φ
0)−IE[ηi(φ;φ

0)]]. Thus | infφ
∑k

i=l ηi(φ;φ
0)| ≤ supφ |∑k

i=l[ηi(φ;φ
0)−IE[ηi(φ;φ

0)]]|
and relation (4) follows as in Lemma 3 of Bai (1998), using (H3). For ηsi we have:
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|ηsi;(j1,j2)(φ;φ
0) − ηi(φ;φ

0)| ≤ λn;(j1,j2)

j2−j1

∣

∣

∣

∑p
k=1 |φ,k|γ −∑p

k=1 |φ0
,k|γ

∣

∣

∣
, which implies, taking into

account (4), that: sup0≤j1<j2≤n | infφ
∑j2

i=j1+1 η
s
i;(j1,j2)

(φ;φ0)| ≤ sup0≤j1<j2≤n(| infφ
∑j2

i=j1+1 ηi(φ;φ
0)|+

cλn;(j1,j2)) = OIP (n
α) +O(n1/2). �

Proof of Lemma 2 Since λn = o(n), then for all ǫ > 0, φ ∈ Γ , there exists nǫ ∈ N such that:

n−1λn

∣

∣

∣

∣

∣

p
∑

k=1

|φ,k|γ −
p

∑

k=1

|φ0
,k|γ

∣

∣

∣

∣

∣

≤ ǫ

2
, n ≥ nǫ, (5)

uniformly in φ. Under (H2) and (H3), we have that IE[n−1
∑n

i=1 ηi(φ;φ
0)] > 0 for ‖φ− φ

0‖ ≥
n−1/2 and furthermore V ar[n−1

∑n
i=1 ηi(φ;φ

0)] ≤ C. Then there exists ǫ > 0 such that, with
probability 1:

lim inf
n→∞

inf
‖φ−φ0‖≥n−1/2

n−1
n
∑

i=1

ηi(φ;φ
0) > ǫ. (6)

On the other hand: inf‖φ−φ0‖≥n−1/2 n−1
∑n

i=1 η
s
i (φ;φ

0) ≥ inf‖φ−φ0‖≥n−1/2 n−1
∑n

i=1 ηi(φ;φ
0)−

n−1λn sup‖φ−φ0‖≥n−1/2

∣

∣

∣

∑p
k=1 |φ0

,k|γ −∑p
k=1 |φ,k|γ

∣

∣

∣. The Lemma follows taking into account the

relations (5) and (6). �

Proof of Lemma 3 (i) We show first that the assertion is true for the LS estimator: φ̂n1+n2
≡

argminφ
∑n1+n2

i=1 (Yi−X′
iφ)

2. Taking into account the assumptions (H2) and (H3), we have for all

φ ∈ Γ ,
∑n1+n2

i=n1+1 ηi(φ;φ
0
2) = OIP (n

v). By way of contradiction, suppose that for the LASSO-type

estimator: ‖φ̂n1+n2
− φ0

1‖ ≥ n
−1/2
1 n

v+δ
2u

1 . Then, since n1 > nu, we have
∑n1

i=1 ηi(φ̂n1+n2
;φ0

1) ≥
n1n

−1
1 n

v+δ
u

1 ≥ nv+δ. Thus, taking into account that n2 ≤ nv: infφ

[

∑n1

i=1 ηi(φ;φ
0
1) +

∑n1+n2

i=n1+1 ηi(φ;φ
0
2)
]

≥
OIP (n

v+δ)+OIP (n
v) = OIP (n

v+δ). On the other hand: infφ

[

∑n1

i=1 ηi(φ;φ
0
1) +

∑n1+n2

i=n1+1 ηi(φ;φ
0
2)
]

≤
∑n1+n2

i=n1+1(εi − X′
i(φ

0
1 − φ0

2))
2 = OIP (n

v). Contradiction, between the two last results. Then

‖φ̂n1+n2
− φ0

1‖ ≤ n−(u−v−δ)/2.

Evidently
∑n1+n2

i=n1+1 η
s
i;(n1,n1+n2)

(φ;φ0
2) = OIP (n

v)+o(n2) = OIP (n
v). We suppose that: ‖φ̂s

n1+n2
−

φ
0
1‖ ≥ n

−1/2
1 n

v+δ
2u
1 . Then, by Lemma 2,

∑n1

i=1 η
s
i;(0,n1)

(φ̂
s

n1+n2
;φ0

1) ≥ OIP (max(λn;(0,n1), n
v+δ
u

1 ))
with a strictly positive probability. Thus

As
n1+n2

(φ) ≥ OIP (n
v) +OIP

(

max(λn;(0,n1), n
v+δ
u

1 )
)

= OIP

(

max(nv+δ, λn;(0,n1))
)

(7)

But, on the other hand, As
n1+n2

(φ) ≤ ∑n1+n2

i=n1+1 η
s
i;(n1,n1+n2)

(φ0
1;φ

0
2) = OIP (n2) = OIP (n

v) with

probability 1, what is contradictory with (7).
(ii) Let us denote: Zn(φ) ≡ ∑n1

i=1 ηi(φ;φ
0
1), tn(φ) ≡ ∑n1+n2

i=n1+1[(εi − X′
i(φ − φ

0
2))

