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Introduction

• The lattice Boltzmann scheme is a mesoscopic method. It deals with a small number of
functions that can be interpreted as populations of fictitious particles. It has been developed
more than 20 years ago by Qian et al. [19], Succi et al. [20] among others. This method
can simulate various fluid dynamics problems. The dynamics of those particles is such that
time, space and momentum are discretized. They move at successive discrete times between
the nodes of a regular square lattice. The velocity space is discretized by a reduced set of
discrete velocities. The unknown is the distribution { fi} which is function of velocities, space
location and discrete time. In each time step there are two fundamental steps : advection and
collision. The advection step is linear and allows the connection of a given vertex with its
neighbors. It corresponds to the characteristic method with a Courant number exactly equal to

one. The collision step is nonlinear and local in space. The discrete dynamics solve a system
of differential equations that converge to an equilibrium state for large time (see the details e.g.

in [5]).

• A theoretical analysis of the lattice Boltzmann scheme was proposed by Qian et al. [19]

and d’Humières [11] with a Chapmann Enskog expansion coming from statistical physics. We
refer to Asinari and Ohwada [1] for a method of analysis based on the Grad moment system.

A fruitful idea developed by Junk et al [13] and our team [5] is to use the so-called equiva-
lent equation method derived by Lerat-Peyret [15] and Warming-Hayett [21] in the context of
classical finite difference schemes. The time step is considered as an infinitesimal parameter
and the finite differences are expanded into a family of equivalent partial differential operators.
We observe that the emerging viscosity with the lattice Boltzmann method is in some sense a
discrepancy of the scheme that can explicited.

• The main goal of this study is to extend the linearized analysis of a lattice Boltzmann

scheme using the Taylor expansion method [2, 5] to the case where there is an external body
force. In fact few methods [4, 9, 16, 17, 18] have been used to incorporate external forces in

lattice Boltzmann scheme. In this study, a fraction θ (with 0 ≤ θ ≤ 1) of the force term is
added before the collision step and a fraction (1−θ) just after. Usually θ is equal to 1

2 . In this

contribution we consider a given external force variable in time and space.

• Boundary conditions are performed to impose a given velocity (or a given pressure) on a

part of the physical boundary. These conditions have to be translated in terms of the lattice
Boltzmann scheme. When the scheme is completely defined for internal vertices a numerical
boundary conditions of bounce-back or anti-bounce-back type (see e.g. Bouzidi et al. [3]) is
equivalent to impose a zero value for some combination of the particle distributions. With the
help of the Taylor expansion, it is possible to make in evidence the errors associated to several
methods for one dimensional thermal problems or two dimensional fluid problem. This defines
so-called “quartic parameters” (see [6]). For the general framework of this kind of methodology,
we refer to Ginzburg and Adler [7], Ginzburg et al. [8] and Ginzburg and d’Humières [12]. Our
approach is to extend our previous work [6] to three representative examples. In particular a
precise choice of relaxation rates allows to spectacularly decrease the error associated to the


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scheme. In the case of the Poiseuille flow the numerical evaluation of the analytical solution
can even be possible with this methodology.

• In the first section, we precisely define our numerical scheme. In section 2, we extend the
linearized analysis of a lattice Boltzmann scheme using the Taylor expansion method [2]. In
section 3, we study a very simple one dimensional thermal problem with a given temperature
on the boundary. The existence of the source term allows an experimental validation of our

methodology applied to the boundary conditions. In section 4, we study a two dimensional
scheme with the D2Q9 scheme in the context of the Poiseuille flow. This flow is considered with

an external force term instead of physical pressure term. Theoretical analysis allows to propose
quartic values for the relaxation coefficients and for the parameter θ . These parameters are
confronted to a numerical test for this model with 13 velocities in section 5. To our knowledge

this kind of determination and validation has not been proposed by other teams previously.

