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Dynamical Green functions and Schrédinger operators 2
1. Set—up and Main Results

The goal of this paper is to add on previous work by Cantat [6], Damanik and Gorodetski
[13,14] (see also [9,29] for instance) to establish a correspondence between the study of
certain discrete Schrodinger operators and the holomorphic dynamics of automorphisms
on a family of affine cubic surfaces.

1.1. Discrete Schriodinger Operators

1.1.1. Left shift dynamics. Consider the free group on two generators Fy := (a,b| ()
and let ¢ € Aut(Fy) be a positive automorphism, i.e such that the images ¢(a) and
©(b) are words in @ and b (and thus do not involve the inverse elements a~! and b1).

Using the action of Aut(F3) on the abelianized group Ab(F;) = Z?, one can
associate a matrix M, € GLy(Z) to . Assume M, to be hyperbolic, i.e:

e cither det(M,) =1 and tr(M,) > 2;

e or det(M,) = —1 and tr(M,) # 0.
By replacing ¢ with ¢? := ¢ o ¢ ,which is still positive, we can restrict ourselves to the
first case; this means that the spectrum of M, is of the form {\, A™'} where A denotes
a quadratic integer greater than one.

Let © be the set of finite words on the generators a and b, endowed with the topology
pertaining to the following distance:

1
T (] [un # on} + 17

The initial automorphism ¢ extends to a substitution ¢ over the letters a and b which

d: (u,v)

has an unique "positively infinite" invariant word u, € {a,b}".

Example 1.1 Let ¢ be the Fibonacci substitution, given by a — ab and b — a; its
associated matrix M is given by:

M= G é) € GLy(Z)

and it fizes the infinite word beginning with abaababaabaababaababaabaababaabaab . . .
This example will be continued throughout the first part of this paper.

Now consider the left shift on {a, b}Z:
T :{a,b}* — {a,b}*
u (un-i-l)nEZ

and let W be the set of all adherent values for the sequence (7P, ),>o (in other words,
it is the w-limit set W of the T—orbit of u,); it is a compact subset of {a,b}Z. It is
well known (see for instance [11]) that there exists an unique T-invariant probability
measure v on the set W and that the left shift 7" is ergodic with respect to v (see
[24, p.58] for an outlook on uniquely ergodic maps).

(©2013 IOP Publishing Ltd



Dynamical Green functions and Schrédinger operators 3

1.1.2. Discrete Schridinger operators. Given any word w € W, one can define a
potential function:

vy : Z — {0,1}

{1ifwn:a
n —» .

0 else

Consider for any fixed x € R and w € W the following operator, defined on the space
(*(Z) of complex—valued square-summable sequences:

H, . : *(Z) — (*(Z)
g = (gn—i—l + gn—l + va(n)gn)nel~

Remark that this operator is self-adjoint and ||H, .| < 2 + |k|; therefore its spectrum
¥, 1s a subset of the real interval [—2 — |k, 2 + |]].

Since H, ,, is uniquely ergodic, we can apply the following result due to Kotani and
Pastur [26].

Theorem 1.2 (Kotani — Pastur)
There exists a compact set ¥,, C [—2 — |k|,2 + |k|] such that ., = X, for allw € W.

We call the set X, the almost—sure spectrum of the operator H, , with respect to
the measure v.

Remark 1.3 If H,,, were ergodic (non-uniquely), one would have ¥, = X, for v-
almost every w € W, hence the colloquial name of "almost—sure spectrum”.

1.1.3. Density of states. ~ Let HY_ be the restricted operator H, ,, to the set C{=N-N}

W
with Dirichlet boundary conditions, meaning we only consider sequences (&,)nez with
—N < n < N such that:

o ({,=0forn<—N—-1;
o {,=0forn>N-+1.

This gives a self-adjoint endomorphism of C?*Y*!; as such it has real eigenvalues
A, .. ALy, Define the following probability measure:

1 2N
I T 20

Theorem 1.4 (Avron — Simon [1])

(i) For v—almost every w € W the sequence (uy")n weakly converges to a probability
measure dk, on C, called density of states;

(i1) for any continuous function g : C — C:

/C 9(E)dhn(E) = / (9(Hro) - 80 | S0} dur(w) :

weWw

(©2013 IOP Publishing Ltd



Dynamical Green functions and Schrédinger operators 4

(i1i) the support supp(dk,) of dk, satisfies supp(dk,) = 2.

Remark 1.5 It is standard to then define the integrated density of states as the
distribution function of the probability measure dk,:

E
kH:EH/ dky.