2 − (εi −
X′

i(φ
0
1 − φ0

2))
2], φ̂n1

is the LS estimator of φ0
1 calculated for i = 1, · · · , n1. For tn, we use

the inequality |a2 − b2| ≤ (a − b)2, assumption (H2), claim (i), condition (2) and we obtain:

|tn(φ̂n1+n2
)| ≤ OIP (n

−(u−v−δ)nv) = OIP (n
−(u−2v−δ)) = oIP (1). We apply this result in the

following: 0 = Zn(φ
0
1) = tn(φ

0
1) ≥ Zn(φ̂n1+n2

) + tn(φ̂n1+n2
) ≥ infφ Zn(φ) − |oIP (1)|. Thus

|Zn(φ̂n1+n2
)| ≤ | infφ Zn(φ)|+ oIP (1). Under assumptions (H2) and (H3) we have:

infφ Zn(φ) = (
√
n1‖φ̂n1

− φ0
1‖)2n−1

1

∑n1

i=1 ‖Xi‖2 − 2
√
n1(φ̂n1

− φ0
1)n

−1/2
1

∑n1

i=1 εiXi

= OIP (1)O(1)−OIP (1)oIP (1) = OIP (1) and |Zn(φ̂n1+n2
)| = OIP (1).
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Let us denote tsn(φ) ≡ tn(φ) + λn;(n1,n1+n2)

[

∑p
k=1(|φ,k|γ − |φ0

1,k|γ)
]

,

Zs
n(φ) ≡ Zn(φ)+λn;(0,n1)

[

∑p
k=1(|φ,k|γ − |φ0

1,k|γ)
]

. We can write As
n1+n2

(φ) = Zs
n(φ)+ tsn(φ)−

∑n1+n2

i=n1+1[ε
2
i − (εi − X′

i(φ
0
1 − φ0

2))
2] + λn;(n1,n1+n2)

∑p
k=1(|φ0

1,k|γ − |φ0
2,k|γ). Then φ̂

s

n1+n2
=

argminφ(Z
s
n(φ) + tsn(φ)) = argminφAs

n1+n2
(φ). But

|tsn(φ̂
s

n1+n2
)| ≤

n1+n2
∑

i=n1+1

‖φ̂s

n1+n2
− φ0

1‖2X′
iXi + λn;(n1,n1+n2)

∣

∣

∣

∣

∣

p
∑

k=1

(|φ̂s
n1+n2,k|γ − |φ0

1,k|γ)
∣

∣

∣

∣

∣

and by claim (i), under condition (2):

= OIP (n
−(u−v−δ)nv) +O(nv/2)OIP (‖φ̂s

n1+n2
− φ0

1‖) = OIP (n
−u−2v−δ

2 ) = oIP (1).

Besides Zs
n(φ

0
1) = tsn(φ

0
1) = 0, thus: 0 ≥ infφ(Z

s
n(φ) + tsn(φ)) = Zs

n(φ̂
s

n1+n2
) + tsn(φ̂

s

n1+n2
) =

Zs
n(φ̂

s

n1+n2
)− |oIP (1)| ≥ infφ Zs

n(φ)− |oIP (1)|. Then

|Zs
n(φ̂

s

n1+n2
)| ≤ | inf

φ
Zs
n(φ)|+ oIP (1). (8)

On the other hand: infφ Zs
n(φ) ≤ infφ Zn(φ) + λn;(1,n1) infφ

[

∑p
k=1

(

|φ,k|γ − |φ0
1,k|γ

)]

. But

infφ

[

∑p
k=1

(

|φ,k|γ − |φ0
1,k|γ

)]

≤ ∑p
k=1

(

|φ̂n1,k|γ − |φ0
1,k|γ

)

= −OIP (‖φ̂n1
−φ0

1‖) = −OIP

(

n
−1/2
1

)

.

Since infφ Zn(φ) = OIP (1), we get: infφ Zs
n(φ) ≤ −OIP (1). Replacing this last relation in (8) we

obtain: |Zs
n(φ̂

s

n1+n2
)| = OIP (1). �

Recall that ŵ(j1,j2) = |φ̂(j1,j2)|−g, where φ̂(j1,j2) is the LS estimator of φ calculated to the
samples j1 + 1, · · · , j2.
Proof of Lemma 5 Since the distribution of ε is absolutely continuous, then IP [φ̂(j1,j2),k =

0] = 0, for every k ∈ {1, · · · , p}. Consider, in this case by convention λn,(j1,j2)φ̂(j1,j2),k = 0 (see

Pötscher and Schneider, 2009). So only the case φ̂(j1,j2),k 6= 0 is considered.
Let us denote X(j1,j2) a (j2−j1)×p sub-matrix ofX corresponding of the samples i = j1+1, · · · , j2,
Xk

(j1,j2)
denotes its kth column and Y(j1,j2) ≡ (Yi)j1≤i≤j2 .

