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PRESCRIBED SINGULARITIES WITH WEIGHTS
1. A. Molnar

ABSTRACT. We find the minimal weighted energy [ a(z)/Du|® of maps u:QcR™™ - S"
Q

with prescribed singularities, where a(-) is a continuous positive weight. Our result ex-
tends previous ones of H. Brezis, J-M. Coron and E.H. Lieb (1986), G. Alberti, S. Baldo and
G. Orlandi (2003), and V. Millot (2005).

1. INTRODUCTION

The problem of determining the minimum energy of a map u with values in the unit
sphere and with prescribed singularities was first investigated by H. Brezis, J-M. Coron, and
E.H. Lieb in Harmonic Maps with Defects ([BCL86]), and it can be seen as a starting point
in the analysis of some problems with applications in physics, like the ones concerning liquid
crystals. The two-point problem was the following: given two points A1, A2 in Q and d € Z,

minimize F 4, g, (uw) = u(x r, when uce€ N {Aq, A2} c R ,
inimize Fa, 4, LD 2d h C(Q~ {4, A2} cR?; S?
and deg(u, A1) = —deg(u, Ay) =d,

where deg(u, A;) is the usual topological degree of the restriction of u to a small sphere S c )
surrounding the point A; (and is independent of the specific choice of S). The answer to the
problem was given as

inf En, q,(u) = 8rd dist(A1, A2),

with the infimum not being, in general, achieved.

In this paper, we will treat a minimal energy problem that arises from a sequence of
generalizations of the one above. Several variations were already proposed in [BCL86], and the
following three are of interest to us. The first one was to consider more than two singularities
(still a finite number of them), which lead to the concept of minimal connection between
singularities with assigned degree. It was shown ([BCL86, Theorem 1.1]) that the solution
of the problem corresponding to the points Aq,..., Ay and the degrees di,...,dy € Z that
satisfy > d; =0, is

7

(1) inf Eg, g,(u) =87L, where L is the length of a minimal connection.
u

The key step in proving the inequality “ < ” is the dipole construction, that is, the construc-

tion of an almost minimizer concentrated around each line segment associated to a minimal
connection.

A second generalization consisted in placing the problem in a higher dimension, taking
uwe C(QN{Ay,..., Ay} cRP; SP71) and it was proved that the least energy is given in this
case by

@) inf [ Du(e)" do =ay(p- 1)L
1
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where 7, represents the (p — 1)-dimensional measure of the sphere SP~! c RP. The third
extension of the two-point problem, relevant here, was to consider a situation where the
energy has the homogeneity of an area ([BCL86, section VIII.C]), for example minimize

Er(u) := /R3 [Du(z)|dz, for uweC(Q~TcR?;SY) with deg(u,T) =d,

where T is a given rectifiable, oriented Jordan curve in R?, and d € Z is fixed. In the special
case where the curve is planar, it was proved that

(3) inf Er(u) = 2nd| inf {area(S) ; S surface in R®, S =T'}.

Moreover, the authors raise the same question in arbitrary dimension and codimension, more
specifically

minimize Eyy, (u) = /{; |Du(z)|" dz,
for uweC(Q\ MycR™":S™), and deg(u, My) =d,

where My is an (m—1)-dimensional boundaryless manifold in R”*" and d € Z. Here, deg(u, M)
represents the degree of the restriction of u to a n-dimensional sphere S that links with M
(i.e., S is the boundary of a well-oriented (n+1)-dimensional disk that transversally intersects
M in a single point), and does not depend on the choice of S. They suggest that the solution
should have the same form as (3), but the formula was afterwards rectified by F. Almgren,
W. Browder, and E.H.Lieb in the paper Co-Area, Liquid Crystals, and Minimal Surfaces
([ABLSS)).

In [ABLS8S], the authors first provide a new proof of the inequality “ > ” in (1), which
uses the coarea formula and current slicing, and which can more easily be extended to higher
dimensions. In the main theorem, they give the solution of the problem (4), put in the context
of integral currents, and then give an outline of the proof. The result obtained was, roughly,
that

(4)

inf Epy, (w) =n™%,,.1 inf{mass(T) ; T is an integral current with 9T = d My}.
u

A similar setting for this problem is given in the article of G. Alberti, S. Baldo and G. Orlandi,
entitled Functions with prescribed singularities ([ABOO03]). Their main interest was to study
the image of the distributional Jacobian Ju, which is known to describe in some sense the
topological singularities of the map u. They have shown an identification between »Ju, the cur-
rent associated, via the Hodge-type operator *, to the distributional Jacobian of a S™-valued
map, and the boundary of a rectifiable current of codimension n. More precisely (see [ABO03,
Theorem 3.8 and Theorem 5.6]), they have proved, on one side, that given u € W1 (Q,S"),
there exists a rectifiable current 1" that satisfies the inequality

(5) Ons1 x mass(T) < fﬂ |Du(z)[" dz,

On+1

and the condition xJu = dT, and, conversely, that for a given current T, there exists a

n +
map u that verifies the above condition on its distributional Jacobian, and such that
(6) [Q [Du(x)|" dz < e¢(m, n) x mass(T),

where ¢(m,n) is a constant that depends only on m and n.
Their approach was the following: for the proof of the upper bound, they used a dipole
construction together with a result concerning the approximation of integral currents by
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polyhedral ones, and a rather elaborate induction argument. The lower bound of the energy
was obtained, in short, in the same manner as in [ABLS88], through the use of the coarea
formula. They presented the proof in much more detail though, giving a variant of the coarea
formula that involves the distributional Jacobian, or more generally — for a map taking values
in a Riemannian manifold M — the pullback of the volume form on M. This allows them to
prove that the current 7" in (5) can be taken to be the slice determined by u at a point y € S”
in the subset of {2 where u is approximately differentiable.

In our paper, we will place the problem in the same setting proposed in [ABO03], but
we discuss the associated weighted energy problem. We will also follow closely their strategy
and see that, for the upper bound, replacing the dipole construction in [ABO03] with the one
originally introduced in [BCL86], and being careful at the estimates obtained in the induction
process, their method actually yields ¢(m,n) = ¢(n) = n20,,1 in (6), which is exactly the
constant from (2). Also, inequality (5) is still valid for this larger constant, instead of o41.