1.1.4. Lyapunov exponent. A hypothetical eigenvalue-eigenvector pair (£, §) for Hy ,,
should satisfy the equation:

Vnez, &t&n1t HUw(”)gn = E¢&, , (1>
that is:
§n+1 E gn
Vn € Z, =M\ 2
( gn ) Y gn—l ( )
where:
ijli,w — (E - K:'/[Uw<n) _01> e SLQ(C)’

i.e MP _isequal to one of the two matrices:

M () = (El‘“ ‘01> M) = (f _01> |

Consider the Lyapunov exponent:

1
Ve(E) := limsupN/Wlog

N—oo

dv(w).

N
E
H Mn,n,w
n=0

By Oseledets Theorem, this quantity is well defined and

N
E
H Mn,m,w

n=0

lim sup log
N—oo

is v—almost surely constant equal to v,(E).

Theorem 1.6 (see|[ll] and [8])
The Lyapunov exponent is a non—negative function such that :

(4)
Ve (E) = / log |E — E'|dk.(E");
Xk
(i)
dd‘y,, = 2ndk,; (3)
(7ii) the almost-sure spectrum satisfies ¥, = {v, = 0}.

Proof. The first item is the Thouless formula (see [8, p.340]) and thus, since
dd¢log |z — 2| = 27md,,, one obtains property (ii). The third result is a theorem due to
Ishii, Kotani and Pastur (see [11]| for an overview).

0
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Dynamical Green functions and Schrédinger operators D

1.1.5.  Green function for the almost-sure spectrum. First, recall the following
definition. Let U be an open set in C such that its complement C\ U is a compact set.
A function gy : U — (0,00) is a Green function for the domain U (alternatively, for

the compact C\ U) if:
(G1) gy is harmonic;
(G2) the following limit exists:
lim (gu(2) — log [2]);
(G3) for all £ € QU, one has:
lim gy (2) = 0.

z—¢&

Remark 1.7
(i) If U is such an open subset of C then its Green function, if it exists, is unique (see
[23, p.182]). Moreover, one can replace (G2) with gy(z) —log|z| = O(1) at infinity.

(ii) If U has a Green function, there exists a positive real number C' such that
gu(z) = log|z| —log(C) + o(1) as z goes to infinity.
The number C' is called the capacity of the compact set C\ U. For more details
on set capacities, see |27, p.132].

(11i) The measure dd°gy is called the equilibrium measure of the compact set C\ U.

Consider the open set U := C\ X,; it satisfies 0U = X,. We then have the following
result, which is well known to experts (see for example [13, p.979], remark (g)).

Proposition 1.8

(1) The Lyapunov exponent vy, is the Green’s function for the domain U.
(17) The density of states is the equilibrium measure of ¥,.
(7i1) The capacity Cap(Xy) of the almost—sure spectrum is one.

Proof. The Thouless formula shows that v, : U — (0, 00) satisfies condition (G1);
moreover, for F € C:

1(B) ~log | E| = [ log|E ~ E'dku(E) - log| £

K

El
= [ log|l—=
I

— 0,
E—oco

dk, (E)

where the final line follows from the preceding because the function log|l — E'/E|
converges uniformly towards zero on the compact support ¥, of dk,. Therefore condition
(G2) holds. Finally, one checks (G3) using Theorem 1.6. Thus (i) and (4¢) hold, using
3 and since v, (E) — log | F| = 0, one immediately gets (7).

0
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Dynamical Green functions and Schrédinger operators 6

1.2. Holomorphic Dynamics

1.2.1. Character variety of the free group on two generators Let us fix a generating set
{a, b} of the free group F5 and consider the algebraic quotient x(F3) of:

Rep(F5) := Hom(Fy, SLy(C)) = SLy(C) x SLy(C)

under SL,(C)—conjugacy. The variety x(F3) is isomorphic to C* with the following
projection map:
X : Rep(Fy) — C?
p = (z,y,2) = (tr(p(a)), tr(p(b)), tr(p(ab))).

Moreover, if one enforces the condition tr([p(a), p(b)]) = D —2 € C one obtains an affine
cubic surface Sp, the equation of which is (see [6,7] for details):

2?2+ y? + 22 =zyz + D.

Let ¢ be an element of Aut(F,); then the following defines an automorphism of the
surface Sp:

fox(p) = x(pow™).
Since the group Aut(Fy) acts on Ab(Fy) = Z? one can set

My = (p ‘-’) € GLy(Z)

r S

to be the matrix corresponding to ¢! and if A := p(a), B := p(b) for some p € Rep(T?)
then:
f(x(p)) = ((tr(A?BY), tr(A"B®), tr(A? B1A" B*)). (4)

This gives us an action of GLy(Z) on Sp whose kernel contains +15; therefore PG Ly(Z)
acts on the surface Sp.