For j1, j2 ∈ {0, 1, · · · , n}, let be the set: A∗
n;(j1,j2)

≡ {k ∈ {1, · · · , p}; φ̂s∗
(j1,j2),k

6= 0} with the
index of nonzero components of the adaptive LASSO estimator of φ calculated to the samples
j1 + 1, · · · , j2. In order to prove the Lemma, we consider two possible cases for an index: it
belongs or not to this set.
If k ∈ A∗

n;(j1,j2)
, then by the Karush-Kuhn-Tucker (KKT) conditions (supposing sgn(φ̂s∗

(j1,j2),k
) =

+), we have: 2−1λn,(j1,j2)ŵ(j1,j2),k = Xk′

(j1,j2)
(Y(j1,j2) − X

′
(j1,j2)

φ̂
s∗
(j1,j2)) = Xk′

(j1,j2)
(ε(j1,j2) −

X
′
(j1,j2)

(φ̂
s∗
(j1,j2) − φ0)) = OIP (n

1/2)−OIP (n
−1/2)O(n) = OIP (n

1/2).

If k 6∈ A∗
n;(j1,j2)

, we have that n1/2φ̂(j1,j2) converges in law, for n → ∞, to some centered normal

distribution. Then λn,(j1,j2)ŵ(j1,j2),k =
λn,(j1,j2)n

g/2

(
√
n|φ̂(j1,j2),k|)

g = OIP (n
1+g
2 ). �

Proof of Lemma 6 Obviously |ηs∗i;(j1,j2)(φ;φ
0) − ηi(φ;φ

0)| ≤ λn,(j1,j2)

j2−j1
|∑p

k=1 ŵ(j1,j2),k[|φ,k| −
|φ0

,k|]|. Using Lemma 5 we obtain:

sup
0≤j1<j2≤n

∣

∣

∣

∣

∣

∣

inf
φ

j2
∑

i=j1+1

ηs∗i;(j1,j2)(φ;φ
0)

∣

∣

∣

∣

∣

∣

≤ OIP (n
α) +OIP (n

1+g
2 ) = OIP (n

1+g
2 ).
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�

Proof of Lemma 7 From Lemma 5: n−1λn|
∑p

k=1 ŵ(0,n),k[φ,k − φ0
,k]| ≤ ǫ/2, ∀n > nǫ. The rest

of proof is similar to that of Lemma 2. �

Proof of Lemma 8 (i) If ‖φ̂s∗
n1+n2

− φ0
1‖ ≥ n

− 1
2

1 n
v+δ
2u
1 , then we have:

∑n1

i=1 η
s∗
i;(0,n1)

(φ;φ0
1) ≥

OIP

(

max(n
v+δ
u

1 , n
1+g
2

1 )
)

= OIP

(

max(nv+δ, nu 1+g
2 )

)

and
∑n1+n2

i=n1+1 η
s∗
i;(n1,n1+n2)

(φ;φ0
2) = OIP (n

v)+

OIP (n
1+g
2

2 ) = OIP (n
v)+OIP (n

v 1+g
2 ) = OIP (n

v). These imply that As∗
n1+n2

(φ) ≥ OIP

(

max(nv+δ, nu 1+g
2 )

)

with a strictly positive probability. On the other hand, taking into account Lemma 5,As∗
n1+n2

(φ) ≤
∑n1+n2

i=n1+1 η
s∗
i;(n1,n1+n2)

(φ0
1;φ

0
2) = OIP (n2) +OIP (n

1+g
2

2 ) = OIP (n2) = OIP (n
v). Contradiction.

(ii) We set: ts∗n (φ) ≡ tn(φ) + λn;(n1,n1+n2)

∑p
k=1 ŵ(n1,n1+n2),k(|φ,k| − |φ0

1,k|), Zs∗
n (φ) ≡ Zn(φ) +

λn;(0,n1)

∑p
k=1 ŵ(0,n1),k(|φ,k| − |φ0

1,k|), with Zn(φ), tn(φ) as in the proof of Lemma 3. Then

As∗
n1+n2

(φ) = Zs∗
n (φ)+ts∗n (φ)−∑n1+n2

i=n1+1[ε
2
i−(εi−X′

i(φ
0
1−φ0

2))
2]+λn;(n1,n1+n2)

∑p
k=1 ŵ(n1,n1+n2),k(|φ0

1,k|−
|φ0

2,k|). The rest of proof is similar to that of Lemma 3. �

6.2 Proofs of theorems

Proof of Theorem 1 The proof is split into three steps, using the same technique as in the
paper Ciuperca (2011a):
Step 1. We prove that, under (H1)-(H3), with probability approaching 1, the change-point esti-

mators are to a smaller distance than [n1/2] from the true values. More precisely, for ρ ∈ (α, 1)
with α > 1/2 as in the Lemma 1 we have:

∀r = 1, · · · ,K IP [|l̂sr − l0r | > [nρ]] → 0, n → ∞ (9)

For this, let us study what happens if we assume that there exists l0r such that |lt − l0r | > [nρ],
for each t = 0, 1, · · · ,K + 1. In this case, between l0r − [nρ] and l0r + [nρ] there is not any point

l1, · · · , lK . Then, let be the set: L(ρ) ≡ {(l1, · · · , lK); 0 < l1 < · · · < lK < n,
∑K

r=1 |lr−l0r | ≤ [nρ]},
with ρ ∈ (α, 1) and let us consider (l1, · · · , lK) ∈ Lc

r(ρ), with Lc
r(ρ) ≡ {(l1, · · · , lK); |lt − l0r | >

[nρ], ∀t = 1, · · · ,K}. Thus, for all γ > 0, we have:

S(l1, · · · , lK) ≥ S(l1, · · · , lK , l01, · · · , l0r−1, l
0
r − [nρ], l0r + [nρ], l0r+1, · · · , l0K) ≡