The problem of the weighted energy was studied, in the classical context, by V.Millot
in Energy with weight for S®-valued maps with prescribed singularities ([Mil05]), where he
considered the problem (1) with energy

Ey,.q,(u,a) ::Aa(x)|Du($)]2dx,

for a measurable function a(-) that satisfies 0 < A < a(+) < A, for some given constants A and A.
He showed that the formula (1) still holds, provided that the distance function used in the
expression of the length of the connection is conveniently chosen. He adopted the following
definition for the length of a segment (A, Ay) in R3:

|
a( A1, Ay) = lim inf — fE(AhAm a(z) dz,

where Z( A, Ag; €) denotes the set {z € Q; |z — z¢| < &, for some xg € (A1, A2)} obtained by
thickening the segment (A;, A3). The new distance was then defined by

N
(7) disty (A, B) = inf Z lo(Agy A1),
k=1
where the infimum is taken over all the polygonal lines (Aj,..., Ay4+1) connecting the points

A and B, such that dist; is the usual Euclidean distance in R3.

We will consider the case where the function a(-) is continuous, but where, as in [ABO03],
the dimension and codimension are arbitrary. The exact statement of the main result will be
given at the end of the next section. As we already mentioned, the strategy used is the one
from [ABOO03]. However, in order to be able to take into consideration the fact that we are
placed in a heterogeneous setting, we will have to define a new measure on ), by analogy
with the distance dist, defined in [Mil05]. Naturally, the area of S in (3) must be replaced
with the integral [ a(x)dH?(z), so we will define a modified Hausdorff measure H! (which

S

in fact makes sense even if a(-) is only £"-measurable), and which for a = 1 becomes the usual
h-dimensional Hausdorff measure on R™.

2. PRELIMINARIES AND STATEMENT OF THE THEOREM

In this section we present the background of the problem. We will consider 2 to be a
bounded and smooth open subset of RP, and M a smooth oriented m-dimensional submanifold
of R™"!, with the dimensions satisfying m <n +1 < p.
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2.1. Rectifiable currents. We recall here the definitions and the basic properties of the
currents with which we are concerned. For further details, see [Pap02, Chapter 24], [Mor09,
Chapter 4], [GMS98, Chapter 2, Section 2], and, of course, [Fed69].

Basically, a h-dimensional current is a generalization of a distribution, where the place of
the test functions Cg°(§2,R) is taken by the h-dimensional differential forms with compact
support D*(Q). More precisely, Dy (Q), the space of h-dimensional currents on €, is the
topological dual of D"(2) with respect to the topology induced by the family of seminorms
vi-(n) = sup [DIn(z)| on each D% (Q) = {n € D"(Q) ; suppn c K}. The vector space

J<i,xe K

Dr(9) is then endowed with the weak topology, that is, the pointwise convergence of currents
T; -~ T < Ty(n) - T(n), Vn e D"(Q). The mass of T is defined by M(T) =  sup |T(n)|.
In(z)|<1,v
The boundary of T is the current T € Dy_1(f2) defined by 0T (u) := T(du), for every
1€ D1(Q), in consistency with Stokes’ theorem.
The class of rectifiable currents Ry (€2) consists of currents 7' that can be expressed by an
integral formula

(®) T() = [L00(2) (n(@) wr()) dH' (@), Ve D).

where T is a compact, h-rectifiable subset of Q, 07 : T — Z, is a H"-measurable function
called the multiplicity of T', and T is an orientation on 7. The mass of T' then becomes

(9) M(T) = [ 0r(e) d" (2).
T

Given an H"-integrable function a(-) : Q - R, we can define another current T'La € R"(Q), by
T a(n) = [Ta(x)eT(x) (n(x) ,tr(x))dH"(z), ¥n e D (Q).

If a(-) is the characteristic function of a H"-measurable set A, then T L x4 is also written as
T L A, and is called the restriction of T' to A.

Given a h-rectifiable set S c Q oriented by Tg, we let [S] denote the current associated to
S through the same expression as in (8), where the multiplicity is considered equal to 1. If S
is a smooth oriented compact manifold, then, by Stokes’ theorem, we have that 9[S] = [95].

A current T € Ry () is called integral, and we write T € 1,(2), if the boundary 9T is
also rectifiable. By the Closure Theorem [Fed69, Theorem 4.2.16], a necessary and sufficient
condition for a rectifiable current to be integral is that its boundary has finite mass.

The class of integral flat currents Fp(2) is defined as the set of currents T that can be
written as the sum P + 0Q, with P € Rp(Q2), and Q € Rp,1(2). The flat (semi-)norm on
Fr(Q) is defined by

F(T):=inf {M(P)+M(Q); T=P+0Q,PecRp(),Q € Rp+1(2)}.

The space of integral polyhedral currents Pp(§2) consists of rectifiable currents that can be
written as a finite sum of h-dimensional simplexes with constant integer multiplicities. It
represents a dense subset of F,(Q2), with respect to the flat norm. The inclusion relations
between the previous classes of currents are the following:

Pr() < (@) < Ru(Q) c Fn(Q) c Dp(Q).
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2.2. The pullback u!w of the volume form of an oriented manifold. Denote by w the
(standard) volume form on M, that is, the differential m-form on M which associates to each
point y € M the m-linear alternating map on T, M that satisfies

w(y)(Tlv s 7Tm) =1,
for any {T1,..., T} positively oriented orthonormal basis of T, M. Since the top-dimensional
forms constitute a 1-dimensional vector space, we see that w is necessarily given by

w(y)(wi, ..., wy) =det[w, ..., Wn, V1, Voom+1],

for every y € M, wi,...,wy, € TyM, and any {vi,...,Vpoms1} C R™1 a positively oriented

orthonormal basis of N, M = Ty, M*. The value of the above determinant is independent of the
choice of basis of the normal space since passing to another one leads to the multiplication of
the matrix in the right-hand side by an orthogonal matrix of determinant equal to 1.

