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EXTENDED SPECTRUM, EXTENDED EIGENSPACES

AND SELF-ADJOINT OPERATORS

GILLES CASSIER AND HASAN ALKANJO

Abstract. We say that a complex number λ is an extended eigenvalue
of a bounded linear operator T on a Hilbert Space H if there exists a
nonzero bounded linear operator X acting on H, called extended eigen-
vector associated to λ, and satisfying the equation TX = λXT . In
this paper we deal the set of extended eigenvalues for the product of a
positive and a self-adjoint operator which are both injective. We also
describe the set of extended eigenvectors of these operators.

1. Introduction And Preliminaries

Let H be a separable complex Hilbert space, and denote by L(H) the
algebra of all bounded linear operators on H. If T is an operator in L(H),
then a complex number λ is an extended eigenvalue of T if there is a nonzero
operator X such that TX = λXT . We denote by the symbol σext(T ) the
set of extended eigenvalues of T . The set of all extended eigenvectors cor-
responding to λ will be denoted as Eext(λ). Extended eigenvalues and their
corresponding extended eigenvectors were studied in [1], [2] and [4].
In [2], Biswas, Lambert and Petrovic have introduced this notion and they
determined the set σext(V ) where V is the well-known integral Volterra op-
erator on the space L2[0, 1]. In [4], Karaev gave a complete description of
the set of extended eigenvectors of V .
In this paper we deal a large class of operators, that is the self-adjoint oper-
ators. Let T in L(H), and let σ(T ), σp(T ) and σc(T ) denote the spectrum,
the point and the continuous spectrum of T respectively. Using a theorem
of Rosenblum [5], it was established in [3] that

(1.1) σext(T ) ⊂ {λ ∈ C : σ(T ) ∩ σ(λT ) 6= ∅}.
It is known that for any self-adjoint operator T ∈ L(H), σ(T ) ⊂ R and
σ(T ) = σp(T )∪σc(T ). Obviously, if T is a non-injective self-adjoint operator,
then σext(T ) = C. Indeed, for all λ ∈ C, one can take X being a nonzero
operator from kernel of T to itself. In addition, if σ(T ) ⊂ R

∗ then by (1.1)
σext(T ) ⊂ R. Indeed, σ(λT ) = {λt : t ∈ σ(T )}. Consequently, σ(T ) ∩
σ(λT ) = ∅ for all λ ∈ C\R∗.
So, in what follows, T will denote an injective non-invertible self-adjoint
operator, i.e., 0 ∈ σc(T ).

First we will give some auxiliary results. Let λ ∈ C\R+ and denote by
K := [0, 1]∪ [0, λ]. We will show that C[X], the set of polynomials, is dense
in the space L2(K). To do so, we recall the following Green’s theorem

Theorem 1.1. Suppose that Γ is a finite system of curves of Jordan of class
C1, and denote by U = Ins(Γ). Let f be a function of the class C∞(U) and
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continuous on U , then for all z ∈ U we have :

f(z) =
1

2πi

∫

Γ

f(w)

w − z
dw − 1

π

∫∫

U

∂f

∂w̄
(w)

dm2(w)

w − z
,

where m2 denotes Lebesgue measure in the plane

We also need the following lemma

Lemma 1.2. Let A denote the closure of C[X] in the space C(K), i.e.,

A = C[X]
C(K)

, and let ε1 be the identity polynomial, i.e., ε1(z) = z for all
z. Then σA(ε1) = K.

Indeed, because A ⊂ C(K) we have K = σC(K)(ε1) ⊂ σA(ε1). On the
other hand, ∂σA(ε1) ⊂ ∂σC(K)(ε1) = K. Now we proceed by reduction to
absurd. Suppose that w ∈ σA(ε1)\K and consider the set J = {tw : t ≥ 1}.
Clearly J ∩ K = ∅ and J intersects both σA(ε1) and (σA(ε1))c. Now, be-
cause J is connected, there is v ∈ J∩∂σA(ε1) ⊂ K, which is a contradiction.