K+2
∑

t=1

Lt, (10)

Lt will be defined later. On the other hand S(l̂s1, · · · , l̂sK) ≤ S0 with probability one. Recall that

S0 ≡ ∑n
i=1 ε

2
i +

∑K+1
r=1 λn;(l0r−1,l

0
r)

∑p
j=1 |φ0

r,j |γ and the definition of S is given by (1). For all

t ∈ {1, · · · , r− 1, r+1, · · · ,K +2} let us consider the points k1,t < · · · < kJ(t),t ≡ {l1, · · · , lK}∩
{j; l0t−1 < j ≤ l0t } and define:

Lt ≡
J(t)+1
∑

j=1

min
φj





kj,t
∑

i=kj−1,t+1

(εi −X′
i(φj − φ0

t ))
2 + λn;(kj−1,t,kj,t)

p
∑

k=1

|φj,k|γ


 .

Hence, due to the fact the λn;(kj−1,t,kj,t) = o(kj,t − kj−1,t) and using Lemma 1:

0 ≥ Lt −
∑J(t)+1

j=1

(

∑kj,t

i=kj−1,t+1 ε
2
i + λn;(kj−1,t,kj,t)

∑p
k=1 |φ0

j,k|γ
)

≥ −2(K + 1) sup1≤l<j≤n

∣

∣

∣
infφ

[

∑j
i=l+1 η

s
i;(l,j)(φ;φ

0)
]∣

∣

∣
= −OIP (n

α),
(11)
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with φ0 of relation (11) one of the true parameters φ0
r, r = 1, · · · ,K+1. For the samples between

l0r − [nρ] and l0r + [nρ] we have:

Lr −
∑l0r+[nρ]

i=l0r−[nρ]+1 ε
2
i −

∑J(r)+1
j=1 λn;(kj−1,r ,kj,r)

∑p
k=1 |φ0

r,k|γ −∑J(r)
j=1 λn;(kj−1,r ,kj,r)

∑p
k=1 |φ0

r+1,k|γ

= minφ

{

∑l0r
i=l0r−[nρ]+1 η

s
i;(l0r−[nρ],l0r)

(φ;φ0
r) +

∑l0r+[nρ]

i=l0r+1 η
s
i;(l0r ,l

0
r+[nρ])(φ;φ

0
r+1)

}

.

(12)
Since to left and to right of each change-point the models are different, we suppose ‖φ−φ0

r‖ > c.

But
∑l0r

i=l0r−[nρ]+1 ηi(φ;φ
0
r) = OIP ([n

ρ]) ≫ O(n1/2). Since λn;(l0r−[nρ],l0r)
= O(n1/2) and taking

into account the relation between ηi and ηsi , we obtain that: (12) is of order OIP ([n
ρ]) > 0. Then,

for (10), using (11) and the last relation, we obtain: S(l1, · · · , lK) ≥ −OIP (n
α) +OIP ([n

ρ]) + S0.
This last relation implies:
IP [min(l1,··· ,lK)∈Lc

r(ρ)
S(l1, · · · , lK) > S0] → 1 for n → ∞, and relation (9) follows.

Step 2. We prove now that the change-point estimators are at a smaller distance than n1/4 of

true values: for all ν < 1/4 we have: IP [|l̂sr − l0r | > nν ] → 0, for n → ∞, for every r = 1, · · · ,K.
Therefore the step 1, the change-point estimators belong in the set L(ρ), with probability tending
to 1 for n → ∞. For a r ∈ {1, · · · ,K} let be the subset of L(ρ):

Lc
r(ν) ≡ {(l1, · · · , lK) ∈ L(ρ); |lt − l0r | > nν , t = 1, · · · ,K}.

For (l1, · · · , lk) ∈ Lc
r(ν), we have that: S(l1, · · · , lk) ≥ S(l1, · · · , lK , l01, · · · , l0r−1, l

0
r − [nν ], l0r +

[nν ], l0r+1, · · · , l0K). For t 6= r− 1, r, by assumption (H1), using the step 1, we have that there are
at most two points lt and lt+1 between l0t and l0t+1. Suppose that there are two points lt and lt+1

between l0t and l0t+1. If there is a single point or no point the approach is the same.

D(l0t , l
0
t+1) = infφ

{

∑lt
i=l0t+1(εi −X′

i(φ− φ0
t+1))

2 + λn;(l0t ,lt)

∑p
k=1 |φ,k|γ

}

+ infφ

{

∑lt+1

i=lt+1(εi −X′
i(φ− φ0

t+1))
2 + λn;(lt,lt+1)

∑p
k=1 |φ,k|γ

}

+ infφ

{

∑l0t+1

i=lt+1(εi −X′
i(φ− φ0

t+1))
2 + λn;(lt+1,l0t+1)

∑p
k=1 |φ,k|γ

}

.