Suppose u : 2 - M is a differentiable map. We can then consider the pullback of the volume
form w with respect to u, which is the m-form on €2 defined by

(unw)(x)(vl, ey ) = w(u(z))(dug(vr), ..., dug(v)),

for every x € Q and vy, ..., v, € RP. Remark that in [ABOO03], the notation J,u is used instead

of ulw, to emphasise the role that it plays in the definition of the distributional Jacobian.
For every x € Q, the form (ufw)(z) is an element of the space A™(RP) of the m-covectors in

RP, which can be endowed with the Euclidean norm, meaning that if we let I(m,p) denote the

set of ordered multi-indices o = (a1, ..., 0,) With 1 <o <+ < oy, <p, and {dz,...,dzp} is
the dual base of an orthonormal basis {e,...,e,} of RP, then
(ulw)(z) = > (W) (x)(eays - »eay, ) Ao, A Adig,,,
a€el(m,p)
and

()@= 3 (@) (ear, - ea,)

ael(m,p)

With this, we can see that |(ufw)(x)| is simply the Jacobian [Du(z)] of the m x (n+1)-matrix
Du(x) of the differential of u at x, that appears in the classical coarea formula, that is,

|(uho) ()] = [Du(z)] = | det (Du(:c)Du(az)*)]l/ g

Indeed, writing the matrix of the differential of u in x with respect to the canonical basis
{e1,...,ep} in RP and an orthonormal basis {T1,...,Tm} in Ty M,

m
dux(ei):Z)\jiTj:Ai’(Tlu"')Tm)7 ViZl,...,p,
7=1

clearly gives us
(W) (@)= 3 |det[Aays- -, Aa,, I = [Du(2)]*.

ael(m,p)

Remark that the quantity |(ufw)(x)| is called the m-dimensional Jacobian of u at x in
[ABL88]. We will later make use of the following estimate:

(10) (ulw) (z)] < m ™2 x Du(z)[™, for all z e Q,

that can be found also in [ABLS88, Appendix A.1.3]. In fact, it was obtained before that in
[BCL86, (8.5)] in the case where M = S™. In that context, we have |(ufw)(x)| = |D|, with D
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representing the vector field (Dy, ..., D,) that is defined by D; = det[du, ..., 0j_1u,u, 0j1u, . .., 0pu],
j=1,...,p. To verify inequality (10), suppose first that u is a submersion at the point x € Q,
that is, the differential

dux :RP — Tu(x)M

is surjective and so its null space has dimension (p —m). If we choose {ey,...,e,} to be an
orthonormal basis in RP such that ker(du,) = span{e,+1,...,€ep}, then only one term in the
expression of |(ufw)(z)| is non zero, namely the one indexed by a = (1,...,m), hence

|(uuw)(:1:)\ = |det(duz(e1),...,dug(em), Vi, -, Vom+1)|s

where {v1,...,Vn-m+1} is an orthonormal basis in Ny ,)M. By Hadamard’s inequality and
the arithmetic-geometric mean inequality we obtain

|(whw) (@) < |dug(en)]? ... [duz (em)

" u\xr 2\
‘ %('d“w<€1>l2+---+Iduz<em>|2)] (M) -

m

If however, du, is not surjective, then any m vectors dug(eq,),...,duz(ey,,) are linearly
dependent, and so, |(ufw)(x)| is zero.

Notice that everything remains true almost everywhere if we suppose u: ) - M is only
Lipschitz. Also, the definition of the pullback of w makes sense if u is merely in WH™(Q, M),
and then |(ufw)(-)| belongs to L1(Q).

Rather than the form ufw, the associated current ufw will be of more interest in what
follows. The action of the Hodge-type operator » on ufw is given by

*x(ulw)(z) = > sgn(a, a)(uWrw) () (eay - -, ea,,) €ay A A Capm>
aeI(p—m,p)

which thus becomes a (p — m)-current on €. Here, 3 denotes the multi-index in I(m,p) that
complements the element 3 € I(p—m,p).

2.3. An integral representation of the current *u!w via the coarea formula. Suppose
u: Q - M is a Lipschitz map. The coarea formula (see [Fed59, Theorem 3.1], [EG92,
Section 3.4]) states that given an LP-integrable function a(-) : 2 - R, and an £P-measurable
set A c RP, we have that, for H™-almost every y € M, the level set u~!(y) is HP ™-rectifiable,
and

_ p—-m m
(11) [ a@u@iaz- [ ([ I OL (2)) dH" (),
hence, also, for any continuous function p: M — R,

(12) [ pu@)Du@dz= [ o) () 0 A) A" (y),

assuming that the left-hand side of (12) is integrable.

If we choose the set A conveniently, we see that for HP~™-almost every y in M, the Jacobian
[Du(x)] = [ufw(z)]| is defined and is non zero, for HP~™-almost any x in u~'(y). At every such
points z, the differential du, vanishes on the tangent space of the level set v !(y), and so,
using a basis {e1,...,e,} of R? for which Tan,u™!(y) = span{ey,...,ep-m}, we have

cubw(z) = w(u(z)) (dug(epms1), - - duz(ep)) €1 A=A epm,
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hence, after normalisation, *ufw defines an orientation of the rectifiable set u~'(y). Thus,
u~!(y) becomes a rectifiable current of multiplicity equal to 1, that is,

[ I = [, ().

for all n € DP~™(Q), and for H™-almost every y € M. Equivalently, [u~!(y)] is the RP~™-valued
!
measure %’me L {u"(y)}, so its total variation is |[u~" ()] = H*~" L {u"'(y)},
* ulw(z
meaning that for all ¢ € C.(€2), we have
[l (W]I(p) = /71 p(x) AP (x).
u™(y)
By approximating ¢ with simple functions, we see that [ ¢(x) dHP™"(z) is H™-measurable
u(y)

(as pointwise limit of H™-measurable functions), that is, the mapping y ~ |[[u*(y)]| is weak-
*x-measurable. Applying the coarea formula and the monotone convergence theorem, we obtain
that, for any ¢ € C.(92),

(13) fQ Ip(u(@))]- liho (@) p(z) da = fM o) L™ (]I(w) AH™ ().

