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In this paper, we set up a "dictionary" between discrete Schrödinger operators and holomorphic dynamics on certain affine cubic surfaces, building on previous work by Cantat, Damanik and Gorodetski. To achieve this, we make use of potential theory: a detailed description of the dynamical Green functions is obtained; then basic results concerning the equilibrium measures and the Green functions of compact subsets of C are used to transfer statements from the dynamical context to the Schrödinger one. This provides a new viewpoint on several recent theorems.

Set-up and Main Results

The goal of this paper is to add on previous work by Cantat [START_REF] Cantat | Painlevé and Schrödinger[END_REF], Damanik and Gorodetski [START_REF] Damanik | The Density of States Measure of the Weakly Coupled Fibonacci Hamiltonian[END_REF][START_REF]Hyperbolicity of the trace map for the weakly coupled Fibonacci Hamiltonian[END_REF] (see also [START_REF] Casdagli | Symbolic Dynamics for the Renormalization Map of a Quasiperiodic Schrödinger Equation[END_REF][START_REF] Sütő | The Spectrum of a Quasiperiodic Schrödinger Operator[END_REF] for instance) to establish a correspondence between the study of certain discrete Schrödinger operators and the holomorphic dynamics of automorphisms on a family of affine cubic surfaces. Using the action of Aut(F 2 ) on the abelianized group Ab(F 2 ) = Z 2 , one can associate a matrix M ϕ ∈ GL 2 (Z) to ϕ. Assume M ϕ to be hyperbolic, i.e:

• either det(M ϕ ) = 1 and tr(M ϕ ) > 2;

• or det(M ϕ ) = -1 and tr(M ϕ ) = 0.

By replacing ϕ with ϕ 2 := ϕ • ϕ ,which is still positive, we can restrict ourselves to the first case; this means that the spectrum of M ϕ is of the form {λ, λ -1 } where λ denotes a quadratic integer greater than one.

Let Ω be the set of finite words on the generators a and b, endowed with the topology pertaining to the following distance:

d : (u, v) → 1 inf{|n| | u n = v n } + 1 .
The initial automorphism ϕ extends to a substitution ι over the letters a and b which has an unique "positively infinite" invariant word u + ∈ {a, b} N .

Example 1.1 Let ζ be the Fibonacci substitution, given by a → ab and b → a; its associated matrix M ζ is given by:

M ζ := 1 1 1 0 ∈ GL 2 (Z)
and it fixes the infinite word beginning with abaababaabaababaababaabaababaabaab . . . This example will be continued throughout the first part of this paper.

Now consider the left shift on {a, b} Z :

T : {a, b} Z → {a, b} Z u → (u n+1 ) n∈Z
and let W be the set of all adherent values for the sequence (T p u + ) p≥0 (in other words, it is the ω-limit set W of the T -orbit of u + ); it is a compact subset of {a, b} Z . It is well known (see for instance [START_REF]Lyapounov Exponents and Spectral Analysis of Ergodic Schrödinger Operators : a Survey of Kotani Theory and its Applications, Spectral theory and mathematical physics[END_REF]) that there exists an unique T -invariant probability measure ν on the set W and that the left shift T is ergodic with respect to ν (see [24, p.58] for an outlook on uniquely ergodic maps).

1.1.2. Discrete Schrödinger operators. Given any word w ∈ W , one can define a potential function:

v w : Z → {0, 1} n → 1 if w n = a 0 else .
Consider for any fixed κ ∈ R and w ∈ W the following operator, defined on the space ℓ 2 (Z) of complex-valued square-summable sequences:

H κ,w : ℓ 2 (Z) → ℓ 2 (Z) ξ → (ξ n+1 + ξ n-1 + κv w (n)ξ n ) n∈Z .
Remark that this operator is self-adjoint and H κ,w ≤ 2 + |κ|; therefore its spectrum Σ κ,w is a subset of the real interval [-2 -|κ|, 2 + |κ|].

Since H κ,w is uniquely ergodic, we can apply the following result due to Kotani and Pastur [START_REF] Pastur | Spectral Properties of Disordered Systems in the One-body Approximation[END_REF].

Theorem 1.2 (Kotani -Pastur) There exists a compact set Σ κ ⊂ [-2 -|κ|, 2 + |κ|] such that Σ κ,w = Σ κ for all w ∈ W .
We call the set Σ κ the almost-sure spectrum of the operator H κ,w with respect to the measure ν.

Remark 1.3 If H κ,w were ergodic (non-uniquely), one would have Σ κ,w = Σ κ for νalmost every w ∈ W , hence the colloquial name of "almost-sure spectrum". 1.1.3. Density of states. Let H N κ,w be the restricted operator H κ,w to the set C {-N,...,N } with Dirichlet boundary conditions, meaning we only consider sequences (ξ n ) n∈Z with -N ≤ n ≤ N such that:

• ξ n = 0 for n ≤ -N -1; • ξ n = 0 for n ≥ N + 1.
This gives a self-adjoint endomorphism of C 2N +1 ; as such it has real eigenvalues λ N 0 , . . . , λ N 2N . Define the following probability measure:

µ κ,w N := 1 2N + 1 2N j=0 δ λ N j .
Theorem 1.4 (Avron -Simon [START_REF] Avron | Almost Periodic Schrödinger Operators II. The Integrated Density of States[END_REF])

(i) For ν-almost every w ∈ W the sequence (µ κ,w N ) N weakly converges to a probability measure dk κ on C, called density of states;

(ii) for any continuous function g :