Consequently, S(l1, · · · , lK , l01, · · · , l0r−1, l
0
r − [nν ], l0r + [nν ], l0r+1, · · · , l0K)− S0 can be written as:

∑

t6=r−1,r

{

D(l0t , l
0
t+1)−

∑l0t+1

i=l0t+1
ε2i − λn;(l0t ,l

0
t+1)

∑p
k=1 |φ0

t,k|γ
}

+
(

D(l0r−1, l
0
r − [nν ])−∑l0r−[nν ]

i=l0r−1+1
ε2i − λn;(l0r−1,l

0
r−[nν ])

∑p
k=1 |φ0

r,k|γ
)

+

(

D(l0r + [nν ], l0r+1)−
∑l0r+1

i=l0r+[nν ]+1 ε
2
i − λn;(l0r+[nν ],l0r+1)

∑p
k=1 |φ0

r+1,k|γ
)

+
(

D(l0r − [nν ], l0r + [nν ])−∑l0r+[nν ]

i=l0r−[nν ]+1 ε
2
i − λn;(l0r−[nν ],l0r)

∑p
k=1 |φ0

r,k|γ −λn;(l0r,l
0
r+[nν ])

∑p
k=1 |φ0

r+1,k|γ
)

≡ A + B + C + D, with D(l0r−1, l
0
r − [nν ]), D(l0r + [nν ], l0r+1), D(l0r − [nν ], l0r + [nν ]) sums with

the same form that D(l0s , l
0
s+1).

For A: since |l0t − l̂st | ≤ OIP ([n
ρ]), with ρ < 3/4 and under assumption (H1), taking into account

Lemma 3(ii), we have:

D(l0t , l
0
t+1)−

l0t+1
∑

i=l0t+1

ε2i−λn;(l0t ,l
0
t+1)

p
∑

k=1

|φ0
t,k|γ = inf

φ







lt+1
∑

i=lt+1

ηsi,(lt,lt+1)
(φ,φ0

t+1)







(1+oIP (1)) = OIP (1).

Similarly B, C = OIP (1).

For D: D(l0r − [nν ], l0r + [nν ]) is equal to infφ

{

∑l0r
i=l0r−[nν ](εi −X′

i(φ− φ0
r))

2
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+λn;(l0r−[nν ],l0r)

∑p
k=1 |φ,k|γ +

∑l0r+[nν ]

i=l0r+1 (εi −X′
i(φ− φ0

r+1))
2 + λn;(l0r ,l

0
r+[nν ])

∑p
k=1 |φ,k|γ

}

. Since

φ
0
r 6= φ

0
r+1, if φ̃ is the minimizer of the last relation, there exists a constant c > 0 such that at least

one of two ‖φ̃−φ
0
r‖ or ‖φ̃−φ

0
r+1‖ is greater than c. Let us suppose that it is the first one. Then,

for ‖φ−φ0
r‖ > c, using Lemma 1 of Babu(1989) we have:

∑l0r
i=l0r−[nν ] η

s
i;(l0r−[nν ],l0r)

(φ;φ0
r) = ‖φ−

φ
0
r‖2

∑l0r
i=l0r−[nν ] ‖Xi‖2−2(φ−φ

0
r)

′ ∑l0r
i=l0r−[nν ] εiXi+λn;(l0r−[nν ],l0r)

(

∑p
k=1 |φ,k|γ −∑p

k=1 |φ0
r,k|γ

)

=

OIP (n
ν) + o(nν) = OIP (n

ν), uniformly in φ. So D = OIP (n
ν) and then

inf
(l1,··· ,lK)∈Lc

r(ν)
[S(l1, · · · , lK , l01, · · · , l0r−1, l

0
r − [nν ], l0r +[nν ], l0r+1, · · · , l0K)−S0] > OIP ([n

ν ]), (13)

with probability tending to one for n → ∞. This involves:
inf(l1,··· ,lK)∈Lc

r(ν)
S(l1, · · · , lK , l01, · · · , l0r−1, l

0
r − [nν ], l0r + [nν ], l0r+1, · · · , l0K) > S0 and the step 2

is proved.
Step 3. Now, we can show the theorem: l̂sr − l0r = OIP (1) for any r = 1, · · · ,K.

Let be the set: L(ν) ≡
{

(l1, · · · , lK); |lt − l0t | < [nν ], ∀t = 1, · · · ,K
}

with ν < 1/4. For a M1 > 0

to determine later, let also the set: Lr(ν,M1) ≡
{

(l1, · · · lK) ∈ L(ν); lr − l0r < −M1

}

.
Consider two vectors of change-points (m1, · · · ,mK) ∈ L(ν) and (l1, · · · , lK) ∈ Lr(ν,M1)
such that mt = lt for t 6= r and mr = l0r . Using the notations specified in Section 3, we can

write: S(l1, · · · , lK) − S(m1, · · · ,mK) = {∑lr
j=lr−1+1[(Yj − Ŷ s

(lr−1,lr),j
)2 − (Yj − Ŷ s

(lr−1,l0r),j
)2] +

λn;(lr−1,lr)

∑p
k=1 |φ̂s

(lr−1,lr),k
|γ − λn;(lr−1,l0r)

∑p
k=1 |φ̂s

(lr−1,l0r),k
|γ} + {∑l0r

j=lr+1[(Yj − Ŷ s
(lr ,lr+1),j

)2 −
(Yj−Ŷ s

(lr−1,l0r),j
)2]}+{∑lr+1

j=l0r+1
[(Yj−Ŷ s

(lr,lr+1),j
)2−(Yj−Ŷ s

(l0r,lr+1),j
)2]+λn;(lr,lr+1)

∑p
k=1 |φ̂s

(lr ,lr+1),k
|γ−

λn;(l0r ,lr+1)