The integrals are finite, because we have

S @Il i) e w) <suplel [ o) (7! @) ()

~suplgl [ lp(u(@))]-Juw(@)]dz <m™suplplsuplo| | [Du()|™ da.
Q Q Q M Q

*ubw(z) Py
utaay) ™

which is finite, since Q2 is bounded, and thus, the map [[u™'(-)]| is weak-*- integrable. The
same can be said about the function |ufw(-)|, as it belongs to L(2), and so, we can express
the equality (13) in short as

W)l = [ ol ™ @)1l (),

the integral sign [~ meaning that it is a weak- (also known as Gelfand) integral. Furthermore,
since the identity (13) is in fact true for every bounded function ¢ € L1(), we can take ¢ as
defined by the duality product

2) = » (o) (), — 1)
p(a) = (x b (o) (@) e S

for any n € DP7™()), and we get
| st (o) @), () da

(x) p—-m m
:Ap(y)[fu_l(y)(*uﬂw(x),|u’u7w(I)|)dH ()| aH™ (y).

This can be also written as
14 _ _ [ -1 ™ (y).
(14) w(pw) = [ o)™ ()] aH" ()

Suppose now that the map u belongs to WH(€, M). In order to deduce an analogue of the
coarea formula for Sobolev functions from the classical one, it is natural to try to use some
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Luzin type approximation results. We begin by covering €2, up to a Lebesgue null set E c €,
by a disjoint sequence 2; of measurable subsets in R? with the property that the restriction
uj of u to every such set is Lipschitz (using for example [EG92, Theorem 3, Section 6.6.3]).
We can then apply formula (11) to every u; : §; — M, to obtain

g, 2@l = [ (f iy ) ),

for any LP-measurable set A c ) and LP-integrable function a(-) : Q — R. Taking the sum
over all j, we get,

Jya@ldtelar= [ (| aG@)am (@) am" @)

at least when a(-) is nonnegative, where, in the left-hand, we used the fact that the set E
has Lebesgue measure zero. However, since the restriction u|g is not Lipschitz, it need not
have the Luzin N-property, hence H?"™(u'(y) n An E) is not necessarily equal to zero, so
in the analogue of the coarea formula for u we have to keep in mind that we have to remove
the set E from the usual level set v~ !(y). What we can say about this set F is that the
function w is almost everywhere approximately differentiable on its complement ) \ E. since
every Lipschitz function is approximately differentiable almost everywhere. But in fact, as
presented in [ABOO3], in view of [Fed69, Thm.3.1.8] (see also [GMS98, Thm.3, §3.1.4]), we
can take, in the above, E to be exactly the set of the points of non-approximate differentiability
of u. By using the notation N, = u”!(y) N E, we have thus arrived to the following coarea
formula

(15) [ ooz = [

M

(fy oy ) 4277 (@)) A1 (),

and also, by the same argument as before, viewing N, as a rectifiable current of constant
multiplicity 1, we deduce the representation formula

(16) o) = [T p@)IN] A" (y),

where the maps a(-) and p satisfy the same properties as before.

2.4. The distributional Jacobian. If u is a bounded map in W (€, R"*1), the distribu-
tional Jacobian of u is defined as the (n + 1)-form on  given, in the distributional sense,
by

1

1 - i
( 7) Ju Tl+1d(u wO)v

n+l . —
where wy represents the volume form of the sphere S”. Since we have wo(y) = Y. (=1)"y; dy;,
i=1

for every y € S™, where @ =dyiA. .. dy;i—1Adyici AL .dyne, it means that

1
Ju= 3 d( > det [Oalu,...,aanu,u] dzg, /\“‘/\dﬂﬁan)

ael(n,p)
The paper [Alb05] presents a review of the distributional Jacobian. We recall here a couple
of basic properties of Ju. First of all, if u is more regular, say it belongs to W1+ (Q, R™*1),
then
Ju= > det [6a1u,...,8an+1u] dzg, Ao Adzg,,
ael(n+1,p)
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so if p =n+ 1, than it is simply det(Du)dz. This explains the choice of the factor 1/(n + 1)
in the definition. Secondly, if v € W11 (Q,S"), the partial derivatives dju,...,9p1u being
linearly dependent pointwise, we necessarily have Ju = 0.

A useful remark, given by [ABOO03, Prop.7.9], is that, in the identity (17), we can replace
wo by any differential n-form n = pwy with p : S™ - R a smooth function with average equal
to 1. Indeed, the integral over S™ of the n-form (1 - p)wy equals zero, which implies that it is
an exact form on S™ (see for example [Laf96, Theorem VII.B.6]). Then the conclusion follows,
since the exterior derivative d commutes with the pullback and dod = 0.

The distributional Jacobian Ju describes in some sense the topological singularities of the
map u. To exemplify, concerning u € W™ (2 c RP, S"), the following are true:

(i) In the case p =n+ 1, the map u can be approximated, in the W™ norm, by a sequence
{u;} c C*(Q,8") if and only if Ju = 0.
(ii) There exists a sequence {uj} c C®(Q \TI';,S™) such that u; - u in W™ where
;= a(u]_-l(y)), for H™-almost every y € S™.
(iii) If the mapping u is continuous outside a (p — n — 1)-dimensional submanifold S, then

«Ju = 2L deg(u, S)[S].
n+1

(iv) In general, «Ju = (_1)p—nJ”T+118[[Ny]] for H™-almost all y € S™.
n

The property (i) is the main result of [Bet90] ([Remark 2]). The approximation result (ii) can
be proved by following the same argument used in [Bou07, Section 5] to prove the density of
the class R in W*4(SY S1) (for s,q > 1 with 1 < sq < 2, [Bou07, Theorem 2]). The property
(iii) is stated in [ABOO03, Subsection 3.7] and it was previously proved, for p = n+1 in [BCLS86,
Theorem B.2, Remark B.2], for n =2 and S a (p — 3)-dimensional disk in [Pak01, Corollary
1], and for p = 3, n =1 in [JS02, Example 3.4]. And finally, (iv) is one of the conclusions of
[ABOO03, Theorem 3.8|, and we detail below its proof.

