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THE PROBLEM OF DETECTING CORROSION BY ELECTRIC MEASUREMENTS
REVISITED

tMOURAD CHOULLI AND {AYMEN JBALIA

ABSTRACT. We establish a logarithmic stability estimate for the problem of detecting corrosion by electric
measurements. We propose a proof based on an adaptation of the method initiated in [BCJ]. Roughly
speaking, it consists in estimating a lower bound of the local L?-norm at the boundary of the solution of
the boundary value problem used in modeling the problem of detection corrosion by electric measurements.
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1. INTRODUCTION

Let Q be a C"-smooth bounded domain of R™, n = 2,3. We denote its boundary by I' and we consider
the following boundary value problem (abbreviated to BVP)

Au =0, in €,
(1.1) { du+q(x)u=g, onT.

In all of this paper we assume that g € H"~%/2(T) and ¢ is non identically equal to zero.
For s e Rand 1 <r < oo, we introduce the vector space
Bo, (R = {we S'R"); (1+¢°)"*0 e L'(R™)},

where .#/(R"1) is the space of temperate distributions on R"~! and @ is the Fourier transform of w.
Equipped with its natural norm

||wHBS,T(1Rn71) = I(1+ |§|2)S/2@”LT(R"*1)a

Bs.»(R"1) is a Banach space (it is noted that Bs o(R"™!) is merely the usual Sobolev space H*(R"~!)). By
local charts and partition of unity, we construct B ,(T') from Bs,(R"™!) in the same manner as H*(T') is
built from H*(R"1).

We shall need that the solution of the BVP (1.1) has some smoothness. In order to give sufficient conditions
on data guaranteeing this smoothness, we first define the set of boundary coefficients. Let

2={qe€ By_1/2:(I'); ¢ >0and g # 0}
and
2u={9€ 2; |ldlB,_, .. a) < M},
where M > 0 is a given constant.

By Theorem 2.3 in [Chl], observing that B,_;/51(I') is continuously embedded in B, _3/51(T"), we have
that, for any ¢ € 2, the BVP (1.1) has a unique solution u, € H™(2). In addition

(1.2) lugll 5n(y < C forall g € 2.
The constant C' above can depend only on €2, g and M.

Usually in a BVP modeling the problem of detecting corrosion damage by electric measurements the
boundary I' consists in two parts: I' = 'y UT;, T'y and I'; being two disjoint open subsets of I'. T,
corresponds to the part of the boundary accessible to measurements and I'; is the inaccessible part of the
boundary where the corrosion damage occurs.
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Henceforth, we assume that the current flux g satisfies supp(g) C I',. The function ¢ in (1.1) is known as
the corrosion coefficient and it is supported on I';. This motivate the introduction of the following set
2% = {q € 2u; supp(q) C I;}.

We are interested in the stability issue for the problem consisting in the determination of the boundary
coefficient ¢ from the boundary measurement u,|,, where v is a subset of the accessible sub-boundary I';, for
which we assume that the following condition holds true:

v C 'y \ supp(g)-

Next, we introduce the notion of mutiply-starshaped domain. We say that D is mutiply-starshaped if
there exists a finite number of points in D, say x1,...,Zk, such that any point in D can be connected by a
line segment to one of x;. In this case, any two points in D can be connected by a broken line consisting of
at most k + 1 line segments. Obviously, the case kK = 1 corresponds to the usual notion of starshapedness.

The main result in the present note is the following theorem.
Theorem 1.1. We fix 0 < a < 1 and we assume that Q is locally convez' and Q is multiply-starshaped.
There are three positive constants A and B and o satisfying for any g € 2%, N C*(T"), we find € = €(q) with
the property that for all ¢ € 2%, N C*(T') such that ||q — qllze(r,) <€, we have
A
|1I1 }IH(B”’U, — a”LQ(w) } }G ’

llg = qll o) <

with w = uq and u = ug.

The result in Theorem 1.1 can be seen as an improvement of those already established in [CCL] in
dimension two and in [BCC] in dimensions two and three. We note that in these above mentioned works
the difference of ¢ — ¢ is only estimated in a compact subset of {z € I';; uy(x) # 0}. However there is a
counterpart in estimating ¢ — ¢ in the whole I'. The stability estimates in [CCL] and [BCC] are of logarithmic
type, while the estimate in Theorem 1.1 is of double logarithmic type.

