A new ternary nitride La2GaN3: Synthesis and crystal structure François Cheviré, Francis J. Disalvo ## ▶ To cite this version: François Cheviré, Francis J. Disalvo. A new ternary nitride La2GaN3: Synthesis and crystal structure. Journal of Alloys and Compounds, 2008, 457 (1-2), pp.372-375. 10.1016/j.jallcom.2007.02.110 . hal-00864760 HAL Id: hal-00864760 https://hal.science/hal-00864760 Submitted on 18 Sep 2015 **HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. A new ternary nitride La₂GaN₃: synthesis and crystal structure. François Cheviré, Francis J. DiSalvo*. Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA Phone: +1 607-255-7238 Fax: +1 607-255-4137 * fjd3@cornell.edu **Keywords** Nitride materials; Crystal growth; X-ray diffraction; Crystal and structure symmetry Abstract The ternary nitride La₂GaN₃ was synthesized from the elements and an excess of sodium and gallium at 900°C in a sealed niobium tube. La₂GaN₃ is yellow colored and crystallizes with the Ba₂ZnO₃ structure [monoclinic space group C2/c (No.15), a = 5.6709(5) Å, b = 10.945(1) Å, c = 11.986(1) Å, $\beta = 93.591(5)^{\circ}$, V = 742.54(12) Å³, Z = 10.945(1) Å, $\delta = 10.945(1)$ 10.94(1)$ Å, $\delta = 10.945(1)$ 10.945(1$ 8] and is isostructural with the A₂^{II}M^VN₃ nitrides, Sr(Ba)₂TaN₃, Sr(Ba)₂NbN₃, Ca(Sr)₂VN₃. The structure contains infinite chains of GaN₄ tetrahedral anions, 1 [GaN₂N_{2/2}]⁶-. 1 #### 1. Introduction Binary nitrides of the main group elements, such as GaN, Si₃N₄, and AlN, are technologically of interest. Especially gallium nitride is a key material for blue/ultraviolet light emitting diodes (LEDs) and lasers as well as for sensors for UVlight. The synthesis of new nitrides is thus a field of growing interest in solid-state chemistry in the search for new materials with promising properties and applications. However, very little is presently known about multinary gallium nitrides. DiSalvo et al. have reported several compounds with nitridogallate anions in the past ten years which often show novel structures. For example, Sr₃GaN₃ and Sr₆GaN₅ contain isolated planar $[GaN_3]^{6-}$ anions [1], $Sr_3Ga_2N_4$ [2] and $Ba_3Ga_2N_4$ [3] contain edge-shared $[GaN_{4/2}]^{3-}$ tetrahedra, while α-Ca₃Ga₂N₄ and Sr₃Ga₃N₅ [2] and the recently reported quaternary nitride LiCaGaN₂ [4] exhibit structures based on corner-shared [Ga₂N₆] dimers which are formed by two edge-sharing tetrahedra. Let us finally note the two compounds β-Ca₃Ga₂N₄ [5] and LiSrGaN₂ [6] have structures that are based on interpenetrating networks. The anti-perovskite compound Nd₃GaN has been mentioned in the literature and is the only reported compound in a rare-earth/gallium/nitrogen system but it cannot be described in terms of anionic nitridometalate species and fully oxidized cations as the nitrogen atoms are not bonded to gallium atoms in the structure [7]. Here we report the synthesis and the crystal structure of the first reported rareearth nitridogallate compound, La_2GaN_3 that contains infinite chains of corner-sharing $[GaN_2N_{2/2}]^{6-}$ tetrahedra. #### 2. Experimental Clear yellow and air stable crystals of La₂GaN₃ were first observed as a byproduct while investigating the ternary lanthanum-tungsten-nitrogen system using an excess of sodium and gallium as a flux. The compound was further successfully synthesized from a tungsten-free reaction as described in the following procedure. Due to the air sensitivity of the reagents, all manipulations were carried out in an argonfilled glove box. Na, Ga, La and NaN₃ were placed into a niobium tube (OD \approx 1 cm, length ≈ 12 cm) in the atomic ratios of Na:Ga:La:N₂ were 