1) Lattice Boltzmann scheme with a forcing drift

• In the following, the notation “DdQq” denotes a lattice Boltzmann scheme with d space
dimensions and q velocities. Space is discretized by a regular lattice L parametrized by a

spatial scale ∆x. The time step is denoted by ∆t. A numerical celerity λ is naturally defined
by λ ≡ ∆x

∆t
. The q discrete velocities can be written as v j = λ e j for 0 ≤ j ≤ q−1. A classical

example is given by the D2Q9 scheme illustrated on the Figure 1.

Figure 1. Stencil for the D2Q9 lattice Boltzmann scheme.

• The lattice Boltzmann scheme is formulated in both spaces of particles and moments mk,
as proposed by d’Humières [11]. We introduce an invertible matrix

M = (Mk j), 0 ≤ k, j ≤ q−1.

Then the moments mk for 0 ≤ k ≤ q−1 are defined by linearity:

mk ≡
q−1

∑
j=0

Mk j f j.

The moment vector m ∈ R
q can be written as

(1) m =

(

V

Y

)

,


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with two kinds of quantities: conserved moments V ∈ R
N and slave moments Y ∈ R

q−N . The
conserved moments V are not affected by the collision step when there is no forcing term. If

N = 1 there is exactly one scalar partial differential equation and when N > 1 we obtain an
underlying system of N partial differential equations. The family of slave moments Y relax

during the collision step towards an equilibrium distribution. An elementary time evolution
of a lattice Boltzmann scheme with a force is composed by four steps (see Guo et al. [9]) :
computation of the dynamical variables, collision (through simple relaxation), forcing of the
conserved moments and advection.

• The computation of the dynamical variables W from the first component V of the moments
(1), is given by:

(2) W = V +θ ∆t F ,

where θ is a fixed scalar in [0,1] and F ∈ R
N is a given force term. Remark that the post-

processing is obtained from the knowledge of these dynamical variables.

• The collision and relaxation step is a redistribution of the populations { fi} at each node
x. The N first moments W are not affected by the relaxation.The other “non-conserved” mo-
ments relax with a time constant τk towards the equilibrium values m

eq
k . In this contribution the

equilibrium values are a linear function of the dynamical variables W . We suppose that the equi-
librium values Y eq of the non-conserved moments are linear function of dynamical variables.
We have

(3) Y eq = E W ,

where E is a fixed matrix with q −N lines and N columns. Thus the relaxation is simply
described by an ordinary differential equation:

d

dt
(mk −m

eq
k )+

1

τk

(mk −m
eq
k ) = 0, for k ≥ N.

Using an explicit first order Euler scheme, we obtain the algorithm:

(4) m∗
k = (1− sk)mk + sk m

eq
k ,

where the superscript ∗ indicates “post-collision" state. The relaxation rates sk ≡
∆t
τk

have to sat-

isfy 0 < sk < 2 in order to maintain stability of the scheme. With the notation (1) the relaxation
step is performed in the moment space as follows:

(5) Y ∗ = (Id−S)Y +SY eq
,

where S is the diagonal matrix of the relaxation times sk for k ≥N. We remark that this collision
step is local in space.

• Due to the force term, the conserved moments during the collision step evolve according to

(6) V ∗ = V +∆t F =W +(1−θ)∆t F.


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If ( )t denotes the transpose of the matrix ( ), the moments m∗ ≡ (V ∗, Y ∗)t after collision
are determined by the relations (5) and (6). After the forcing and collision steps, the particle

distribution f ∗j is recovered by the inversion of a linear system of small size:

(7) f ∗j =
q−1

∑
k=0

M−1
jk m∗

k, 0 ≤ j ≤ q−1.

• The advection step corresponds to a method of characteristics with a Courant number equal
to 1 for the advection with velocity v j. We assume here that for each node x and each velocity
v j, the vertex x− v j∆t is also a node of the lattice. The particles moves from a lattice node x

to either itself (for v0 = 0) or one of the q−1 neighbors x j = x+ v j ∆t for velocities v j 6= 0 as
presented in the Figure 1. So a time step of a lattice Boltzmann scheme can be written as:

(8) fi(x, t +∆t) = f ∗i (x− vi∆t, t) , 0 ≤ i ≤ q−1 , x ∈ L ,

where f ∗i denotes the post-collision population of particles evaluated at the end (7) of the previ-
ous step.