There is a wide literature treating the problem of detecting corrosion by electric measurements. We refer
to [CFJL, CJ, CCY, Ch2, Ch3, FI, In, Si] where various type of stability estimate are given. We just quote
these few references, but of course there are many others.

Unless otherwise specified, all the constants we use in the sequel depend only on data.

2. LOWER BOUND FOR THE LOCAL L?-NORM AT THE BOUNDARY

We aim to prove the following theorem.

Theorem 2.1. We assume that Q is locally convex and ) is multiply-starshaped. Let M > 0, there is ¢ > 0
such that, for all ¢ € 2%, and all T € T, we have

e " < lugllz2(B@,mnry, 0<r<r¥,
where r* is a constant that can depend on q.

We need several preliminary results before proving Theorem 2.1. We start by introducing some definitions.
As usual, we say that Q has the uniform exterior ball property (abbrevia_ted to UEBP) if there is p > 0 for
which, for all Z € ', we find 2’ € R™ \ Q such that B(z/,p) N Q = 0 and B(a/, p) N Q = {Z}.

Next, we recall that Q has the uniform interior cone property (abbreviated to UICP) if there are R > 0
and 0 €]0, 27| satisfying, for all Z € T, we find £ € R™ such that |{| = 1 and

C@) ={zeR™ jz—2Z|<Rand (x — ) -& > |z — T cosf} C Q.

LThis means that any point of the topological vector space Q has a convex neighborhood
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Also, we say that Q has the uniform interior cone-exterior ball property (abbreviated to UICEBP) if UEBP
and UICP are both satisfied at any point z € I" and in addition

é'_

e

T —a

where 2/ and £ are the same as in the definitions of UEBP and UICP respectively.

Now let (G) be the following assumption: There exist C' > 0 and 0 < ro such that for all z € T' and

0<r<ro,
B(z,r)NnT c B(z,Cr)NT,
with
B(z,r)=B(z',p+7r), T€T,
where z/ and p are the same as in the definition of UEBP.

One can easily check that if Q is locally convex, then Q possesses both UICESP and (G).

For sake of simplicity, we replace in the sequel the assumption that 2 is multiply-starshaped by a stronger
one. Precisely, we assume that €2 is starshaped. From the proof of Proposition 2.1 below, one can see that
the extension to the case where 2 is multiply-starshaped is obvious.

For § > 0, we set

Q° = {x € Q; dist(z,T) >}
and we recall the following useful three sphere inequality.

Lemma 2.1. There exist C > 0 and 0 < s < 1 such that, for all u € H*(Q) satisfying Au =0 in Q, y € Q

and 0 <r < sdist(y,T),
2

il any < Clullin s 1415 500
Proposition 2.1. We assume that Q is starshaped with respect to x* € Q and we choose § > 0 such that
x* € Q°. Let M > 0, there are two constants ¢ > 0 and rs > 0 such that, for all uw € HY(Q) satisfying
Au=0 and ||lul| 1) < M and for all z, y € Q°, we have
—ce%|

e \u|\H1(B(I7T)) < HUHHl(B(yAr))a 0<r<rs.

Proof. We set

r*—x
dlzlw—x*l’ n:m

and we consider the sequence, where 0 < 2r < d,
xp =2 —k(2r)n, k>1.

We have
|xp — x| = dy — k(2r).
Let N7 be the smallest integer such that d; — N1(2r) < r, or equivalently

dy 1 dy 1
L <N <242
o 2 =S gTy
By Lemma 2.1, it follows that
. ™ _ 1
(2.1) CTt”u”Hl(B(le,Qr)) < ||U||H1(B(y*,2r)) with ¢ = 1_ s

Since |yn, — x| = d1 — N1(2r) <r, B(xo,7) C B(yn,,2r). Whence (2.1) entail

N1
(2.2) Crillull m sy < ullin e 2m)-

The same argument between x* and y gives
N2
(2.3) Crillull i sees ) < Nullinsey.om)-

2We refer to [BCJ] for a proof. The case of a general divergence form operator is detailed in [CT].
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Here N5 is defined by the relation
dy 1 dy 1 .
— — - < N — + - withdy = |z — z¥|.
oy g SN2 <5t g withdy =fo—a7]
A combination of (2.2) and (2.3) imply
SN SN + N
(Cr)"** Hull g ) < Nullin Bey.am):