6:4:1:3. The corresponding masses are Na (Aldrich, A.C.S reagent grade) 83 mg, Ga (99.99%) 200 mg, La (filled from rod, Jonhson Matthey Company) 100 mg and NaN3 (99.9%) 47 mg. The niobium container was sealed under argon in a Centorr Associates arc furnace and then itself sealed under vacuum in a fused silica tube in order to protect it from subsequent oxidation during heating. The silica tube was then placed into a muffle furnace, heated up to 900°C in 15 h, held at temperature for 36 h. Then the furnace was allowed to cool to RT over 100 h. Following this heating sequence, the niobium tube was opened and unreacted sodium was removed by evaporation from the products by heating the niobium tube to 350° C under a pressure of $\sim 10^{-6}$ bar for 8h. The products of the reaction were analyzed with powder X-ray diffraction using a Scintag 2000 θ - θ diffractometer with Cu $K\alpha$ radiation. The sample was prepared in an argon-filled glove box and covered with Mylar film to prevent reaction with air and moisture. Single crystal X-ray diffraction data were obtained using a Brucker X8 Apex II diffractometer equipped with 4K CCD detector and graphite monochromatized Mo $K\alpha$ radiation (λ = 0.07107 Å). The Brucker software package SAINT [8] was used to integrate the data, an empirical absorption correction was applied using SADABS [9] and the initial input files for solving the structure prepared by XPREP [10]. The integrated data were analyzed with the SHELX97 [11] suite of programs within WinGX [12]. The La:Ga ratio of La₂GaN₃ was determined by standardless electron microprobe analysis performed with a JEOL 8900 electron microprobe. #### 3. Results and Discussion After the sodium was removed from the sample, the tube was moved back into the argon-filled glove box. The remaining product appeared as a dark gray, silvery mass in which no crystals were clearly visible by eye. A fraction of the product was ground in an agate mortar for powder X-ray diffraction analysis but only LaN, Na_xGa_v and La_xGa_y phases could be identified. Another portion of the reaction product was placed into polybutene oil for inspection under an optical microscope. Small sized clear yellow and air stable crystals were apparent with two distinct shapes: block crystals and thin long plates. Several of them were analyzed and all were consistent with a monoclinic symmetry independent of the shape of the selected crystal. A suitable crystal with approximate 80*60*60 µm³ dimensions was chosen for data collection. Its structure was solved in C2/c (No. 15). Details of the refinement are shown in Table 1. No extra symmetry was found by ADDSYM [12]. The atomic coordinates were standardized with STRUCTURE TIDY [13] and are shown in Table 2. The anisotropic displacement factors are detailed in Table 3. In order to verify the elemental composition found by the single crystal XRD solution, semi-quantitative electron microprobe spectroscopy measurement were carried out. Results were similar for the two different shapes of crystal and revealed a La:Ga ratio of 1.9:1. These data are within the expected errors for a standardless measurement. No signal corresponding to sodium, gallium or niobium were observed. The presence of nitrogen was confirmed by wavelength dispersive spectroscopy. La₂GaN₃ crystallizes with the Ba₂ZnO₃ structure (Fig. 1) [14] and is isostructural to the A₂^{II}M^VN₃ nitrides: Ca(Sr)₂VN₃ [15, 16], Sr(Ba)₂NbN₃ [17, 18] and Sr(Ba)₂TaN₃ [19, 20]. The structure is built up by La³⁺ cations and nitridogallate anions which form parallel infinite chains of vertex-linked [GaN₃]⁴ group along [100] with a pattern that repeats