1
We have seen that the Jacobian of u is given by Ju = — d(uf(pwo)), where p is any real
n+

smooth function on S™ with average equal to 1, and wy is the volume form on S™. Hence, by
the properties of the x operator, we have

DT
(18) wJu = 290t (o).
n+1

We fix a point z € S" where y — [N,] is weak-» approximately continuous. This is in fact
true for H"-almost all z, because, as we have seen, the map y ~ [N, ] is weak-+ H{"-measurable.
So, if we consider {n;} a dense countable subset of D™(f2), then, for every n € D"™(Q),
y = [Ny](n) is H"-measurable, hence H"-almost everywhere approximately continuous. Thus,
for #" almost all z, the map y — [N, ](7;) is approximately continuous in z, for every 4, and, by
density, it follows that all such points z are actually points of weak-* approximate continuity
of [IN,].

Let p; : S = R be a sequence of positive smooth functions with compact support which
approximate the Dirac measure at z, such that

supp(pi) = B(z,7i) nS", f pidH" =1, and
Sn
sup sup {|p;i(x)| H" (supp(pi))}=: a < co.
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Then, using the formula (16), we have that, for any n € D™(Q),

= (i) () = IND()| = | L () IN, 1) 4R () - [N=D()|
< [, @I - V0] ar )
<af, NI = INDn)|a# (),

which converges to 0 when 7; tends to 0, hence xuf(p;wg) converges, in the weak-* topology,
to [IN.]. Since the boundary operator is continuous, this implies that

-1)™(n+1
(19) d[N.] = D™+ 1) * Ju,
On+1
noting that we have to use o,+1p; in place of p in the relation (18).
We can now state the main result of the paper.

Theorem 1. Let Q be a bounded and connected smooth open set in R™™, and suppose T’

s the boundary of a rectifiable current in 2, of dimension m and finite mass. Consider the
following class of admissible functions

o 17n ny . _ On+1
E(T) = {ue W™ (Q,8") ; »Ju = n+1r},

To each map u in E(I), we associate the weighted energy
Er(u,0) = [ a(@)Du(@)|" dz,
Q

for any strictly positive, continuous function a(-) on , with infa(-) > 0. Then, the minimum
energy of u is given by

20 inf F =n"%6,.1 inf M(M
(20) s r(u,a) =n"""op. i (MLa),

where the infimum in the right-hand side is taken over the following class of integral currents,
C(T):={M e R (R™™); M(M) < 00, OM =T}.

3. THE PROOF OF THEOREM 1.

The first step is the construction of the dipole which will be used in the proof of the upper
bound of the energy. This intermediate result, given in Lemma 1, follows the one in [BCL86,
Section VIII, 1. The Upper Bound], concerned with the case m =2, n = 1. In order to take into
account a continuous weight function, we define the following modified spherical Hausdorff
measure.

Definition 1. For any positive £P-measurable function w(-) on RP, let H!' denote the outer
measure on RP defined by

N pm/po.m
Hyy(A) =sup inf{ )" —m/prHLp/m(Dk) : Dy, ¢ RP open balls
0>0 k=1 Moy

that cover A, diam Dy, < 6},

for every A c RP.



PRESCRIBED SINGULARITIES WITH WEIGHTS 11

Since HI' is obtained, like the usual Hausdorff measure, via the Carathéodory construction,
it is indeed a (metric) outer measure on RP, and the following result shows the connection
between H,; and H™.

Proposition 1. If w(-) is a continuous positive function, then
HiyLA=w(-)H™L A,
for any H™-rectifiable set A c RP.

Proof. First we see that, if w(-) is constant, then the above equality is satisfied, because, by
[Fed69, Theorem 3.2.26], the Hausdorff and spherical measures coincide on H™-rectifiable sets.
Next, remark that the two measures, H.'L A and w(-)H™ L A, are both Radon measures since,
by hypothesis, H™(A) < oo, and so, also H]'(A) < co. The sets of null H]}' and H™-measure
coincide, so it is enough to prove

Hi(4) = [ (@) an (@),

for any set A that is Borel H™-rectifiable and compact.

We will apply the Vitali-Besicovitch covering theorem (see [AFP00, Theorem 2.19]), to
cover A, up to a set of small H"™-measure, with a disjoint family of small balls. For this, first,
for any ¢ > 0, we choose v > 0 so that w(:), which is uniformly continuous on A, satisfies
|w(z) = w(y)| < €, whenever |x — y| < v. Then, for any § > 0, we can find a finite number of
balls such that

N
Hm(A\ Ule(:Ej)) <0, where <7, zjeA Vji=1,...,N.
P

With this, we have
N

fA w(x) dH™ () < dsupw(-) +eH™(A) + D w(a;)H™ (By, (x;) N A)
A j=1
and, knowing that w(z;)H™LA = HZU”(%)I_A, for all j, and w(x;) < e+w(x), for all z € By, (z;),

we arrive to

fA w(z)dH™(x) < dsupw(-) + 2eH™(A) + H. (A).
A
On the other hand, we get, in the same manner, that
Hip (A) <dsupw(-) +2eH™(A) + fA w(x)dH™ (x),
A

so, by taking €, § - 0, we have obtained the desired equality. ]

We assume, from now on, the hypotheses of Theorem 1. Following the previous lemma,
we could define a new mass M, on R,,(R™*") by substituting H™ for H]" in the integral
representation of the mass M, see (9) in section 2. Specifically, for a current T € R,,(R™*")
associated to the H™-rectifiable set T and the multiplicity 67, we set

Mo (T) = [TGT(:L‘)’HZ”.
With this, formula (20) can be written as

inf FE =20, inf Mo(M
et (1) r(ua)=n Tl ey (A1),
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which is in agreement with the observation in [BCL86] that different generalizations of the
original problem should all yield the same kind of formula for the minimum energy, provided
that the distance, in this case the measure, is properly defined. The same approach was taken
in [Mil05], where the Euclidean distance in R® was replaced by dist, whose definition we
specified in the Introduction, formula (7). Considering the proposition below, it is clear that
Theorem 1 gives, for the case m =1, n = 2, the same formula, as does [Mil05, Theorem 1.1},
for a(-) continuous.