Using (4) and Fricke-Klein’s formulas, one sees that f is a polynomial
automorphism of Sp; in the following, we will denote by B the subgroup of Aut(Sp)
formed by such mappings f. We will say that an automorphism f € B is hyperbolic if
one of the next two conditions holds:

e cither det(My) =1 and tr(My) > 2;
e or det(My) = —1 and tr(My) # 0.

Example 1.9 For the Fibonacci substitution (, consider the automorphism f associated

with ¢. Then:
0 1
My = M = .

Since det(My) = —1 and tr(My) = —1 # 0 the morphism f is in fact hyperbolic. It is
given by:
f('rayv Z) = <y7xy - 2737)-

(©2013 IOP Publishing Ltd
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Denote by Sp C P? the compactified surface:
w(z® + y* + 2*) = zyz + w’ D,

where [z : y : 2z : w] are homogeneous coordinates on the projective space P3. Its
intersection with the plane at infinity {w = 0} is equal to the "triangle at infinity"
A = {zxyz = 0}. Thus Aut(Sp) embeds into the group of birational transformations of
Sp. The dynamics at infinity of the hyperbolic elements in B is quite rich, as we will
see throughout this paper; first, we have the following result.

Proposition 1.10 (see [6,7,18])
Let f € B be a hyperbolic automorphism. Then f extends to a birational transformation
of Sp and:
(1) f has an unique indeterminacy point v_ which is either [1:0:0:0], [0:1:0: 0]
or[0:0:1:0];
(ii) the mapping f contracts A\ {v_} onto the indeterminacy point vy of f~%;

(111) up to conjugacy by an element of B, one can assume v, to be distinct from v_.

Remark 1.11 El’Huti [18] gave a detailed description of the automorphism group
Aut(Sp); in particular, he proved that B has finite index in Aut(Sp).

1.2.2. Main theorem on dynamical Green functions.  Fix a hyperbolic automorphism
[ € B for which vy # v_ and denote by A the spectral radius of M;. We now try to
understand the escape rate at infinity in the unbounded orbits under f. First, a theorem
by Dloussky [17] combined with work by Cantat [6] (see also [20]) yields the following
result, which will be essential to our study of the dynamics of f at infinity.

Proposition 1.12 (6], theorem 3.1 p. 423)
There exists a matric Ny € GLo(Z) with non-negative entries which is conjugate

to My in PGLy(Z), an open neighbourhood U of v, in Sp and a biholomorphism
V7 D x D — U such that:

(Z) @Z)}F(Oa 0) = V4,
(i1) for all (u,v) € D* x D* one has:

UF ((u,0)") = f(VF (u, v)),

where (u,v)Ns denotes the monomial action of Ny on the pair (u,v), i.e if
p g
Ny =

As a consequence, if m € Sp has unbounded forward orbit under f, then f™(m) goes to

then (u,v)Nr = (uPv, u"v®).

vy at infinty.

(©2013 IOP Publishing Ltd
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Before stating our main result regarding dynamical Green functions, let us set a
few conventions:

e define the filled Julia set K (f) as follows:

KX (f) = {m e Sp|IM >0,Yn >0, | f"(m)| < M},

where ||.|| denotes the standard euclidean norm on C3;

. .. 1
e set a, 8 € R to be the coordinates of the projection of the vector < ) on the

eigenline for Ny associated with the maximal eigenvalue of M, (and so of Ny).

Theorem A (Dynamical Green function)

Let f € B be a hyperbolic element and let m € Sp

. Then the following quantity is well
defined:

1
+ . 3 . + n
G .m»—>nh_1>rolo)\nlog I (m)]|l,
and:

(i) the function G;{ is pluriharmonic (resp. plurisubharmonic) on the complement of
the filled Julia set K*(f) in Sp (resp. on Sp) and takes non-negative values;
(ii) the zero set of G} is K*(f);

(iii) the following relation holds:
G} o f=\GF; (5)
() if m =} (u,v) € Py (D* x D*), then:
GF(m) = —alog|ul - Blog|v (6)
(v) the function G is locally Holder—continuous.

Example 1.13 In the Fibonacci case, My is conjugate to

N, = G é) in PGLy(Z).

The eigenvalues of My (and so of N¢) are

1 B
+\/_ and ¢ =

=

¢ =

2
and the corresponding eigenlines for Ny are spanned by ( ) and (?) Thus, since:

()-76)-0)

1—¢ 6—1 — ¢ o
one has a = = and = ——=—. Moreover, we have in this case
BT MR
vy =100:1:0:0].