after two tetrahedra (Fig. 2). One characteristic of those chains is the difference between Ga-N4-Ga and Ga-N1-Ga angle values, i.e. 176.6° and 111.1°, where N4 and N1 are the bridging nitrogen. Such chains can be described after Liebau [21] as "zweier single chains" and the chain torsion angle can be defined by N1–N4– N1 in La₂GaN₃ with a value of 135.2°. By comparison, the chain angle in isostructural Ba₂ZnO₃ is 139.9°, and the Zn–O_{bridging}–Zn angles are 178.3° and 115.3°. The monoclinic distortion in La₂GaN₃ ($\beta = 93.59^{\circ}$) is similar to that of Ba₂ZnO₃ ($\beta =$ 93.63°) but larger than the ones observed in the $A_{2}^{II}M^{V}N_{3}$ series where $90.99^{\circ} < \beta <$ 92.34°. The average distances of gallium to bridging nitrogen and terminal nitrogen are 1.936 Å and 1.983 Å respectively. Those distances are slightly shorter than the ones observed in the ternary nitrides $A_3Ga_2N_4$ (A = Sr, Ba) that contain infinite edge sharing chains $\frac{1}{m}$ [GaN_{4/2}]³⁻, i.e. 2.005 Å and 2.017 Å respectively for Sr and Ba [2, 3]. The La³⁺ are coordinated to seven nitrogen atoms with distances ranging from 2.45 Å to 3.22 Å (Table 4). La(1) is coordinated to nitrogen in a monocapped trigonal prismatic geometry while for La(2) a distorted pentagonal bipyramid is observed (Fig. 2). The average La–N bond length is ~ 2.70 Å, comparable to that reported in the binary nitride LaN (~ 2.65 Å) or in the lanthanum-containing ternary nitrides of the RE₃M₂N₆ family where RE = rare earth element and M = V (~ 2.68 Å) [22], Nb (~ 2.73 Å), Ta (~ 2.63 Å) [23] or Cr (~ 2.63 Å) [24]. #### 4. Conclusion The new nitride La_2GaN_3 has been synthesized and is the first reported ternary compound in a rare-earth/gallium/nitrogen system which can be described in terms of anionic nitridometalate species and fully oxidized cations. It crystallizes in the Ba_2ZnO_3 structure-type. ### 5. Acknowledgment This work was supported by NSF grant number DMR-0602526. We thank Dr. Emil Lobkovsky for help with the single crystal data collection and structure solution, and John hunt for help with the SEM Microprobe. The Microprobe is supported by the Cornell Center for Materials Research Shared Experimental Facilities, funded through the National Science foundation Materials Research Science and Engineering program DMR-0520404. #### References - [1] D. G. Park, Z. A. Gál, F. J. DiSalvo, Inorg. Chem. 42 (2003) 1779-1785. - [2] S. J. Clarke, F. J. DiSalvo, Inorg. Chem. 36 (1997) 1143-1148. - [3] H. Hisanori, F. J. DiSalvo, Acta Cryst. C52 (1996) 760-761. - [4] M. S. Bailey, F. J. DiSalvo, J. Alloys Comp. 417 (2006) 50-54. - [5] S. J. Clarke, F. J. DiSalvo, J. Alloys Comp. 274 (1998) 118-121. - [6] D. G. Park, Z. A. Gál, F. J. DiSalvo, J. Alloys Comp. 353 (2003) 107-113. - [7] H. Haschke, H. Nowotny, F. Benesovsky, Monatsch. Chem. 98 (1967) 2157-2163. - [8] Brucker, SAINT Plus: Software for the CCD system, Brucker Analytical X-ray system, Madison, WI, 2003. - [9] G. M. Sheldrick, SADABS, Institute für Anorganische Chemie der Universität Göttingen, Göttingen, Germany, 2003. - [10] Brucker, XPREP (Version 6.14), Brucker Analytical X-ray system, Madison, WI, 2003. - [11] G. M. Sheldrick, SHELXS97 and SHELXL97, University of Göttingen, Germany, 1997. - [12] L. J. Farrugia, J. Appl. Crystallogr. 32 (1999) 837-838. - [13] L. M. Gelato, E. Parthé, J. Appl. Crystallogr. 20 (1987) 139. - [14] M. Scheikowski, H. Müller-Buschbaum, Z. Anorg. Allg. Chem. 612 (1992) 17-20. - [15] D. A. Zherebstov, L. G. Akselrud, R. Niewa, Z. Kristallogr. NCS 217 (2002) 469. - [16] D. H. Gregory, M. G. Barker, P. P. Edwards, D. J. Siddons, Inorg. Chem. (1995) 3912-3916. - [17] X. Z. Chen, H. A. Eick, W. Lasocha, J. Solid State Chem. 138 (1998) 297-301. - [18] O. Seeger, M. Hofmann, J. Strähle, J. P. Laval, B. Frit, Z. Anorg. Allg. Chem. 620 (1994) 2008-2013. - [19] F. K.