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Abstract

A continuously monitored system is considered, that gradually

and stochastically deteriorates according to a bivariate non decreasing

Lévy process. The system is considered as failed as soon as its bivari-

ate deterioration level enters a failure zone, assumed to be an upper

set. A preventive maintenance policy is proposed, which involves a de-

layed replacement, triggered by the reaching of some preventive zone

for the system deterioration level. The preventive maintenance pol-

icy is assessed through a cost function on an infinite horizon time.
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The cost function is provided in full form, and tools are provided for

its numerical computation. The influence of different parameters on

the cost function is studied, both from a theoretical and/or numerical

point of view.

Keywords: Reliability; multivariate Lévy processes; dependent wear

indicators; Gamma processes; optimal replacement; renewal theory.

1 Introduction

One major concern in reliability is the study of preventive maintenance poli-

cies, which aims at enlarging systems lifetimes and/or reducing their operat-

ing costs. With that purpose, a first point is to propose a stochastic model for

the system deterioration. In case of a random non decreasing deterioration,

classical models include compound Poisson processes and Gamma processes,

according to whether the deterioration is due to isolated shocks or to some

continuous wear accumulation, see Abdel-Hameed (1975), Van Noortwijk

(2009) or Singpurwalla (1995) e.g.. Such classical models are univariate non

decreasing Lévy processes. One single indicator may however be insuffi cient

to measure a system deterioration, see Mercier & al. (2011) for an industrial

example, where two indicators are necessary to describe the deterioration

level of a railway track geometry. In this example, the traffi c on the track

influences the evolution of both indicators, which implies some correlation

between them. More generally, indicators measuring different aspects of a

same system are likely to present some dependency. Hence the need for

multivariate wear indicators. Such models also are of interest in the case of

univariate indicators measuring the deterioration levels of different systems

submitted to some common stressing environment.

Up to our knowledge, multivariate non decreasing wear indicators have

2



not been much studied in the previous literature. Two notable exceptions

may however be found in Buijs & al. (2005) and Ebrahimi (2004), which

both use specific constructions leading to some specific bivariate increasing

Lévy processes (though not recognized as such in the quoted papers). We

here propose to model the system deterioration level by a general increasing

bivariate Lévy process (or bivariate subordinator).

Under such an assumption, a system is considered, subject to continuous

monitoring. It is considered as failed as soon as its bivariate deterioration

level has reached a failure zone L. Once in L, the system cannot leave L

without being repaired. This property is translated through the assumption

that L is an upper set. As in Bérenguer & al. (2003), when the system

enters L, a signal is immediately sent to a repair team. It takes some delay

τ for the repair team to arrive. The repair duration is short compared to the

delay τ and is hence considered as instantaneous (and perfect). To shorten

the system down-time, a preventive maintenance (PM) policy is proposed,

where the signal is sent to the repair team as soon as the deterioration level

reaches a PM zoneM, larger than L.

The point of the paper is the study of the PM policy, which is classically

assessed through a cost function on an infinite time horizon. Another point

of interest is the influence of different parameters on the PM effi ciency. The

influence of the shape of the upper sets L andM is studied too.

The paper is organized as follows: in Section 2, the model is presented,

both for the initial (without maintenance) and preventively maintained sys-

tem. Section 3 is devoted to theoretical developments whereas Section 4

presents some numerical experiments. We finally conclude in Section 5.
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2 The model

2.1 The initial system

A system is considered, with deterioration level measured by a bivariate non

decreasing process
(
Xt =

(
X
(1)
t , X

(2)
t

))
t≥0
. The process (Xt)t≥0 is assumed

to be a non decreasing Lévy process (or bivariate subordinator), namely a

process with range R2+, starting from (0, 0), which is right continuous with

left-side limits and stochastically continuous, and has stationary and inde-

pendent increments. The Brownian part of a subordinator is null and its

drift belongs to R2+. The drift part does not bring much to the present study

and it is consequently assumed in the sequel that (Xt)t≥0 is a bivariate sub-

ordinator with null drift, namely a pure jump process, see Bertoin (1996) or

Sato (1999) e.g.. To avoid trivialities, the process (Xt)t≥0 is also assumed to

be non zero: P
(
X
(1)
t > 0, X

(2)
t > 0

)
> 0. Such assumptions will be referred

to as assumption H. For i = 1, 2, the marginal process
(
X
(i)
t

)
t≥0

is known

to be an univariate subordinator (with null drift).

The system is continuously and perfectly monitored. It is considered

as failed as soon as its bivariate deterioration level reaches a failure zone

L ⊂ R2+. The failure time of the unmaintained system hence is:

σL = inf {t ≥ 0|Xt ∈ L} .

