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THE PROBLEM OF DETECTING CORROSION BY AN

ELECTRIC MEASUREMENT REVISITED

†MOURAD CHOULLI AND ‡AYMEN JBALIA

Abstract. We establish a logarithmic stability estimate for the problem of de-
tecting corrosion by a single electric measurement. We give a proof based on an
adaptation of the method initiated in [BCJ] for solving the inverse problem of
recovering the surface impedance of an obstacle from the scattering amplitude.
The key idea consists in estimating accurately a lower bound of the L2-norm,

locally at the boundary, of the solution of the boundary value problem used in
modeling the problem of detection corrosion by an electric measurement.

Key words: Logarithmic stability estimate, detecting corrosion, boundary
measurement.
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1. Introduction

Let Ω be a Cn-smooth bounded domain of Rn, n = 2, 3. We denote its boundary
by Γ and we consider the following boundary value problem (abbreviated to BVP
in the sequel)

{
∆u = 0 in Ω,
∂νu+ q(x)u = g on Γ.

(1.1)

We assume in the sequel that g ∈ Hn−3/2(Γ) and g is non identically equal to
zero.

For s ∈ R and 1 ≤ r ≤ ∞ , we introduce the vector space

Bs,r(R
n−1) := {w ∈ S

′(Rn−1); (1 + |ξ|2)s/2ŵ ∈ Lr(Rn−1)},

where S ′(Rn−1) is the space of temperate distributions on R
n−1 and ŵ is the

Fourier transform of w. Equipped with its natural norm

‖w‖Bs,r(Rn−1) := ‖(1 + |ξ|2)s/2ŵ‖Lr(Rn−1),

Bs,r(R
n−1) is a Banach space (it is noted that Bs,2(R

n−1) is merely the usual
Sobolev space Hs(Rn−1)). By using local charts and a partition of unity, we con-
struct Bs,r(Γ) from Bs,r(R

n−1) similarly as Hs(Γ) is built from Hs(Rn−1).

To carry out our analysis, we need solutions of the BVP (1.1) with some smooth-
ness. In order to give sufficient conditions on the coefficient q guaranteeing this
smoothness, we set

Q = {q ∈ Bn−1/2,1(Γ); q ≥ 0 and q 6≡ 0}

and

QM = {q ∈ Q; ‖q‖Bn−1/2,1(Γ) ≤M},

where M > 0 is a given constant.
1
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By Theorem 2.3 in [Ch1], observing that Bn−1/2,1(Γ) is continuously embedded
in Bn−3/2,1(Γ), we obtain that, for any q ∈ Q, the BVP (1.1) has a unique solution
uq ∈ Hn(Ω). Moreover,

(1.2) ‖uq‖Hn(Ω) ≤ C for all q ∈ QM .

The constant C above can depend only on Ω, g and M .

Usually, in a BVP modeling the problem of detecting corrosion damage by electric
measurements the boundary Γ consists in two parts: Γ = Γa ∪ Γi, Γa and Γi being
two disjoint open subsets of Γ. Γa corresponds to the part of the boundary accessible
to measurements and Γi is the inaccessible part of the boundary where the corrosion
damage can occur.

Henceforth, we assume that the current flux g satisfies supp(g) ⊂ Γa. The
function q in (1.1) is known as the corrosion coefficient and it is naturally supported
on Γi. This motivate the introduction of the following subset of QM :

Q
0
M = {q ∈ QM ; supp(q) ⊂ Γi}.

We are interested in the stability issue for the problem consisting in the determi-
nation of the boundary coefficient q from the boundary measurement uq|γ , where γ
is an open subset of the accessible sub-boundary Γa. In the sequel, we assume that
γ does not meet supp(g):

γ ⊂ Γa \ supp(g).