(©2013 IOP Publishing Ltd
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1.3. Applications to Discrete Schrodinger Operators

1.8.1. Schridinger curve Consider the following cubic surface in C3, for some fixed
k€ R:

(Saw2) Y+ =ayz+4+ K
this is a connected smooth (ifxk # 0) affine surface, containing what we call its
Schrodinger curve:

5:C — Sypp2
E— (F—k E E(E—K)—2).

Remark 1.14 The function s is in fact the trace map associated with the matrices
Mfmw. Namely, one has s(E) = (tr(M,f(a)),tr(Mf(b)),tr(Mf(b)M,f(a))).

Starting from our automorphism ¢ € Aut(F3) (cf. 1.1.1) with associated
substitution ¢, we obtain a polynomial automorphism f of S, . associated with ¢!
(cf. 1.2.1); one can then explicitly compute it using the formula f(x(p)) = x(po ) and

so its restriction to the Schrodinger curve is:
VE€C, [f(s(E)) = (tr(M; («(a)), tr(MS(1(b))), tr(M, ((ab)))),

where, if u = (uy,...,u,) € {a,b}", then:

ME(u) = H ME (u,_,).

Since ¢ is hyperbolic, f is a hyperbolic automorphism of S;,.2. We then have the
following result [10] (see also some earlier work by Siité [29,30]).

Proposition 1.15 (Damanik [10], theorem 2.1 p. 399)
If f is the polynomial automorphism of Sii.2 associated with a positive hyperbolic
substitution v on two letters, then the almost—sure spectrum %, satisfies:

Y= 871<K+<f))'

1.3.2. "Dictionary"” Between Holomorphic Dynamics and Schrodinger Operators We
now move on to our second result. Since the subgroup B has finite index in Aut(S,; .2)
(cf. remark 1.11) and f has infinite order we can suppose, up to replacing it with some
iterate f"° that f € B; thus, we will be able to exploit theorem A to obtain the following
result.

Theorem B
Let 1 be a positive hyperbolic substitution over the letters a and b and let f € B be the
associated automorphism of Sy 2. Then for E € C:

1 =+
O )

where o, B € RY. are the same as in Theorem A.

Ve(E) =

(©2013 IOP Publishing Ltd
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Remark 1.16 Proposition 1.15 was mostly a qualitative one, concerning the
boundedness of the orbit alone. Here, using our Theorem A, we get tools to estimate the
escape rate at infinity thus obtaining a more quantitative result.

This, combined with previous work by Cantat, Damanik and Gorodetski, allows us
to work out the following "dictionary".

Discrete Schrodinger operators Holomorphic dynamics on S, 2
Almost-sure spectrum 3, Julia set K*(f)
Lyapunov exponent -, Dynamical Green’s function G;{
Density of states dk, Green’s current T;’
Thouless formula T;’ = dch}L
v, and k, Holder—continuous near >, G}r locally Holder—continuous
Avron and Simon Theorem 1.4 Convergence to ij

More precisely, one goes from the right-hand side of this table to the left by taking
pull-backs with the Schrédinger curve s: C — Sy, .2; for instance, the first line is
Damanik’s Proposition 1.15, and the second is our Theorem B. Similarly, the Holder
continuity of 7, corresponds to the Holder continuity of G}L (obtained in Theorem A);
we shall see in Section 3.2.1 that it implies directly Hoélder continuity of the integrated
density of states. The last line of this table is less precise: this is explained in
paragraph 3.2.3.

It is to be noted that the literature pertaining to the interactions between real and
complex dynamics and discrete Schrédinger operators has been quickly expanding these
last few years, mainly under the guidance of D. Damanik and A. Gorodetski. See for
instance [25,31,32].

2. Dynamical Green Functions

2.1. Preliminary Computations

2.1.1. Geometry of Sp at infinity In order to measure the escape rate at infinity
of a point with unbounded orbit, we will now study the behaviour of log||m| when
m = (x,y,2) € Sp goes to vy, where || - || denotes the euclidean norm on C3. For the
sake of clarity, suppose (our problem being symmetric with respect to x,y and z) that
vy is the point [0: 0 : 1:0]; in a neighbourhood of v, , Sp can be seen, using the chart
{z # 0}, as the surface:

(X2+ Y2+ D)W = XY + DW?3, (7)
where X :=x2/z, Y :=y/z and W := w/z. Equivalently, this can be written as follows:

W = XY + DW?+W?*(AX + BY + C) + W(X* +Y?). (8)

(©2013 IOP Publishing Ltd
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Using these new coordinates (X,Y, W), v, corresponds to the point at origin (0,0, 0)
X

and one has:
log ||m| == 1 ]
og [|ml|| == lo —
& 2 B\ |w e

1 1
= — S loa(IWP) + 5 log(IXP* + [V + 1)

1
= — 5 log(| XY + DW?* + W?(AX + BY +C) + W(X? +Y?)]?)

