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Abstract 

To date no experiment has reached the level of sensitivity required to observe weak nuclear 

force induced parity violation (PV) energy differences in chiral molecules. In this paper, we 

present the approach, adopted at Laboratoire de Physique des Lasers (LPL), to measure 

frequency differences in the vibrational spectrum of enantiomers. We review different 

spectroscopic methods developed at LPL leading to the highest resolutions, as well as 20 years 

of CO2 laser stabilization work enabling such precise measurements. After a first attempt to 

observe PV vibrational frequency shifts using sub-Doppler saturated absorption spectroscopy 

in a cell, we are currently aiming at an experiment based on Doppler-free two-photon Ramsey 

interferometry on a supersonic beam. We report on our latest progress towards observing PV 

with chiral organo-metallic complexes containing a heavy rhenium atom.  

Introduction 

With their rich electronic, vibrational, rotational and hyperfine structure, molecules can play a 

decisive role in precision tests of fundamental physics. They are now being (or have recently been) 

used to test fundamental symmetries such as parity
1-3

, or both parity and time reversal
4
, to test the 

Pauli exclusion principle
5
, to measure either values of fundamental constants (electron-to-proton 

mass ratio
6
, Boltzmann constant

7
), or to measure their variation in time (fine structure constant

8
, 



   

 

 
2 

electron-to-proton mass ratio
9,10

). Most of those experiments can be cast as the measurement of 

molecular frequencies highlighting the importance of high-resolution molecular spectroscopy and 

frequency metrology. 

In this context, looking for weak nuclear force-induced parity violating effects has been a 

long-standing quest in molecular physics. The parity operation (P) is one of the three fundamental 

symmetries along with charge conjugation (C) and time reversal (T) which make up the CPT 

theorem. Although the theorem states that, in the frame of Lorentz invariant quantum field theories, 

the combination of the three symmetries must be conserved by all physical processes and by the 

four fundamental forces (gravitation, the electromagnetic force, the strong and the weak force), it 

does not exclude that individual ones may be broken. In 1956, Lee and Yang proposed that parity 

may not be conserved in weak interactions
11

. This proposal was subsequently confirmed by 

experiment in nuclear
12

 and atomic physics (see references 13 and references therein). It has yet to 

be observed in the molecular domain, where a tiny energy difference between enantiomers of chiral 

molecules would constitute a unambiguous signature of parity violating electroweak interactions as 

initially suggested in references 14 and 15. In biology, chirality is a hallmark of life. Nature shows, 

with very few exceptions, a distinct preference for L-amino acids and D-sugars over their mirror 

images. The origin of biochirality remains unexplained and there has been speculation that the very 

tiny energy difference between enantiomers could have provided the bias needed to seed the 

observed handedness of biological molecules
14, 16

. A successful parity violation (PV) measurement 

in chiral molecules is thus a test of the Standard Model of Physics in the low-energy regime, and its 

comparison to quantum chemistry calculations will serve to stimulate further research on the origin 

of biomolecular homochirality. 

To date, Martin Quack’s group and our group at Laboratoire de Physique des Lasers (LPL) 

are among the very few groups to have made experimental attempts to measure PV in chiral 

molecules. The two groups have chosen different but complementary approaches. However, no 

experiment to date has reached the required level of resolution needed to observe the tiny PV 

energy differences involved.  
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This paper presents the route followed by the LPL group towards the observation of parity 

violation in molecules. Our approach consists in looking for frequency differences in the spectrum 

of enantiomers. In doing so, we favour probing the – usually mid-infrared – vibrational spectrum 

for two reasons. The natural linewidths are narrow (of the order of 1 Hz). And according to 

Lethokov’s rule of thumb
17

 for PV shifts exhibited by transitions within a single electronic 

potential, the magnitude of the PV shift is a fraction of the overall electronic energy shift roughly 

proportional to the transition’s frequency. This leads to a good compromise between the size of the 

effect and the potentially reachable experimental resolution. But even in the most favourable 

molecules, the effect remains small; it has been calculated to be of the order of or below 1 Hz. 

There is thus no hope of reaching the level of resolution required to measure such a minute energy 

difference in a racemic mixture. The spectra of the two enantiomers must be individually recorded 

and compared. The sensitivity to PV is then determined by the precision with which any difference 

between the two measured line centres can be distinguished. Since many systematic effects are 

proportional to the spectral linewidth, it is crucial to reach the highest possible resolution. However, 

as detailed below, increasing the resolution often results in decreasing the signal amplitude and in 

turn the statistical uncertainty on the line centre. Thus a compromise must be found.   

Projects aiming at resolving major scientific issues such as observing PV in chiral molecules 

are inevitably long-term and most often require tremendous experimental and instrumental 

developments to push both concepts and technologies to their limit. The remainder of the paper is 

divided in three parts: the first one recalls the different spectroscopic methods and illustrates the 

path to attaining the highest resolutions. The second gives a detailed historical narrative on the 

development of high resolution spectrometers in the 10 µm region. Finally, the third recounts our 

attempts made thus far to measure PV in chiral molecules, and presents our latest experimental 

efforts towards this goal. 