We need to extend the usual notion of a starshaped domain. We say that D is
mutiply-starshaped if there exists a finite number of points in D, say x1, . . . , xk,
such that
(i) ∪k−1

i=1 [xi, xi+1] ⊂ D,
(ii) any point in D can be connected by a line segment to at least one of the points
xi.
In this case, any two points in D can be connected by a broken line consisting of
at most k + 1 line segments. Obviously, the case k = 1 corresponds to the usual
definition of a starshaped domain.

Even if it is not always necessary, we assume in all of this text that Ω is multiply-
starshaped and, for each x̃ ∈ Γ, Γ is locally located at one side of the tangent plane
Tx̃ to Γ at x̃. Precisely, to each x̃ ∈ Γ, there is a neighborhood V of x̃ such that

Γ ∩ V ⊂ {x ∈ R
n; (x− x̃) · ν(x̃) ≤ 0}.

The later definition means that Γ is convex at each of its points (corresponding
to the definition in chapter 13, page 95 of [Th]). We notice that the convexity of Γ
implies the convexity at each of its points, but the converse is not true in general.

We aim in the present work to prove the following theorem.

Theorem 1.1. There are three positive constants A, B and σ satisfying: for any

q ∈ Q0
M ∩ Cα(Γ), we find ǫ = ǫ(q) so that for all q̃ ∈ Q0

M ∩ Cα(Γ) such that

‖q − q̃‖L∞(Γi) ≤ ǫ,

‖q − q̃‖L∞(Γ) ≤
A∣∣ln

∣∣ln
(
B‖u− ũ‖L2(γ)

)∣∣∣∣σ ,

with u = uq and ũ = uq̃.
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Theorem 1.1 can be seen as a completion of the results established in [CCL] in
dimension two and in [BCC] in dimensions two and three. We note that in the
above mentioned works the difference of q− q̃ is only estimated in a compact subset
of {x ∈ Γi; uq(x) 6= 0}. However, there is a counterpart in estimating q − q̃ in the
whole Γ. The stability estimates in [CCL] and [BCC] are of single logarithmic type,
while the estimate in Theorem 1.1 is of double logarithmic type.

There is a wide literature treating the problem of detecting corrosion by electric
measurements. We refer to [ADR, CFJL, CJ, CCY, Ch2, Ch3, FI, In, Si2] where
various type of stability estimate are given. We just quote these few references,
but of course there are many others. A neighbor problem is the one consisting
in the determination of the surface impedance of an obstacle from the scattering
amplitude (e.g [ASV, BCJ, Si1] and the reference therein).

The rest of this text consists in two sections. In section 2 we estimate accurately
a lower bound of the L2-norm, locally at the boundary, of the solution of the BVP
(1.1). We show, step by step, how we adapt the method in [BCJ] to the present
problem. Section 3 is devoted the proof of Theorem 1.1.

Unless otherwise specified, all the constants we use in the sequel depend only on
data.

2. Lower bound for L2-norm at the boundary

We prove the following theorem.

Theorem 2.1. Let M > 0, there is c > 0 so that: for all q ∈ Q0
M and x̃ ∈ Γ,

e−ce
c
r ≤ ‖uq‖L2(B(x̃,r)∩Γ), 0 < r ≤ r∗,

where r∗ is a constant that can depend on q.

We need some preliminary results before proving Theorem 2.1.

For sake of simplicity, we assume in the sequel that Ω is in addition starshaped.
From the proof of Proposition 2.1 below, one can see that the extension to the case
where Ω is multiply-starshaped is obvious.

For δ > 0, we set

Ωδ = {x ∈ Ω; dist(x,Γ) > δ}

and we recall the following useful three sphere inequality.

Lemma 2.1. There exist C > 0 and 0 < s < 1 so that: for all u ∈ H1(Ω) satisfying
∆u = 0 in Ω, y ∈ Ω and 0 < r < 1

3dist(y,Γ),

r‖u‖H1(B(y,2r)) ≤ C‖u‖sH1(B(y,r))‖u‖
1−s
H1(B(y,3r)).