Proposition 2. Suppose I' is a polyhedral current. Then, in the formula (20) of Theorem 1,
we can assume that the currents M are polyhedral, i.e.,

inf{(M(MLa): MeC(T)}=inf(M(MvLa): MeC(T)nP,r(R"™))}

Proof. We need to show that, given M € R,,,(R™*"), with finite mass and boundary OM =T,
we can find, for every € > 0, a polyhedral current P, that has the same boundary, and which
satisfies

M(PLa)<M(MLa)+e.

It suffices to show this for a(-) = 1, as the general case follows by applying the Vitali-
Besicovitch theorem as in the precedent proof.

By the approximation theorem [Fed69, Theorem 4.2.22], there exists a polyhedral current
Py € P, (R™™), and two rectifiable currents R and @, of dimension m and m+ 1, respectively,
such that

M=Py+R+0Q, with M(R)<e/2, and M(Py) <M +¢/2.

Moreover, by the deformation theorem [Fed69, Theorem 4.2.9], we can write R as the sum
between a polyhedral current P, and the boundary 0S of a (m + 1)-dimensional integral
current S. So, if we take P = Py + P, we have

M=P+0(Q+S), with M(P)<M(FP)+M(R)<e¢,
and 0P =0M =T. O

The following lemma gives the analogue of the dipole introduced in [BCL&6].

Lemma 1. Suppose E = E,(&,Tg) is an oriented disk of dimension m in Q. Then, for any
0 >0, and any fixed point yo € S™, there exists a map u e E([OE]), that is locally Lipschitz in
QN OE, constantly equal to yo outside the ball B,(&) in R™™, and whose energy satisfies the
following inequality

(21) [ (@) IDu(@)[" do < w201 1 (E) + .
Proof. Without loss of generality, we may restrict to the particular case where
E ={(x,0) e R™ xR"™ with |z| <1},
Tp = €§m+n) Aee A efﬁ“”) eR™xR" and yp=(0,1)eR" xR,

because the general case will then follow through an isometry of R, and a rotation of S".
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The map u will be constructed in two steps, just as described in [BCL86]. The first step is
to take a function v : R™ — S™ that satisfies the following properties:

(22) v(+) is Lipschitz on R™ and constant outside a small ball,
(23) degwv(-) =1, and
(24) fR IDu(z)|" dz < n™ 20,0 +1,

for a given 1 > 0. For example, we can consider the function from [BC83, proof of Lemma 2]
(see also [Mil05, Lemma 3.2]), which, in our case, becomes

1

m(%%, lz[2 — ) lz| < e
D) ) (LA VI-AED) e fe2e]
(0,1) eR" xR |z > 2e
where T := ((=1)"" 21, 29,...,2,) is used to control the sign of degwv(e,-), the map A(-) is an

affine map chosen such that v(e,-) is continuous, that is,

A(r) == - —_
(r) 52+1T+52+1

and € > 0 is a small parameter that we will conveniently fix later.

The meaning of degv(e,-) is that of the degree of v(e,-) which is viewed as a map from
the sphere S™ to itself, obtained by identifying R™ U {co} and S™ through the use of the
stereographic projection 7. So degv(e,-) is given by

, for >0,

degv(e, ()= ) 0y, v(E, T(Y)),. -, By, v(E, T(y)]dH" (y)
/ det[v(e, 2),0p,v(e,2),...,0p,0(c,2) | da
On+1 JR™
where y; ...,y, are the coordinates of the point y € S" in an orthonormal basis of T,S".

The function v(e,-) clearly satisfies (22), and we next check that, provided ¢ is sufficiently
small, properties (23) and (24) are also verified. Since

2¢2 "
(e4+|:c|2)  lelse
) A7 (a)

e+ 1 fg]r1y/1- A%(Ja])

det[v, 0y, v,...,05,v](g,x) =

|| € [, 2¢],

we have, after the appropriate change of variables, that
-1 -1

o /e pn 2e/(e2+1)  pn
25 degv(e,-) = -2 [ 27 f g f ar).
( ) egv(s ) Un+1( 0 (1+r2)n [ 0 \/m T)

We notice that the derivative with respect to € of degwv(e,-) vanishes on the interval (0,1).
Since the degree depends continuously on e, we find, after another change of variables, that

o 1 7571/2 1 n/2 1
20n+1( (1+t)” (1—1t)1/2 )

(26) degv(e,-) =degv(l,-) =
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The second integral is an Euler integral, and its value is

2\ 1
/ 271 (1 — )2 g B(n 1)_ I(5Ir(3)
2'2) " T(2+1)
where B(-,-) and I'(-) are the classical Beta and Gamma functions, respectively. For the first
integral in (26), we consider the hypergeometric function in its Euler integral representation,
that is,
I'(v) 1 B-1 -B-1 -
Fa,5;7;€)=—f " (1-t)” 1-&)™>dt
( TG b T
(see for example [AAR99, Theorem 2.2.1]; here «, 3,7 > 0 and £ € R~ {0}), and then use
Kummer’s formula
MNa-p+ 1)1“(% +1)
Fla+1I(5-B8+1)

F(a,fia-B+1;-1) =
(see [AAR99, Corollary 3.1.2]). This gives us

1
fo (L)AL =

and, using the property I‘(z)F(z + %) = 21722 /7 '(2z) satisfied by the Gamma function, we
conclude that (23) is verified, that is,

degv(e,-) =1, for any €€ (0,1).
In order to verify (24), we compute the differential of v(e,-). We have that

L(5+1)I(%)
F'(n+1)

2
1/2 425 5 lz| < e
Due.a) =], ° W o
’ 4 1 (n—1)A2(|z|)
x + o € ¢, 2¢]
(2+1)2 " 1- A2(Ja) EE nelesl