Molecular ultra-high resolution spectroscopy 

The choice of a specific spectroscopic method for addressing a given scientific objective is guided 
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by the level of resolution required and the need for sufficient signal-to-noise ratio. In the context of 

the search for frequency differences between right- and left-handed chiral molecules, as already 

mentioned, the expected shift is so small that there is no experimental method than can resolve the 

right- and left-handed molecular resonances by probing a racemic mixture. Spectra of both 

enantiopure samples must be recorded separately and the sensitivity of the experiment is given by 

the uncertainty on the determined line centre frequency difference. This uncertainty is of the order 

of 
NS

 with  the resonance line width (the resolution) and NS  the signal-to-noise ratio, not 

limited by the resolution. Although only strictly true if the uncertainty were purely statistical, it 

remains a good rule of thumb: many systematic uncertainties, a main concern for such high 

precision experiments, are usually proportional to the resolution. As a consequence, both high 

resolution and large signal-to-noise ratios are really desirable. In this section, we will compare 

various ultra-high resolution spectroscopic methods developed at LPL. Rather than quantitatively 

evaluating signal amplitudes and widths, the aim is to give insight into the underlying physics, the 

associated orders of magnitude and scaling laws. In doing so, we will illustrate our scientific 

choices, in particular why we decided to change from sub-Doppler saturated absorption 

spectroscopy to Doppler-free two-photon Ramsey interferometry for the observation of vibrational 

frequency differences. 

Linear absorption Doppler-broadened spectroscopy 

The invention of the laser more than fifty years ago opened the route of high resolution 

spectroscopy since the light source for the first time did not limit anymore the resolution in atomic 

or molecular spectroscopy (see Section Laser frequency control). Let us only consider the gas 

phase. In linear absorption spectroscopy, particles’ thermal motion limits the resolution to the 

Doppler width: 
m

Tk
ku B

Doppler

22
 (e-fold half-width of the Gaussian Doppler profile). k is 

the modulus of the wave vector k


,  the laser wavelength, u the most probable speed, kB the 
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Boltzmann constant, T the temperature and m the mass of the particle under investigation. The 

resonance condition for a particle of velocity v


 is reached when vk


0 , with 20  and 

2  the particle and laser frequency respectively. This resonance condition is relaxed due to the 

finite coherent particle-light interaction time, limited to 1c , the mean time between two 

collisions (inverse of the collisional width ), or to the transit time in the laser beam vw0t ~  

(with w0 the waist of the laser beam and v  the transverse velocity
a
)

18
. For an ensemble of particles 

in usual conditions of laser power, the relevant transit time is uw0t ~  where u is the most 

probable speed. The resonance condition is also relaxed due to the finite time RR  required 

for the particle to absorb a photon (associated to the so-called saturation broadening), with 

h

E

2
2 0

R  the Rabi frequency,  the electric dipole moment of the transition and E0 the laser 

field amplitude. Let us, in a simplified picture, call  the smallest of these three times. A particle of 

given velocity then contributes to the signal over a frequency range equal to 1 , the full 

homogeneous width. Reciprocally, particles contributing to the signal at a given frequency belong 

to a longitudinal (along k


) velocity class of width . The linear absorption signal amplitude is 

thus proportional to the homogeneous to Doppler width ratio. 

Saturated absorption spectroscopy 

Various methods were then developed to overcome the Doppler limit and to enter into the domain 

of very high resolution spectroscopy. The most widely used method is probably saturated 

absorption spectroscopy for which the gas interacts with a standing wave. The two 

counterpropagating waves are simultaneously in resonance with a particle when 

vkvk


0 . This leads to a narrow resonance centred at 0  of half width at half 

maximum equal to 1  (following a similar argumentation as in the previous section). Particles 

                                                

a
 The transverse velocity is defined as the velocity component which is perpendicular to the laser beam. 
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contributing to this signal thus cross the laser perpendicularly and have a zero longitudinal velocity 

with a tolerance of 2 . The saturation signal is a Lamb dip in the centre of the Doppler 

profile
19

. The size of the signal strongly depends on the laser power with an optimum at 

2R (corresponding to a so-called 2  pulse). However, the amplitude of the saturation 

signal being a fraction of the Doppler signal, itself proportional to the resolution 1 , one concludes 

that the higher the resolution, the smaller the amplitude of the saturated absorption signal. 

The time  is thus the key parameter when very high resolution is needed. For spectroscopy 

in the mid-infrared domain or longer wavelengths, the natural life time is usually of the order of 1 s 

and is not a limitation. The collisional broadening can also be made negligible by working at low 

enough pressures. The price to be paid is to use a large enough absorption cell to compensate for the 

reduction of the gas density by an increase in optical length. The resolution is then limited by the 

transit-time uw0~  through the laser beam. It can indeed be viewed as the consequence of a 

residual Doppler shift ku , with 01~ wk , the laser beam transverse wave vectors distribution 

width. Note that this distribution is related to the waist size w0 and not to the beam radius (even if 

the phrase transit-time is often used) and therefore does not depend on the location along the beam 

path. In these conditions it is thus important to have a well-collimated beam in order to reach the 

highest resolutions. As an example, in our group an 18-m long triple path cell was built leading to 

108 m of absorption length after retroreflection. We were able to operate in the10
-2

-10
-4

 Pa pressure 

range and with a 3.5-cm waist leading to a transit-time limited resolution below 1 kHz in the 10-µm 

spectral region. This setup made possible ultra-high resolution spectroscopy at room temperature of 

molecules like SF6
20

 or CHFClBr, the common chiral prototype molecule
21

. 

Two-photon Doppler-free spectroscopy 

An alternative way to overcome the Doppler effect is the Doppler-free two-photon spectroscopy 

method for which particles interact with a standing wave as well. Consider a three-level (a, b and c) 

system with intermediate state b connected to a and c by dipole moments. One looks for signals 
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resulting from the absorption of one photon from each laser beam in order to address the c-a 

transition of frequency 0. This can only happen on resonance 0 2k v k v  as the 

Doppler-shift relative to one beam is exactly compensated by the Doppler-shift relative to the other. 