Or equivalently

(2.4) Cr)* Jullzr By < lullmr(Biyar)
with
14 sV
k= sN1+N2 '

Henceforth, we assume that r is sufficiently small in such a way that Cr < 1 in (2.4). Letting D = diam(2),

we obtain by a direct computation
—1/2 2D 1n s
k< (l+s e r
This estimate in (2.4) yields
e ull s,y < lullarse.am),
which is the expected estimate. O

We recall that according to Caccioppoli’s inequality, for all u € H'(Q) satisfying Au = 0 in © and all
x € 2, we have, for a sufficiently small r,
IVull 252y < CrHull L2 @,2m)-
Therefore the following corollary is immediate from Proposition 2.1.

Corollary 2.1. Under the assumptions of Proposition 2.1 and for M > 0, there are two constants ¢ > 0
and rs > 0 such that, for all u € H*(Q) satisfying Au = 0 and llull gy < M and for all z, y € 0%, we have

(&

c
—cer |

[ull 71 (B < lullz2B(ysry), 0<7T <7s.
By an elementary continuity argument, we get from this corollary
Corollary 2.2. We fitn >0 and M > 0. There is ¢ > 0 with the property that for all u € HY(Q) satisfying

Au =0, ||ul| gr(o) < M and there exists T € T such that u € C(B(Z,7)NQ), for some T > 0, and |u(Z)| > 7.
Then we find § > 0 and rs > 0 for which, for all y € Q°,

c
—cer
€

B < HUHLZ(B(y,T))v 0<r<rs.

Note here that § and rs may depend also on u.

We recall that B(z,r) = B(2’,p+r), & €T, where 2’ and p are the same as in the definition of UEBP.
As a peculiar case of Corollary 3.1 in [BCJ], we have

Proposition 2.2. There exist two constants C > 0 and 0 < v < 1/2 with the property that, for any
0<r <D and any u € H*(Q) satisfying Au = 0, the following estimate holds true

1—
(2.5) Cr¥|lull e sz, 5yn0) < 1ull g2y (lull 2@ mar) + IVl L28@,mar)y) -
Also, a slight modification of the first part of the proof of Theorem 4.1 in [BCJ] yields

Proposition 2.3. We assume that Q has UICEBP and we pick x € I'. For sufficiently small r, we can choose
o € Q, yo € Q two points in the line segment passing through T and directed by & such that B(xzo,r/2) C
B(z,7) N Q and B(yo, xr) C Q2 where k is constant depending only on 0. Let M > 0, there are C > 0,
n > 1, and r* > 0, not depending on xo and yo, such that for all w € H' () satisfying Au = 0 in Q and
llull gy < M,

_C
el (Byo.rry) < UllH1(B(zory), 0<T <77
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A combination of Corollary 2.2, Proposition 2.2 and Proposition 2.3 gives

Theorem 2.2. Letn >0, M >0, € I and assume that Q has UICEBP and it is starshaped. There is a
constant ¢ > 0 such that for all uw € H*(Q) satisfying Au =0 in Q, [u(Z)| >n, |ullg2@) < M, and for all
z €T, we have
e " < Nlullm B@mnry + 10vullL2 @), 0<r <7,
where r* can depend on u.
For ¥ € T, pick ¢ € Cg°(B(Z, 2r)) satisfying ¢ = 1 in a neighborhood of B(Z,r) and |8%| < Cr~1°! for
any 3 € R" 8] < 2. Let u € H%(R). Using the interpolation inequality

2/3 1/3
[ullmry < Clull3ae e 1ull oty

together with the properties of ¢ and the continuity of the trace operator v € H*(Q) — v € H3/2(T), we
obtain is an easy manner

,4/3HUH2/3 1/3

lull g (8@)r) < Cr w1t 2 (5G 2mnr-

Therefore, we get from Theorem 2.2

Corollary 2.3. Letn >0, M > 0,z € T and assume that Q has both UICEBP and (G) and it is starshaped.
There is a constant ¢ > 0 such that for all u € H*(Q) satisfying Au = 0 in Q, |u(Z)| >, |lullg2@) < M,
and for all T € T, we have

e " < lullr2s@mnnr) + 10vullL2B@EmnAm), 0<r <7r¥,
where r* can depend on u.