Now we can show the following lemma

Lemma 1.3. Let f, g ∈ L2[0, 1] and λ ∈ C\R+. Then there exists a sequence
(pn)n∈N ⊂ C[X] such that for all t ∈ [0, 1]

pn(t) → f(t) and pn(λt) → g(t),

in L2[0, 1].

Proof. Let f ∈ L2(K) be such that f ⊥ A. By using Lemma (1.2), (z −
w)−1 ∈ A for all w /∈ K. Thus

∫

K

f(z)

z − w
dµ(z) = 0, ∀w /∈ K,

where µ is the arc-length measure. Let now φǫ ∈ C∞(R2) with compact
support U = D(0, R], then

∫∫

U

∂φǫ

∂w̄
(w)

(

∫

K

f(z)

w − z
dµ(z)

)

dm2(w) = 0,

by Fubini theorem we have
∫

K

(
∫∫

U

∂φǫ

∂w̄
(w)

dm2(w)

w − z

)

f(z)dµ(z) = 0,

thus according to Theorem 1.1,
∫

K
φǫ(z)f(z)dµ(z) = 0.

The appropriate choosing of φǫ follows
∫ b

a
f(t)dt = 0, and

∫ λb

λa
f(z)dµ(z) = 0, ∀a, b ∈ [0, 1],

thus f = 0.
�
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2. Product Of Self-adjoint Operators

Lemma 2.1. Let R ∈ L(H) be a self-adjoint operator, and let a > ||R||.
Then for any p ∈ C[X] we have,

< p(R)x, y >= p(a) < x, y > −
∫ a

−a
p
′

(t) < E(]−∞, t])x, y > dt, ∀x, y ∈ H,

where <,> denotes the standard inner product in H, and E denotes the
spectral measure associated to R. In particular, if R is a positive operator,
then

< p(R)x, y >= p(a) < x, y > −
∫ a

0
p
′

(t) < E([0, t])x, y > dt, ∀x, y ∈ H.

Proof. First, recall that the indicator function of a subset Ω ⊂ R is defined
by

1Ω(t) =

{

1 if t ∈ Ω,
0 otherwise,

Hence
∫ a

−a
p
′

(t) < E(]−∞, t])x, y > dt =

∫

R

1[−a,a](t)p
′

(t)

(
∫ a

−a
1]−∞,t](s)dEx,y(s)

)

dt

by using Fubini’s theorem, we have
∫ a

−a
p
′

(t) < E(]−∞, t])x, y > dt =

∫ a

−a

(
∫

R

1[−a,a](t)1[s,a](t)p
′

(t)dt

)

dEx,y(s)

=

∫ a

−a

(
∫ a

s
p
′

(t)dt

)

dEx,y(s) = p(a) < x, y > − < p(R)x, y > .

�

Theorem 2.2. Let A,B ∈ L(H), and let T = AB be such that 0 /∈ σp(T )∪
σp(T

∗) then

(1) If A,B ≥ 0, then σext(T ) ⊂ R
∗
+.

(2) If A ≥ 0 and B = B∗ then σext(T ) ⊂ R
∗.

Proof. (1) If we define R =
√
AB

√
A, then one can show that for any n ∈ N

Tn+1 =
√
ARn

√
AB. Hence for all polynomial p(z) =

∑n
k=0 akz

k

p(T ) = a0I +
√
A

n
∑

k=1

akR
k
√
AB = a0I +

√
A(S∗p)(R)

√
AB,

where S∗ denotes the well-known backward shift.
First note that, since T is injective, 0 /∈ σext(T ).
Now suppose that λ ∈ C\R+, and let X ∈ L(H) satisfying the equation
TX = λXT , then p(T )X = Xp(λT ) for all p ∈ C[X]. Let p(z) =

∑n
k=0 akz

k,
then for all x, y ∈ H, we have

< p(T )Xx, y >= a0 < Xx, y > + < (S∗p)(R)
√
ABXx,

√
Ay > .