∑p
k=1 |φ̂s

(l0r ,lr+1),k
|γ} ≡ {I11 + I12} + {I21} + {I31 + I32}. By Lemma 4(ii) we have for

I11: I11 =
∑lr

j=lr−1+1

[

ηj(φ̂
s

(lr−1,lr);φ
0
r)− ηj(φ̂

s

(lr−1,l0r)
;φ0

r)
]

= OIP (1). By Lemma 4(i), taking

n1 = lr − lr−1 ≥ [nu], u ≥ 3/4, n2 = l0r − lr, since λn;(lr−1,lr) = O((lr − lr−1)
1/2) it holds that:

I12 = λn;(lr−1,lr)[

p
∑

k=1

|φ̂s
(lr−1,lr),k

|γ −
p

∑

k=1

|φ̂s
(lr−1,l0r),k

|γ ] + [λn;(lr−1,lr) − λn;(lr−1,l0r)
]

p
∑

k=1

|φ̂s
(lr−1,l0r),k

|γ

= λn;(lr−1,lr)OIP (‖φ̂
s

(lr−1,lr) − φ̂
s

(lr−1,l0r)
‖) +OIP (λn;(lr−1;lr) − λn;(lr−1;l0r)

) = oIP (1) + oIP (l
0
r − lr)

= oIP (l
0
r − lr). Similarly, it can be shown that I31 = OIP (1) and I32 = oIP (l

0
r − lr). For I21:

I21 =

l0r
∑

i=lr+1

[(εj −X′
i(φ

0
r+1 − φ

0
r))

2 − ε2i ] +

l0r
∑

j=lr+1

[(εj −X′
i(φ̂

s

(lr ,lr+1) − φ
0
r))

2

−(εi −X′
j(φ

0
r+1 − φ0

r))
2]−

l0r
∑

i=lr+1

[

(εi −X′
i(φ̂

s

(lr−1,l0r)
− φ0

r))
2 − ε2i

]

≡ J1 + J2 + J3.

For J2, Lemma 4(i) combined with the step 2, condition (2), yield that:

J2 = [‖φ̂s

(lr ,lr+1) − φ
0
r‖2 − ‖φ0

r+1 − φ
0
r‖2]

l0r
∑

i=lr+1

‖Xi‖2 − 2
(

φ̂
s

(lr ,lr+1) − φ
0
r+1)

)′ l0r
∑

i=lr+1

εiXi

= OIP (n
−(u−ν−δ)(l0r − lr)) +OIP (n

−u−ν−δ
2 (l0r − lr)) = OIP (n

−u−δ−3ν
2 ) = oIP (1).
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Similarly |J3| = oIP (1). For J1, since φ
0
r 6= φ0

r+1, there exists C1 > 0 such that |J1| > C1(l
0
r − lr).

We choose M1 > 0 such that |J1| (then I21 also) is bigger than max(I12, I11, I31, I32). Then

limn→∞ IP [(l̂s1, · · · , l̂sK) ∈ Lr(ν,M1)] = 0 and theorem is established. �

Proof of Theorem 2 Since IE[Z
(r)
j ] > cj, then for all δ̃ > 0 there exists M2,δ̃ > 0 such that:

IP [| argminj∈Z
Z

(r)
j | ≤ M2,δ̃] > 1 − δ̃. By Theorem 1, for all δ̃ > 0, there exists M1,δ̃ > 0 such

that for each r = 1, · · · ,K: IP [|l̂sr − l0r | ≤ M1,δ̃] > 1− δ̃. Consider then M = max{M1,δ̃,M2,δ̃}.
For each |ir| ≤ M, let us consider:
S(l01 + i0, · · · , l0K + iK)− S(l01, · · · , l0K)

=

K
∑

r=1

l0r
∑

j=l0r−1+ir−1+1

[

(

Yj −X′
jφ̂

s

(l0r−1+ir−1,l0r+ir)

)2

−
(

Yj −X′
jφ̂

s

(l0r−1,l
0
r)

)2
]

+
K
∑

r=1

l0r+ir
∑

j=l0r+1

{[

(Yj −X′
jφ̂

s

(l0r−1+ir−1,l0r+ir))
2 − ε2j

]

−
[

(Yj −X′
jφ̂

s

(l0r ,l
0
r+1)

)2 − ε2j

]}

+

K
∑

r=1

[

λn,(l0r−1+ir−1,l0r+ir)

p
∑

k=1

|φ̂s
(l0r−1+ir−1,l0r+ir),k

|γ − λn,(l0r−1,l
0
r)

p
∑

k=1

|φ̂s
(l0r−1,l

0
r),k

|γ
]

and by Corollary 1: = oIP (1) +
∑K

r=1 Z
(r)
j (1 + oIP (1)) + oIP (1). So S(l01 + i0, · · · , l0K + iK) −

S(l01, · · · , l0K) converges jointly in ir in distribution to
∑K

r=1 Z
(r)
j for n → ∞. Since we have

independent set of random variables around each change-point, the theorem follows. �

Proof of Theorem 3 We combine Theorems 2 and 3 of Knight and Fu (2000) with Corollary
1 and Theorem 2 of this paper. �

Proof of Theorem 4 Consider first K < K0. By Lemma 1 we have for α ∈ (1/2; 3/4):