C → C: C g(E)dk κ (E) = w∈W g(H κ,w ) • δ 0 | δ 0 dν(w) ; c 2013 IOP Publishing Ltd (iii) the support supp(dk κ ) of dk κ satisfies supp(dk κ ) = Σ κ .
Remark 1.5 It is standard to then define the integrated density of states as the distribution function of the probability measure dk κ :

k κ : E → E -∞ dk κ .
1.1.4. Lyapunov exponent. A hypothetical eigenvalue-eigenvector pair (E, ξ) for H κ,w should satisfy the equation:

∀n ∈ Z, ξ n+1 + ξ n-1 + κv w (n)ξ n = Eξ n , (1) 
that is:

∀n ∈ Z, ξ n+1 ξ n = M E n,κ,w ξ n ξ n-1 (2) 
where:

M E n,κ,w := E -κv w (n) -1 1 0 ∈ SL 2 (C),
i.e M E n,κ,w is equal to one of the two matrices:

M E κ (a) := E -κ -1 1 0 , M E κ (b) := E -1 1 0 .
Consider the Lyapunov exponent:

γ κ (E) := lim sup N →∞ 1 N W log N n=0 M E n,κ,w dν(w).
By Oseledets Theorem, this quantity is well defined and

lim sup N →∞ log N n=0 M E n,κ,w is ν-almost surely constant equal to γ κ (E).
Theorem 1.6 (see [START_REF]Lyapounov Exponents and Spectral Analysis of Ergodic Schrödinger Operators : a Survey of Kotani Theory and its Applications, Spectral theory and mathematical physics[END_REF] and [START_REF] Carmona | Spectral Theory of Random Schrödinger Operators[END_REF])

The Lyapunov exponent is a non-negative function such that :

(i) γ κ (E) = Σκ log |E -E ′ |dk κ (E ′ ); (ii) dd c γ κ = 2πdk κ ; (3) 
(iii) the almost-sure spectrum satisfies Σ κ = {γ κ = 0}.

Proof. The first item is the Thouless formula (see [8, p.340]) and thus, since dd c log |zz 0 | = 2πδ z 0 , one obtains property (ii). The third result is a theorem due to Ishii, Kotani and Pastur (see [START_REF]Lyapounov Exponents and Spectral Analysis of Ergodic Schrödinger Operators : a Survey of Kotani Theory and its Applications, Spectral theory and mathematical physics[END_REF] for an overview). (iii) The measure dd c g U is called the equilibrium measure of the compact set

C \ U.
Consider the open set U := C\Σ κ ; it satisfies ∂U = Σ κ . We then have the following result, which is well known to experts (see for example [13, p.979], remark (g)).

Proposition 1.8 (i) The Lyapunov exponent γ κ is the Green's function for the domain U.

(ii) The density of states is the equilibrium measure of Σ κ .

(iii) The capacity Cap(Σ κ ) of the almost-sure spectrum is one.

Proof. The Thouless formula shows that γ κ : U → (0, ∞) satisfies condition (G1); moreover, for E ∈ C:

γ κ (E) -log |E| = Σκ log |E -E ′ |dk κ (E ′ ) -log |E| = Σκ log 1 - E ′ E dk κ (E ′ ) ---→ E→∞ 0,
where the final line follows from the preceding because the function log |1 -E ′ /E| converges uniformly towards zero on the compact support Σ κ of dk κ . Therefore condition (G2) holds. Finally, one checks (G3) using Theorem 1.6. Thus (i) and (ii) hold, using 3 and since γ κ (E)log |E| ---→ E→∞ 0, one immediately gets (iii). 

Rep(F 2 ) := Hom(F 2 , SL 2 (C)) ∼ = SL 2 (C) × SL 2 (C)
under SL 2 (C)-conjugacy. The variety χ(F 2 ) is isomorphic to C 3 with the following projection map:

χ : Rep(F 2 ) → C 3 ρ → (x, y, z) = (tr(ρ(a)), tr(ρ(b)), tr(ρ(ab))).
Moreover, if one enforces the condition tr([ρ(a), ρ(b)]) = D -2 ∈ C one obtains an affine cubic surface S D , the equation of which is (see [START_REF] Cantat | Painlevé and Schrödinger[END_REF][START_REF] Cantat | Dynamics on Character Varieties and Malgrange Irreducibility of Painlevé VI Equation[END_REF] for details):

x 2 + y 2 + z 2 = xyz + D.
Let ϕ be an element of Aut(F 2 ); then the following defines an automorphism of the surface S D :

f : χ(ρ) → χ(ρ • ϕ -1 ).
Since the group Aut(F 2 ) acts on Ab(F 2 ) = Z 2 one can set

M f = p q r s ∈ GL 2 (Z)
to be the matrix corresponding to ϕ -1 and if A := ρ(a), B := ρ(b) for some ρ ∈ Rep(T 2 1 ) then:

f (χ(ρ)) = ((tr(A p B q ), tr(A r B s ), tr(A p B q A r B s )).

This gives us an action of GL 2 (Z) on S D whose kernel contains ±I 2 ; therefore P GL 2 (Z) acts on the surface S D . Using (4) and Fricke-Klein's formulas, one sees that f is a polynomial automorphism of S D ; in the following, we will denote by B the subgroup of Aut(S D ) formed by such mappings f . We will say that an automorphism f ∈ B is hyperbolic if one of the next two conditions holds:

• either det(M f ) = 1 and tr(M f ) > 2; • or det(M f ) = -1 and tr(M f ) = 0.
Example 1.9 For the Fibonacci substitution ζ, consider the automorphism f associated with ζ. Then:

M f = M ζ -1 = 0 1 1 -1 .
Since det(M f ) = -1 and tr(M f ) = -1 = 0 the morphism f is in fact hyperbolic. It is given by: f (x, y, z) = (y, xyz, x).