Using Lemma 2.1, we obtain

< p(T )Xx, y >= a0 < Xx, y > +(S∗p)(a) < TXx,
√
Ay >

−
∫ a

0
(S∗p)

′

(t) < E([0, t])
√
ABXx, y > dt.
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On the other hand, and similarly

< Xp(λT )x, y >= a0 < Xx, y > +λ(S∗p)(λa) < XTx, y >

−λ2

∫ a

0
(S∗p)′(λt) < E([0, t])

√
ABx,

√
AX∗y > dt.

Consequently, and since S∗ is surjective in C[X], it follows that

q(a) < TXx, y > −λq(λa) < XTx, y >

=

∫ a

0
q′(t) < E([0, t])

√
ABXx,

√
Ay > dt

−λ2

∫ a

0
q′(λt) < E([0, t])

√
ABx,

√
AX∗y > dt,

for all q ∈ C[X]. Next, let p ∈ C[X] and consider q(x) =
∫ x
0 p(t)dt, we

obtain that
∫ a

0
p(t)dt < TXx, y > −λ2

∫ a

0
p(λt)dt < XTx, y >

=

∫ a

0
p(t) < E([0, t])

√
ABXx,

√
Ay > dt

−λ2

∫ a

0
p(λt) < E([0, t])

√
ABx,

√
AX∗y > dt.

Now we consider the set K = [0, a] ∪ [0, λa], in virtue of the Lemma 1.2, if
z /∈ K then (ε1−zid)−1 ∈ A and hence there exists a sequence of polynomials
pn uniformly converging towards the last function. Thus

∫ a

0

1

t− z
dt < TXx, y > −λ2

∫ a

0

1

λt− z
dt < XTx, y >

=

∫ a

0

1

t− z
< E([0, t])

√
ABXx,

√
Ay > dt

−λ2

∫ a

0

1

λt− z
< E([0, t])

√
ABx,

√
AX∗y > dt.

Now let ǫ > 0 and 0 < α < β ≤ a, and consider

Γ = {α+ is,−ǫ ≤ s ≤ ǫ} ∪ {β + is,−ǫ ≤ s ≤ ǫ}
∪{r + iǫ, α ≤ r ≤ β} ∪ {r − iǫ, α ≤ r ≤ β},

then it is easy to see that
∫

Γ

∫ a

0

∣

∣

∣

∣

1

t− z

∣

∣

∣

∣

d|z| < ∞.

Consequently, the last equality yields

1

2πi

∫

Γ

∫ a

0

1

t− z
dtdz < TXx, y > − λ2

2πi

∫

Γ

∫ a

0

1

λt− z
dtdz < XTx, y >

=
1

2πi

∫

Γ

∫ a

0

1

t− z
< E([0, t])

√
ABXx,

√
Ay > dtdz

− λ2

2πi

∫

Γ

∫ a

0

1

λt− z
< E([0, t])

√
ABx,

√
AX∗y > dt.



EXTENDED SPECTRUM, EXTENDED EIGENSPACES AND SELF-ADJOINT OPERATORS5

Denote by ∆ = Ins(Γ) the bounded connected component of Γ. Then, using
Fubini’s theorem, and in view of the arbitrary choice of ǫ, it follows that

∫ a

0
1∆(t)dt < TXx, y >=

∫ a

0
1∆(t) < E([0, t])

√
ABXx,

√
Ay > dt,

or
∫ β

α

(

< TXx, y > − <
√
AE([0, t])

√
ABXx, y >

)

dt = 0,

thus

< TXx, y >=<
√
AE([0, t])

√
ABXx, y >, for a. e. t ∈]0, a].

Due to the separability of H, we have

TX =
√
AE([0, t])

√
ABX.

Let (tn)n≥0 ⊂]0, a] verifying the last equation for any n ≥ 0, and such that
tn ց 0, we get

TX =
√
AE({0})

√
ABX =

√
APker(R)

√
ABX.