As explained in the introduction, L is assumed to be a closed and non

empty upper set, namely such that for all (x1, x2) ∈ L and all (y1, y2) ∈ R2+,

if (y1, y2) ≥ (x1, x2), then (y1, y2) ∈ L. As (Xt)t≥0 is non decreasing, this

means that once failed, the system cannot leave L any more and remains

failed (until it is repaired).

For illustrative purpose, three different shapes are envisioned for L. For

the first two shapes, the system may be considered as composed of two dif-
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ferent units and for i = 1, 2, the marginal process
(
X
(i)
t

)
t≥0

stands for the

deterioration level of the i-th unit. Setting Li > 0 to be the failure threshold

for the i-th unit, the corresponding univariate failure time is

σ
(i)
Li

= inf
{
t ≥ 0|X(i)

t ≥ Li

}
.

Two classical structures are then envisioned for the two-units system, which

leads to the following first two cases:

Case 1 The two units are set up into series. The time-to-failure of the whole

system then is:

min
(
σ
(1)
L1
, σ

(2)
L2

)
= inf

{
t ≥ 0|X(1)

t ≥ L1 or X
(2)
t ≥ L2

}
= inf {t ≥ 0|Xt /∈ [0, L1[×[0, L2[}

= σL,

with L = R2+\[0, L1[×[0, L2[.

Case 2 The two units are set up into parallel. The time-to-failure of the

whole system is max
(
σ
(1)
L1
, σ

(2)
L2

)
= σL, with L = [L1,∞[×[L2,∞[.

Case 3 Both components of (Xt)t≥0 stand for different indicators of a single

system and the system time to failure is

inf
{
t ≥ 0|X(1)

t +X
(2)
t ≥ L

}
= σL,

with L =
{

(x1, x2) ∈ R2+|x1 + x2 ≥ L
}
.

Such three shapes are plotted in Figure 1.

Once the system is failed, a signal is sent to the repair team and an

instantaneous repair takes place at time σL+ τ , where τ is the deterministic

time required by the repair team to arrive (the delay). The repair is perfect,

which means that at repair, both of the system deterioration indicators are

reset to zero.
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Figure 1: Examples of failure regions

2.2 The preventive maintenance policy

Without any PM policy, the system is down from σL up to σL+τ . To shorten

this down-time (of length τ), the following PM policy is applied: settingM

to be a closed and non empty upper set such that L ⊂M ⊂ R2+, a signal is

preventively sent to the repair team at time σM(≤ σL). The system is then

perfectly and instantaneously repaired at time σM + τ . If σL < σM + τ , a

failure occurs before the repair and the down-time duration is σM + τ − σL.

On the contrary, if σL ≥ σM + τ , the system is repaired before failure and

there is no down-time up to the repair. In each case, the down time up to
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the repair hence is (σM + τ − σL)+ = max (σM + τ − σL, 0).

The future evolution of the system after repair is assumed to be indepen-

dent from its past, and stochastically identical to its initial evolution. Setting

(Zt)t≥0 to be the process describing the maintained system, (Zt)t≥0 appears

as a regenerative process with cycles delimited by repairs (and t = 0) and

generic cycle length σM + τ . This is illustrated in Figure 2 where the hori-

zontal axis corresponds to the time and the vertical one to the deterioration

level, drawn as a one-dimensional level for sake of clarity. Note that, as a

bivariate subordinator (with null drift) is a pure jump process, the failure

zone L has a non zero probability to be reached at the same time as the

system entersM. This can be seen in Figure 2, where σM = σL in the first

cycle (σ(1)M = σ
(1)
L ). In the second cycle (which starts at σ

(1)
M + τ), the system

is replaced before failure (σ(2)M + τ < σ
(2)
L ).

t

S
ta

te
 o

f 
th

e
 s

y
s
te

m

Failure region

Preventive maintenance region

σ
M

(1)
σ

L

(1)
σ

M

(2)
+τ

σ
M

(2)

σ
M

(1)
+τ

ττ

Figure 2: The preventive maintenance policy

Taking M = L, the unmaintained system appears as a special case of

the maintained system. TakingM = R2+ provides σM = 0 and the system is
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replaced every τ time units. The classical periodic replacement policy with

no repair at failure and period τ (Barlow & Proschan (1965)) then appears

as a special case of the PM policy.

To assess the PM policy, a cost function is considered, which takes into

account:

• C1 > 0 : the restoration cost of the system,

• C2 > 0 : the unitary cost (per unit time) for down-time.

The envisioned cost function is the asymptotic unitary cost (per unit

time), namely the function C∞ defined by:

C∞ = lim
t→∞

C(t)

t
a.s.,

where C (t) stands for the accumulated cost on the time interval [0, t]. Our

goal is to prove existence of C∞, find a computable expression for it and

study its behavior with respect to different parameters.