Denote by S D ⊂ P 3 the compactified surface:

w(x 2 + y 2 + z 2 ) = xyz + w 3 D,
where [x : y : z : w] are homogeneous coordinates on the projective space P 3 . Its intersection with the plane at infinity {w = 0} is equal to the "triangle at infinity" ∆ = {xyz = 0}. Thus Aut(S D ) embeds into the group of birational transformations of S D . The dynamics at infinity of the hyperbolic elements in B is quite rich, as we will see throughout this paper; first, we have the following result.

Proposition 1.10 (see [START_REF] Cantat | Painlevé and Schrödinger[END_REF][START_REF] Cantat | Dynamics on Character Varieties and Malgrange Irreducibility of Painlevé VI Equation[END_REF][START_REF] Èl | Cubic Surfaces of Markov Type[END_REF]) Let f ∈ B be a hyperbolic automorphism. Then f extends to a birational transformation of S D and:

(i) f has an unique indeterminacy point v -which is either [1 : 0 : 0 : 0], [0 : 1 : 0 : 0] or [0 : 0 : 1 : 0];

(ii) the mapping f contracts ∆ \ {v -} onto the indeterminacy point v + of f -1 ;
(iii) up to conjugacy by an element of B, one can assume v + to be distinct from v -.

Remark 1.11 Èl'Huti [START_REF] Èl | Cubic Surfaces of Markov Type[END_REF] gave a detailed description of the automorphism group Aut(S D ); in particular, he proved that B has finite index in Aut(S D ).

1.2.2. Main theorem on dynamical Green functions. Fix a hyperbolic automorphism f ∈ B for which v + = v -and denote by λ the spectral radius of M f . We now try to understand the escape rate at infinity in the unbounded orbits under f . First, a theorem by Dloussky [START_REF] Dloussky | Sur la classification des germes d'applications holomorphes contractantes[END_REF] combined with work by Cantat [START_REF] Cantat | Painlevé and Schrödinger[END_REF] (see also [START_REF] Favre | Classification of 2-Dimensional Contracting Rigid Germs and Kato Surfaces[END_REF]) yields the following result, which will be essential to our study of the dynamics of f at infinity.

Proposition 1.12 ([6], theorem 3.1 p. 423)

There exists a matrix

N f ∈ GL 2 (Z) with non-negative entries which is conjugate to M f in P GL 2 (Z), an open neighbourhood U of v + in S D and a biholomorphism ψ + f : D × D → U such that: (i) ψ + f (0, 0) = v + ; (ii) for all (u, v) ∈ D * × D * one has: ψ + f ((u, v) N f ) = f (ψ + f (u, v)),
where (u, v) N f denotes the monomial action of N f on the pair (u, v), i.e if

N f = p q r s then (u, v) N f = (u p v q , u r v s ).
As a consequence, if m ∈ S D has unbounded forward orbit under f , then f n (m) goes to v + at infinity.

Before stating our main result regarding dynamical Green functions, let us set a few conventions:

• define the filled Julia set K + (f ) as follows:

K + (f ) := {m ∈ S D | ∃M > 0, ∀n ≥ 0, f n (m) ≤ M} ,
where . denotes the standard euclidean norm on C 3 ;

• set α, β ∈ R * + to be the coordinates of the projection of the vector

1 1
on the eigenline for N f associated with the maximal eigenvalue of M f (and so of N f ).

Theorem A (Dynamical Green function) Let f ∈ B be a hyperbolic element and let m ∈ S D . Then the following quantity is well defined: and: (i) the function G + f is pluriharmonic (resp. plurisubharmonic) on the complement of the filled Julia set K + (f ) in S D (resp. on S D ) and takes non-negative values;

G + f : m → lim n→∞ 1 λ n log + f n (m) ,
(ii) the zero set of G + f is K + (f ); (iii) the following relation holds: G + f • f = λG + f ; (5) 
(iv) if m = ψ + f (u, v) ∈ ψ + f (D * × D * ), then: G + f (m) = -α log |u| -β log |v| (6) 
(v) the function G + f is locally Hölder-continuous. Example 1.13 In the Fibonacci case, M f is conjugate to

N f = 1 1 1 0 in P GL 2 (Z).
The eigenvalues of M f (and so of N f ) are

φ := 1 + √ 5 2 and φ := 1 - √ 5 2
.

and the corresponding eigenlines for N f are spanned by φ 1 and φ 1 . Thus, since:

1 1 = 1 -φ √ 5 φ 1 + φ -1 √ 5 φ 1 , one has α = 1 -φ √ 5 φ = φ -1 √ 5 and β = 1 -φ √ 5
. Moreover, we have in this case 

v + = [0 : 1 : 0 : 0].
(S 4+κ 2 ) x 2 + y 2 + z 2 = xyz + 4 + κ 2 ;
this is a connected smooth (if κ = 0) affine surface, containing what we call its Schrödinger curve:

s : C → S 4+κ 2 E → (E -κ, E, E(E -κ) -2).
Remark 1.14 The function s is in fact the trace map associated with the matrices

M E n,κ,w . Namely, one has s(E) = (tr(M E κ (a)), tr(M E κ (b)), tr(M E κ (b)M E κ (a))
). Starting from our automorphism ϕ ∈ Aut(F 2 ) (cf. 1.1.1) with associated substitution ι, we obtain a polynomial automorphism f of S 4+κ 2 associated with ϕ -1 (cf. 1.2.1); one can then explicitly compute it using the formula f (χ(ρ)) = χ(ρ • ϕ) and so its restriction to the Schrödinger curve is:

∀E ∈ C, f (s(E)) = (tr(M E κ (ι(a))), tr(M E κ (ι(b))), tr(M E κ (ι(ab)))), where, if u = (u 1 , . . . , u n ) ∈ {a, b} n , then: M E κ (u) := n-1 i=0 M E κ (u n-i ).
Since ϕ is hyperbolic, f is a hyperbolic automorphism of S 4+κ 2 . We then have the following result [START_REF] Damanik | Substition Hamiltonian with Bounded Trace Map Orbits[END_REF] (see also some earlier work by Sütő [START_REF] Sütő | The Spectrum of a Quasiperiodic Schrödinger Operator[END_REF][START_REF]Singular Continuous Spectrum on a Cantor Set of Zero Lebesgue Measure for the Fibonacci Hamiltonian[END_REF]).