2) Taylor expansion method for the equivalent equations

• In this contribution, we extend the “Berliner version” [2] of the Taylor expansion method
in order to derive macroscopic equivalent equations when an external forcing term is present.
We suppose on one hand that the dynamical variables W satisfy a partial differential equation:

(9) ∂tW = α1W +∆t α2W +∆t2 α3W + · · ·+ γ0F +∆t γ1F + . . .

and on the other hand that the non conserved moments Y follow a dynamical expansion of the

type

(10) Y = E W +∆t β1W +∆t2 β2W + · · ·+∆t ρ0F +∆t2 ρ1 F + . . .

In the equations (9) and (10), α j, γ j, β j and ρ j are space derivative operators of order j. More-
over α j and γ j are N ×N matrices and β j and ρ j are (q−N)×N matrices. Note here that the
equation (9) is a system of N partial differential equations that represent the evolution of the

conserved variables. It gives the macroscopic (equivalent) equation of the physical problem.
The equation (10) describes the expansion of the “slave variables” Y in terms of the conserved

quantities. Due to (5), we first write the collision step as follows:

Y ∗ = (Id−S)Y +SY eq = (Id−S)Y +SE W

due to (3). Then, according to the relation (2), we have

Y ∗ = (Id−S)Y +SE (V +∆t θ F) = SE V +(Id−S)Y +∆t θ SE F.

• Then the moments m∗ after forcing and relaxation can be presented as follows:

(11) m∗ =

(

V ∗

Y ∗

)

=

(

I 0
SE I −S

)(

V

Y

)

+ ∆t

(

I

θSE

)

F .





FRANÇOIS DUBOIS, PIERRE LALLEMAND AND MOHAMED-MAHDI TEKITEK

Secondly, we rewrite the scheme (8) in moment space:

(

V

Y

)

k

(x, t +∆t) = mk(x, t +∆t) = ∑
j,l

Mk, j M−1
j,l m∗

l (x− v j∆t, t)

then

(12)

(

V

Y

)

k

(x, t +∆t) = ∑
j,l,µ

Mk, j M−1
j,l (−v j)

µ ∆t |µ|

µ!
∂µm∗

l (x, t).

In the previous relation ∂µ is a space derivation of order µ = (µ1,µ2, . . . ,µd) ∈ N
d and

µ! = µ1! . . . µN!. The length |µ| of the multi-index µ is equal to ∑ j µ j. We inject the value (11)
of m∗ in the previous expression. We arrange the previous formal series as increasing powers
of ∆t. We obtain the following equation:

(13)

(

V

Y

)

(t +∆t) = ∑
n≥0

∆tn

(

An Bn

Cn Dn

)(

V

Y

)

(t)+ ∑
n≥0

∆tn+1

(

Gn

Hn

)

F.

In (13), the matrices An, Bn, Cn, Dn, Gn and Hn are space derivation operators of order n. They
are easy to identify with the help of the right hand side of the equation (12). The order zero of
the development (13) relative to ∆t is deduced from (11) by identification:

(14)

(

A0 B0

C0 D0

)

=

(

I 0
SE I−S

)

,

(

G0

H0

)

=

(

I
θ SE

)

.

• Proposition 1. Taylor expansion at order 1.

The equivalent equations and the non conserved moments for linear lattice Boltzmann scheme
with external force up to first order are given by the relations

(15) ∂tW = α1W + γ0 F + O(∆t) , Y = E W +∆t
(

β1W +ρ0 F
)

+ O(∆t2)

with

(16)

{

α1 = A1 +B1 E , β1 = S−1 (C1 +D1 E −E α1) ,

γ0 = G0 = I , ρ0 = S−1 (H0 −E γ0 −θ SE) .

Proof of Proposition 1.