We will sometimes complete the assessment of the PM policy by another

criterion, the asymptotic availability, defined by:

A∞ = lim
t→∞

U (t)

t
a.s.,

where U (t) stands for the system up-time on [0, t]. Methods are quite similar

for both criteria and details are only provided for C∞.

3 Theoretical results

3.1 Calculation of the cost function

In order to prove the existence of the asymptotic unitary cost C∞, we use

time-average properties from Asmussen (2003), which require E(σM) to be

finite. We first check this property.
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Lemma 1 Under assumption H, the means of σL and σM are finite.

Proof. Let A = (x1, x2) ∈ L be fixed and let

TA = inf{t ≥ 0|X(1)
t ≥ x1, X

(2)
t ≥ x2} = sup(σ(1)x1 , σ

(2)
x2

).

We have σM ≤ σL ≤ TA ≤ σ
(1)
x1 + σ

(2)
x2 and it is suffi cient to prove that

E
(
σ
(i)
xi

)
< +∞ for i = 1, 2. As we have not been able to find a reference for

it, we prove this last condition here: we first note that

E
(
σ(i)xi
)

=

∫ +∞

0

P
(
σ(i)xi > t

)
dt =

∫ +∞

0

P
(
X
(i)
t < xi

)
dt

=

∫ +∞

0

P
(
e−X

(i)
t > e−xi

)
dt

≤ exi
∫ +∞

0

E
(
e−X

(i)
t

)
dt, (1)

using Markov inequality for the last line. We next recall that the Laplace

transform of the (univariate) subordinator
(
X
(i)
t

)
t≥0

is provided by

E
(
e−X

(i)
t

)
= e−tφ

(i)(1)

where φ(i) (1) = − ln
(
E
(
e−X

(i)
1

))
. As P

(
X
(i)
1 > 0

)
≥ P

(
X
(i)
1 > 0, X

(2)
1 > 0

)
>

0 by assumption, we first derive that φ(i) (1) > 0 and next that E
(
σ
(i)
xi

)
<

+∞ due to (1), which achieves the proof.

Proposition 2 Under assumption H, the asymptotic unitary cost exists a.s.

and is equal to

C∞ =
C1 + C2E

[
(σM + τ − σL)+

]
τ + E (σM)

. (2)

Proof. The process (Zt)t≥0 is a regenerative process with generic cycle length

σM + τ and finite expected length, due to Lemma 1. We hence derive from

Asmussen (2003) the existence of C∞, with

C∞ =
E [C(σM + τ)]

E(σM + τ)
.
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Besides, in a generic cycle, we have to pay C1 for the restoration of the

system and C2 per unit down-time. This provides the result, recalling that

the down-time duration is (σM + τ − σL)+, see Subsection 2.2.

Noting that

E
[
(σM + τ − σL)+

]
= E

(∫ +∞

0

1{(σM+τ−σL)+>u}du
)

= E
(∫ τ

0

1{σM+τ−σL>u}du

)
and setting t = τ − u, one gets:

E
[
(σM + τ − σL)+

]
= E

(∫ τ

0

1{t>σL−σM}dt

)
=

∫ τ

0

P (σL − σM < t) dt.

(3)

One might then compute E
[
(σM + τ − σL)+

]
in a similar manner as Bérenguer

& al. (2003) for the univariate case: the method relies on the computation

of the survival function of σL−σM (the distribution of which has a non zero

mass at 0 because P (σL − σM = 0) > 0) and implies some double differentia-

tion of the survival function of the couple (σM, σL). We however have better

use here different arguments: noting that

(σM + τ − σL)+ = (σL − σM − τ)+ + σM + τ − σL

and setting

gL (M) = E
[
(σL − σM − τ)+

]
h (M) = E (σM)

for allM⊇ L, one gets:

E
[
(σM + τ − σL)+

]
= gL (M) + h (M) + τ − h (L) .

This provides the following expression for C∞ :

C∞ = C2 +
C1 + C2 (gL (M)− h (L))

τ + h (M)
, (4)
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where the different terms are now computable without too much technicality,

as we next show.

Setting L − x = {(y1 − x1, y2 − x2)|(y1, y2) ∈ L} for all x = (x1, x2) /∈ L

and

Gt(M) = P(Xt ∈M) =

∫∫
M
PXt(dx1, dx2),

Gt(M) = P(Xt /∈M) = 1−Gt(M)

for all t ≥ 0, we get the following result.

Proposition 3 Under assumption H, we have

h (M) =

∫ ∞
0

Gt(M)dt,

gL (M) =

∫ ∞
0

∫∫
M
Gτ (L − x)PXv(dx1, dx2) dv,

where PXt stands for the probability distribution of Xt.