1

Proposition 2.1. We assume that Ω is starshaped with respect to x∗ ∈ Ω and we

choose δ > 0 such that x∗ ∈ Ωδ. Let M > 0, there are two constants c > 0 and

rδ > 0 so that: for all u ∈ H1(Ω) satisfying ∆u = 0, ‖u‖H1(Ω) ≤M and, x, y ∈ Ωδ,

we have

e−ce
c
r ‖u‖H1(B(x,r)) ≤ ‖u‖H1(B(y,4r)), 0 < r < rδ.

1We refer to [BCJ] for a proof. The case of a general divergence form operator is detailed in
[CT].
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Proof. We set

d1 = |x− x∗|, η =
x∗ − x

|x∗ − x|

and we consider the sequence, where 0 < 2r < d1,

xk = x∗ − k(2r)η, k ≥ 1.

Clearly,

|xk − x| = d1 − k(2r).

Let N1 be the smallest integer such that d1 −N1(2r) ≤ r, or equivalently

d1
2r

−
1

2
≤ N1 <

d1
2r

+
1

2
.

By Lemma 2.1, it follows that

(2.1) C̃rt‖u‖H1(B(xN1 ,2r))
≤ ‖u‖s

N1

H1(B(y∗,2r)) with t =
1

1− s
.

Since |yN1 − x| = d1 −N1(2r) ≤ r, B(x0, r) ⊂ B(yN1 , 2r). Whence (2.1) entails

(2.2) Crt‖u‖H1(B(x,r)) ≤ ‖u‖s
N1

H1(B(x∗,2r)).

The same argument between x∗ and y gives

(2.3) Crt‖u‖H1(B(x∗,r)) ≤ ‖u‖s
N2

H1(B(y,2r)).

Here N2 is defined by the relation

d2
2r

−
1

2
≤ N2 <

d2
2r

+
1

2
with d2 = |y − x∗|.

A combination of (2.2) and (2.3) implies

(Cr)1+sN1
‖u‖H1(B(x,r)) ≤ ‖u‖s

N1+N2

H1(B(y,4r)).

Or equivalently

(2.4) (Cr)κ‖u‖H1(B(x,r)) ≤ ‖u‖H1(B(y,4r)),

with

κ =
1 + sN1

sN1+N2
.

Henceforth, we assume that r is sufficiently small in such a way that Cr < 1 in
(2.4). Letting D = diam(Ω), we obtain by a direct computation

κ ≤ (1 + s−1/2)e
2D| ln s|

r .

This estimate in (2.4) yields

e−ce
c
r ‖u‖H1(B(x,r)) ≤ ‖u‖H1(B(y,4r)),

as it is the expected. �

We recall that according to Caccioppoli’s inequality, for all u ∈ H1(Ω) satisfying
∆u = 0 in Ω and x ∈ Ω,

‖∇u‖L2(B(x,r))n ≤ Cr−1‖u‖L2(B(x,2r)),

for a sufficiently small r.

Therefore the following corollary is immediate from Proposition 2.1.
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Corollary 2.1. Under the assumptions of Proposition 2.1 and for M > 0, there
are two constants c > 0 and rδ > 0 so that: for all u ∈ H1(Ω) satisfying ∆u = 0,
‖u‖H1(Ω) ≤M and x, y ∈ Ωδ,

e−ce
c
r ‖u‖H1(B(x,r)) ≤ ‖u‖L2(B(y,8r)), 0 < r < rδ.

By an elementary continuity argument, we get from this corollary

Corollary 2.2. We fix η > 0 and M > 0. There is c > 0 with the property that,

to any u ∈ H1(Ω), satisfying

∆u = 0, ‖u‖H1(Ω) ≤ M and there is x̂ ∈ Γ such that u ∈ C(B(x̂, r̂) ∩ Ω), for some

r̂ > 0, and |u(x̂)| ≥ η,

corresponds δ > 0 and rδ > 0 for which, for all y ∈ Ωδ,

e−ce
c
r ≤ ‖u‖L2(B(y,r)), 0 < r < rδ.