We have from (13) :

V (t +∆t) = V +∆t ∂tV +O(∆t2)

= V +∆t (A1V +B1Y )+ ∆t G0 F +O(∆t2)

and due to (14),

Y (t +∆t) = Y +∆t ∂tY +O(∆t2)

= (Id−S)Y +SE V +∆t (C1V +D1Y )+∆t H0 F +O(∆t2).

Using the relation (2) we have

V =W −θ∆tF


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and the development at equilibrium (order zero)

Y = E W +O(∆t) ,

we obtain on one hand

∂tW = (A1 +B1E)W +G0F + O(∆t)

and on the other hand

Y = EW +∆t S−1 [C1 +D1E −E (A1 +B1E)W ]+(H0 −Eγ0 −θ SE)F +O(∆t2) .

By identification of the previous relations with the ansatz (9)(10), we obtain the relations (15)

at first order with the coefficients α1, β1, γ0 and ρ0 explicited in the relations (16). �

• Proposition 2. Taylor expansion at order 2.

The equivalent equations for linear lattice Boltzmann scheme with external force, as described
in first section, up to second order, are:

(17)







∂tW = α1W + γ0 F +∆t
(

α2W + γ1 F
)

+ O(∆t2)

Y = E W +∆t
(

β1W +ρ0 F
)

+∆t2
(

β2W +ρ1 F
)

+ O(∆t3)

with coefficients α1, β1, γ0 and ρ0 proposed in (16) and

(18)























































α2 = B1 β1 +A2 +B2 E − 1
2 α2

1

γ1 = B1 ρ0 +G1 −θ A1 −
1
2

[

α1 γ0 +(γ0 −2θ)∂t

]

β2 = S−1
[

D1 β1 −E α2 −β1 α1 −E
α2

1
2 +C2 +D2 E

]

ρ1 = S−1
[

D1ρ0 +H1 −Eγ1 −β1 γ0 −
1
2Eα1 γ0

−1
2E γ0 ∂t −ρ0 ∂t −θ C1

]

.

Proof of Proposition 2.

We first differentiate relative to time the first relation of (15):

∂ 2
t W = ∂t

(

α1W +F
)

+O(∆t) = α1
(

α1W +F
)

+ ∂tF +O(∆t)

= α2
1 W +(α1 +∂t)F +O(∆t).

We can therefore develop the dynamical variables W at time t +∆t up to second order. Due to
the definition (2), we have:

W (t +∆t) = V (t +∆t)+θ ∆t F(t +∆t)

= V (t)+∆t
(

A1V (t)+B1Y (t)
)

+∆t2
(

A2V (t)+B2Y (t)
)

+θ ∆t F(t +∆t)+ O(∆t3)

= W (t)−θ ∆t F(t)+θ ∆t F(t +∆t) + ∆t
(

A1 (W −θ ∆t F)

+B1 (E W +∆t β1W +∆t ρ0 F)
)

+∆t2
(

A2W +B2 E W
)

+O(∆t3) .


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Then taking into account the Taylor formula at second order accuracy and the expression of
∂ 2

t W :

W +∆t ∂tW + ∆t2

2

[

α2
1 W +(α1 +∂t)F

]

+O(∆t3)

= W +θ ∆t2 ∂t F + ∆t
(

A1W +B1 E W
)

+∆t2
(

−∆t F +B1 β1W +B1 ρ0 F +A2W +B2 E W
)

+O(∆t3).

After dividing by ∆t:

∂tW = (A1 +B1 E)W +F + ∆t
[

A2 +B2 E +B1 β1 −
1
2α2

1

]

W

+ ∆t
[

G1 +B1 ρ0 −θ A1 −
1
2α1 +(θ − 1

2)∂t

]

F +O(∆t2)

and the expressions of α2 and γ1 in (18) are established.

To get the second relation of (17), we first look to the derivation relative to time of the non-
conserved moments Y . We have

∂tY = ∂t

[

E W +∆t
(

β1W +ρ0 F
)]

+O(∆t2)

= E
[

α1W +F +∆t (α2W + γ1 F)+ O(∆t2)
]

+∆t β1
(

α1W +F
)

+∆t ρ0 ∂t F + O(∆t2)

= E
(

α1W +F
)

+∆t
[

(E α2 +β1 α1)W +(E γ1 +β1 +ρ1 ∂t)F
]

+O(∆t2) .