Proposition 1.15 (Damanik [10], theorem 2.1 p. 399) If f is the polynomial automorphism of S 4+κ 2 associated with a positive hyperbolic substitution ι on two letters, then the almost-sure spectrum Σ κ satisfies:

Σ κ = s -1 (K + (f )).

"Dictionary" Between Holomorphic Dynamics and Schrödinger Operators

We now move on to our second result. Since the subgroup B has finite index in Aut(S 4+κ 2 ) (cf. remark 1.11) and f has infinite order we can suppose, up to replacing it with some iterate f n 0 that f ∈ B; thus, we will be able to exploit theorem A to obtain the following result.

Theorem B

Let ι be a positive hyperbolic substitution over the letters a and b and let f ∈ B be the associated automorphism of S 4+κ 2 . Then for E ∈ C:

γ κ (E) = 1 α + β G + f (s(E)),
where α, β ∈ R * + are the same as in Theorem A.

c 2013 IOP Publishing Ltd Remark 1.16 Proposition 1.15 was mostly a qualitative one, concerning the boundedness of the orbit alone. Here, using our Theorem A, we get tools to estimate the escape rate at infinity thus obtaining a more quantitative result.

This, combined with previous work by Cantat, Damanik and Gorodetski, allows us to work out the following "dictionary".

Discrete Schrödinger operators

Holomorphic dynamics on S 4+κ 2

Almost-sure spectrum It is to be noted that the literature pertaining to the interactions between real and complex dynamics and discrete Schrödinger operators has been quickly expanding these last few years, mainly under the guidance of D. Damanik and A. Gorodetski. See for instance [START_REF] Mei | Spectra of Discrete Schrödinger Operators with Primitive Invertible Substitution Potentials[END_REF][START_REF] W N Yessen | Properties of 1D Classical and Quantum Ising Models: Rigorous Results[END_REF][START_REF]Spectral analysis of tridiagonal Fibonacci Hamiltonians[END_REF].

Σ κ Julia set K + (f ) Lyapunov exponent γ κ Dynamical Green's function G + f Density of states dk κ Green's current T + f Thouless formula T + f = dd c G + f γ κ and

Dynamical Green Functions

Preliminary Computations

2.1.1. Geometry of S D at infinity In order to measure the escape rate at infinity of a point with unbounded orbit, we will now study the behaviour of log m when m = (x, y, z) ∈ S D goes to v + , where • denotes the euclidean norm on C 3 . For the sake of clarity, suppose (our problem being symmetric with respect to x, y and z) that v + is the point [0 : 0 : 1 : 0]; in a neighbourhood of v + , S D can be seen, using the chart {z = 0}, as the surface:

(X 2 + Y 2 + 1)W = XY + DW 3 , (7) 
where X := x/z, Y := y/z and W := w/z. Equivalently, this can be written as follows:

W = XY + DW 3 + W 2 (AX + BY + C) + W (X 2 + Y 2 ). (8) 
Using these new coordinates (X, Y, W ), v + corresponds to the point at origin (0, 0, 0) and one has:

log m = 1 2 log X W 2 + Y W 2 + 1 |W | 2 = - 1 2 log(|W | 2 ) + 1 2 log(|X| 2 + |Y | 2 + 1) = - 1 2 log(|XY + DW 3 + W 2 (AX + BY + C) + W (X 2 + Y 2 )| 2 ) + 1 2 log(|X| 2 + |Y | 2 + 1).
Using Taylor's approximation one gets:

log m = -log(|XY |) + g(X, Y, W ),
where g is bounded in a neighbourhood of (0, 0, 0). Now, for m close enough to v + one can apply the biholomorphism ψ + f to get (u, v) := ψ + f -1 (m) and use the following lemma.

Lemma 2.1

There exists a germ of bounded function h such that for all (u, v) ∈ D * × D * :

log ψ + f (u, v) = -log |uv| + h(u, v).
Proof.Using Taylor's theorem at the origin one gets:

ψ + f (u, v) = v + + L(u, v) + R(u, v),
where L is the linear part of ψ + f at the origin and R is a smooth bounded function on

D × D such that R(u, v) = O( (u, v) 2 ). Since ψ +
f is a conjugacy between the dynamics of f and N f and since f (resp. N f ) only contracts the axes {X = 0} and {Y = 0} (resp. {u = 0} and {v = 0}) on the origin then L = dψ + f (0, 0) must be of the form

r 1 0 0 r 2 or 0 r 1 r 2 0 .
Therefore, there exists a bounded function h on D × D such that:

log ψ + f (u, v) = -log(|uv|) + h(u, v), (9) 
2.1.2. Estimate at infinity Since M f is hyperbolic, one can assume (replacing M f with M f 2 = M 2 f ) that it has eigenvalues λ and λ -1 , with λ a real number greater than one. Now consider the following quantity, for n ≥ 0 and m with unbounded forward orbit, chosen sufficiently close to v + (i.e in ψ + f -1 (D × D)):

1 λ n log f n (m) .
Let (u n , v n ) := (u, v) N n f ; using the previous lemma one gets:

1 λ n log f n (m) = - 1 λ n log(|u n v n |) + 1 λ n h(u n , v n ). Since 1 λ n h(u n , v n ) ---→
n→∞ 0, we want to understand the behaviour at infinity of the following quantity:

- 1 λ n log(|u n v n |). Lemma 2.2
The following estimate holds, as n goes to infinity:

1 λ n log |u n v n | ---→ n→∞ (α log |u| + β log |v|), (10) 
where α, β ∈ R * + are the coordinates of the projection of the vector 1 1 on the eigenline for N f associated with λ.