The main advantage of 2-photon transitions over saturated absorption is that all particles contribute 

to the signal, whatever their speed. This is a considerable gain in number of particles equal to the 

ratio between the Doppler and homogeneous width uk~  which is, in the context of high 

resolution spectroscopy, a very large number. The disadvantage is that such transitions often require 

high laser intensities in order to be driven efficiently (the intermediate state b is often off-resonant 

for all velocity classes), which results in a larger laser intensity noise and potentially higher 

systematic effects. The Doppler-free two-photon interaction can be described by introducing an 

effective Rabi frequency coupling states a and c and proportional to the two electric fields of the 

standing wave. It can thus be seen as an effective linear absorption spectroscopy with no Doppler 

effect. Another consequence of the absence of Doppler effect is the fact that the transit width is 

directly determined by the beam radius w, and not anymore the waist w0. 

Selection of slow molecules 

To further improve the resolution, finding a way to enhance the relative contribution of the slowest 

particles (those that have the longest transit-time) to the saturation signal seems appealing
22

. In the 

absence of general methods for cooling molecules (as compared to atoms) an alternative is to 

extract a signal coming from the slowest molecules of the Maxwell-Boltzmann distribution. A given 

(low) pressure determines a characteristic transverse speed 
0v  at which statistically only one 

collision occurs during the transit time of a particle through the laser beam. 
0v  is of the order of 

0w . Molecules of transverse speed 
0vv  (called slow molecules from now on) are in the 

collisional regime. They all experience the same coherent interaction time 1c  with the laser 

field which results in a homogeneous (constant amplitude and width) signal for this speed domain. 

One can easily choose the laser field which optimizes the signal for every particle of this velocity 
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class (for instance 2R  for saturation spectroscopy, see above). Molecules of transverse 

speed 0vv   (fast molecules) are in the free-flight regime. The interaction time is determined by 

the transit time vw0~  and decreases as well as the absorption probability and in turn the signal 

amplitude: this is the key condition that makes selection of slow molecules beneficial.  However, 

the transverse speed v  distribution is equal to 

2

2
e

2 u
v

u

v
. This curve vanishes at 0v  and 

reaches a maximum at 2uv . To reach the highest resolutions, one has to choose uv . 

From the speed distribution, one sees that the selection is not so efficient as fast molecules will 

contribute significantly – with signal widths 0~ wv  – to the overall signal. Fortunately, the slow 

molecule selection can be enhanced by detecting successive derivatives of the line shape. After each 

derivation, the contribution of fast molecules is reduced by a factor vv 0 , (widths ratio) with 

respect to the homogeneous contribution of slow molecules. Experimentally, a low-frequency 

modulation f optimized for the detection of the narrowest signals from slow molecules of width  is 

applied. First- and second-harmonic detection enables to recover the first and second line shape 

derivatives. Expressions for the global line widths are summarized in Table 1 for both saturated 

absorption and Doppler-free two-photon spectroscopy
23,24

: 

Table 1: Dependence of the line width (half-width at half-maximum in angular frequency) of the 

direct signal or the modulated signal after first- and second-harmonic detection for both saturated 

absorption and Doppler-free two-photon spectroscopy. Modulation depth is assumed to be small 

compared to . 

 Saturated absorption Doppler-free two-photon 

Non-derived line 1.51 0wu  ln 2

2

u

w
 

First derivative 1.44  wu 2  

Second derivative 0.63  2  
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Concerning the amplitude of the overall signal, let us take as a reference the amplitude 

obtained when the collisional width and transit width are of the same order for a transverse speed 

equal to u. It can easily be shown that, when reducing the pressure and  accordingly, the signal in 

the regime of selection of slow molecules is reduced by a factor 4
0w u  (resp. 3

w u )  in sub-

Doppler saturated (resp. Doppler-free two-photon) absorption spectroscopy. The difference comes 

from the absence of selection of longitudinal velocities in the latter case. As a result, although the 

selection of slow molecules is an elegant method which leads to a gain in resolution by a factor of 

the order of 0wu , which depends on the working pressure, the signal-to-noise ratio decreases 

very rapidly which prevented a wide use of this method. It has mainly been limited to proofs-of-

principle or to experiments (such as the observation of ultra-narrow hyperfine structures) for which 

resolution is a critical requirement. As an example, ~100 Hz resolution (3×10
-12

 in relative value) 

was demonstrated in our group by slow-molecule detection in both sub-Doppler saturation 

spectroscopy
23

 and Doppler-free two-photon spectroscopy
24

 in the 18 m-long cell. 

Ramsey fringes 

The drastic reduction of the signal resulting from trying to increase the resolution limits the interest 

of methods based on the selection of slow molecules in a vapour cell. An alternative way to obtain 

higher resolutions is the famous method of separated fields first demonstrated by Ramsey
25

. This 

method can be combined with a sub-Doppler spectroscopic technique, such as saturated absorption 

or Doppler-free two-photon spectroscopy and allows reaching the highest resolutions in the optical 

domain. The general principle on which are based for example caesium beam clocks consists in a 

first field zone that addresses a transition in order to create a dipole which subsequently precesses 

freely at the molecular eigenfrequency. A second field interrogates the dipole and produces a 

population in the upper or lower state depending on the relative phase between the light and the 

dipole. This leads to a sinusoidal signal versus frequency around the resonance called Ramsey 

fringes. The obtained contrast is maximum with 2  pulses in both zones. The resolution is 

proportional to the time of flight between the two field zones. Practically, this method is used to 
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probe a molecular beam that crosses the Ramsey zones. In our simple explanation, we have omitted 

the Doppler effect. This is valid if the Ramsey method is combined with two-photon absorption 

spectroscopy, which is indeed Doppler-free, in which case the two field zones consist in two 

standing waves. For saturated absorption however, the basic configuration consists in two parallel 

travelling waves followed by two other anti-parallel waves with the same separation. The dipole 

which precesses between the two first zones accumulates a Doppler phase shift which will be 

exactly cancelled during the free flight between the two last zones. The parallelism between zones 

is thus crucial which usually implies the use of a single large corner cube or a cat’s eye collecting 

all four beams. The resolution (and finally the interest of the method when the highest resolution is 

needed) is in turn limited by the optics size. By contrast, for Doppler-free two-photon Ramsey 

interferometry parallelism of the two standing waves is not required. Besides, the whole set of 

molecules in the lower level of the transition that crosses the two standing waves contribute to the 