We differentiate relative to time at second order:

∂ 2
t Y = ∂t

[

E
(

α1W +F
)]

+O(∆t) = E α1
(

α1W +F)+E ∂t F +O(∆t)

= E α2
1 W +(E α1 +E ∂t)F +O(∆t).

Then we have

SY (t) = SEV −
(

Y (t +∆t)−Y (t)
)

+∆t (C1V +D1Y +θ SE F)

+∆t2 (C2V +D2Y +H1 F)+O(∆t3)

= SE (W −θ ∆t F)

−∆t
[

E
(

α1W +F
)

+∆t
[

(E α2 +β1 α1)W +(E γ1 +β1 +ρ1 ∂t)F
]]

−∆t2

2

[

E α2
1 W +(E α1 +E ∂t)F

]

+∆t
[

C1 (W −θ ∆t F)+D1 (E W +∆t β1W +∆t ρ0 F)+θ SE F
]

+∆t2 (C2W +D2 E W +H1 F)+O(∆t3)

= S
[

E W +∆t β1W +∆t ρ0 F
]

+∆t2
[(

C2 +D2 E +D1 β1 −
1
2E α2

1 − (E α2 +β1 α1)
)

W

+
(

H1+D1 ρ0 −θ C1 −
1
2(E α1 +E ∂t)− (E γ1 +β1 +ρ0 ∂t)

)

F
]

+O(∆t3)

and the expressions of β2 and ρ1 proposed at the second line of the relations (18) are established
because γ0 is the identity matrix. �


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3) Boundary conditions for D1Q3 thermal problems

• In general there is a difference between the assumed wall position and the “measured" one,
where the numerical solution vanishes. For some particular lattice Boltzmann parameters, this
difference is null up to order two on ∆x. In this section, we study the impact of the knowledge

given in the relations (17) (18) on the analysis of the boundary conditions for the lattice Boltz-
mann schemes. In general, the incoming particles are given as a simple function of the outgoing

ones through specular reflection (bounce-back) [3] or specular “anti-reflection” (anti-bounce-
back) that are detailed in the corpus of the text. We first focus on the D1Q3 scheme for a scalar
problem.

We introduce the following moment matrix M for the D1Q3 (see Figure 2) lattice Boltzmann
scheme:

(19) M =





1 1 1
0 λ −λ

−2λ 2 λ 2 λ 2



 .

We consider only one conservation law (N = 1) and we set ρ =W = f0 + f1 + f2 . The equilib-
rium values Y eq of the two non conserved moments are given according to

(20) Y eq =





0
λ 2

ζ



 ρ ≡ E ρ .

2

x + ∆x      xx      x- ∆

10

Figure 2. Stencil of the lattice Boltzmann scheme D1Q3.

• Proposition 3. Diffusion model with the D1Q3 lattice Boltzmann scheme.

With the previous lattice Boltzmann D1Q3 scheme, described by relations (2), (6), (8), (19) and

(20), we have the equivalent equation

∂ρ

∂ t
−κ

∂ 2ρ

∂x2 −F = O(∆t2)

at second order for a stationary force F , with the thermal diffusivity

κ =
2+ζ

3
∆t λ 2 σ1 with σ1 ≡

1

s1
−

1

2
.

Proof of Proposition 3.

There is only one scalar conservation and W ≡ ρ . According to the proposition 2, we have the
equivalent equation up to order two :

∂tW = α1W +F +∆t
(

α2W + γ1 F
)

+O(∆t2).


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The associated coefficients can be computed easily: α1 = 0, α2 = λ 2σ1
ζ+2

3 , γ0 = 1 and γ1 =

(θ − 1
2)∂t . We have in consequence γ1 F = 0 if ∂t F = 0 and the equivalent equation is estab-

lished. �

• We consider the elementary one-dimensional Poisson problem with homogeneous Dirichlet
boundary conditions:

(21) −△u(x) = c for 0 < x < 1 , u(0) = u(1) = 0.