Proof. SinceM is a closed upper set and (Xt)t≥0 is a non-decreasing process,

we have {σM > t} = {Xt /∈M}, from where we derive:

h (M) =

∫ ∞
0

P(σM > t)dt =

∫ ∞
0

P(Xt /∈M) =

∫ ∞
0

Gt(M)dt.

As for the second expression, noting that

gL (M) = E
(∫ +∞

0

1{σL−σM−τ>u}du

)
and setting v = u+ σM, we get:

gL (M) = E
(∫ ∞

0

1{σM≤v<σL−τ}dv

)
=

∫ ∞
0

P [σM ≤ v < σL − τ ] dv

with

P [σM ≤ v < σL − τ ] = P [Xv ∈M, Xv+τ /∈ L]

= E
[
1{Xv∈M}E

(
1{Xv+τ /∈L}|F(Xv)

)]
11



where F(Xv) is the σ-algebra generated by (Xs)0≤s≤v. Using the Markov

property at time v and the homogeneous and independent increments of

(Xt)t≥0, we derive:

P [σM ≤ v < σL − τ ] = E
[
1{Xv∈M}E

(
1{Xv+τ−Xv /∈L−Xv}|Xv

)]
= E

[
1{Xv∈M}Gτ (L−Xv)

]
and the result.

All involved quantities in C∞ only depend on the joint distribution of

Xt =
(
X
(1)
t , X

(2)
2

)
and on Gt. The function Gt may easily be computed, as

soon as the joint distribution of Xt =
(
X
(1)
t , X

(2)
2

)
is available (which is not

always the case for a bivariate subordinator). For instance, considering the

three special cases of Subsection 2.1 and similar shapes for bothM and L,

we get:

Case 1 ForM = R2+\[0,M1[×[0,M2[ with 0 < M1 ≤ L1 and 0 < M2 ≤ L2:

Ḡt(M) = P
(
X
(1)
t < M1, X

(2)
t < M2

)
=

∫∫
[0,M1[×[0,M2[

PXv(dx1, dx2),

Case 2 ForM = [M1,∞[×[M2,∞[ with 0 < M1 ≤ L1 and 0 < M2 ≤ L2:

Ḡt(M) = 1−P
(
X
(1)
t ≥M1, X

(2)
t ≥M2

)
= 1−

∫∫
[M1,+∞[×[M2,+∞[

PXv(dx1, dx2),

Case 3 ForM =
{

(x1, x2) ∈ R2+|x1 + x2 ≥M
}
with 0 < M ≤ L:

Ḡt(M) = P
(
X
(1)
t +X

(2)
t < M

)
=

∫∫
{(x1,x2)∈R2+|x1+x2<M}

PXv(dx1, dx2).

Using similar methods as for C∞, the asymptotic availability may be

proved to exist almost surely and to be equal to the mean up time on a cycle

divided by the mean cycle length:
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A∞ =
E (σL)− E

[
(σL − σM − τ)+

]
τ + E (σM)

=
h (L)− gL (M)

τ + h (M)
,

which involves the same quantities as C∞, and can consequently be computed

at the same time.

As particular cases:

• ForM = L (unmaintained case), noting that gL (L) = 0, we get:

C(ini)∞ =
C1 + C2τ

τ + E (σL)
and A(ini)∞ =

E (σL)

τ + E (σL)
,

• ForM = R2+ (periodic replacements), we get:

C(PR)∞ =
C1 + C2E

[
(τ − σL)+

]
τ

and

A(PR)∞ =
E (σL)− E

[
(σL − τ)+

]
τ

=
E [min (σL, τ)]

τ
.

3.2 Some comparison results

We here provide a few comparison results between C∞, C
(PR)
∞ and C(ini)∞ .

Proposition 4 If C1
C2
≥ E [min (τ, σL)], then C∞ ≤ C

(PR)
∞ (whatever M is)

and the PM policy is better than a simple periodic replacement policy.

Proof. Noting that

C(PR)∞ = C2 +
C1 − C2

(
τ − E

[
(τ − σL)+

])
τ

= C2 +
C1 − C2E [min (τ, σL)]

τ
(5)

and using (4), the sign of C∞ − C(PR)∞ is the same as the sign of

τ [C1 + C2 (gL (M)− h (L))]− [C1 − C2E [min (τ, σL)]] [τ + h (M)]

= − [C1 − C2E [min (τ, σL)]]h (M) + τC2
(
gL (M)− E

[
(σL − τ)+

])
13



where gL (M) − E
[
(σL − τ)+

]
= E

[
(σL − σM − τ)+

]
− E

[
(σL − τ)+

]
≤ 0,

which provides the result.

As a special case (M = L), this result shows that if C1
C2
≥ E [min (τ, σL)],

then C(ini)∞ ≤ C
(PR)
∞ .