Ramsey signal while the resolution is increased by the factor wL  compared to conventional two-

photon spectroscopy, where L is the distance between zones. This makes Doppler-free two-photon 

Ramsey interferometry very attractive: simple geometrical design and contribution of all molecules. 

In addition, a molecular beam setup makes it easy to detect the molecular signal in a third zone, 

decoupled from the excitation zones, which enables the independent optimization of the detection 

laser power and thus signal-to-noise-ratio. 

This latter technique allowed us to demonstrate a resolution of 100 Hz on a two-photon 

vibrational transition of SF6 which led to a relative accuracy of 2 10
-14

 of the optical frequency
9
. 

This is the strongest argument that led us to recently favour this spectroscopic method for the parity 

violation project.  

Overview of experimental results 

We conclude this section by summarizing our best experimental results implementing the various 

spectroscopic techniques considered above. For saturated absorption in the regime of selection of 

slow molecules
23

, we recorded the first derivative lineshape of the 
192

OsO4 P(39)A1
3
(-) line with a 

natural isotopic abundance of 40%, in the large cell (18 m long, total path length of 108 m, waist of 
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3.5 cm) and we obtained a peak-to-peak width of 220 Hz with a S/N1Hz of 6. For Doppler-free two-

photon spectroscopy of slow molecules
24

, we recorded the second derivative lineshape of the P(4)E
0
 

line of SF6 in a Fabry-Perot of 3 m long, with a waist of 0.5 cm and we obtained a half-width at 

half-maximum (HWHM) of 280 Hz and a S/N1Hz of 2. Both results were outperformed by the two-

photon Ramsey fringes
9
, recording the same P(4)E

0
 line on a supersonic beam of pure SF6 with a 

distance between zones of 1 meter. We obtained a half-period of 100 Hz with a S/N1Hz of 30. The 

linear absorption spectroscopy performed on the 2 saQ(6,3) rovibrational line of ammonia in an 

experiment aiming to measure the Boltzmann constant
7
 led to a typical Doppler HWHM of 41 

MHz. This poor resolution cannot be compensated by the very best S/N1Hz of 15000 to compete 

with the various sub-Doppler methods. Finally, when precision is concerned, the figure of merit 

Hz
NS

1

, where  is the line width, takes the following values (expressed in Hz) of 37, 140, 3 and 

2700 for the respective experiments of saturated absorption, Doppler-free-two photon spectroscopy, 

two photon Ramsey fringes and linear absorption presented above. 

 

Laser frequency control 

As highlighted above, the invention of the laser enables to build spectrometers for which the light 

source did not limit the experimental resolution. In this Section we focus on CO2 lasers which are 

commonly used for high-resolution rovibrational spectroscopy between 9 and 11 µm, and details 

the developments made at LPL over the past years of high resolution spectrometers based on 

stabilized CO2 lasers. Lasers filled with the most abundant isotopic species 
12

C
16

O2 exhibit two 

emission bands centered at 9.4 and 10.4 µm, with emission lines found every 30 to 50 GHz. At 

LPL, we use home-made CO2 lasers which have been carefully designed to optimize the passive 

stability
26

. They show a frequency drift of a few Hz/s. From the beat-note signal between two 

identical lasers, we deduced a free-running laser line width of about 1 kHz
26

. This makes possible 

rovibrational spectroscopy at a resolution of ~3 10
-8

. It however requires to overcome the poor 
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tunability of our CO2 lasers, limited to ~100 MHz (or a few hundreds of MHz by shifting the 

frequency using acousto-optic modulators) around each rovibrational emission lines. We have thus 

built a broadband electro-optic modulator (EOM)
27

 which enables to generate sidebands between 8 

and 18 GHz allowing  to cover a significant part of the 9-11 µm spectral range.  

Ultra-high resolution molecular spectroscopy requires very stable lasers with very narrow 

line widths. To improve the long-term stability and reproducibility of our CO2 lasers, we stabilize 

them onto molecular absorption lines, which constitute frequency references. To simultaneously 

enhance the short-term stability and the line width, the molecular line is detected in transmission of 

a Fabry-Perot cavity. In doing so, the signal-to-noise ratio increases proportionally to the cavity 

finesse, enabling a better frequency noise rejection
26,28

. Several molecules can be used for the CO2 

laser stabilization, among which CO2
29,30

 itself. The best stabilities were demonstrated with SF6
31

 

and OsO4
32,33

 (using naturally abundant isotopic species, such as 
190

OsO4 and 
192

OsO4, presenting 

rovibrational lines with no hyperfine structure). Both molecules have rovibrational bands coinciding 

with the 10 µm CO2 emission band
34

. OsO4 was extensively studied since its 3 band spectrum 

overlaps with the P(24) - R(26) CO2 laser lines spectral region. A frequency grid of the strongest 

OsO4 lines in coincidence with CO2 laser lines has been established
35

. These lines have served for 

20 years as secondary frequency standards in the mid-infrared region.  