0 > S(l̂s1,K0
, · · · , l̂sK0,K0

)− S0 = OIP (n
α). So ŝK0 = n−1S(l̂s1,K0

, · · · , l̂sK0,K0
)− n−1S0 + n−1S0 =

OIP (n
α−1) + n−1

∑n
i=1 ε

2
i + oIP (1)

IP−→
n→∞

IE[σ2]. On the other hand, since the distance between

two consecutive change-points is at least n3/4, we prove in the same way as for relation (13),

that: S(l̂s1,K , · · · , l̂sK,K)− S0 > Cn3/4. Then: n(ŝK − ŝK0)ŝ
−1
K0

=

ŝ−1
K0

[

(S(l̂s1,K , · · · , l̂sK,K)− S0)− (S(l̂s1,K0
, · · · , l̂sK0,K0

)− S0)
]

> OIP (n
3/4)−OIP (n

α) = OIP (n
3/4).

Due to fact Bn ≪ n3/4 we have for K < K0, B(K)−B(K0)
IP−→

n→∞
∞.

Let us consider now that K > K0. Thus: S0 ≥ S(l̂s1,K0
, · · · , l̂sK0,K0

) ≥ S(l̂s1,K , · · · , l̂sK,K) ≥
S(l̂s1,K , · · · , l̂sK,K , l01, · · · , l0K0

) ≥ S0 − OIP (n
ν), with ν < 1/4. The last inequality is obtained by

similar calculations of the Theorem 1 proof, step 2. Then 0 ≤ ŝK0 − ŝK = OIP (n
ν−1), which

implies immediately that: n log ŝK0 − n log ŝK = OIP (n
ν). Taking into account that the function

G is increasing in K and that nα ≪ Bn ≪ n3/4, we have for the criterion B(K) − B(K0) =
−OIP (n

ν) +G(K, p)Bn −G(K0, p0)Bn > OIP (n
α). Then, for n → ∞, IP [K̂n > K0] → 0. �

Proof of Theorem 6 Observe that the claim (i) follows immediately by Theorem 2 of Zou
(2006) and Theorem 5.
(ii) Recall first the definition of the two sets: A∗

(l0r−1,l
0
r)

≡ {k ∈ {1, · · · , p};φ0
r,k 6= 0} and
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A∗
n,(l̂s∗r−1,l̂

s∗
r )

≡ {k ∈ {1, · · · , p}; φ̂s∗
(l̂s∗r−1,l̂

s∗
r ),k

6= 0}. By Theorem 2 of Zou (2006) the adaptive

LASSO estimator in a model without change-points has the oracle properties: limn→∞ IP [A∗
n,(l0r−1,l

0
r)

=

A∗
(l0r−1,l

0
r)
] = 1. It remains to prove that: limn→∞ IP [A∗

n,(l̂s∗r−1,l̂
s∗
r )

= A∗
(l0r−1,l

0
r)
] = 1. The asymp-

totic normality of estimators implies that: φ0
r,k − φ̂s∗

(l̂s∗r−1,l̂
s∗
r ),k

IP−→
n→∞

0, ∀k ∈ A∗
n,(l̂s∗r−1,l̂

s∗
r )

. Then

limn→∞ IP [A∗
n,(l̂s∗r−1,l̂

s∗
r )

⊆ A∗
(l0r−1,l

0
r)
] = 1. We now prove: IP [∃k ∈ {1, · · · , p}; k 6∈ A∗

(l0r−1,l
0
r)

and k ∈
A∗

n,(l̂s∗r−1,l̂
s∗
r )

] → 0, for n → ∞. Using the notations given in the proof of Lemma 5, by KKT op-

timality conditions: 2λn,(l̂s∗r−1,l̂
s∗
r )ŵ(l̂s∗r−1,l̂

s∗
r ),k = Xk′

(l̂s∗r−1,l̂
s∗
r )

(Y(l̂s∗r−1,l̂
s∗
r )−X

′
(l̂s∗r−1,l̂

s∗
r )

φ̂
s∗
(l̂s∗r−1,l̂

s∗
r )). Con-

sequence of (i): (l̂s∗r − l̂s∗r−1)
1/2φ̂s∗

(l̂s∗r−1,l̂
s∗
r ),k

= OIP (1). Taking into account conditions imposed to

λn,(l̂s∗r−1,l̂
s∗
r ):

λn,(l̂s∗r−1,l̂
s∗
r )ŵ(l̂s∗r−1,l̂

s∗
r ),k

(l̂s∗r − l̂s∗r−1)
1/2

=
λn,(l̂s∗r−1,l̂

s∗
r )

(l̂s∗r − l̂s∗r−1)
1/2

(l̂s∗r − l̂s∗r−1)
g/2 1

|(l̂s∗r − l̂s∗r−1)
1/2φ̂s∗

(l̂s∗r−1,l̂
s∗
r ),k

|g
IP−→

n→∞
∞.