2

LY
%74

1
+ 5 log(IX [P+ [V +1).
Using Taylor’s approximation one gets:
log [lml| = —log(|XY]) + g(X, Y, W),

where ¢ is bounded in a neighbourhood of (0,0,0). Now, for m close enough to v,
one can apply the biholomorphism zp;[ to get (u,v) := lp}ﬁl(m) and use the following
lemma.

Lemma 2.1
There exists a germ of bounded function h such that for all (u,v) € D* x D*:

log [|4} (u, v)|| = —log [uv| + h(u, v).
Proof.Using Taylor’s theorem at the origin one gets:
w}_(ua 'U) =vq + L(u7 'U) + R(U, U),

where L is the linear part of zp;f at the origin and R is a smooth bounded function on
D x D such that R(u,v) = O(]|(u,v)||*). Since ¢f is a conjugacy between the dynamics
of f and Ny and since f (resp. Ny) only contracts the axes {X = 0} and {Y = 0} (resp.
{u =0} and {v = 0}) on the origin then L = dy;(0,0) must be of the form

T1 0 0 1
or .
0 T9 T2 0

Therefore, there exists a bounded function A on ID x ID such that:

log [[4f (u, v)|| = —log(|uv|) + h(u,v), (9)

g

2.1.2. Estimate at infinity Since My is hyperbolic, one can assume (replacing My with
My = MJ%) that it has eigenvalues A and A~!, with A\ a real number greater than one.

(©2013 IOP Publishing Ltd
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Now consider the following quantity, for n > 0 and m with unbounded forward orbit,
chosen sufficiently close to vy (i.e in 1/1;{71(]1) x D)):

1

—1 " .

o £7(m)|

Let (un,vy) := (u,v)"7; using the previous lemma one gets:

1 . 1 1
S 10g [ (m) | =~ Tog(nta]) + 5-h(un, 0,)

1
Since ~—h(up,v,) — 0, we want to understand the behaviour at infinity of the
n—oo

following quantity:

1
T log(|unvn])-

Lemma 2.2
The following estimate holds, as n goes to infinity:

1
- 10g [y — (alogu| + Flog o)) (10)

where a, 8 € R are the coordinates of the projection of the vector (1) on the eigenline
for Ny associated with \.
Proof.Since (u,v) € D* x D* one can set (%, ') := (u,v) with:

s,t€{ze€ C|R(z) <0,3(2) € (—m,7]}.

Then it is just a matter of describing the behaviour of [uv| = |e**t| = e®+) under Ny,
which acts linearly on the coordinates (s,¢). A computation thus yields:

7 108l > (@R(s) + R(B) = (aloglul + Blog [

)\n
U
Using lemmas 2.1 and 2.2, one gets the following estimate:
1 n
= log |77 (m)]| —— —(alog Jul + Slog]o]). (1)

Note that this only holds for m sufficiently near v, i.e for (u,v) in D* x D*.

2.2. Proof of Theorem A

First remark that if m € K*(f) then it is clear that G77(m) is well defined and equal
to 0.

Now consider m ¢ K*(f); up to replacing m with some f™(m), one can assume
that m is sufficiently near vy so that one can set (u,v) := @Z)}Lfl(m) and (up,v,) =

(©2013 IOP Publishing Ltd
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(u,v)"7. Since f*(m) —— vy, for n large enough, log™ ||f*(m)| = log | f™(m)].
n—o0
Applying the estimate (11) then yields, using the same notations as before:
1 n
108 1" (m) | ——> —(alog|u| + Blogo])

We have thus proved that G is well defined and that (ii) and (iv) hold. Moreover, the
estimate (11) implies that:

V(u,v) € D* x D, G} o} (u,v) = —alog |u] — Blog |v]. (12)

(1) Let H be a compact set in Sp, m € H and n,p > 0. If m € K*(f)
then we clearly have uniform boundedness. Else, f"(m) —— v, and so for n
large enough m = @Z)}L(u,v) with (u,v) € D* x D* and ||}:€;11)|| > 1, therefore
log™ || f"(m)]| = log || f"(m)]|| and:

1
iy Tog ™ [P (m) | — 5 Tog” IIf"(m)H‘: = [1og L7+ ()| = A log 147 () |

Since we just proved that there exists a constant C,, = (alog |u| + Slog |v|) depending
only on the orbit of m such that log || f*(m)|| = C;x A" + A"epn(n), with g,,(n) —— 0

n—oo
S0:

1 . 1 . 1
s 8 ) = 510" 1) = i e+ 5) = ()]

As |ey(n)] —— 0, then for all positive n and m € H, there exists N,, € N such that:
n—o0
Vn = Np,  Jem(n)| < lem(Nm)| <7

hence: .
+ n+ — + n
iy 108 [fP(m)]| — log £ (m)]|

Since Cy, and log || f™(m)|| are continuous with respect to m (cf. (iv)),

< 2|em(Nm)].

m = En(N) = X7V (log [| f7 (m) ]| = Ci)
is continuous. Using the compactness of H, there exists mg € H such that:

sup €m(Nm) = €mo(Nimg)

meH

where:
0< 2|5M(Nm)| < 2|5mo(NW))| < 2n.

The sequence defining G}L thus converges uniformly on all compact subsets in Sp and
so the limit function inherits the pluri(sub)harmonic properties of its terms.
(737) This stems from the fact that if m € S then:

1 n . 1 n+1 . 1 n+1
108" I () = 55 tog" 7 m)] = A (s o 7 )
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(v) Here we adapt work by Fornaess and Sibony [21|. Since G}r is C! outside any
neighbourhood of K (f) it is Holder—continuous there. Now let z; € Sp and 2 € K*(f)
be such that:

d(z1, K*(f)) = 21 — 2.

If z; € KT(f), there is nothing to show. Else, note that by definition of the filled Julia
set there exists Ry > 0 such that:

VneN, |[[f*(z0)ll < Ro.
Let us consider a positive real number R > Ry 4+ 1 and set:
N :=min{n > 0| ||f"(z1)| > R} < o0;
thus:

LAY GOl = 1Y Go)ll T < 1Y (1) = £ (20
< sup [ldf (2)[[I1/Y (1) — 77 (20) || because [|fY (=) < R

I=I<R

< (sup [|df (2)I)™lz1 — 2o
l=l<r

< (||Sﬁ1<pR ldf (2)ID™d(z1, K*(f)).

Hence, if one sets:

H(R):= sup |df ()]
lzI<R

one gets:

1< R=Ro < |1/ ()l = 1/ (20)ll |
< H(R)"d(z1, K*(f))

thus H(R)Vd(z, KT(f)) > 1. Setting vy := % one has:
o < e, K (13)

Using (#ii) one gets:

G ar) = w5 G o V(=)
< W ||§ﬁl§pRG}r o f(z) because ||fN " (z)|| < R
< d(z0, K*(f))7 sup GF o f(2) by (13).

lzlI<R
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Let:
C:= sup G o f(z)
lzlI<R
one then has, in fine:
G (21) < Cd(z1, K7 (f)) (14)

for any point z; € Sp.

Remark 2.3 Using the notations of paragraph 2.1.2, we can estimate the local
coordinates (X,Y) around vy as follows (up to a permutation of u and v in the linear

part):
(X,Y) = (ru,rv) + R(u,v).

Therefore, we have, as m goes to vy:
G;{(m) = —alog | X| — flog|Y| — log \r?r§| + o(1). (15)

Remark 2.4 Replacing f with its inverse =1, one can define the negative dynamical
Green function:

— 3 1 + -n
Gy = lim —log™ [[f7"(m)]].
Our main result extends to this function.
2.3. Corollaries
We can now consider the closed positive current 6] associated with G}L, namely:
+ . ddeat — 2090+
T7 = dd°Gy = 2100G;

which satisfies the following:
[Ty = X\Tf
and has support in the Julia set J*(f) :== KT (f).

Corollary A.1
Let f € B be a hyperbolic element and m € Sp. Then there exists a neighbourhood U of

vy in Sp such that:
ddCGJf = 27 <a/ +5 ) ;
lu X=0 Y=0

where o, f € RY and (vy, X,Y) are the same as in Theorem A.

Proof.Let U := 1/1;{71(]]])* x D*); then using (12) and (15) one gets:
dch}L‘U = dd°(—alog |u| — Blog|v|) = dd°(—alog | X| — Slog |Y]).

The result then follows from the Lelong—Poincaré lemma.