Note here that δ and rδ may depend also on u.

Now, because Γ is convex at each of its points and bearing in mind that Ω is
located at one side of Γ, Ω has the uniform exterior ball property. That is, there is
ρ > 0 so that, for all x̃ ∈ Γ, we find x′ ∈ R

n \ Ω such that

B(x′, ρ) ∩Ω = ∅ and B(x′, ρ) ∩ Ω = {x̃}.

Let

(2.5) B(x̃, r) = B(x′, ρ+ r), x̃ ∈ Γ.

Then, as a peculiar case of Corollary 3.1 in [BCJ], we have

Proposition 2.2. There exist two constants C > 0 and 0 < γ < 1/2 so that, for

any 0 < r ≤ D and u ∈ H2(Ω) satisfying ∆u = 0, the following estimate holds true

(2.6) Cr2‖u‖H1(B(x̃, r4 )∩Ω) ≤ ‖u‖1−γ
H2(Ω)

(
‖u‖L2(B(x̃,r)∩Γ) + ‖∇u‖L2(B(x̃,r)∩Γ)n

)γ
.

As Ω is Cn-smooth, it has also the uniform interior cone property: there are
R > 0 and θ ∈]0, 2π[ satisfying, for all x̃ ∈ Γ, we find ξ ∈ R

n such that |ξ| = 1 and

C(x̃) = {x ∈ R
n; |x− x̃| < R and (x− x̃) · ξ > |x− x̃| cos θ} ⊂ Ω.

We note that ξ can be chosen in the following form

ξ =
x̃− x′

|x̃− x′|
,

where x′ is the same as in the definition of uniform exterior ball property.

In other words, following the definition in [BCJ], Ω possesses the uniform exterior
ball-interior cone property. Then a slight modification of the first part of the proof
of Theorem 4.1 in [BCJ] yields

Proposition 2.3. We pick x̃ ∈ Γ. Then, for sufficiently small r, we can choose

x0 ∈ Ω, y0 ∈ Ω two points in the line segment passing through x̃ and directed by

ξ such that B(x0, r/2) ⊂ B(x̃, r) ∩ Ω and B(y0, κr) ⊂ ΩR/2, where κ is constant

depending only on θ. Let M > 0, there are C > 0, η > 1, and r∗ > 0, not

depending on x0 and y0, such that for all u ∈ H1(Ω) satisfying ∆u = 0 in Ω and

‖u‖H1(Ω) ≤M ,

e−
C
rη ‖u‖H1(B(y0,κr)) ≤ ‖u‖H1(B(x0,r)), 0 < r ≤ r∗.

A combination of Corollary 2.2, Proposition 2.2 and Proposition 2.3 gives
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Theorem 2.2. Let η > 0, M > 0 and x̂ ∈ Γ. There is a constant c > 0 such that

for all u ∈ H2(Ω) satisfying ∆u = 0 in Ω, |u(x̂)| ≥ η, ‖u‖H2(Ω) ≤M and x̃ ∈ Γ,

e−ce
c
r ≤ ‖u‖H1(B(x̃,r)∩Γ) + ‖∂νu‖L2(B(x̃,r)∩Γ), 0 < r ≤ r∗,

where r∗ can depend on u.

For x̃ ∈ Γ, pick ψ ∈ C∞
0 (B(x̃, 2r)) satisfying ψ = 1 in a neighborhood of B(x̃, r)

and |∂βψ| ≤ Cr−|β| for any β ∈ R
n, |β| ≤ 2. Let u ∈ H2(Ω). Using the interpolation

inequality

‖ψu‖H1(Γ) ≤ C‖ψu‖
2/3

H3/2(Γ)
‖ψu‖

1/3
L2(Γ)

together with the properties of ψ and the continuity of the trace operator v ∈
H2(Ω) → v|Γ ∈ H3/2(Γ), we get in a straightforward manner

(2.7) ‖u‖H1(B(x̃,r)∩Γ) ≤ Cr−4/3‖u‖
2/3
H2(Ω)‖u‖

1/3
L2(B(x̃,2r)∩Γ).