The solution of the problem (21) is quadratic. A uniform body force F is considered to take into
account the source term c in the right hand side of the Poisson equation. We denote by xb the
first node at the left in the domain ]0, 1[ and by xe a fictitious outside node (see Figure 3). The
node xb is supposed to be located at a distance ∆q of the solid wall position xi (see Figure 3). We
implement a so-called “anti-bounce-back” boundary condition to take into account the Dirichlet
boundary conditions:

(22) f1(xb, t +∆t) = − f ∗2 (xb, t)+Φ

where Φ is a given boundary term directly related to the boundary data. Observe that this term

is null if we consider e.g. homogenous Dirichlet boundary conditions.

f2 Ω
∆x

∆q

= ??f1

x
i

x
b

xe

Figure 3. “Anti-bounce-back” numerical boundary condition for the D1Q3 lattice Boltzmann
scheme. The boundary node xb is located at the distance ∆q of the theoretical boundary. The in-
coming particles f1(xb) are determined from the knowledge of the outgoing density of particles
f2(xb).

• Proposition 4. Quartic treatment of a D1Q3 boundary condition.

For the above D1Q3 lattice Boltzmann scheme, we define

ξ ≡−3+8σ1σ2 −8σ1 (1−2θ).

The numerical solution of the Poisson problem (21) vanishes at third order formal accuracy for

the position ∆q = ∆x
2 if the condition ξ = 0 is satisfied.

Proof of Proposition 4.
Using the equation (10) on the non conserved moment, we have

Y = E W +∆t β1W +∆t2 β2W +∆t ρ0 F +∆t2 ρ1 F.
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Then we perform a collision step to get

Y ∗ = (I−S)Y +SE Y +∆t θ SE F.

With the help of the inverse moments matrix M−1, we deduce:

f ∗1 =
1

2λ 2 [2m∗
2 +λ m∗

1] and f ∗2 =
1

2λ 2 [2m∗
2 −λ m∗

1].

We impose the anti-bounce-back condition on the boundary :

f1(xb, t +∆t) =− f2(xe, t +∆t)+Φ.

Due to the fundamental time iteration of a lattice Boltzmann scheme (8), we can write this
relation under the form

f ∗1 (xe, t) =− f ∗2 (xb, t)+Φ.

Using a Taylor development of the moments, we obtain :

f ∗1 (xe)+ f ∗2 (xb) = (2+ζ )
3 ρ(xi)+

+ ∆t2λ 2 (2+ζ )
72

[

−3+8σ1σ2 −8σ1(1−2θ)
] ∂ 2ρ

∂x2 (xi)+O(∆t3).

We can precise that Φ =
(2+ζ )

3
ρ(xi) in the right hand side of (22). Then the conclusion holds

if we give a null value for the second order term in the previous relation. �

• Remark We have extended our result [6] for a general values of the parameter θ .
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Figure 4. Results of simulations for the solid wall position ∆q vs. the parameter ξ ≡ −3+
8σ1σ2 −8σ1(1−2θ) for the D1Q3 scheme for thermal model. We have considered variations
of the parameter θ of the relation (2) for the forcing term (θ = 0.2 with bullets, θ = 0.5 with
circles and θ = 0.7 with boxes) and of the parameter σ2 relative to the last moment.





FRANÇOIS DUBOIS, PIERRE LALLEMAND AND MOHAMED-MAHDI TEKITEK

-0.002

-0.001

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

∆ 
q 

- 
∆x

/2

θ

σ1=1/3, σ2=3/2, θop=0.3125 

0

-3⋅10-5
-2⋅10-5
-1⋅10-5

 1⋅10-5
 2⋅10-5
 3⋅10-5
 4⋅10-5
 5⋅10-5
 6⋅10-5
 7⋅10-5

 0.31  0.312  0.314  0.316  0.318  0.32

∆ 
q 

- 
∆x

/2

θ

σ1=1/3, σ2=3/2, θop=0.3125 

Figure 5. Analogous to the figure 4. On the top: regular variation of the parameter θ for
θ ∈ [0.1,0.9]. Bottom: zoom of the top figure for θ ∈ [0.31,0.32].