Proof.Since (u, v) ∈ D * × D * one can set (e s , e t ) := (u, v) with:

s, t ∈ {z ∈ C | ℜ(z) < 0, ℑ(z) ∈ (-π, π]}.
Then it is just a matter of describing the behaviour of |uv| = |e s+t | = e ℜ(s+t) under N f , which acts linearly on the coordinates (s, t). A computation thus yields:

1 λ n log |u n v n | ---→ n→∞ (αℜ(s) + βℜ(t)) = (α log |u| + β log |v|).
Using lemmas 2.1 and 2.2, one gets the following estimate:

1 λ n log f n (m) ---→ n→∞ -(α log |u| + β log |v|). ( 11 
)
Note that this only holds for m sufficiently near v + , i.e for (u, v) in D * × D * .

Proof of Theorem A

First remark that if m ∈ K + (f ) then it is clear that G + f (m) is well defined and equal to 0. Now consider m / ∈ K + (f ); up to replacing m with some f n 0 (m), one can assume that m is sufficiently near v + so that one can set (u, v)

:= ψ + f -1 (m) and (u n , v n ) := c 2013 IOP Publishing Ltd (u, v) N n f . Since f n (m) ---→ n→∞ v + , for n large enough, log + f n (m) = log f n (m)
. Applying the estimate (11) then yields, using the same notations as before:

1 λ n log f n (m) ---→ n→∞ -(α log |u| + β log |v|)
We have thus proved that G + f is well defined and that (ii) and (iv) hold. Moreover, the estimate [START_REF]Lyapounov Exponents and Spectral Analysis of Ergodic Schrödinger Operators : a Survey of Kotani Theory and its Applications, Spectral theory and mathematical physics[END_REF] implies that:

∀(u, v) ∈ D * × D * , G + f • ψ + f (u, v) = -α log |u| -β log |v|. ( 12 
) (i) Let H be a compact set in S D , m ∈ H and n, p ≥ 0. If m ∈ K + (f ) then we clearly have uniform boundedness. Else, f n (m) ---→ n→∞ v + and so for n large enough m = ψ + f (u, v) with (u, v) ∈ D * × D * and f n (m) > 1, therefore log + f n (m) = log f n (m) and: 1 λ n+p log + f n+p (m) - 1 λ n log + f n (m) = 1 λ n+p log f n+p (m) -λ p log f n (m)
Since we just proved that there exists a constant C m = (α log |u| + β log |v|) depending only on the orbit of m such that log

f n (m) = C m λ n + λ n ε m (n), with ε m (n) ---→ n→∞ 0 so: 1 λ n+p log + f n+p (m) - 1 λ n log + f n (m) = 1 λ n+p |ε m (n + p) -ε m (n)| .
As |ε m (n)| ---→ n→∞ 0, then for all positive η and m ∈ H, there exists N m ∈ N such that:

∀n ≥ N m , |ε m (n)| ≤ |ε m (N m )| < η hence: 1 λ n+p log + f n+p (m) - 1 λ n log + f n (m) ≤ 2|ε m (N m )|. Since C m and log f n (m) are continuous with respect to m (cf. (iv)), m → ε m (N m ) = λ -Nm (log f Nm (m) -C m )
is continuous. Using the compactness of H, there exists m 0 ∈ H such that:

sup m∈H ε m (N m ) = ε m 0 (N m 0 )
where:

0 ≤ 2|ε m (N m )| ≤ 2|ε m 0 (N m 0 )| < 2η.
The sequence defining G + f thus converges uniformly on all compact subsets in S D and so the limit function inherits the pluri(sub)harmonic properties of its terms.

(iii) This stems from the fact that if m ∈ S then:

1 λ n log + f n (f (m)) = 1 λ n log + f n+1 (m) = λ 1 λ n+1 log + f n+1 (m) .
c 2013 IOP Publishing Ltd (v) Here we adapt work by Fornaess and Sibony [START_REF] Fornaess | Complex Hénon Mappings in C 2 and Fatou-Bieberbach Domains[END_REF]. Since G + f is C 1 outside any neighbourhood of K + (f ) it is Hölder-continuous there. Now let z 1 ∈ S D and z 0 ∈ K + (f ) be such that:

d(z 1 , K + (f )) = z 1 -z 0 .
If z 1 ∈ K + (f ), there is nothing to show. Else, note that by definition of the filled Julia set there exists R 0 > 0 such that:

∀n ∈ N, f n (z 0 ) ≤ R 0 .
Let us consider a positive real number R ≥ R 0 + 1 and set:

N := min{n ≥ 0 | f n (z 1 ) > R} < ∞;
thus:

| f N (z 1 ) -f N (z 0 ) | ≤ f N (z 1 ) -f N (z 0 ) ≤ sup z ≤R df (z) f N -1 (z 1 ) -f N -1 (z 0 ) because f N -1 (z 1 ) ≤ R . . . ≤ ( sup z ≤R df (z) ) N z 1 -z 0 ≤ ( sup z ≤R df (z) ) N d(z 1 , K + (f )).
Hence, if one sets:

H(R) := sup z ≤R df (z)
one gets:

1 ≤ R -R 0 ≤ | f N (z 1 ) -f N (z 0 ) | ≤ H(R) N d(z 1 , K + (f )) thus H(R) N d(z 1 , K + (f )) ≥ 1. Setting γ := log(λ) log(H(R))
one has:

1 λ N ≤ d(z 1 , K) γ . (13) 
Using (iii) one gets: [START_REF] Damanik | The Density of States Measure of the Weakly Coupled Fibonacci Hamiltonian[END_REF].