Finally, note that ker(R) = {0}. Indeed, let x ∈ H be such that Rx = 0,

then
√
AB

√
Ax = 0, or T

√
A = 0, thus

√
Ax = 0. Consequently T ∗x =

BAx = 0 which implies x = 0.
It follows that TX = 0 or equivalently, X = 0.

(2) Let λ ∈ C\R+, and let X ∈ L(H) satisfying the equation TX = λXT ,
then we similarly obtain

(2.1)

(
∫ a

0
1∆(t)dt− λ

∫ a

0
1∆(λt)dt

)

< TXx, y >

=

∫ a

−a
1∆(t) < E(]−∞, t])

√
ABXx,

√
Ay > dt

−λ2

∫ a

−a
1∆(λt) < E(]−∞, t])

√
ABx,

√
AX∗y > dt.

Thus, as did the analogous one in the proof of (1), and in view of the
arbitrary choice of ǫ we get that X = 0. �

The following result characterizes the relation between the set of extended
eigenvectors of the operator T given in Theorem 2.2, and the spectral mea-
sure associated to the self-adjoint operator R.

Theorem 2.3. Let A,B ∈ L(H), and let T = AB be such that T and T ∗

are injective. Consider R =
√
AB

√
A and a > ‖R‖, and let E denotes the

spectral measure associated to R. Also, let λ ∈ R
∗, and let X ∈ L(H)\{0}.

Then

(1) If λ ∈]0, 1[, then TX = λXT if and only if
√
AE(]−∞, t])

√
ABX =

λX
√
AE(]−∞, t/λ])

√
AB for all t ∈]−λa, λa[, E(]−∞, t])

√
ABX =

0 for all t ∈ [−a,−λa] and
√
ABX = E(] − ∞, t])

√
ABX for all

t ∈ [λa, a].

(2) If λ ∈]−1, 0[, then
√
AE(]t, a])

√
ABX = λX

√
AE(]−∞, t/λ])

√
AB

for all t ∈]λa,−λa[, E(]−∞, t])
√
ABX = 0 for all t ∈ [−a, λa] and

E(]t, a])
√
ABX for all t ∈ [−λa, a].
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(3) If λ ∈ [1,+∞[, then
√
AE(]−∞, t])

√
ABX = λX

√
AE(]−∞, t/λ])√

AB for all t ∈]−a, a[, X
√
AE(]−∞, t/λ]) = 0 for all t ∈ [−λa,−a]

and TX = λX
√
AE(]−∞, t/λ])

√
AB for all t ∈ [a, λa].

(4) If λ ∈]−∞,−1], then
√
AE(]t, a])

√
ABX = λX

√
AE(]−∞, t/λ])

√
AB

for all t ∈] − a, a[, X
√
AE(] −∞, t/λ]) = 0 for all t ∈ [a,−λa] and

TX = λX
√
AE(]−∞, t/λ])

√
AB for all t ∈ [λa,−a].

Proof. Let x, y ∈ H. We will show the statements (1) and (4). The other
ones can be shown analogously. To do so, we will use the formula (2.1).

(1) Suppose that TX = λXT , and let α, β ∈ [0, λa] be such that 0 < α <
β ≤ λa, then

(

∫ β

α
dt− λ

∫ β/λ

α/λ
dt

)

< TXx, y >

=

∫ β

α
< E(]−∞, t])

√
ABXx,

√
Ay > dt

−λ2

∫ β/λ

α/λ
< E(]−∞, t])

√
ABx,

√
AX∗y > dt.

The separability of H yields
√
AE(]−∞, t])

√
ABX = λX

√
AE(]−∞, t/λ])

√
AB,

for all t ∈ [0, λa].
If α, β ∈ [−λa, 0] such that −λa < α < β ≤ 0, then

0 =

∫ β

α
< E(]−∞, t])

√
ABXx,

√
Ay > dt

−λ2

∫ β/λ

α/λ
< E(]−∞, t])

√
ABx,

√
AX∗y > dt,

we thus obtain the same last equality for all t ∈ [−λa, 0].
Now let α, β ∈ [−a,−λa] be such that −a < α < β ≤ −λa, then

0 =

∫ β

α
< E(]−∞, t])

√
ABXx,

√
Ay > dt.