When OsO4 is chosen as reference, the CO2 laser is stabilized on a saturation signal detected 

in transmission of a Fabry-Perot cavity filled with OsO4
32,33

. A broadband CdTe EOM
27

, a key 

element of the stabilization scheme, generates sidebands, one of which is brought into resonance 

with the molecular line. Efficient and pure frequency modulations can then be applied to the 

sidebands simply by modulating the frequency of the synthesizer which drives the EOM. A first 

servo-loop locks the cavity resonance to the sideband frequency while a second locks the EOM 

sideband to the molecular line. Typical conditions for the detection of the OsO4 saturated absorption 

signal are a pressure of 0.04 Pa and a laser power of 50 µW inside the cavity. In this regime, the 

third harmonic of the molecular signal has a peak-to-peak line width of about 20 kHz and a signal-

to-noise ratio of 500 in a bandwidth of 1 kHz. Two equivalent and independent systems have been 
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developed to characterize the frequency stability. By stabilizing two lasers onto the same strong 

P(46)  OsO4 line in coincidence with the P(14) CO2 laser line we obtain an Allan deviation of 

3.5×10
-14

 
-1/2

 for integration times between 1 and 100 s, and a reproducibility of a few tens of Hz
33

. 

The associated laser line width of about 10 Hz makes it possible to do spectroscopy at resolutions in 

the 10
-10

 range.  

The R(47) A2 two-photon resonance of the 2 3 band of SF6 was also used for the 

stabilization of the CO2 laser. This is an attractive alternative to using OsO4 because gaseous SF6 is 

less reactive than OsO4. Furthermore, all molecules contribute to this narrow two-photon resonance, 

whatever their speed, and for this particular line, the excitation probability is quite high due to the 

16 MHz very small detuning of the intermediate level of the two-photon transition. Stability 

performances are similar to that obtained with OsO4
31

 but best stabilities can be maintained for 

significantly longer times
b
. 

SF6 and OsO4 do not show absorption in coincidence with the 9.4 µm band of the CO2 laser. 

In this spectral range, stabilization on transitions of CO2
29,30

, CHFClBr
1
 and HCOOH

36
 was 

demonstrated with stability performances slightly degraded by the weaker absorption signal. An 

Allan deviation of 6×10
-13

 
-1/2

 between 1 s and 100 s was for instance demonstrated using the CO2 

P(22) resonance, with a reproducibility of about 50 Hz
30

. 

The above stabilization techniques enable to reach excellent performances in the mid-

infrared domain. However the obtained frequency reproducibility and accuracy are limited by long-

term frequency fluctuations due to small variations in experimental parameters such as pressure or 

power, which induce line shifts or deformations
37

. Overcoming these fluctuations requires a better 

frequency reference which could for instance be provided by primary standards such as Cs clocks. 

Advanced primary standards are complex devices mainly developed in National Metrological 

Institutes (NMI). The French NMI (LNE-SYRTE) develops cold atoms based frequency standards 

                                                

b
 OsO4 being very reactive, the absorption cell has to be pumped and filled again after a few hours in order to 

maintain best stabilities. On the contrary, when using SF6, the cell is filled only once a day.  
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in the microwave domain. Its Cs atomic fountain has a frequency stability of 1.6×10
-14

 
-1/2

 and a 

demonstrated accuracy of a few 10
-16

 
38

. A local reference signal at 100 MHz
39

 was developed with 

a stability provided by a H-Maser and an accuracy controlled with Cs fountains. The typical 

accuracy of the 100-MHz signal is below 10
-14

.  

Following what was done between SYRTE and Laboratoire Kastler-Brossel in Paris
40

, we 

set up an optical fiber link between LPL and LNE-SYRTE in order to transmit the 100-MHz 

reference frequency signal to LPL
41

. The 43-km long optical link is subject to propagation noise due 

to thermal and acoustical fluctuations. The Allan deviation of frequency fluctuations added by the 

link is a few 10
-14

 at 1 s of measurement time and a few 10
-15

 after 1000 s which may degrade the 

spectral purity of the metrological signal. The propagation noise is thus actively compensated using 

the round-trip method: in the distant laboratory, the transferred signal is re-injected in the same 

fiber. This enables to measure the round-trip added noise in the initial laboratory and to correct for 

it in such a way that fluctuations are cancelled in the distant laboratory. When compensated, 

residual fluctuations are at the level of 10
-14

 at 1 s and 10
-16

 at 1000 s. Such performances enable to 

transmit the LNE-SYRTE frequency reference without any significant degradation
42

.  

Its frequency stability has then to be transferred to the mid-infrared spectral domain. Since 

the early 2000, optical frequency combs provided by femtosecond (fs) lasers have been largely 

developed for frequency comparison between the radiofrequency and the visible domain
43

. We 

adapted this technique to the measurement and control of the CO2 laser frequency
41

. Using sum-

frequency generation in a non-linear crystal of AgGaS2, one can generate a beat-note between the 

CO2 laser frequency and a very high harmonic of the repetition rate of the fs laser
31

. This beat-note 

is used to phase-lock the comb repetition rate to a sub-harmonic of the CO2 laser frequency while 

the repetition rate is independently controlled with the reference signal from LNE-SYRTE. This 

technique enables to measure and control the CO2 laser frequency with the primary standards of 