G + f (z 1 ) = 1 λ N G + f • f N (z 1 ) ≤ 1 λ N sup z ≤R G + f • f (z) because f N -1 (z 1 ) ≤ R ≤ d(z 1 , K + (f )) γ sup z ≤R G + f • f (z) by
Let:

C := sup z ≤R G + f • f (z)
one then has, in fine:

G + f (z 1 ) ≤ Cd(z 1 , K + (f )) γ (14) 
for any point z 1 ∈ S D .

Remark 2.3 Using the notations of paragraph 2.1.2, we can estimate the local coordinates (X, Y ) around v + as follows (up to a permutation of u and v in the linear part):

(X, Y ) = (r 1 u, r 2 v) + R(u, v).
Therefore, we have, as m goes to v + :

G + f (m) = -α log |X| -β log |Y | -log |r α 1 r β 2 | + o(1). (15) 
Remark 2.4 Replacing f with its inverse f -1 , one can define the negative dynamical Green function:

G - f := lim n→∞ 1 λ n log + f -n (m) .
Our main result extends to this function.

Corollaries

We can now consider the closed positive current [START_REF] Cantat | Painlevé and Schrödinger[END_REF] associated with G + f , namely:

T + f := dd c G + f = 2i∂ ∂G + f
which satisfies the following:

f * T + f = λT + f
and has support in the Julia set J + (f ) := ∂K + (f ).

Corollary A.1

Let f ∈ B be a hyperbolic element and m ∈ S D . Then there exists a neighbourhood U of v + in S D such that:

dd c G + f | U = -2π α X=0 +β Y =0
, where α, β ∈ R * + and (v + , X, Y ) are the same as in Theorem A. Proof.Let U := ψ + f -1 (D * × D * ); then using [START_REF] Damanik | Spectral Properties of Schrödinger Operators Arising in the Study of Quasicrystals[END_REF] and ( 15) one gets:

dd c G + f | U = dd c (-α log |u| -β log |v|) = dd c (-α log |X| -β log |Y |).
The result then follows from the Lelong-Poincaré lemma. 

g : C \ Σ κ → (0, ∞) E → G + f (s (E)) ;
our aim is to show that it is (up to a multiplicative constant) the Green's function of the domain U := C \ Σ κ , thus proving the theorem. Since G + f is psh, condition (G1) holds and (G3) is a direct consequence of Damanik's result (Proposition 1.15).

Using Fricke-Klein's formulas and relation ( 4), one shows using induction that f contracts the triangle at infinity ∆ on the point v + = [0 : 0 : 1 : 0]. Using [START_REF] Damanik | Hölder Continuity of the Integrated Density of States for the Fibonacci Hamiltonian[END_REF], one then gets

g(E) -(-α log |x| -β log |y| -log |C|) ---→ E→∞ 0
where C ∈ C and s (E) = [x : y : 1 : 1]. One also has:

s([E : t]) = [Et -t 2 κ : Et : E 2 -Etκ -2t 2 : t 2 ],
hence, using the chart {z = 0}:

s(E) = s ([E : 1]) = E -κ E 2 -Eκ -2 , E E 2 -Eκ -2 , 1 E 2 -Eκ -2 = 1 E 1 -κ/E 1 -κ/E -2/E 2 , 1 E 1 1 -κ/E -2/E 2 , 1 E 2 -Eκ -2
Thus the following limit exists: 

Consequences

Theorem B yields a few interesting corollaries, further detailing the entwining between certain dynamical invariants and discrete Schrödinger operators.

3.2.1. Hölder continuity (see also [START_REF] Damanik | Hölder Continuity of the Integrated Density of States for the Fibonacci Hamiltonian[END_REF][START_REF] Damanik | Uniform Spectral Properties of One-Dimensional Quasicrystals. III. α-continuity[END_REF]) Corollary B.2 One has the following results:

(i) s * (dd c G + f ) = 2π(α + β)dk κ ;
(ii) the functions γ κ and k κ are Hölder-continuous near Σ κ , with the same Hölder exponent τ ;

(iii) the density of states does not charge sets with Hausdorff dimension less than τ . In particular, the Hausdorff dimension of the almost-sure spectrum is strictly positive.

Proof. The first assertion follows from (3). To prove property (ii), we reproduce an argument from [START_REF] Sibony | Dynamique des applications rationnelles de P k , Dynamique et géométrie complexes[END_REF]. Using Theorem A, G + f is locally Hölder-continuous near K + (f ); since s(C) ∩ K + (f ) = Σ κ is a compact set, that property is global near the almost-sure spectrum and so γ κ is Hölder-continuous near Σ κ . Denote by τ the exponent of Hölder continuity.