0
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3. From Holomorphic Dynamics to Schrodinger Operators

3.1. Proof of Theorem B
Consider the function:

9:C\ 3 — (0,00)
E— G;{ (s(E)) ;
our aim is to show that it is (up to a multiplicative constant) the Green’s function of
the domain U := C \ X, thus proving the theorem. Since G}r is psh, condition (G1)
holds and (G3) is a direct consequence of Damanik’s result (Proposition 1.15).
Using Fricke—Klein’s formulas and relation (4), one shows using induction that f
contracts the triangle at infinity A on the point vy = [0:0:1:0]. Using (15), one then

gets
9(E) ~ (~alog |z| - Blog|y| — log |C]) —— 0

where C' € C and s (F) = [z :y:1:1]. One also has:
s([E:t]) = [Et —t?k : Bt : E* — Btk — 2t* : %),
hence, using the chart {z # 0}:

s(E)

k—2 E? - FEx—2 E? - FEx—2
1 - k/E 1 1 1
l1-x/E—-2/E?) " E\1—-k/E—2/E?) E?—-FEr—2

Thus the following limit exists:

1])
?;@ E 1 )

s([B
(7
(5

lim (g(E) — (a+ f)log|El).

E—oco

Remark 3.1 Using Proposition 1.8, one has:

lim (g(E) — (a+ B)log |E|) = —log Cap(X,) = 0.

E—oo

3.2. Consequences

Theorem B yields a few interesting corollaries, further detailing the entwining between
certain dynamical invariants and discrete Schrodinger operators.
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3.2.1. Holder continuity (see also [15,16])

Corollary B.2
One has the following results:

(1) s*(dch;{) =27(a + B)dky;

(71) the functions 7, and k. are Hélder—continuous near 3., with the same Holder
exponent T;

(1ii) the density of states does not charge sets with Hausdorff dimension less than 7. In
particular, the Hausdorff dimension of the almost—sure spectrum is strictly positive.

Proof. The first assertion follows from (3). To prove property (i), we reproduce an
argument from [28]. Using Theorem A, G is locally Holder—continuous near K*(f);
since s(C)N KT (f) = X, is a compact set, that property is global near the almost—sure
spectrum and so 7, is Holder—continuous near ¥,,. Denote by 7 the exponent of Holder
continuity:.

To show that k, is Hoélder continuous, consider two real numbers Fy > E;. Let M
be the middle point of the segment [E, Es] and R = |Ey — E4|/2 be the distance from
M to E;. Denote by D(r) C C the disk of radius r centred at M. Let ¢»: C — R, be a
smooth function which is equal to 1 on D(R) and equal to 0 on C\ D(2R), and whose
partial derivatives of order 1 and 2 are bounded from above by 100R~2 (such a function
exists, see [22]). Then,

ke (E2) — kn(E1)| = / Ak (B)

[E2,E1]

< dd(v, — v.(M
< ~dd(vy, — v (M

ddy - (v, — v (M
g/D(gR) b (e — (M)

< C*'R™Area(D(3R))R 2

S 97TCSt|E2 — E1|T
for some uniform constant C'** because v, is Holder continuous (with exponent 7) on a
neighbourhood of ¥,..

The same proof shows that dk, does not charge any closed subset of C whose
Hausdorff dimension is less than 7 (see [28]).

U

3.2.2. Hausdorff dimension of the density of states Once we know that v, is equal
to (o + §)7'G} o5, we can generalize the first results of Damanik and Gorodetski
concerning the Hausdorff dimension of the density of states (proved in [13] for the
Fibonacci substitution). Doing this, we obtain an alternative (but almost equal) proof
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of some of the results of May Mei (see [25]). But first recall the following definition: we
say that a finite measure p on R is of exact dimension ¢ € R if for p—almost every

z € R we have : |
i g illr —eate])
e—0 loge

(see also [19, p. 174)).

Theorem 3.2 (Damanik, Gorodetski, Mei) Let ¢ be a positive and hyperbolic
automorphism of the free group ¥o. Let H,,, be the corresponding family of discrete
Schrodinger operators. For small coupling factors 0 < k < kg, the density of states dk,
is of exact dimension dim(k), i.e. for dk.-almost every real number E,

log dk,[E — ¢, E + €]

i = di .
o Tog@)] im(r)

Moreover,

(1) dim(k) is a C*-smooth function of k € (0, kg);

(2) lim,_,odim(k) = 1;

(3) dim(k) < Hgm(Xs) < 1 for & € (0,K0), where Haiy denotes the Hausdorff
dimension of a given set;

(4) dim(k) coincides with the infimum of Haim(S) over all measurable sets S such that
dk.(S) = 1.