Thus,

ef 922 \"
[l IDu(e, z)[" dz = n"%0,, '[0 ( c ) L dr = n™26,2" x I(e),
zl<e

et+r?
where I(¢) is the first integral in (25). From the fact that deguv(e,-) = 1, and recalling (25),

we can deduce that J(2+1) 1
1 2e/(e*+1 n-
I(e) = On+l 2 f " dr,
2"ay, 0

2n V1= 2

for every e € (0,1), and so
lim IDu(e, )" dz = n %01
e—~0 J|z|<e

On the other hand,

f IDo(e, z)|" dz
e<|z|<2e

o 2 1 (26 -r) -
‘QU”fs ((52+1)2—4(25—r)2 (n- )r2(52+1)) r

1 n-1\"?
<2271 n +
Ine ((1—52)2 52+1)




PRESCRIBED SINGULARITIES WITH WEIGHTS 15

which tends to 0 when € - 0. So, we can choose ¢ > 0 sufficiently small for (24) to be verified,
and for this function v(e,-) we will just use the notation v(-).
The second step is to define, for every k > 1, the function u: Q~ dF — S™ by

k
- o (z,z) € (prrm E xR™) N Q)
U(l’,(l?) = T’-ll”

(0,1) eR" xR elsewhere .
We compute the differential of u to get

Du(.2)] - (r _km )[(7« |_9C||£|)2 N 1]1/2 y Dv(r l_ﬂTﬂ)

if (Z,x) € prrm B x R™. For k sufficiently large, and 7 conveniently chosen, we have

Ja@)Du(@)|" da
~ r—|T 2 n/2 " ~
ol Y T Dot o

<n™?op,. [ a(#,0)dz + 6 = %0, HT(E) + 6,
prlRmEﬂQ

)

so inequality (21) is satisfied.
Since the map u belongs to Wllo’?(Q, S™), and is locally Lipschitz outside OF, we know that

«Ju = 2L deg(u, OE)[OE],
n+1

where the degree of u along the curve OF means the degree of the restriction of u to the
boundary of any disk D c R™*" of dimension (n+ 1), that intersects transversally JF in only
one point, and whose orientation Tp is such that

(m+n)

(m+n)
AN m+n

Tor NTD = €4 AN

Ty being the orientation of the boundary dF induced by that of E. If we choose

D= {5 = ilegmm) + xleﬁﬁin) et xne,(jﬁtln) with |€ - Tegm+n)| < r},

then it can be easily seen that deg(u,dD) = degv(-) = 1, and, consequently, the map u belongs
to the class E([OE]). O

For passing from the boundary of a disk to the general case of the boundary of a rectifiable
current, we will need the following result, which is a variant of [ABO03, Corollary 7.13].

Theorem 2. Let T be a current in R, () with finite mass, and suppose that a(-) :  — (0, c0)
is a bounded continuous function. Given p(-) a strictly positive function on S, and s > 1, there
exist, for any € >0, a rectifiable current R € R, (), and finitely many m-dimensional disks
E, (z;) cQ of radii v; < p(x;), which satisfy the following properties:
(a) OT = ¥ O[Ey, (z;)] + OR;
' 1+

(b) HZ(Er,(2:)) < - M(T'La);

' 1

Sm+1

() M(RLa)< (1= =7 JM(T L a);

(d) the balls By, (x;) are pairwise disjoint and contained in .
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Proof. This result is a direct consequence of [ABO03, Theorem 7.12] (which, in turn, is proved
using the approximation of integral flat currents by integral polyhedral currents — [Fed69,
Thm. 4.2.22].)

We begin, just like in the proof of proposition 1, by applying the Vitali-Besicovitch covering
theorem. Since a(-) is uniformly continuous on the compact support of T, then, for any 7 > 0,
we can find v > 0 such that, |a(z) — a(y)| < n whenever |z — y| < 7, and, considering T given
by the integral representation (8), we cover T, up to a set of small H™-measure, by a finite
and disjoint family of small balls

. D _
HW(T\ UlB»yj(ﬁj))é)\, where A>0, vj <, §eT.
J:

The theorem mentioned above states that the currents T'L B, (§;) can be approximated in
bj

the flat norm by finite sums Y’ [E,,; (7i;)] of m-dimensional disks with radii p;; < p(;;) and
i=1

such that Epij (z45) are pairwise disjoint and contained in B, (). This implies that, for any
d > 0, there exist rectifiable currents R; € R, (B, (x;)) and Q; € Ryni1(By;(x;)), that satisfy

(27) TLB%@»=§ﬁa%@wm+ﬁa+m%
(28) M(R,) <SM(TL B, (), and
(20) i?W%EWWgD<U+5MMTLBw@ﬂ%Vj=1~wp

We rescale the radii by taking r; := p;;/s, define Ry := T'L A, where the measurable set A
~ P

represents the difference 7'\ U B, (&;), and consider the following m-dimensional rectifiable
j=1

current
R:= i [Z ([[Epu(xm)]] [[Er”(ﬂczj)]]) + Rj] + Ro.

After summing the identities in (27), we obtain

T= iiﬂ Eij(zi5) H+R+28ij

j=1li=1

so we need only to apply the boundary operator, and reindex the finite number of disks
E,.; (), to get the first property required.
To arrive at the second one, we approximate a(r) with a(§;) on each B, (¢;), and use the
inequalities in (29), that give us

£ BHIE (5)) € 3 0(6) + H" (B, ()
1—+6(M(T L a)+ 29M(T)).
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Then, using also the inequalities (28), and the fact that A has small H™ measure, we see that
p Pj

M(RLa) =3 > [M([B,,, (zi)] - a) - M([E;,, (25;)] - a)]

j=li=1

p
+ > M(R;jLa)+M(RoLa)
j=1

<[(1- Sim)(1 +8) + 3](M(T' L a) + 20M(T)) + Ao

where Ao approaches 0, as A tends to 0. With a proper choice of small i and §, these two last
inequalities yield the properties b. and c. in the statement of the theorem. O

3.1. Proof of the upper bound. Making use of the two results from above, we will see
that the exact strategy from [ABO03, Theorem 5.6] works effectively for proving the precise
lower bound of the weighted energy. Let M be a current in C(T") and let 6 >0, and s € (1,2).
The result is obtained by finding sequences of maps u; € Whn(€Q,S"), closed subsets S;jcQ
of dimension m —1 such that u; € Lip},.(©2\ S;), and currents R; € R,,(2) with the following
properties:

On+1
30 Ju; = I'-0R;
(30) *J U ot 1( i)
(31) M(RjLa) <ciM(Rj-i1La), withep <1
(32) fﬂ a(z) [Duj(x) - Duj_i(2)|" dz < g M(Rj-1 L a),
with ¢; and co constants verifying ' =20, + L These sequences will
_ " M(M L a)

1
be constructed by induction, starting from ug constant, Sop =@ and Rg= M.