To show that k κ is Hölder continuous, consider two real numbers E 2 > E 1 . Let M be the middle point of the segment [E 1 , E 2 ] and R = |E 2 -E 1 |/2 be the distance from M to E 1 . Denote by D(r) ⊂ C the disk of radius r centred at M. Let ψ : C → R + be a smooth function which is equal to 1 on D(R) and equal to 0 on C \ D(2R), and whose partial derivatives of order 1 and 2 are bounded from above by 100R -2 (such a function exists, see [START_REF] Harvey | Extending Analytic Objects[END_REF]). Then,

|k κ (E 2 ) -k κ (E 1 )| = [E 2 ,E 1 ] dk κ (E) ≤ D(R) dd c (γ κ -γ κ (M)) ≤ D(3R) ψ • dd c (γ κ -γ κ (M)) ≤ D(3R) dd c ψ • (γ κ -γ κ (M)) ≤ C st R τ Area(D(3R))R -2 ≤ 9πC st |E 2 -E 1 | τ
for some uniform constant C st because γ κ is Hölder continuous (with exponent τ ) on a neighbourhood of Σ κ .

The same proof shows that dk κ does not charge any closed subset of C whose Hausdorff dimension is less than τ (see [START_REF] Sibony | Dynamique des applications rationnelles de P k , Dynamique et géométrie complexes[END_REF]).

Hausdorff dimension of the density of states

Once we know that γ κ is equal to (α + β) -1 G + f • s, we can generalize the first results of Damanik and Gorodetski concerning the Hausdorff dimension of the density of states (proved in [START_REF] Damanik | The Density of States Measure of the Weakly Coupled Fibonacci Hamiltonian[END_REF] for the Fibonacci substitution). Doing this, we obtain an alternative (but almost equal) proof of some of the results of May Mei (see [START_REF] Mei | Spectra of Discrete Schrödinger Operators with Primitive Invertible Substitution Potentials[END_REF]). But first recall the following definition: we say that a finite measure µ on R is of exact dimension c ∈ R if for µ-almost every x ∈ R we have :

lim ε→0 log µ([x -ε, x + ε]) log ε = c
(see also [19, p. 174]).

Theorem 3.2 (Damanik, Gorodetski, Mei) Let ϕ be a positive and hyperbolic automorphism of the free group F 2 . Let H κ,w be the corresponding family of discrete Schrödinger operators. For small coupling factors 0 < κ < κ 0 , the density of states dk κ is of exact dimension dim(κ), i.e. for dk κ -almost every real number E,

lim ε→0 log dk κ [E -ε, E + ε] | log(ε)| = dim(κ). Moreover, (1) dim(κ) is a C ∞ -smooth function of κ ∈ (0, κ 0 ); (2) lim κ→0 dim(κ) = 1; (3) dim(κ) < H dim (Σ κ ) < 1 for κ ∈ (0, κ 0 )
, where H dim denotes the Hausdorff dimension of a given set;

(4) dim(κ) coincides with the infimum of H dim (S) over all measurable sets S such that dk κ (S) = 1.

The proof is due to Damanik, Gorodetski, and Mei. Let us explain how one can relate its proof to Theorem A and Theorem B:

a.-The dynamics of f on the intersection of its filled Julia sets K + (f ) ∩ K + (f -1 ) is uniformly hyperbolic, the filled Julia set K + (f ) is the support of a lamination by holomorphic curves, and the current T + f is a current of integration on this lamination with respect to a transverse measure µ + f (see [START_REF] Cantat | Painlevé and Schrödinger[END_REF]).

b.-The Schrödinger curve s is transverse to the lamination of K + (f ) if the coupling factor is sufficiently small. This is proved in [START_REF]Hyperbolicity of the trace map for the weakly coupled Fibonacci Hamiltonian[END_REF]; it follows from the transversality for κ = 0 and a study of the bifurcation from κ = 0 to κ > 0.

c.-There exists κ ′ 0 such that, for 0 < κ < κ ′ 0 , there are two saddle periodic points p(κ) and q(κ) of f on S 4+κ 2 with distinct multipliers.

To prove this, take a periodic point p on S 4 which is not a singular point of S 4 . Deform it into a family of periodic points p(κ) for -κ 1 (p) ≤ κ ≤ κ 1 (p). Do the same for a second periodic point q: it can be deformed into q(κ) for κ 1 (q) < q < κ 1 (q). If the multipliers of p(κ) and q(κ) are equal for a sequence of parameters κ n > 0 converging to 0, they are equal for all κ because they are analytic functions of κ. In particular, q can be analytically deformed along the interval [-κ 1 (p), 0]. Thus, if the assertion was not satisfied, there would exist κ 1 > 0 such that all periodic points of f on S 4 (distinct from the singularities) could be analytically deformed to saddle periodic points of the same period for κ 1 (p) < κ < 0. This would contradict the fact that the topological entropy of f on S 4-ε (R) is strictly less than log(λ) for ε > 0, a property that implies that most periodic points of f on S 4-ε (C) are not real (see [START_REF] Cantat | Painlevé and Schrödinger[END_REF]).

With these three remarks in hand, one can then copy the proof given by Damanik and Gorodetski in [START_REF] Damanik | The Density of States Measure of the Weakly Coupled Fibonacci Hamiltonian[END_REF].

Convergence theorems

From [START_REF] Cantat | Painlevé and Schrödinger[END_REF] and [START_REF]Polynomial Diffeomorphisms of C 2 . III. Ergodicity, Exponents and Entropy of the Equilibrium Measure[END_REF] (see also [START_REF] Sibony | Dynamique des applications rationnelles de P k , Dynamique et géométrie complexes[END_REF], [START_REF]Polynomial Diffeomorphisms of C 2 . II. Stable Manifolds and Recurrence[END_REF]) one gets the following convergence theorem. Let f be a hyperbolic automorphism of the surface S D . Let T a positive current and ψ a smooth non-negative function with compact support which vanishes in a neighbourhood of the support of ∂T . Then, the sequence of currents

1 λ n (f n ) * (ψT )
converges towards a multiple cT + f , with c = T - f |ψT . For instance, T can be the current of integration on an algebraic curve C ⊂ S D .