On the other hand, we claim that

(2.8) B(x̃, r) ∩ Γ ⊂ B(x̃, 2ρr) ∩ Γ.

Here B(x̃, r) is defined by (2.5).
Indeed, under a rigid transformation, it is enough to prove this inclusion when

x̃ = 0, x′ = (0,−ρ) ∈ R
n−1×R, Tx̃ = {xn = 0} and Γ is located locally in {xn ≥ 0}.

In that case, by an elementary calculation, we get

B(x′, ρ+ r) ∩ {xn ≥ 0} ⊂ B(0, 2ρr) ∩ {xn ≥ 0}.

Clearly, this inclusion entails the following one

B(x′, ρ+ r) ∩ Γ ⊂ B(0, 2ρr) ∩ Γ.

Therefore, in light of (2.7) and (2.8), a direct consequence of Theorem 2.2 is the
following corollary.

Corollary 2.3. Let η > 0, M > 0 and x̂ ∈ Γ. There is a constant c > 0 so that

for all u ∈ H2(Ω) satisfying ∆u = 0 in Ω, |u(x̂)| ≥ η, ‖u‖H2(Ω) ≤M and x̃ ∈ Γ,

e−ce
c
r ≤ ‖u‖L2(B(x̃,r)∩Γ) + ‖∂νu‖L2(B(x̃,r)∩Γ), 0 < r ≤ r∗,

where r∗ can depend on u.

Moreover, if |∂νu| ≤ N |u| on Γ, for some constant N , then

e−ce
c
r ≤ ‖u‖L2(B(x̃,r)∩Γ), 0 < r ≤ r∗.

We are now able to complete the proof of Theorem 2.1.

Proof of Theorem 2.1. We need to prove that there are x̂ ∈ Γ and η > 0 for which
|uq(x̂)| ≥ η for any q ∈ Q0

M .

We fix Γ0 an arbitrary nonempty open subset of Γ \ supp(g). By Corollary 1 in
[Bo], there is a constant A > 0 such that, for all u ∈ H2(Ω) satisfying ∆u = 0 and
‖u‖H2(Ω) ≤M , we have

(2.9) ‖u‖H1(Ω) ≤
A

|ln(M−1δ)|1/2
,

where δ = ‖u‖H1(Γ0) + ‖∂νu‖L2(Γ0).
2

2Note that the smallness condition on δ in Corollary 1 in [Bo] can be easily removed.



INVERSE CORROSION PROBLEM 7

Let Γ1 be an open subset of Γ satisfying supp(g) ⊂ Γ1 ⋐ Γ. Proceeding as before,
we deduce from an usual interpolation inequality

‖g‖L2(Γa) = ‖∂νuq‖L2(Γ1) ≤ C‖∂νuq‖
1/2

H−1/2(Γ)
‖∂νuq‖

1/2

H1/2(Γ)

≤ C‖uq‖
1/2
H1(Ω)‖uq‖

1/2
H2(Ω)

≤ C‖uq‖
1/2
H1(Ω).

This and (2.9) imply

‖g‖L2(Γa) ≤
C

|ln(M−1δ)|1/4
, with δ = ‖uq‖H1(Γ0) + ‖∂νuq‖L2(Γ0),

or equivalently

η̃ =Me
−C4‖g‖−4

L2(Γa) ≤ ‖uq‖H1(Γ0) + ‖∂νuq‖L2(Γ0).

Replacing Γ0 by a smaller subset and proceeding as in the proof of Corollary 2.3,
we get

(2.10) η̃ =Me
−c4‖g‖−4

L2(Γ1) ≤ ‖uq‖L2(Γ0).