-J. Helmlinger, P. Höhn, R. Kniep, Z. Naturforsch. 48b (1993) 1015-1018. - [20] A. Bowman, D. H. Gregory, J. Alloys Comp. 348 (2003) 80-87. - [21] F. Liebau, Structural Chemistry of silicates, Springer-Verlag, Heidelberg, 1985. - [22] Z. A. Gál, L. Cario, F. J. DiSalvo, Solid State Sci. 5 (2003) 1033-1036. - [23] L. Cario, Z. A. Gál, T. P. Braun, F. J. DiSalvo, B. Blaschkowski, H.-J. Meyer, J. Solid State Chem. 162 (2001) 90-95. - [24] F. Cheviré, C. Ranjan, F. J. DiSalvo, to be published. ## Figures and tables captions Figure 1: Structure of La_2GaN_3 showing the arrangement of the corner sharing tetrahedral $\frac{1}{\infty}[GaN_2N_{2/2}]^{4-}$ chains. Figure 2: Depiction of the $_{_\infty}^{-1} [GaN_2N_{2/2}]^{4\text{-}}$ chains and coordination polyhedrons of La in $La_2GaN_3.$ Table 1: Crystal data and structure refinement for La₂GaN₃. Table 2: Atomic coordinates and values of U_{eq} , the equivalent isotropic displacement parameter ($\mathring{A}^2 \times 10^3$), for La₂GaN₃. Table 3:Anisotripic displacement parameters ($\mathring{A}^2 \times 10^3$) for La₂GaN₃. Table 4: Selected bond lengths for La_2GaN_3 (Å) . Figure 1 Figure 2 Table 1 | Empirical formula | La_2GaN_3 | |--|------------------------------------| | Formula weight (M) | 389.57 | | Temperature (K) | 167(2) | | Crystal system | Monoclinic | | Space group | C2/c | | a (Å) | 5.6709(5) | | b (Å) | 10.945(1) | | c (Å) | 11.986(1) | | β (°) | 93.591(5) | | Volume (Å ³) | 742.54(12) | | Z | 8 | | Density (calculated) (Mg m ⁻³) | 6.970 | | Absorption coefficient (μ) (mm ⁻¹) | 29.584 | | Reflections collected | 6330 | | Independent reflections | 1843 [$R_{\text{int}} = 0.0251$] | | Goodness-of-fir on F^2 | 1.014 | | Final <i>R</i> indices $[I > 2\sigma(I)]$ | R1 = 0.029 | | | wR2 = 0.0401 | | R indices (all data) | R1 = 0.0273 | | | wR2 = 0.0410 | Table 2 | Atom | Wyckoff position | x | y | z | $U_{ m eq}$ | |------|------------------|-----------|-----------|-----------|-------------| | La1 | 8 <i>f</i> | 0.2385(1) | 0.2074(1) | 0.3488(1) | 4(1) | | La2 | 8 <i>f</i> | 0.2585(1) | 0.3945(1) | 0.0744(1) | 4(1) | | Ga | 8 <i>f</i> | 0.2993(1) | 0.0016(1) | 0.1629(1) | 3(1) | | N1 | 4e | 0 | 0.4000(3) | 0.25 | 5(1) | | N2 | 8 <i>f</i> | 0.3220(5) | 0.1783(3) | 0.1305(2) | 6(1) | | N3 | 8 <i>f</i> | 0.2222(5) | 0.1002(2) | 0.5280(2) | 7(1) | | N4 | 4 <i>e</i> | 0 | 0.0068(4) | 0.25 | 8(1) | $U_{\rm eq}$ is defined as one third of the trace of the orthogonalized U^{ij} tensor. Table 3 | Atom | U^{11} | U^{22} | U^{33} | U^{23} | U^{13} | U^{12} | |------|----------|----------|----------|----------|----------|----------| | La1 | 4(1) | 3(1) | 4(1) | 0(1) | 0(1) | 0(1) | | La2 | 4(1) | 3(1) | 3(1) | 0(1) | 0(1) | 0(1) | | Ga | 3(1) | 3(1) | 3(1) | 0(1) | 0(1) | 0(1) | | N1 | 6(2) | 4(2) | 5(2) | 0 | -2(1) | 0 | | N2 | 6(1) | 4(1) | 7(1) | 1(1) | 1(1) | -2(1) | | N3 | 8(1) | 5(1) | 7(1) | 0(1) | 0(1) | 0(1) | | N4 | 7(2) | 11(2) | 6(2) | 0 | 0(1) | 0 | The anisotropic displacement factor takes the form $-2\pi^2[h^2a^{*2}U^{11} + \cdots + 2hka^*b^*U^{12}]$ Table 4 | La1—N1 | 2.734(3) | |--------|------------------------------| | La1—N2 | 2.509(3), 2.707(3), 3.220(3) | | La1—N3 | 2. 454(3), 2.574(3) | | La1—N4 | 2.802(3) | | La2—N1 | 2.640(1) | | La2—N2 | 2.480(3), 2.595(3) | | La2—N3 | 2.569(3), 2.722(3), 3.058(1) | | La2—N4 | 2.730(2) | | Ga—N1 | 1.967(2) | | Ga—N2 | 1.998(3) | | Ga—N3 | 1.968(3) | | Ga—N4 | 1.904(1) |