Proposition 5 If C1
C2
≥ E (σL), then C∞ ≥ C

(ini)
∞ and the best is not to use

the PM policy, namely call for the repair team only at σL.

Proof. Starting from (4) and from

C(ini)∞ = C2 +
C1 − C2h (L)

τ + h (L)
, (6)

the sign of C∞ − C(ini)∞ is the same as the sign of

[C1 + C2 (gL (M)− h (L))] [τ + h (L)]− [C1 − C2h (L)] [τ + h (M)]

= (C1 − C2h (L)) [h (L)− h (M)] + C2gL (M) [τ + h (L)] ,

where h (L)− h (M) ≥ 0, which allows to conclude.

As a consequence from the previous results, if C1
C2
≥ E (σL), then C(ini)∞ ≤

C∞ ≤ C
(PR)
∞ . Also, the only situation where the PM policy can be interesting

(namely s.t. C∞ ≤ C
(ini)
∞ ) is the case where C1

C2
< E (σL).

3.3 Influence of the delay time τ on C∞

Though the delay time τ is generally fixed by the application context (and

stands for the time required by the repair team to be ready to operate), we

here consider that τ may vary, to better understand its influence both on the

maintained and unmaintained system. We write C∞ (τ) instead of C∞ in all

the subsection.

Proposition 6 1. We have lim
τ→+∞

C∞ (τ) = C2.

14



2. If E(σL) < C1
C2
, the cost function C∞ (τ) is decreasing with respect of τ ,

whateverM is.

3. If E(σL) ≥ C1
C2
, assuming L  M and noting that P (σL = σM)E (σM) <

E(σL), we have the following dichotomy:

• if C1
C2
≤ P (σL = σM)E (σM) : the cost function C∞ (τ) is non

decreasing with respect of τ ,

• if P (σL = σM)E (σM) < C1
C2
≤ E(σL) : the cost function C∞ (τ)

admits a unique minimum at some τM (with 0 < τM < +∞) such

that:∫ τM

0

P (t < σL − σM ≤ τM) dt+P (σL − σM ≤ τM)E (σM)−C1
C2

= 0.

Proof. Using (2) and (3) ,we may write:

C∞ (τ) =
C1 + C2

∫ τ
0
P (σL − σM ≤ t) dt

τ + E (σM)
. (7)

We derive:

lim
τ→+∞

C∞ (τ) = C2 × lim
τ→+∞

∫ τ
0
P (σL − σM ≤ t) dt∫ τ

0
1 dt

= C2,

using L’hôpital’s rule, which proves the first point.

As for the second and third points, starting from (7), the sign of ∂
∂τ
C∞ (τ)

is the same as the sign of

H (τ) = P (σL − σM ≤ τ) (τ + E (σM))−
(
C1
C2

+

∫ τ

0

P (σL − σM ≤ t) dt

)
=

∫ τ

0

P (t < σL − σM ≤ τ) dt+ P (σL − σM ≤ τ)E (σM)− C1
C2
,

which is non decreasing in τ (constant in caseM = L). Besides:

lim
τ→∞

H(τ) = E (σL − σM) + E (σM)− C1
C2

= E (σL)− C1
C2

15



and H (0+) = P (σL = σM)E (σM)− C1
C2
. This easily provides the results.

This proposition shows that the behavior of the cost function with respect

of τ may be quite different according to the case. As an example, in case of

a high replacement cost (E(σL) < C1
C2
), we can see that, from a cost point of

view, the best is not to ever repair the system. Even if some benefit for up-

time were considered in the cost function, such a result would still be valid

in case of too high a replacement cost. In this situation, the system does

not bring any profit, with or without preventive maintenance. If there is still

some interest in the functioning of the system (which may be some client

satisfaction e.g.), one should then control another reliability indicator, such

as the system availability. It is easy to check that the system availability is

always decreasing with τ . The optimal value of τ may then be provided by

optimizing the cost function under some availability constraint, namely chose

the largest τ which meets with the availability constraint. As an alternative,

one may also optimize the availability under some cost constraint, namely

chose the shortest τ which meets with the cost constraint.

More generally, from a cost point of view, one can observe that it is not

necessary mandatory that the repair team arrives as soon as possible (with

the shortest τ) and some added delay in the repair may improve the cost

function. However, such an added delay always decreases the availability,

and it should then be controlled.

The probability P (σL = σM) might be computed using martingale tech-

nics as in Bertoin (1996). It however is rather technical and does not bring

much to the present study. We consequently do not go any further into this

direction.

Note that the present results do not depend on the dimension and would

be valid in the univariate or multivariate cases.
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4 Numerical experiments

In order to illustrate the results, a bivariate Gamma process is used, which

is constructed by trivariate reduction, as proposed by Cherian (1941) in the

case of bivariate Gamma random vectors.

