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In the present note, we give a concise proof for the equivalence between the local boundedness property for parabolic Dirichlet BVP's and the gaussian upper bound for their Green functions. The parabolic equations we consider are of general divergence form and our proof is essentially based on the gaussian upper bound by Daners [Da] and a Caccioppoli's type inequality. We also show how the same analysis enables us to get a weaker version of the local boundedness property for parabolic Neumann BVP's assuming that the corresponding Green functions satisfy a gaussian upper bound.

Introduction

We consider on Ω, a bounded Lipschitz domain of R n , the general divergence form parabolic operator Lu = ∂ t u -div(A(x, t)∇u + uB(x, t)) + C(x, t) • ∇u + d(x, t)u.

We assume that, where λ|ξ| 2 ≤ a ij (x, t)ξ i ξ j , a.e. (x, t) ∈ Q and ξ ∈ R n .

Q = Ω × (0, +∞), A = (a ij ) ∈ L ∞ (Q) n×n , B, C ∈ L ∞ (Q) n , d ∈ L ∞ (Q)
Henceforth H = L 2 (Ω) and V = H 1 0 (Ω) (resp. V = H 1 (Ω)). The bilinear form associated to the operator L takes the form a(t, u, v) = Ω (A∇u • ∇v + uB • ∇v + vC • ∇u + duv) dx, u, v ∈ V.

Let, where 0 ≤ s < T ,

W = W (s, T, V, V ′ ) = {u ∈ L 2 ((s, T ), V ); u ′ ∈ L 2 ((s, T ), V ′ )}.
W is a Hilbert space continuously embedded in C([s, T ], H) (e.g. [DL], Section XVIII.1.2) and the following Green's formula holds true

(1.2) s2 s1 u ′ (s), v(s) ds + s2 s1 u(s), v ′ (s) ds = u(s 2 )v(s 2 ) -u(s 1 )v(s 1 ), u, v ∈ W, where s ≤ s 1 < s 2 ≤ T and •, • is the duality pairing between V and V ′ .
We say that u ∈ W is a weak solution of the boundary value problem (abbreviated to BVP in the sequel)

(1.3) Lu = 0 in Ω × (s, T ) and u = 0 (resp. A∇u + uB • ν = 0) on ∂Ω × (s, T ) if (1.4) u ′ (t), v + a(t, u(t), v) = 0 a.e., for any v ∈ V.
Here ν = (ν 1 , . . . ν n ) is the outward unit normal vector to ∂Ω.

Under the assumption (1.1), there exist operators

A (t) ∈ B(V, V ′ ) such that A (t)u, v = a(t, u, v), u, v ∈ V.
1

As it is noticed in [Da], the family (A (t)) t≥0 generates an evolution system (U (t, s)) 0≤s≤t of bounded operators on H. Specifically, for any u 0 ∈ H, u(t) = U (t, s)u 0 ∈ W is the weak solution of the abstract Cauchy problem

(1.5) u ′ (t) + A (t)u(t) = 0, in (s, T ), u(s) = u 0 ,
in the sense that

- T s u(t), v ′ (t) dt + T s a(t; u(t), v(t))dt - Ω u 0 v(s) = 0, for any v ∈ W satisfying v(T ) = 0.
We observe that the weak solution of the Cauchy problem (1.5) is also a weak solution of the BVP (1.3).

In the sequel, C denotes a generic constant that can depend on n, Ω and the coefficients of L.