Consequently, and since T is injective, we get

E(]−∞, t])
√
ABX = 0,

for all t ∈ [−a,−λa].
Finally, if α, β ∈ [λa, a] such that λa < α < β ≤ a, then

∫ β

α
dt < TXx, y >=

∫ β

α
< E(]−∞, t])

√
ABXx,

√
Ay > dt

thus

TX =
√
AE(]−∞, t])

√
ABX,

which gives the result for all t ∈ [λa, a].
For the other direction, we have

< TXx, y >=<
√
AE(]− a, a])

√
ABXx, y >,
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by hypotheses,
√
AE(]− a,−λa])

√
ABX =

√
AE(]λa, a])

√
ABX = 0,

thus

< TXx, y >=<
√
AE(]− λa, λa])

√
ABXx, y >=

∫ λa

−λa
dE√

ABXx,
√
Ay(t).

Consider the function

ϕ : [−a, a] → [−λa, λa]
t 7→ λt

Then, using the well-known formula of the image measure, we get

< TXx, y >= λ

∫ a

−a
dE√

ABx,
√
AX∗y(t)

= λ <
√
ABx,

√
AX∗y >=< λXTx, y >,

which implies that TX = λXT .
(4) Suppose that TX = λXT , and let α, β ∈ [0, a] be such that 0 < α <

β ≤ a, then
∫ β

α
dt < TXx, y >=

∫ β

α
< E(]−∞, t])

√
ABXx,

√
Ay > dt

−λ2

∫ α/λ

β/λ
< E(]−∞, t])

√
ABx,

√
AX∗y > dt.

The separability of H yields

TX =
√
AE(]−∞, t])

√
ABX + λX

√
AE(]−∞, t/λ])

√
AB,

for all t ∈ [0, a]. Equivalently
√
AE(]t, a])

√
ABX = λX

√
AE(]−∞, t/λ])

√
AB, ∀t ∈ [0, a].

If α, β ∈ [−a, 0] such that −a < α < β ≤ 0, then

−λ

∫ α/λ

β/λ
< TXx, y >=

∫ β

α
< E(]−∞, t])

√
ABXx,

√
Ay > dt

−λ2

∫ α/λ

β/λ
< E(]−∞, t])

√
ABx,

√
AX∗y > dt,

we thus obtain the same last equality for all t ∈ [−a, 0].
Now let α, β ∈ [λa,−a] be such that λa < α < β ≤ −a, then

−λ

∫ α/λ

β/λ
< TXx, y >= −λ2

∫ α/λ

β/λ
< E(]−∞, t])

√
ABx,

√
AX∗y > dt,

Consequently

TX = λX
√
AE(]−∞, t/λ])

√
AB,

for all t ∈ [λa,−a].
Finally, if α, β ∈ [a,−λa] such that a < α < β ≤ −λa, then

0 = −λ2

∫ α/λ

β/λ
< E(]−∞, t])

√
ABx,

√
AX∗y > dt,
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thus
X
√
AE(]−∞, t/λ])

√
AB = 0,

and the dense image of all A and B yields the result for all t ∈ [a,−λa].
For the other direction, we have

TX =
√
AE(]− a, a])

√
ABX,

by hypotheses,
√
AE(]−a, a])

√
ABX = λX

√
AE(]−∞, a/λ])

√
AB−λX

√
AE(]−∞,−a/λ])

√
AB.

thus
TX = λX

√
AE(]a/λ,−a/λ])

√
AB.