Our goal is to explain, heuristically, why this result is similar to Avron-Simon convergence theorem for the density of states (see Theorem 1.4).

Consider the restriction H N κ,w of the Schrödinger operator to some interval [0, N] ⊂ Z. If (u(0), . . . , u(N)) is an eigenfunction of H N κ,w with eigenvalue E, then (u(2), u(1)) is obtained from (u(1), u(0)) by the linear action of the matrix M E κ (w(0)), . . . , and (u(N), u(N -1)) is obtained from (u(1), u(0)) by the action of the product M E κ (w(N -2)) . . . M E κ (w(0)). Now, restrict the study to w = u + , the infinite ι-invariant word, and to intervals [0, ℓ(n)], where ℓ(n) is the length of the word ι n (a). When n goes to infinity, ℓ(n) behaves approximately like λ n . With such a choice, the trace of the product M E κ (w(ℓ(n) -2)) . . . M E κ (w(0)) is equal to the first coordinate of f n (s(E)). Thus, if

Λ := {E | tr(M E κ (ι n (a))) = 2}, then Λ = {E | s(E) ∈ (f n ) -1 (C 2 )}
where C 2 is the algebraic curve C 2 = {(x, y, z) ∈ S D |x = 2}. In other words, Λ corresponds to the intersection of the algebraic curve s(C) with the algebraic curve f -n (C 2 ); it contains approximately λ n points, and the convergence theorem for currents tells us, roughly, that the average measure on these λ n points converges towards s * (T + f ), up to some multiplicative factor.

On the other hand, the trace of a matrix M ∈ SL(2, R) is 2 if and only if 1 is an eigenvalue of M. Thus, a complex number E is in Λ if and only if there is an eigenvector c 2013 IOP Publishing Ltd (u(0), . . . , u(ℓ(n))) of H ℓ(n) κ,w with eigenvalue E such that (⋆) u(ℓ(n)) u(ℓ(n) -1) = u(ℓ(1)) u(0) ; these are mixed boundary conditions (not the usual Dirichlet conditions, as in [START_REF] Avron | Almost Periodic Schrödinger Operators II. The Integrated Density of States[END_REF]). Thus, the convergence theorem for currents implies a convergence theorem for the density of states of H N κ,w with the boundary conditions (⋆). Changing the curve C 2 into another algebraic curve (for instance x = 3), one gets different boundary conditions.

To sum up, Avron-Simon convergence theorem corresponds to the convergence theorem towards T + f , with the following differences: One only gets convergence along subsequences (one has to take N = ℓ(n)), the boundary conditions are not the classical ones, but one gets convergence theorems which are valid in S D (not only along the Schrödinger curve) and work for all positive currents.

1. 1 .

 1 Discrete Schrödinger Operators 1.1.1. Left shift dynamics. Consider the free group on two generators F 2 := a, b | ∅ and let ϕ ∈ Aut(F 2 ) be a positive automorphism, i.e such that the images ϕ(a) and ϕ(b) are words in a and b (and thus do not involve the inverse elements a -1 and b -1 ).

3 .

 3 From Holomorphic Dynamics to Schrödinger Operators3.1. Proof of Theorem BConsider the function:

  lim E→∞ (g(E) -(α + β) log |E|) . Remark 3.1 Using Proposition 1.8, one has:lim E→∞ (g(E) -(α + β) log |E|) =log Cap(Σ κ ) = 0.

  1.1.5. Green function for the almost-sure spectrum.First, recall the following definition. Let U be an open set in C such that its complement C \ U is a compact set. A function g U : U → (0, ∞) is a Green function for the domain U (alternatively, for the compact C \ U) if:

	(G1) g U is harmonic;		
	(G2) the following limit exists:		
		lim z→∞ (g U (z) -log |z|);
	(G3) for all ξ ∈ ∂U, one has:	lim z→ξ	g U (z) = 0.
	Remark 1.7		
	(i) If U is such an open subset of C then its Green function, if it exists, is unique (see
	[23, p.182]). Moreover, one can replace (G2) with g U (z) -log |z| = O(1) at infinity. (ii) If U has a Green function, there exists a positive real number C such that
	g U (z) = log |z| -log(C) + o(1) as z goes to infinity.
	The number C is called the capacity of the compact set C \ U. For more details on set capacities, see [27, p.132].

  Character variety of the free group on two generators Let us fix a generating set {a, b} of the free group F 2 and consider the algebraic quotient χ(F 2 ) of:

	1.2. Holomorphic Dynamics
	1.2.1.
	c 2013 IOP Publishing Ltd

  k κ Hölder-continuous near Σ κ G + f locally Hölder-continuous Avron and Simon Theorem 1.4 Convergence to T + f More precisely, one goes from the right-hand side of this table to the left by taking pull-backs with the Schrödinger curve s : C → S 4+κ 2 ; for instance, the first line is Damanik's Proposition 1.15, and the second is our Theorem B. Similarly, the Hölder continuity of γ κ corresponds to the Hölder continuity of G + f (obtained in Theorem A); we shall see in Section 3.2.1 that it implies directly Hölder continuity of the integrated density of states. The last line of this table is less precise: this is explained in paragraph 3.2.3.

c 2013 IOP Publishing Ltd
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