4.1 A bivariate Gamma process

Let us first recall that an univariate Gamma process with parameters (a, b)

(where a, b > 0) is a subordinator such that for every t ≥ 0, the random vari-

able Yt is Gamma distributed Γ(at, b) with probability distribution function

(p.d.f.):

fat,b(x) =
1

Γ(at)
bate−bxxat−11{x>0}.

We only envision the case b = 1 in the following (no restriction) and we set

fat,b = fat. The corresponding cumulative distribution function (c.d.f.) and

survival function are denoted by Fat and F̄at, respectively, with F̄at = 1−Fat.

Starting from three independent univariate Gamma processes
(
Y
(i)
t

)
t≥0

with parameters (αi, 1) for i = 1, 2, 3 (where α1, α2, α3 > 0), we set

X
(1)
t = Y

(1)
t + Y

(3)
t and X(2)

t = Y
(2)
t + Y

(3)
t .

The process (Xt)t≥0 =
(
X
(1)
t , X

(2)
t

)
t≥0

then is a bivariate subordinator with

Gamma marginal processes and marginal parameters (ai, 1) where ai = αi +

α3 for i = 1, 2. The linear correlation coeffi cient between the two random

variables X(1)
t and X(2)

t is independent of t and given by

ρ =
α3√
a1a2

.

We consequently have α1 = a1 − ρ
√
a1a2, α2 = a2 − ρ

√
a1a2 and α3 =

ρ
√
a1a2, with 0 ≤ ρ ≤ ρmax = min

(√
a1
a2
,
√

a2
a1

)
, see Devroye (1986) e.g..
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Two equivalent alternate parameterizations hence are available for (Xt)t≥0:

either (α1, α2, α3) or (a1, a2, ρ). Besides, all the dependence between the

marginal processes is contained in the linear correlation coeffi cient ρ.

The joint p.d.f. of the random vector Xt = (X
(1)
t , X

(2)
t ) is provided by:

fXt(x1, x2) =

∫ +∞

0

fα1t(x1 − x3)fα2t(x2 − x3)fα3t(x3)dx3.

The corresponding c.d.f. and survival function are provided by:

FXt(x1, x2) = P
(
X
(1)
t ≤ x1, X

(2)
t ≤ x2

)
=

∫ +∞

0

Fα1t(x1 − x3)Fα2t(x2 − x3)fα3t(x3)dx3

and

F̄Xt(x1, x2) = P
(
X
(1)
t > x1, X

(2)
t > x2

)
=

∫ +∞

0

F̄α1t(x1 − x3)F̄α2t(x2 − x3)fα3t(x3)dx3

for all t, x1, x2 ∈ R+.

Considering the three special cases of Subsections 2.1 and 3.1, the func-

tions h (M) and gL (M) which appear in C∞ and A∞ are computed via the

following.

Case 1 (L = R2+\[0, L1[×[0, L2[) We have Ḡt(M) = FXt (M1,M2) and

h (M) =

∫∫
R2+

Fα1t(M1 − x3)Fα2t(M2 − x3)fα3t(x3)dx3 dt.

Writing
∫∫
M =

∫∫
R2+
−
∫∫
[0,M1[×[0,M2[

and using Fαiτ ∗ fαit = Fαi(τ+t),
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we also get:

gL (M) =

∫∫
R2+

Fα1(τ+t)(L1 − x3)Fα2(τ+t)(L2 − x3)fα3(τ+t)(x3)dx3 dt

−
∫∫∫
R3+

fα3τ (x3)fα3t(z3)

×
[∫∫

[0,M1[×[0,M2[

Fα1τ (L1 − x1 − x3)Fα2τ (L2 − x2 − x3)

× fα1t(x1 − z3)fα2t(x2 − z3) dx1 dx2
]
dt dx3 dz3.

Case 2 (L = [L1,∞[×[L2,∞[) We have :

Ḡt(M) = 1− FXt(M1,M2) = Fa1t(M1) + Fa2t(M2)− FXt(M1,M2),

h (M) =

∫ ∞
0

Fa1t(M1)dt+

∫ ∞
0

Fa2t(M2) dt

−
∫∫

R2+

Fα1t(M1 − x3)Fα2t(M2 − x3)fα3t(x3)dx3 dt,

and

gL (M) =

∫∫
[M1,∞[×[M2,∞[

[
Fa1τ (L1 − x1) + Fa2τ (L2 − x2)

−
∫ +∞

0

Fα1τ (L1 − x1 − u)Fα2τ (L2 − x2 − u)fα3τ (u)du

]
×
(∫∫

R2+

fα1v(x1 − w)fα2v(x2 − w)fα3v(w) dv dw

)
dx1 dx2

Case 3 (L =
{

(x1, x2) ∈ R2+|x1 + x2 ≥ L
}
) We have:

Ḡt(M) = P
(
Y
(1)
t + Y

(2)
t + 2Y

(3)
t < M

)
=

∫ +∞

0

F(α1+α2)t(M−2y)fα3t(y) dy

since Y (1)
t +Y

(2)
t is Gamma distributed with parameters ((α1 + α2) t, 1).
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Analytical formula MC simulations MC 95% confidence interval

C∞ 154.21612 154.38232 [152.79936; 155.96529]

A∞ 0.87203 0.87245 [0.85885; 0.88604]

Table 1: Comparison with MC simulations, Case 1 (series system)

Hence: h (M) =
∫∫
R2+
F(α1+α2)t(M − 2y)fα3t(y) dt dy and

gL (M) =

∫∫∫∫
R4+

fα1t(x1 − x3)fα3t(x3)fα3τ (y)

×
(∫ ∞

M−x1
fα2t(x2 − x3) F(α1+α2)τ (L− x1 − x2 − 2y) dx2

)
dt dx1 dx3 dy.

4.2 Validation of the numerical results

Both C∞ and A∞ are here computed on a few examples, via the previous

analytical results and by Monte-Carlo (MC) simulations, with 104 stories.

For the MC results, the regenerative property of the system is exploited to

derive some 95% confidence band for the results, see Asmussen (2003) or

Eymard & Mercier (2008) e.g.. We consider the three different cases for the

shape of (M,L).

Case 1 We take a1 = 4, a2 = 5, ρ = 0.6708, τ = 0.1, M1 = 3.4, M2 = 2.4,

L1 = 3.5, L2 = 2.5, C1 = 100 and C2 = 30. The results are displayed

in Table 1.

Case 2 We take a1 = 7, a2 = 9, ρ = 0.75, τ = 0.1, M1 = 2.9, M2 = 2.3,

L1 = 3.5, L2 = 2.5, C1 = 100 and C2 = 30. The results are displayed

in Table 2.

Case 3 We take a1 = 4, a2 = 9, ρ = 0.4, τ = 0.1, M = 2.4, L = 3.5, C1 = 3

and C2 = 1. The results are displayed in Table 3.
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Analytical formula MC simulations MC 95% confidence interval

C∞ 172.60371 171.04858 [168.722395; 173.3732]

A∞ 0.91734 0.917911 [0.90132; 0.93450]

Table 2: Comparison with MC simulations, Case 2 (parallel system)

Analytical formula MC simulations MC 95% confidence interval

C∞ 9.0611 9.0461 [8.6960; 9.3961]

A∞ 0.8750 0.8738 [0.8407; 0.9069]

Table 3: Comparison with MC simulations, Case 3

In each case, the results by MC simulations and by the analytical formulae

are coherent, which validate the method.

4.3 Examples

We now illustrate our results through different numerical experimentations.

The parameters of the bivariate Gamma process and the shape of (M,L)

are provided in Table 4 for each example.

Example 1 Two different values are considered for C1 : C1 = 0.198 and

C1 = 0.594, and C∞ is plotted against the delay time τ in Figure 3 for both

values. In the first case (Figure 3a), C1 is such that C1C2 < E (σL) and the cost

function C∞ is minimum at τ
opt
0 ' 0.0625. In the second case (Figure 3b), we

have C1
C2
> E (σL) and C∞ is decreasing with τ . Such behaviors are coherent

with the results of Proposition 6. In case C1
C2

> E (σL), the lowest cost is

obtained for τ =∞ which means that, from a cost point of view, the best is not

to ever repair the system. As explained in the lines following Proposition 6,

one should then control the asymptotic availability, which is also decreasing in
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a1 a2 ρ τ
shape of

(M,L)

L1

(or L)
L2

M1

(or M)
M2 C1 C2

Ex. 1 4 9 0.5 - case 1 3.5 2.5 2.8 2 − 1

Ex. 2 7 9 0.76 0.1 case 2 3.5 2.5 - - - 1

Ex. 3 4 9 - 0.1 case 1 3.5 2.5 2.8 2 20 -

7 9 - 0.1 case 2 3.5 2.5 2.9 2.3 20 -

Ex. 4 4 - - 0.1 case 3 3.5 2.4 1 -

Table 4: Parameters and shapes of (M,L) for the different examples

τ , see Figure 3c. Assume for instance that we have an availability constraint

provided by A∞ ≥ 0.9 (to ensure client satifaction e.g.). The optimal value

of τ which minimizes the cost function under this availability constraint then

is the largest τ which fulfills this constraint, namely τ0 ' 0.075.