But
X
√
AE(]− a/λ, a])

√
AB = X

√
AE(]− a, a/λ])

√
AB = 0,

which means that

TX = λX
√
AE(]− a, a])

√
AB = λXT,

and the theorem is proved. �

Corollary 2.4. Let T ∈ L(H) be an injective self-adjoint operator, let a >
‖T‖ and let E denotes the spectral measure associated to T . Also, let λ ∈ R

∗,
and let X ∈ L(H) satisfying the equation TX = λXT . Then

(1) If λ ∈]0, 1[, then E(]−∞, t])X = XE(]−∞, t/λ]) for all t ∈]−λa, λa[,
E(] −∞, t])X = 0 for all t ∈ [−a,−λa] and E(] −∞, t])X = X for
all t ∈ [λa, a].

(2) If λ ∈] − 1, 0[, then X = E(] − ∞, t])X − XE(] − ∞, t/λ]) for all
t ∈]λa,−λa[, E(] − ∞, t])X = 0 for all t ∈ [−a, λa] and E(] −
∞, t])X = X for all t ∈ [−λa, a].

(3) If λ ∈]1,+∞[, then E(] − ∞, t])X = XE(] − ∞, t/λ]) for all t ∈
] − a, a[, XE(] − ∞, t/λ]) = 0 for all t ∈ [−λa,−a] and XE(] −
∞, t/λ]) = X for all t ∈ [a, λa].

(4) If λ ∈]−∞,−1[, then X = E(]−∞, t])X −XE(]−∞, t/λ]) for all
t ∈] − a, a[, XE(] − ∞, t/λ]) = 0 for all t ∈ [a,−λa] and XE(] −
∞, t/λ]) = −X for all t ∈ [λa,−a].

Proof. We show one of theses statements, the other ones can be shown anal-
ogously. To do so, we will use the formula

(
∫ a

0
1∆(t)dt− λ

∫ a

0
1∆(λt)dt

)

< Xx, y >

=

∫ a

−a
1∆(t) < E(]−∞, t])Xx, y > dt−λ

∫ a

−a
1∆(λt) < XE(]−∞, t])x, y > dt,

obtained by using (2.1) when B = T and A = I. Now suppose that λ ∈]0, 1[
and 0 < λa < α < β ≤ a, then

∫ β

α
< Xx, y > dt =

∫ β

α
< E(]−∞, t])Xx, y > dt,

or
< Xx, y >=< E(]−∞, t])Xx, y >, ∀t ∈ [λa, a].

Since H is separable, we get X = E(]−∞, t])X as desired. �
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3. Compact Self-adjoint Operators

The most general case of this class of operators will be described in the
following lemma of spectral decomposition. The other cases can be shown
similarly.

Lemma 3.1. Let T be a compact self-adjoint operator such that σp(T ) =
(λn)n∈N with λn 6= 0 for all n ∈ N , and λi 6= λj for all i 6= j. If we denote,
for all n ∈ N, by M(λn) the (finite) multiplicity of the eigenvalue λn, and

by (en,j)
M(λn)
j=1 the orthonormal basis of the eigenspace associated with λn.

then the set {en,j : n ∈ N, j = 1, ...,M(λn)} forms an orthonormal basis of
H.

Now we can show

Theorem 3.2. Suppose that T verifies the same hypotheses of the last
lemma. Then σext(T ) = { λi

λj
: i, j ∈ N} and for any i, j ∈ N, we have

Eext(
λi

λj
) = span{

M(λm)
∑

k=1

M(λn)
∑

l=1

cklem,k ⊗ en,l ∀m,n ∈ N where
λm

λn
=

λi

λj
}.

Proof. Let λ ∈ C and X ∈ L(H) be such that

TX = λXT,

then by Lemma for all j ∈ N we have

TXej,l = λλjXej,l, l = 1, ...,M(λn).

If X 6= 0, then necessarily there are i, j ∈ N, such that

λ =
λi

λj
and Xej,l =

M(λi)
∑

k=1

cklei,k l = 1, ...,M(λj),

and at least one of constants ckl is nonzero. consequently

TX =
λi

λj
XT.