LNE-SYRTE. It was demonstrated using an OsO4-stabilised CO2 laser allowing to control its long-

term frequency fluctuations and led to an accuracy of the order of 0.3 Hz, i.e. 10
-14

 in fractional 

value
9
.  
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Even though at the state-of-the-art, the performances and reliability of this CO2 laser 

stabilization scheme can be further improved. In the last ten years ultra-stable optical fiber links 

have been successfully developed enabling precise and accurate transfer of optical frequencies 

around 1.55 µm, with fractional frequency stability in the range of 10
-18

 after only 3 hours of 

measurement
44

. Moreover laser stabilization techniques have progressed in such a way
45

 that near-

infrared lasers can be stabilized on ultra-stable cavities leading to stabilities below 10
-15

 at 1 s 

measurement time
44

. Fiber frequency combs at 1.55 µm are now commercially available and easy to 

reference. Finally optical clocks are also progressing and are soon expected to reach accuracies in 

the 10
-17

 range
46

. Thus all ingredients are now available to directly stabilize the CO2 laser frequency 

to a remote near-infrared optical reference without the need for a molecular reference and we have 

started to work in this direction. Moreover this technique could be extended to Quantum Cascade 

Lasers
47

 which have a much larger tunability and achievable wavelengths covering the whole mid-

infrared region. This will make it possible to perform accurate high-resolution spectroscopy on a 

wide range of molecular species. 

Parity violation and chiral molecules 

Any experimental attempt to measure parity violation in chiral molecules is inherently 

interdisciplinary, involving theoretical quantum chemistry, chemical synthesis and precision 

spectroscopy. A number of experimental techniques have been proposed for the observation of PV 

in chiral molecules, including rotational
48

, rovibrational
17

, Mössbauer
49

 and NMR
50

 spectroscopy, 

as well as crystallization
51

 and solubility
52

 experiments, optical activity measurements
53

 or 

tunnelling dynamics of chiral molecules
54,55

. However, to our knowledge, apart from us only Martin 

Quack’s group at ETH Zurich is currently pursuing an experimental effort, based on a proposal 

published in 1986 by Martin Quack himself, in which the PV energy difference is directly measured 

by probing the tunnelling dynamics of a molecule with a chiral ground state and an achiral 

electronic excited state
54

. 
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We have chosen to follow another approach based on Letokhov’s proposal of 1975 to 

observe PV effects in chiral molecules as a shift RLPV  in the rovibrational frequencies L 

and R of the same transition of left and right enantiomers
17

. Letokhov’s group subsequently 

searched for such splittings in the spectrum of racemic CHFClBr by laser sub-Doppler absorption 

spectroscopy
56

. This approach was shortly after (in 1977) attempted on separated enantiomers of 

camphor
57

. From 1995, a third Letokhov-type experiment on enantioenriched samples of CHFClBr 

molecules was carried out at LPL
1,58

. This experiment used a CO2 laser-based spectrometer to probe 

a hyperfine component of the C–F stretch at  ~ 30 THz (10 µm or 1000 cm
-1

) via saturated 

absorption laser spectroscopy. The spectrum of each enantiomer was simultaneously recorded in 

separate Fabry–Perot cavities. A experimental sensitivity of 2  10
-13

 was attained, setting an upper 

limit of 8PV  Hz, limited by residual differential pressure shifts induced by impurities in the 

samples
58

. Shortly after, however, theoretical studies concluded that the PV vibrational shift for the 

C–F stretch of CHFClBr is on the order of 2.4 mHz
59

, corresponding to 17

PV 108~ . This 

effort showed that further progress would require both an improved experiment (in particular, where 

collisional effects are negligible) and a conscientious effort to find better candidate molecules. 

We are now working on the development of a second generation CO2 laser spectroscopy 

experiment based on 2-photon Ramsey interferometry of chiral molecules in a continuous 

supersonic jet (see Section Ramsey fringes), aiming for an experimental sensitivity of a few 0.01 

Hz
3,60,61

. We have also launched a collaboration in which the search for suitable chiral molecules is 

guided by relativistic molecular calculations by Trond Saue and co-workers and the synthesis of 

candidate molecules is directed by Jeanne Crassous. Thérèse Huet and Pierre Asselin are 

responsible for the spectroscopic characterization of candidate molecules in the microwave and 

infrared domain respectively. As a result of this collaboration, the focus has shifted to studying 
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chiral complexes of heavy metals for which theoretical studies
c
 have recently predicted PV shifts on 

the order of 1 Hz
63

. In view of current experimental conditions, several criteria have been outlined 

for the appropriate chiral molecule for a PV test. The ideal candidate should: 

(1) show a large PV vibrational frequency difference PV of an intense fundamental transition 

within the CO2 laser operating range (850-1120 cm
-1

); 

(2) be available in large enantiomeric excess or, ideally, in enantiopure form; 

(3) be available at gram-scale; 

(4) have high enough volatility or sublimate without decomposition to allow gas phase studies; 

(5) have a suitable 2-photon transition joining a state in the fundamental vibrational level, v = 0 

to one in the v = 2 level; 

(6) keep the structure as simple as possible so as to maintain a favourable partition function and 

facilitate the spectroscopy. 

 

J. Crassous and co-workers have first synthesized two classes of rhenium complexes in 

enantiopure form (see Figure 1): oxorhenium compounds such as 1, bearing hydrotris(1-

pyrazolyl)borate (Tp) ligand and a chiral bidentate ligand
64

 and ‘3+1’ oxorhenium complexes 

bearing a tridentate sulfurated ligand and a monodentate halogen (such as in 2) or a chalcogenated 

ligand 
65,66

. However, these candidate molecules, which are solid at room temperature, have been 

found not to satisfy the volatility requirement 4), needed when using our existing supersonic beam 

apparatus
3
. Chemists then focused on chiral analogues of methyltrioxorhenium (MTO, 3 on Figure 

1), a rhenium complex with somewhat better sublimation characteristics
d
. Complexes 4 has recently 

been synthesized
68

 and show similar volatility to MTO. For all the above mentioned oxorhenium 

                                                

c
 There has been quite a significant activity in the quantum chemical community in the past years with 

important contributions from the groups of M. Quack, R. Berger, P. Lazzeretti, P. Schwerdtfeger, P. 