If in addition |0,u| < N|u| on T for some constant N, then

c
—cer

€ < lullL2(B@rmnry, 0<r <7
We are now able to complete the proof of Theorem 2.1.

Proof of Theorem 2.1. We need to prove that there are ¥ € I' and n > 0 for which |u,(Z)| > 7 for any
qe 2.

We fix T'g an arbitrary nonempty open subset of I\ supp(g). By Corollary 1 in [Bo], there is a constant
A > 0 such that, for all u € H?*(Q) satisfying Au = 0 and [|u|| g2(q) < M, we have

A

2.6 U|| g1 < ———,
(2.6) lull 1 () YR

where § = ||u||H1(F0) 4+ Hal,uHL2(F0).3
Let I'; be an open subset of T" satisfying supp(g) C I'1 € I'. Proceeding as previously, we deduce from an
usual interpolation inequality

1/2 1/2
lgllzcra) = 1vugll zqry) < ClONL 2y 1Bt g2

1/2 1/2
< Clugllyfs oy lall a0
1/2
< Cllugll3 -

This and (2.6) imply

lgllz2r.) < with § = [Jug|| g1 (ro) + [[0vugllL2(ry),

G
In(M-18)|"/*
or equivalently

~ —C*gll 75
n=>Me 1200 < lug| gy + 19vuqllL2r)-

3Note that the smallness condition on & in Corollary 1 in [Bo] can be easily removed.
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Replacing 'y by a smaller subset and proceeding as in the proof of Corollary 2.3, we get
e —4

(2.7) 7= Me ol 2,y < [fg]l £2(ry) -

Now since H™(Q) is continuously embedded in C(Q2), we derive from (2.7)

= T0l™2 < fug(7)] = ma g
0

3. PROOF OF THE STABILITY ESTIMATE

First, we paraphrase the proof of Proposition 4.1 in [BCJ] to get that there are B > 0 and o > 0 such
that for any ¢ € 29,, we find €(¢) > 0 with the property that for any f € C%(T) satisfying

[fla =sup{|f(z) = f@Wllz =y 2y el 2 #y} <M
and || f|| o) < €(q), we have
B

I || fugll oo ry |

(3.1) [fll ooy <

Proof of Theorem 1.1. Let v = © — u. Since Av = 0, the same argument as in the proof of Theorem 2.1
leads to

18,0l 2ry < Clollyfs -
Hence,

1/2
(32) ollza + 18,0l 2y < Cllol L.
Let 79 € 7. Again, by Corollary 1 in [Bo], there is a constant A > 0 for which
A

3.3 v 1 S 9
(3.3) vl (Q) |ln((2M)_15)|1/2

with § = H’U”Hl(v()) + H&,vHLZ(W).
As we have done previously, we obtain by an interpolation inequality that

1/3
o]l 20y < Clloll oy,

and since d,v = 0 on 7, (3.3) implies
A

In(Bllo]l L2¢)] "

(3.4) vl 1 (0) < 3

In light of (3.2), we get from (3.4)
A

(3.5) vl 2y + 10vvl L2y < T
/4’
[In(Blv]|L2(4))|

Let f = (¢ — qQ)u. We fix 6 satisfying 2/3 <0 < 1if n=2and 3/5 <0 < 1if n =3 and set s = 30/2 for
n =2 and s = 50/2 for n = 3. By this choice of s, H*(I') is continuously embedded in L>°(T"). Therefore,
using the interpolation inequalities

1= ry < C||f||§13/2(r)||f||1§(0r) ifn =2,

1F L=y < ClUFNGgss2 o1 F |72y i1 =3,
we obtain

1Fllzo ey < ClF 2oyl ey iEn =2,

£l ey < CUANGs 2oy Il 2y 70 =3,
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Or
£l zm-120) = (@ = Dull n-1r2(0y < Clla = Gl B, _, o, 0 1l 7172 (1)
Consequently
(3.6) la - Dl < Clita — Dulllsly,
Returning to the definition of v, we get
(3.7) (¢ — @)u = v + qu.
A combination of (3.5), (3.6) and (3.7) yields
A
(3.8) (g — Qull Loy < ;
(1-0)/4
In(B]lvL2())]

In light of (3.1), we end up getting
- A
"= T [ (Blfu — @l 2y

Hq—ﬂhw@

"
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