On the other hand, in the case (l̂s∗r−1, l̂
s∗
r ) ⊆ (l0r−1, l

0
r), we have

Xk′

(l̂s∗r−1,l̂
s∗
r )

(Y(l̂s∗r−1,l̂
s∗
r ) − X

′
(l̂s∗r−1,l̂

s∗
r )

φ̂
s∗
(l̂s∗r−1,l̂

s∗
r ))

(l̂s∗r − l̂s∗r−1)
1/2

=
Xk′

(l̂s∗r−1,l̂
s∗
r )

X(l̂s∗r−1,l̂
s∗
r )(l̂

s∗
r − l̂s∗r−1)

1/2(φ0
r − φ̂(l̂s∗r−1,l̂

s∗
r ))

l̂s∗r − l̂s∗r−1

+
Xk′

(l̂s∗r−1,l̂
s∗
r )

ε(l̂s∗r−1,l̂
s∗
r )

(l̂s∗r − l̂s∗r−1)
1/2

Using the claim (i), the assumptions (H2), (H3) we obtain that the last term converges to the
sum of two normal distributions. Then, for n → ∞: IP [∃k ∈ {1, · · · , p}; k 6∈ A∗

(l0r−1,l
0
r)

and k ∈
A∗

n,(l̂s∗r−1,l̂
s∗
r )

] → 0.

In the case (l̂s∗r−1, l̂
s∗
r ) 6⊆ (l0r−1, l

0
r), suppose, without loss of generality, that l̂

s∗
r−1 ≤ l0r−1 < l̂s∗r ≤ l0r

(other cases are similar). So, we have the decomposition:Xk′

(l̂s∗r−1,l̂
s∗
r )

(Y(l̂s∗r−1,l̂
s∗
r )−X

′
(l̂s∗r−1,l̂

s∗
r )

φ̂
s∗
(l̂s∗r−1,l̂

s∗
r ))

= Xk′

(l̂s∗r−1,l
0
r−1)

(Y(l̂s∗r−1,l
0
r−1)

−X
′
(l̂s∗r−1,l

0
r−1)

φ̂
s∗
(l̂s∗r−1,l̂

s∗
r ))+Xk′

(l0r−1,l̂
s∗
r )

(Y(l0r−1,l̂
s∗
r )−X

′
(l0r−1,l̂

s∗
r )

φ̂
s∗
(l̂s∗r−1,l̂

s∗
r )) ≡

An +Dn. As previously, Dn/(l̂
s∗
r − l̂s∗r−1)

1/2 converge to the sum of two normal distributions. For

An: An/(l̂
s∗
r − l̂s∗r−1)

1/2 = Xk′

(l̂s∗r−1,l
0
r−1)

X(l̂s∗r−1,l
0
r−1)

(φ0
r−1−φ̂

s∗
(l̂s∗r−1, l̂

s∗
r ))(l̂s∗r − l̂s∗r−1)

1/2+Xk′

(l̂s∗r−1,l
0
r−1)

·
ε(l̂s∗r−1,l

0
r−1)

(l̂s∗r − l̂s∗r−1)
1/2 ≡ A1n + A2n. But A2n = oIP (1). Combining (H2) and Theorem 5 we

have:A1n =
X

k′

(l̂s∗
r−1

,l0
r−1

)
·X

(l̂s∗
r−1

,l0
r−1

)
·(φ0

r−1−φ̂
s∗

(l̂s∗r−1,l̂
s∗
r ))

l̂s∗r −l̂s∗r−1

· l̂s∗r −l̂s∗r−1

(l̂s∗r −l̂s∗r−1)
1/2

= OIP (1)oIP (1) = oIP (1). Then

An = oIP (1). Consequently, there exists a constant M > 0 such that limn→∞ IP [|An + Dn| <
M ] = 0. Hence IP [∃k ∈ {1, · · · , p}; k 6∈ A∗

(l0r−1,l
0
r)

and k ∈ A∗
n,(l̂s∗r−1,l̂

s∗
r )

] → 0, for n → ∞.

�

Acknowledgements: The author would like to thank the Editor and the referee for their
constructive comments and suggestions which helped to improve the quality of the paper.



22 GABRIELA CIUPERCA

References

Babu, G. J.,(1989). Strong representations for LAD estimators in linear models. Probability Theory and Related

Fields, 83, 547-558.
Bai, J.,(1998). Estimation of multiple-regime regressions with least absolute deviation. Journal of Statistical

Planning Inference, 74, 103-134.
Bai, J., Perron P.,(1998), Estimating and testing linear models with multiple structural changes, Econometrica

66(1), 47-78.
Bickel, P. J., Ritov, Y. and Tsybakov, A. B.,(2009). Simultaneous analysis of lasso and Dantzig selector. The

Annals of Statistics, 37(4), 1705-1732.
Ciuperca G.,(2009). The M-estimation in a multi-phase random nonlinear model. Statistics and Probability

Letters, 75(5), 573-580.
Ciuperca, G.,(2011a). Estimating nonlinear regression with and without change-points by the LAD-method.

Annals of the Institute of Statistical Mathematics, 63(4), 717-743.
Ciuperca, G.,(2011b). Penalized least absolute deviations estimation for nonlinear model with change-points.

Statistical Papers, 52(2), 371-390.
Fan, J. and Li, R.,(2001). Variable selection via nonconcave penalized likelihood and its oracle properties. Journal

of the American Statistical Association, 96(456), 1348-1360.
Foster, S. D., Verbyla, A. P. and Pitchford, W. S.,(2009). Estimation, prediction and inference for the LASSO

random effects model. The Australian & New Zealand Journal of Statistics , 51(1), 43-61.
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