Manninen and T. Saue that have been summarized in recent reviews
61 62

.  

d
 Note that isotopically chiral MTO (CH3Re

16
O

17
O

18
O) had already been suggested by Martin Quack

67
.  
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complexes, the oxo ligand gives an intense band around 1000 cm
-1

, corresponding to its Re=O 

stretch. Calculations by T. Saue and co-workers indicate that PV shifts PV in complexes such as 2 

and 4 can reach several hundreds of millihertz
66,68

, about an order of magnitude above the expected 

sensitivity of a differential measurement using 2-photon Ramsey interferometry of a molecular 

beam. 

At LPL, we are studying MTO, the achiral parent molecule, as a preliminary step towards 

making an ultra-sensitive PV measurement. Precise measurements on such large and complex 

molecules are rare. We needed to gain both insight on the apparatus needed for such a 

measurement, and experience with conducting experiments on spectroscopically novel species. We 

thus conducted high resolution spectroscopy of MTO, in a cell at room temperature and in a cold 

supersonic beam. The ultra-high resolution spectrometer used is based on the combination of two 

CO2 lasers, the first locked to an OsO4 rovibrational line
33

 (see Section Laser frequency control), 

the other, whose beam is used to probe MTO, phase-locked to the first. Acousto-optic modulators 

allow tuning over a few hundreds of megahertz around each CO2 laser line
69

. 

Results of spectroscopy in a cell are presented first. Saturated absorption spectra of room 

temperature MTO were recorded in a 58-cm long cell, around the R(18), R(20), R(22) and R(24) 

CO2 laser lines
69

. Figure 2 shows a spectrum recorded over 30 MHz around the R(20) CO2 laser line 

revealing a dense hyperfine structure. Linewidths (full width at half maximum) below 100 kHz and 

central frequency accuracies of a few kilohertz were obtained. Collaborative work combining our 

spectra with data from Fourier transform microwave and infrared spectroscopy enabled the 

assignment of rovibrational lines, some of them with their resolved hyperfine structure (see Figure 

2)
69

. A set of spectroscopic parameters in the ground and first excited state, including hyperfine 

structure constants, was obtained for the antisymmetric Re=O stretching mode of the 
187

Re MTO 

isotopologue. This result validates the experimental approach to be followed with chiral derivatives 

of MTO in order to identify the best candidate line to be studied for PV observation.We move on to 

the results from the supersonic beam. At LPL, we had, at our disposal, a molecular beam setup 

which was previously used in an ultra-high resolution two-photon Ramsey-interferometry 
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experiment on SF6 
9
 (see Section Ramsey fringes). We added an oven to the continuous supersonic 

beam source to allow MTO to be sublimated (by heating it to near 100°C, above which its starts to 

decompose) and seeded in a carrier gas. In our apparatus, supersonic expansion occurs through a 

circular nozzle in a first chamber (10
-5

–10
-4

 mbar under working conditions) separated from the 

second one (10
-6

–10
-5

 mbar under working conditions) by a skimmer. Extensive studies of the 

MTO-seeded jet characteristics as a function of reservoir temperature, backing He pressure, nozzle-

to-skimmer distance, nozzle and skimmer diameter have been performed via time-of-flight (TOF) 

experiments. A rotating slotted disk was used to chop the molecular jet and an ionisation gauge 

placed on the jet axis enabled to record TOF
70

. Density-weighted longitudinal velocity ( longv ) 

distribution
e
 written as  

2

2)( long

long

v

Vv

longlong evvf , 

was extracted from a fit of the TOF, carefully considering the finite opening time of the chopper 

and the finite dimensions of the gauge. The MTO molar fraction x was obtained from the mean 

velocity V 
71

: 

)1(

)1(
11

2
HeMTO

He

He

MTO

MTO

nozzleB
xmxm

xx

TkV

 

where kB is the Boltzmann constant, Tnozzle the nozzle temperature, S and mS the Poisson coefficient 

and molecular mass of species S. Considering the low MTO molar fractions obtained (< 10%, see 

Table I), the translational longitudinal temperature B

2

He 2kvmT longlong  was calculated from the 

                                                

e
 longv  means the velocity component along the molecular beam axis, which is usually almost perpendicular 

to the laser beam and thus close to v , the speed transverse to the laser beam axis introduced in Section 

Molecular ultra-high resolution spectroscopy. 
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velocity spread 
longv , assuming the TOF signal to be dominated by the He contribution

f
. Table I 

summarizes the results obtained for different pairs of nozzle and skimmer diameters and 

corresponding He backing pressure that maximizes x. 

Table I: MTO-seeded jet characteristics (deduced from TOF experiments) for different pairs of 

nozzle and skimmer diameters (dnozzle/dskimmer) and corresponding He backing pressure (PHe) that 

maximizes the MTO molar fraction x. The MTO partial pressure in the gas line PMTO is calculated 

as PHe  x. The oven and nozzle temperatures were respectively 80 and 100°C. 

dnozzle/dskimmer 50 µm/750 µm
g
 100 µm/750 µm 200 µm/2 mm 300 µm/2 mm 

PHe (mbar) 1000 200 150 100 

V (m/s) 1386 ± 19 1007.1 ± 0.5
h
 823.5 ± 0.8

h
 865.7 ± 1.0

h
 

longv  (m/s) - 114.4 ± 1.3
h
 139.9 ± 1.5

h
 157.2 ± 1.6

h
 

x (%) 1.8 ± 0.2 5.2 ± 0.5
i
 9.5 ± 1.3

i
 8.2 ± 1.0

i
 

PMTO (mbar) 18 ± 2 10.5 ± 0.9
i
 14.2 ± 2.0

i
 8.2 ± 1.0

i
 

longT  (K) - 3.1 ± 0.1
h
 4.7 ± 0.1

h
 5.9 ± 0.2

h
 

g
 in these experimental conditions, only the mean velocity V was roughly measured. 

h
 uncertainty given by the TOF fit. 

i
 uncertainty is dominated by that on MTO, the unknown effective MTO Poisson coefficient during 

thesupersonic expansion, assumed to be between 1.11 and 1.33. 