Example 2 Two different values are considered for C1 : C1 = 0.15 and

C1 = 2, and C∞ is plotted against (M1,M2) in Figure 4 for both values. In the

first case (Figure 4a), C1 is such that C1
C2
< E (σL) and the cost is minimum

at (M opt
1 ,M opt

2 ) ' (2.8, 1.8). In the second case, we have C1 > C2E (σL)

(Figure 4b) and the cost is minimum at (L1, L2), which means that no PM

policy is required. Such a behavior is coherent with the results of Proposition

5.

Example 3 We take three different values for C2: C2 = 4, C2 = 20 and

C2 = 30, and two different shapes for (M,L). The cost is plotted against the

dependence (measured by ρ) in Figure 5 in all these cases. For the first shape

of (M,L) (case 1, Figure 1a), we observe that the cost is decreasing with ρ

for the three values of C1 (Figure 5a). For the second shape of (M,L) (case
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Figure 3: C∞ and A∞ as a function of τ , Example 1.

2, Figure 1b), the monotony is reversed (Figure 5b) and the cost is increasing

with ρ.

Example 4 We here consider the third shape for (M,L) (case 3, Figure 1c)

and the cost is plotted against ρ for four different couples (a2, C2) in Figure 6,

with (a2, C2) ∈ {(9, 1) , (9, 10) , (4, 30) , (4, 7)}. According to these four cases,

we can see that the cost may be increasing, decreasing, concave, convex with

respect of ρ, so that nothing can be said about the behavior of the cost function

with respect of the dependence.
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Figure 4: C∞ as a function of (M1,M2), Example 2.
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Figure 5: C∞ as a function of ρ, Example 3.

5 Conclusion

We here proposed a PM policy for a continuously monitored system modeled

by a bivariate subordinator. The PM policy has been assessed through a cost

function on an infinite horizon time. We studied some conditions under which

the PM policy decreases the cost function when compared to a simple periodic

replacement policy or to the unmaintained case. Though the delay time τ is

generally fixed by the application context, we here studied its influence on

the cost function. As a result, we have seen that, in case of high replacement

costs, some added delay in the repair might improve the cost function. This
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Figure 6: C∞ as a function of ρ, Example 4, Case 3 - the third shape.

means that from a cost point of view, it is not necessary mandatory that

the repair team arrives as soon as possible. However, such an added delay

always decreases the availability, and it should then be controlled (or any

other reliability indicator), in complement to the cost function.

As for the influence of the dependence between the two wear indicators

on the cost function, we have not been able to study it from a theoretical

point of view. We have however numerically observed that the cost function

seemed to be monotonic with respect to the dependence for the first two

shapes of failure regions considered in the paper (decreasing for the first shape

and increasing for the second one). The proof of these monotonicity results

remains a challenging open question. As for the third envisioned shape,

the different examples show that the cost function is not monotonic with the
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dependence. The shape of the failure region hence has a clear influence on the

eventual monotonicity of the cost function with respect to the dependence.

According to the case, not taking into account the dependence between the

wear indicators may hence lead to under- or over-estimate the cost function

(see Figures 5 and 6), which may induce diffi culties in an industrial context.

Taking into account the dependence as in the present paper then is essential.

We here made the choice of studying asymptotic unitary indicators. An-

other possibility might have been to use transitory indicators such as point-

wise availability and finite time cumulated cost. Indeed, using the regener-

ative structure of the maintained system, one should then be able to write

renewal equations fullfilled by these transitory indicators, which might be

solved numerically.
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APPENDIX: NOTATIONS

PM Preventive Maintenance

(Xt)t≥0 =
(
X
(1)
t , X

(2)
t

)
t≥0

Intrinsec system deterioration, bivariate subordinator

L Failure zone

M PM zone

σL Time to failure

σM Reaching time of PM zone

τ Deterministic delay time

Upper sets 1st shape R2+ \ [0,M1[×[0,M2[

Upper sets 2nd shape [M1,∞[×[M2,∞[

Upper sets 3rd shape {(x1, x2) ∈ R2+ : x1 + x2 ≥M}

Li, i = 1, 2 Univariate failure threshold

σ
(i)
Li
, i = 1, 2 Univariate failure time

Mi, i = 1, 2 Univariate PM threshold

σ
(i)
Mi
, i = 1, 2 Univariate reaching time of PM threshold

(Zt)t≥0 Regenerative process describing the system under PM
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PXt(dx1, dx2) joint distribution of Xt =
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X
(1)
t , X

(2)
t

)
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r.v. random variable

fXt (x1, x2) joint p.d.f. of Xt =
(
X
(1)
t , X

(2)
t

)
FXt (x1, x2) joint c.d.f. of Xt =

(
X
(1)
t , X

(2)
t

)
F̄Xt (x1, x2) joint s.f. of Xt =

(
X
(1)
t , X

(2)
t

)
Fat c.d.f of a Gamma distributed r.v. with parameters (at, 1)
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