From Theorem 5.2 and Corollary 5.3 in [Da], we have the following estimates

U (t, s) 2,2 ≤ 1, (1.6) U (t, s) 2,∞ ≤ C(t -s) -n 4 , (1.7) U (t, s) 1,∞ ≤ C(t -s) -n 2 . (1.8) Here • p,q denotes the natural norm of B(L p (Ω), L q (Ω)).
Therefore, according to the Dunford-Pettis theorem, U (t, s) is an integral operator with kernel G(•, t;

•, s) ∈ L ∞ (Ω × Ω), 0 ≤ s ≤ t: U (t, s)u 0 (x) = Ω G(x, t; y, s)u 0 (y)dy, u 0 ∈ H.
In the sequel we call G the Dirichlet (resp. Neumann) Green function when

V = H 1 0 (Ω) (resp. V = H 1 (Ω)). If G (x, t) = (4πt) -n/2 e -|x| 2 4t , x ∈ R n , t > 0, is the usual gaussian kernel, we set G c (x, t) = c -1 G ( √ cx, t), c > 0.
From Theorem 6.1 in [Da], we know that G satisfies the gaussian upper bound (1.9) G(x, t; y, s) ≤ G C (x -y, t -s).

We need to introduce some notations. If x ∈ Ω and t > s, we set

I(r) = I(r)(t) = (t -r 2 , t], Q(r) = Q(r)(x, t) = [B(x, r) ∩ Ω] × I r .
Here, r is a small parameter always chosen in such a way that t -kr 2 remains in the time interval under consideration, for different values of k appearing in the sequel. Following [HK], we say that L has the local boundedness property if, for any weak solution u of (1.3) and any x ∈ Ω, we have

u L ∞ (Q(r)) ≤ Cr -n+2 2 u L 2 (Q(2r)) .
We aim to prove the following result.

Theorem 1.1. If L possesses the local boundedness property, then G satisfies the gaussian upper bound (1.9). Conversely, under the additional assumption that A ∈ L ∞ ((0, ∞), W 1,∞ (Ω) n×n ), if the Dirichlet Green function G satisfies the gaussian upper bound (1.9), then L possesses the local boundedness property.

We mention that S. Hofmann and S. Kim [HK] proved the equivalence between the local boundedness property for a parabolic system and the gaussian upper bound for the corresponding fundamental solution.

Proof of the main theorem

Henceforth, the L p -norm, 1 ≤ p ≤ ∞, is denoted by • p .

Proof of Theorem 1.1. Let us first assume that L has the local boundedness property and we pick u 0 ∈ H. As u = U (t, s)u 0 is a weak solution of equation (1.4), we have, by using the local boundedness property,

|u(x, t)| 2 ≤ C( √ t -s) -(n+2) t t-( √ t-s) 2 B(x, √ t-s)∩Ω u 2 (y, τ )dydτ a.e. ≤ C(t -s) -n+2 2 t t-( √ t-s) 2 U (τ, s)u 0 2 2 dτ ≤ C(t -s) -n 2 u 0 2 2 (by (1.6)).
Then

U (t, s)u 0 ∞ ≤ C(t -s) -n 4 u 0 2 .
In other words, we proved

U (t, s) 2,∞ ≤ C(t -s) -n 4 .
This is exactly the estimate (1.7), which in turn implies, by duality, (1.8). The gaussian upper bound follows then from Theorem 6.1 in [Da] and its proof.

The proof of the converse is based on the following parabolic Caccioppoli's type inequality, that we prove later.

Lemma 2.1. Let u be a weak solution of (1.3). Then

sup τ ∈Ir B(x,r)∩Ω u 2 (•, τ ) + Q(θ1r) |∇u| 2 ≤ Cθr -2 Q(θ2r) u 2 , for any 0 < θ 1 < θ 2 , where θ = (θ 2 2 -θ 2 1 ) -1 + (θ 2 -θ 1 ) -2 .
We pursue the proof by assuming that A ∈ L ∞ ((0, ∞), W1,∞ (Ω) n×n ) and G satisfies the gaussian upper bound (1.9). We consider ϕ ∈ C ∞ (R) satisfying, 0 ≤ ϕ ≤ 1, ϕ = 1 in a neighborhood of I( 54 r), ϕ = 0 in a neighborhood of (-∞, t -