Now since Hn(Ω) is continuously embedded in C(Ω), we derive from (2.10)

η = η̃|Γ0|
−1/2 ≤ |uq(x̂)| = max

Γ0

|uq|.

�

3. Proof of the stability estimate

First, we mimick the proof of Proposition 4.1 in [BCJ] to get that there are B > 0
and σ > 0 satisfying: for any q ∈ Q0

M , we find ǫ(q) > 0 so that, for any f ∈ Cα(Γ)
with

[f ]α = sup{|f(x)− f(y)||x− y|−α; x, y ∈ Γ, x 6= y} ≤M

and ‖f‖L∞(Γ) ≤ ǫ(q),

(3.1) ‖f‖L∞(Γ) ≤
B∣∣ln ‖fuq‖L∞(Γ)

∣∣σ .

Proof of Theorem 1.1. Let v = ũ − u. Since ∆v = 0, the same argument as in the
proof of Theorem 2.1 yields

‖∂νv‖L2(Γ) ≤ C‖v‖
1/2
H1(Ω).

Hence,

(3.2) ‖v‖L2(Γ) + ‖∂νv‖L2(Γ) ≤ C‖v‖
1/2
H1(Ω).

Let γ0 ⋐ γ. Again, by Corollary 1 in [Bo], there is a constant A > 0 for which

(3.3) ‖v‖H1(Ω) ≤
A

|ln((2M)−1δ)|1/2
,

with δ = ‖v‖H1(γ0) + ‖∂νv‖L2(γ0).

As previously, we get by applying an interpolation inequality

‖v‖H1(γ0) ≤ C‖v‖
1/3
L2(γ),
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and since ∂νv = 0 on γ, (3.3) implies

(3.4) ‖v‖H1(Ω) ≤
A

∣∣ln(B‖v‖L2(γ))
∣∣1/2

.

In light of (3.2), (3.4) leads

(3.5) ‖v‖L2(Γ) + ‖∂νv‖L2(Γ) ≤
A

∣∣ln(B‖v‖L2(γ))
∣∣1/4

,

Let f = (q − q̃)u. We fix θ satisfying 2/3 < θ < 1 if n = 2 and 3/5 < θ < 1 if
n = 3 and set s = 3θ/2 for n = 2 and s = 5θ/2 for n = 3. By this peculiar choice
of s, Hs(Γ) is continuously embedded in L∞(Γ). Therefore, using the interpolation
inequalities

‖f‖Hs(Γ) ≤ C‖f‖θH3/2(Γ)‖f‖
1−θ
L2(Γ) if n = 2,

‖f‖Hs(Γ) ≤ C‖f‖θH5/2(Γ)‖f‖
1−θ
L2(Γ) if n = 3,

we obtain

‖f‖L∞(Γ) ≤ C‖f‖θH3/2(Γ)‖f‖
1−θ
L2(Γ) if n = 2,

‖f‖L∞(Γ) ≤ C‖f‖θH5/2(Γ)‖f‖
1−θ
L2(Γ) if n = 3,

Or

‖f‖Hn−1/2(Γ) = ‖(q − q̃)u‖Hn−1/2(Γ) ≤ C‖q − q̃‖Bn−1/2,1(Γ)‖u‖Hn−1/2(Γ).

Consequently,

(3.6) ‖(q − q̃)u‖L∞(Γ) ≤ C‖(q − q̃)u‖1−θ
L2(Γ).

But

(3.7) (q − q̃)u = ∂νv + q̃v.

Then a combination of (3.5), (3.6) and (3.7) yields

(3.8) ‖(q − q̃)u‖L∞(Γ) ≤
A

∣∣ln(B‖v‖L2(γ))
∣∣(1−θ)/4

,

In light of (3.1), we end up getting

‖q − q̃‖L∞(Γ) ≤
A∣∣ln | ln

(
B‖u− ũ‖L2(γ)

)
|
∣∣σ .

�
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