 

Linear absorption spectroscopy carried out on this setup led to the first spectra of a 

supersonic beam of MTO with a ~1 MHz resolution. The chopper described above was used to 

induce a ~1 kHz modulation of the absorption detected with a lock-in amplifier. Line shapes are 

Doppler broadened owing to the molecular jet divergence. First spectra with a rather poor signal-to-

noise ratio were recorded in a double-pass configuration
69

. We were able to increase the signal by a 

factor of ~7 after a multi-pass cell was installed inside the jet vacuum chamber, allowing nine 

parallel laser beam passes (one every 2 cm) to probe the molecular jet perpendicularly (the laser 

                                                

f
 Note that this probably leads to slightly underestimated longT . 
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beam was retroreflected leading to an 18-pass configuration). This paved the way for a systematic 

study of the different experimental parameter in view of optimizing the spectroscopic signal. As 

illustrated on Figure 3, reducing the nozzle diameter from 200 µm to 100 µm induced a temperature 

decrease (from ~10 K to ~1 K) leading to a simplified spectrum, with no significant loss in signal-

to-noise ratio. Even if lowering the total flux by a factor of roughly 4, reducing the nozzle diameter 

made it possible to increase He backing pressure and in turn decrease the temperature further thus 

maximizing the population of low J rotational quantum number levels. In agreement with spectra 

simulated from the set of parameters obtained in the Re=O stretching mode analysis mentioned 

above
69

, signal is preserved in zones where the lowest J transitions are expected and disappears in 

the highest J transition zones (see Figure 3).  

The next step on the jet experiment is the observation of saturated absorption features. A 

careful comparison between linear and saturated absorption data obtained in the cell led us to 

conclude that further improvements in signal-to-noise ratio is required in order to observe saturated 

absorption in a supersonic beam of MTO. To that purpose, the installation of an in-vacuum high-

finesse (~1800) Fabry-Perot cavity is under progress. This should make it possible to observe 

saturated absorption and Ramsey fringes in a jet of MTO, and should lead to the demonstration of 

both ultra-high resolution spectroscopy and coherent manipulation of oxorhenium complexes. 

 

 

Conclusion 

We have strived over the years to observe parity violation in chiral molecules. This paper presented 

an overview of the spectroscopic methods and apparatus we have developed in the hope of reaching 

this goal. We find that applying Ramsey interferometry on a continuous supersonic molecular beam 

of enantioseparated chiral molecules appears, at the moment, to be the most promising avenue 

towards observing PV in rovibrational transitions. This, however, may change in the near future. 

Molecular beam source technology is undergoing drastic changes thanks to the development of 
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buffer gas cooled beams
72

. Using these beams as a starting point, the first demonstrations of 

trapped, polyatomic, relatively complex molecules are emerging
73

. We are currently considering the 

implementation of these cold, slow beams for the next generation PV experiment at LPL. On the 

laser stabilization side, we started working on stabilizing quantum cascade lasers (QCL) in the hope 

of eventually replacing our CO2 lasers. QCLs being far more tunable, we hope to use these lasers to 

probe many more molecular species. 

The observation of PV in chiral molecules has been a long-standing dream for both Martin 

Quack, and us. On this occasion, we wish Prof. Quack a happy birthday and good luck in this 

challenging endeavour. 
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Figure Captions 

Figure 1: Classes of chiral and achiral oxorhenium complexes considered for the experiment. 

Figure 2: Saturated absorption spectrum of MTO in a cell at 300 K detected after frequency 

modulation at 5 kHz (200 kHz modulation depth, applied on piezoelectric transducers that control 

the laser cavity length) and 2
nd

 harmonic detection in order to strongly flatten the baseline induced 

by the laser gain curve. Vertical coordinate is the signal amplitude in arbitrary units. Experimental 

conditions: 1 point every 10 kHz, 200 ms of integration time per point, 0.002 mbar of MTO, pump 

(resp. retroreflected probe) beam power of 95 µW (resp. 12 µW), 5 to 10 mm beam waist. The 

assigned F = 0 six most intense hyperfine components associated with the 
R
Q(J=20, K=0) line of 

the antisymmetric Re=O stretching mode of
 187

Re MTO are labelled with their F quantum 

number
69

. 

Figure 3: Linear absorption spectroscopy of a MTO-seeded supersonic jet, in the vicinity the R(20) 

CO2 laser line frequency (corresponding to 0 MHz on the bottom axis). Lower pink curve: 200 µm 

(resp. 2 mm) nozzle (resp. skimmer) diameter, PHe ~150 mbar, Toven ~80°C, 5longT  K, 7.5 mm 

nozzle-to-skimmer distance. Upper blue curve: 100 µm (resp. 750 µm) nozzle (resp. skimmer) 

diameter, PHe ~1 bar, Toven ~90°C, 1~longT  K, 9 mm nozzle-to-skimmer distance. Other 

experimental conditions: 1 point every 100 kHz, ~1 s of integration time per point, ~0.5 µW of laser 

power in each of the 18 passes, ~5 mm beam waist. The inset is a zoom on a single line (1 point 

every 400 kHz, 4 s of integration time per point, signal-to-noise ratio ~10). 
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