By applying on en,l for all n ∈ N and l = 1, ...,M(λn), we obtain

Xen,l =

{

∑M(λm)
k=1 cklem,k if λm

λn
= λi

λj

0 otherwise,

as desired. �

Remark 3.3. We could also obtain this result by using Corollary 2.4.

4. Self-adjoint Operators Without Point Spectrum

In this section we will consider another class of self-adjoint operators;
those which have no point spectrum, and zero is a point in the continuous
spectrum. When the spectral multiplicity is constant, the description of
the extended eigenspaces is simpler and can be obtained directly by using
Lemma 1.3. For simplicity, we consider a particular case where the multi-
plicity is equal to one. Let T ∈ L(L2[0, 1]) defined by

(4.1) Tf(x) = xf(x), ∀f ∈ L2[0, 1] ∀x ∈ [0, 1],
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then it is easy to show that σ(T ) = σc(T ) = [0, 1]. Let now ϕ : [0, 1] →
[0, 1] be a measurable function. A composition operator Cϕ is defined as
Cϕf(x) = f(ϕ(x)). The composition operator Cλx, will be denoted simply
as Cλ. Also, if ϕ ∈ L∞[0, 1], we define the operator of multiplication by ϕ
as Mϕf(x) = ϕ(x)f(x).
Now we have the following theorem

Theorem 4.1. Let T be defined by (4.1), then σext(T ) =]0,∞[, and if we
suppose that X ∈ L(L2[0, 1]) is a nonzero operator. Then :

(1) if λ ∈]0, 1], then TX = λXT if and only if XCλ = MX1;
(2) if λ ∈]1,∞[, then TX = λXT if and only if X = MX1C1/λ.

Proof. First note that T is injective, there is no nonzero solution of the
equation TX = 0, and henceforth for the rest of this proof we suppose that
λ ∈ C

∗.
LetX be a bounded operator on L2[0, 1] satisfying the equation TX = λXT .
Then for all f ∈ L2[0, 1] and for any n ∈ N

TnXf = λnXTnf.

In particular,
TnX1 = λnXTn1,

that is,

Xtn = (
t

λ
)nX1, ∀ n ∈ N,

hence

Xp(t) = p(
t

λ
)X1, ∀ p ∈ C[X].

Now we suppose that λ ∈ C\[0,∞[ and we consider K = [0, 1] ∪ [0, 1
λ ].

Let f ∈ L2[0, 1] then we can see f as element of L2(K) by considering
f|]0,λ] = 0, a. e. According to Lemma 1.3, there is a sequence (pn)n∈N ⊂ C[X]

that converges to f in L2(K). That is,

Xf(t) = lim
n→∞

Xpn(t) = lim
n→∞

pn(
t

λ
)X1 = 0, for a. e. t ∈ [0, 1].

Thus X = 0. For (1), we obtained that Xp(λt) = p(t)X1 for all p ∈ C[X].
Since the set of polynomials is dense in L2[0, 1], Xf(λt) = f(t)X1 for all
f ∈ L2[0, 1], which means that XCλ = MX1. It is easy to see that if
XCλ = MX1, then TX = λXT . We show (2) with the same arguments as
in the proof of (1).

�

Remark 4.2. The case of arbitrary constant spectral multiplicity will be
studied in the final version of this article.

Corollary 4.3. Let ϕ : [0, 1] → [0, 1] be a measurable function. TCϕ =
λCϕT if and only if λ ≥ 1 and ϕ(x) = x/λ, x ∈ [0, 1].

Proof. It is obvious that Cϕ1 = 1. If λ ∈]0, 1[ then according to part (1) of
last theorem, TCϕ = λCϕT if and only if CϕCλ = I which contradicts the
fact that C1/λ is not left-invertible. Suppose now that λ ≥ 1, then using
same theorem, TCϕ = λCϕT if and only if Cϕ = C1/λ, or ϕ(x) = x/λ. This
completes the proof.

�
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