( 3 2 r) 2 ) and |ϕ ′ | ≤ cr -2 . Let ψ ∈ C ∞ c (B(x, 3 2 r)) such that 0 ≤ ψ ≤ 1, ψ = 1 in a neighborhood of B(x, 5
4 r) and |∂ α ψ| ≤ cr -|α| , for any α ∈ N n , |α| ≤ 2, for some universal constant c. Let u ∈ W be a weak solution of (1.3) and v = ϕψ. In light of the identity L(vu) = vLu + [L, v]u 1 , Duhamel's formula and the fact that vu = 0 on ∂Ω × (0, +∞), we get

(2.1) (vu)(z, τ ) = τ s Ω G(z, τ ; y, ρ)f (y, ρ)dydρ, a.e. (z, τ ) ∈ Q(r).
Here

we set f = [L, v]u = f 1 + f 2 , with f 1 = uϕ ′ ψ f 2 = ϕ∇ψ • (A∇u + uB) -ϕdiv(uA∇ψ) + ϕuC • ∇ψ.
We need in the sequel that f 1 , f 2 ∈ L 2 (Ω). This explains why we assumed that

A ∈ L ∞ ((0, ∞), W 1,∞ (Ω) n×n ). Since supp(f 1 ) ⊂ Q 1 (r) = [B(x, 3 2 r) ∩ Ω] × (t -( 3 2 r) 2 , t -( 5 4 r) 2 ), we show by elementary calculations τ s Ω G(z, τ ; y, ρ)f 1 (y, ρ)dydρ 2 = Q1(r) G(z, τ ; y, ρ)f 1 (y, ρ)dydρ 2 ≤ Q1(r) G 2 (z, τ ; y, ρ)dydρ Q1(r) f 2 1 (y, ρ)dydρ ≤ Q1(r) G 2 C (z -y, τ -ρ)dydρ f 1 2 L 2 (Q( 3 2 r)) ≤ Cr -n f 1 2 L 2 (Q( 3 2 r)) ≤ Cr -n-2 u 2 L 2 (Q( 3 2 r)) . Let Q 2 (r) = [{B(x, 3 2 r) \ B(x, 5 4 r)} ∩ Ω] × I( 3 2 r).
Similar calculations to those in pages 489 and 490 of [HK] give

Q2(r) G 2 C (z -y, τ -ρ)dydρ ≤ Cr 2-n . Hence τ s Ω G(z, τ ; y, ρ)f 2 (y, ρ)dydρ 2 = Q2(r) G(z, τ ; y, ρ)f 2 (y, ρ)dydρ 2 ≤ Q2(r) G 2 (z, τ ; y, ρ)dydρ Q2(r) f 2 2 (y, ρ)dydρ ≤ Q2(r) G 2 C (z -y, τ -ρ)dydρ f 2 2 L 2 (Q( 3 2 r)) ≤ Cr -n+2 f 2 2 L 2 (Q( 3 2 r)) ≤ Cr -n ∇u 2 L 2 (Q( 3 2 r)) + r -2 u 2 L 2 (Q( 3 2 r))
. Applying Lemma 2.1 with θ 1 = 3 2 and θ 2 = 2, we find ∇u 2

L 2 (Q( 3 2 r)) ≤ Cr -2 u 2 L 2 (Q(2r))
and then

τ s Ω G(z, τ ; y, ρ)f 2 (y, ρ)dydρ 2 ≤ Cr -n-2 u 2 L 2 (Q(2r)) .
We end up getting

|u(z, τ )| ≤ Cr -n+2 2 u 2 L 2 (Q(2r)) , a.e. (z, τ ) ∈ Q(r).
The analysis we carry out in the converse part of the theorem above is no longer valid for the Neumann Green function because in that case there is an additional term in (2.1). Precisely, we have in place of (2.1)

(2.2) (vu)(z, τ ) = τ s Ω G(z, τ ; y, ρ)f (y, ρ)dydρ + τ s ∂Ω G(z, τ ; σ, ρ)g(σ, ρ)dσdρ, a.e. (z, τ ) ∈ Q(r).
Here g = -uϕA∇ψ • ν.