The proof is due to Damanik, Gorodetski, and Mei. Let us explain how one can
relate its proof to Theorem A and Theorem B:

a.— The dynamics of f on the intersection of its filled Julia sets KT (f) N K*(f~!) is
uniformly hyperbolic, the filled Julia set Kt (f) is the support of a lamination by holo-
morphic curves, and the current TJEL is a current of integration on this lamination with
respect to a transverse measure ,u}r (see [6]).

b.— The Schrodinger curve s is transverse to the lamination of K+ (f) if the coupling
factor is sufficiently small. This is proved in [14]; it follows from the transversality for
r = 0 and a study of the bifurcation from x = 0 to k > 0.

c.— There exists kj such that, for 0 < k < kg, there are two saddle periodic points p(k)
and q(k) of f on Sy, .2 with distinct multipliers.

To prove this, take a periodic point p on &, which is not a singular point of &;.
Deform it into a family of periodic points p(k) for —k1(p) < kK < Kk1(p). Do the same
for a second periodic point ¢: it can be deformed into ¢(k) for k1(q) < ¢ < K1(q). If the
multipliers of p(k) and ¢(k) are equal for a sequence of parameters x,, > 0 converging to
0, they are equal for all kK because they are analytic functions of x. In particular, ¢ can
be analytically deformed along the interval [—r1(p),0]. Thus, if the assertion was not
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satisfied, there would exist x; > 0 such that all periodic points of f on Sy (distinct from
the singularities) could be analytically deformed to saddle periodic points of the same
period for x1(p) < k < 0. This would contradict the fact that the topological entropy
of f on 84 .(R) is strictly less than log(A) for € > 0, a property that implies that most
periodic points of f on Sy_.(C) are not real (see [6]).

With these three remarks in hand, one can then copy the proof given by Damanik
and Gorodetski in [13].

3.2.3. Convergence theorems From [6] and [4] (see also [28], [3]) one gets the following
convergence theorem. Let f be a hyperbolic automorphism of the surface Sp. Let T be
a positive current and 1) a smooth non-negative function with compact support which
vanishes in a neighbourhood of the support of T. Then, the sequence of currents

S )
converges towards a multiple ¢T';, with ¢ = <T]7 |T). For instance, T' can be the current
of integration on an algebraic curve C' C Sp.

Our goal is to explain, heuristically, why this result is similar to Avron-Simon

convergence theorem for the density of states (see Theorem 1.4).
Consider the restriction H, é\fw of the Schrédinger operator to some interval [0, N| C
Z. If (u(0),...,u(N)) is an eigenfunction of H,Y, with eigenvalue E, then (u(2),u(1))
is obtained from (u(1),u(0)) by the linear action of the matrix ME(w(0)), ...,
and (u(N),u(N — 1)) is obtained from (u(1),u(0)) by the action of the product
ME(w(N —2))... ME(w(0)).

Now, restrict the study to w = u,, the infinite (-invariant word, and to intervals
[0,4(n)], where ¢(n) is the length of the word :("(a). When n goes to infinity,
¢(n) behaves approximately like \*. With such a choice, the trace of the product
ME(w(l(n) —2))... ME(w(0)) is equal to the first coordinate of f*(s(E)). Thus, if

A= A{E| tr(M7("(a))) = 2},

then
A={E|s(E) e (f") " (Co)}

where Cy is the algebraic curve Cy = {(x,y,2) € Splr = 2}. In other words, A
corresponds to the intersection of the algebraic curve s(C) with the algebraic curve
f7™(Cy); it contains approximately A" points, and the convergence theorem for currents
tells us, roughly, that the average measure on these A\ points converges towards s*(T}?L ),
up to some multiplicative factor.

On the other hand, the trace of a matrix M € SL(2,R) is 2 if and only if 1 is an
eigenvalue of M. Thus, a complex number F is in A if and only if there is an eigenvector
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(u(0),...,u(f(n))) of HE®) with eigenvalue E such that

these are mixed boundary conditions (not the usual Dirichlet conditions, as in [1]). Thus,
the convergence theorem for currents implies a convergence theorem for the density of
states of HY, with the boundary conditions (x). Changing the curve Cs into another
algebraic curve (for instance x = 3), one gets different boundary conditions.

To sum up, Avron-Simon convergence theorem corresponds to the convergence
theorem towards TJEL , with the following differences: One only gets convergence along
subsequences (one has to take N = {(n)), the boundary conditions are not the classical
ones, but one gets convergence theorems which are valid in Sp (not only along the

Schrodinger curve) and work for all positive currents.
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