Let’s see first how these sequences help us prove the upper bound. From (2) and (3) we
deduce that (Du;); (modulo a subsequence) converges in L"(Q,R™!), so we can assume that
(u;); converges to some map u in WIIO’Z(Q, S™). Hence, xJu; - xJu, so, by (1) and (3), we get

*Ju = U”Tﬂl I' and, by (2) and (3) and the condition on the constants ¢; and co, we have
n

[Q a(z)[Du(z)[" dz < n?6,  M(M L a) + 6.

For the construction of the sequences, suppose we have u;_1, S;_1 and R;_; with the desired
properties, for a fixed j. Since Sj_; is closed, for each x € 2\ S;_; we can find r(z) >0 such
that Br(x)(x) c 2\ Sj_1. The function w;j_; is locally Lipschitz outside S;_1, so we have
HDuj*1|‘L°°(BT(z)(I)) < oo and we can define

r(z) s-1

0<p(z):= min{ ;
s 2s

H DUj_l Hii"(BT(z) (.1’))}7

for every x in 2\ §j_1. Then, by Theorem 2, applied with T" = R;_, for every small € > 0
we get finitely many m-dimensional disks E, (z;) in R™*" with r; < p(z;) and a rectifiable
m-current R; c {2 such that the balls By, (x;) are pairwise disjoint, and
(2) OR;o1 = £ OB, (a:)] + OR,

' 1+e¢

Sm

(b) ZH™(Er;(2:)) < M(Rj-1 L a)



18 I. A. Molnar

1

Sm+1

(c) M(R; L a) < (1 - )|\/|(R,-,1 La).

On every E,,(z;) we insert the dipole given by Lemma 1. More precisely, for any n > 0,
we take some maps v; € WH(Q,S™), which are locally Lipschitz on Q \ 9F,.(x;), constantly
equal to some yg € u;j_1(Bsr, (zi) N By, (2;)), and that satisfy

[ o) D" () de < a3 (B (2)) + 1,

o
and thus, *Ju; =——

- :11 OE,, ().

Because v; agrees with one of the values of u;_1 on the annulus By, (z;) En(xi), for each 1,
we have

Huj_l_vi||L°°(Bsri(aci)\§ri($i))
< osup o uya (@) —wia (€)= sup fuja(§+R) —uja (6]

x,£€Bsr, () heBasr,
fEBsri (CC,L)

< sup [Dujoa|Le(a,,, @))|hl = 2575 [Duj1 L (B, (@)

h€B2sri

By the choice of p, this implies |uj_; —v;| < s-1<1 a.e. on By, (2;) N Eri(:c,-), and the balls
B, (z;) being pairwise disjoint, we can repeatedly apply Lemma 5.4 in [ABOO03] to get the
maps w; € WH?(Q,S™) with

where wo = u;-1.

v; on By, (x;)
Wy = ’
Wi-1 on 2\ Bsri (:El)

Since there are a finite number of balls B, (x;), we can take u; to be the last wj, that is,

v; on By, (z;), Vi
uj = uj—1 on UBSTi(:Ei) ;
(A

moreover, Lemma 5.4 in [ABOO03] also gives us Ju; = Juj_; + ¥ Ju;, and
i

2 3s—-1 .
1Dl (5., ) B (i) € ﬁﬁ”D“j—l”L"%Bsnm))’ vi.

By construction (see the proof of Lemma 5.4 in [ABOO03]), the function u; is locally Lipschitz
outside S; := UIE,, (v;) u Sj-1. Properties (a) and (c) show that u; satisfies the required
7

conditions (30), and (31) with ¢; =1 - respectively, and it remains to check (32). We

gm+l’
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have the estimate

1/n

([ @)D (@) - Duty () )
. n 1/n

< ( Z ‘/;sr(li)\ﬁr'(xi) “ |Du']| * Z ‘/;r(xz) ¢ |DUZ| )

1/n
+<Zf3 ) a|D“j‘1|n)
35 —
[( ZZ: [ér ()\Br; (zi) (z) dr

+ n”/20n+1 > MG (B () + Zﬁ] "

a(x) dx)l/n

ri (z4)

Taking into account property (b), it is clear that there exist € >0, n > 0 and s € (1,2), such
that condition (32) is verified, with the constant cy also satisfying the required inequality
relative to cj.

3.2. Proof of the lower bound. As we mentioned in the introduction, the lower bound can
be obtained with the help of the coarea formula, like in [ABOO03], and, before that, as seen
in [ABLS8S]. Let u: Q — S™ be an element of £(T'), that is, u belongs to W!"(2,S™) and it

In+l P We can choose, recalling (19), a point z € S™ such that »Ju = Tntl [ N.],
n+

+
and which veri?ies the inequality
fn(fNya(x)d’H (2)) dH" (y).

satisfies *Ju =

/Nz a(z)dH™(z) <
By the coarea formula (15), and inequality (10), we have
m n _ §
/"([]Vy a(z)dH (x))d?-[ (v) an(x)|u wo(x)|dx
-n/2 n
<n Aa(:v)|Du(m)| dz.

n+1

Since the current My := (-1)™[N.] belongs to the class C(I"), we have

fNZ a(e) A" (x) = M(Mo @) = M(IN- al) > | inf MO )

and therefore we have obtained
[ a(2)|Du()|" dz > 0201 Lt MM Ca),

which completes the proof of the theorem.
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