Indeed, contrary to the Dirichlet case where vu satisfies a homogeneous boundary condition, in the Neumann case vu obeys to the following non homogeneous Neumann boundary condition

A∇(uv) + (uv)B • ν = -uϕA∇ψ • ν = g.
On the other hand, an elementary computation gives

(2.6) a(t, u(t), u(t)ψ 2 ) = Ω A∇u • ∇uψ 2 + Ω uE • ψ∇u + Ω f 0 u 2 ,
where E = E(x, t) = 2A∇ψ + ψB + ψC, f 0 = f 0 (x, t) = 2ψB • ∇ψ + dψ 2 .

Let f 1 = f 0 ϕ -(1/2)ψ 2 ϕ ′ . Then a combination of (2.4), (2.5) and (2.6) yields

1 2 Ω u 2 (τ )ψ 2 ϕ(τ )dx + τ t-(θ2r) 2 Ω A∇u • ∇uψ 2 ϕdxdt (2.7) = - τ t-(θ2r) 2 Ω uE • ψ∇uϕdxdt - τ t-(θ2r) 2 Ω f 1 u 2 dxdt.
In light of the convexity inequality

- Ω uE • ψ∇udx ≤ 1 2λ Ω |E| 2 u 2 dx + Ω λ 2 |∇u| 2 ψ 2 dx
and the ellipticity condition (1.1), we deduce from (2.7) that

1 2 Ω u 2 (τ )ψ 2 ϕ(τ )dx + λ 2 τ t-(θ2r) 2 Ω |∇u| 2 ψ 2 ϕdxdt ≤ τ t-(θ2r) 2 Ω 1 2λ |E| 2 ϕ + |f 1 | u 2 dxdt
We complete the proof using the estimates on the derivatives of ψ and ϕ.

Here [•, •] is the usual commutator.

However, g is identically equal to zero if ψ is chosen compactly supported in Ω. So we can repeat the same argument as in the Dirichlet case to derive the following in interior local boundedness property: there is a constant C > 0 so that, for any weak solution u of (1.3) in the Neumann case and any x ∈ Ω, we have

We can also derive a weaker version of the local boundedness property. Let

The fact that G is dominated by a gaussian kernel implies in a straightforward manner that the following estimate holds true:

Using this estimate, we easily obtain

Therefore, we can assert that if the Neumann Green function satisfies a gaussian upper bound then its satisfies the following local boundedness property:

The boundary term in (2.3) can be removed. To do that, we pick

On the other hand, by the help of Lemma 2.1, we show

This estimate in (2.3) yields the following local boundedness property.

We point out that the second term in the right hand side of (2.2) has been forgotten in the proof of Theorem 3.24 in [CK, p. 2855].

Proof of Lemma 2.1. We fix 0 < θ 1 < θ 2 and we pick ϕ

)) such that 0 ≤ ψ ≤ 1, ψ = 1 in a neighborhood of B(x, r) and |∂ α ψ| ≤ c((θ 2 -θ 1 )r) -|α| , for any α ∈ N n , |α| ≤ 2. Here c is some universal constant.

We pick τ ∈ I(θ 1 r). If u is a weak solution of (1.5), we obtain, after taking v = u(t)ψ 2 ϕ(t) as a test function in (1.4), u ′ (t), u(t)ψ 2 ϕ(t) + a(t, u(t), u(t)ψ 2 )ϕ(t) = 0 a.e..

Hence

(2.4)

By using Green's formula (1.2) between s 1 = t -(θ 2 r) 2 and s 2 = τ , we get in a straightforward manner that (2.5) τ t-(θ2r) 2 u ′ (t), u(t)ψ 2 ϕ(t) dt = 1 2 Ω u 2 (τ )ψ 2 ϕ(τ )dx -1 2 τ t-(θ2r) 2 Ω u 2 (t)ψ 2 ϕ ′ (t)dxdt.