4) D2Q9 for a linear acoustic type fluid

• This scheme is described and analyzed in [14]. The matrix M is now 9×9. For a fluid
model, we have N = 3 conserved quantities: density m0 ≡ ρ and the two components m1 ≡ Jx

and m2 ≡ Jy of the momentum. The non conserved moments mk for k ≥ 3 are detailed in [14].

Their equilibrium values are classical:

m
eq
3 =−2ρ , m

eq
4 = ρ , m

eq
5 =−

Jx

λ
, m

eq
6 =−

Jy

λ
, m

eq
7 = m

eq
8 = 0.
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The relaxation rates are labelled from s3 to s8 with the two constraints s5 = s6 and s7 = s8 to
recover an isotropic model compatible with the physics. The particle directions are represented

on the figure 1. With a forcing term of the type F = (0, Fx, 0), the partial equivalent equations
at the order 2 are given by

(23)



























∂ρ

∂ t
+

∂Jx

∂x
+

∂Jy

∂y
= O(∆t2) ,

∂Jx

∂ t
+ c2

s

∂ρ

∂x
−ζ

∂

∂x

[∂Jx

∂x
+

∂Jy

∂y

]

−ν ∆Jx −Fx = O(∆t2) ,

∂Jy

∂ t
+ c2

s

∂ρ

∂y
−ζ

∂

∂y

[∂Jx

∂x
+

∂Jy

∂y

]

−ν ∆Jy = O(∆t2),

where the sound speed cs, the shear viscosity ν and the bulk viscosity ζ satisfy respectively
c2

s =
λ
3 , ν = ∆t σ7

λ 2

3 and ζ = ∆t σ3
λ 2

3 for the D2Q9 scheme.

• We consider the two-dimensional Poiseuille flow with the D2Q9 lattice Boltzmann scheme.

We model this classical problem with the help of an imposed volumic force. Let Ω = [1,Nx]×

[1,Ny]. We enforce periodic condition at the inlet (i = 1) and at the outlet (i = Nx). A “bounce-

back” boundary condition is imposed on the walls to take into account the null velocity Jx = 0
on the upper and lower boundary. A uniform body force Fx is applied to model the pressure

gradient. We observe that for stationary problems, a lot of time iterations are necessary in order
to obtain correct converged results. In that case the lattice Boltzmann method is not the most
efficient taking into account the fact that due the exact advection of the lattice the resolution of

the stationary problem is not a simple task.

-0.003

-0.002

-0.001

 0

 0.001

 0.002

 0.003

-0.6 -0.4 -0.2  0  0.2  0.4  0.6

∆ 
q 

- 
∆x

/2

ξ

θ=0.2
θ=0.5
θ=0.7

Figure 6. Poiseuille flow for the D2Q9 scheme. Solid wall position ∆q vs. the parameter
ξ ≡−3+8σ8σ5−8σ8(1−2θ). Variations of the parameter θ of the relation (2) for the forcing

term (θ = 0.2 with bullets, θ = 0.5 with circles and θ = 0.7 with boxes) and of the parameter
σ5.
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• Proposition 5. Precise position of the Poiseuille boundary with D2Q9.
With the above choices for the lattice Boltzmann scheme, the solid wall is located at ∆q = ∆x

2
up to third order when the parameter

ξ ≡−3+8σ8σ5 −8σ8(1−2θ)

is equal to zero.
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Figure 7. Poiseuille flow with the D2Q9 lattice Boltzmann scheme. Top: solid wall position
∆q vs. the parameter ξ ≡ −3+ 8σ8σ5 − 8σ8 (1− 2θ). Variations of the parameter θ of the
relation (2) for the forcing term (θ = 0.2 with bullets, θ = 0.5 with circles and θ = 0.7 with
boxes) and of the parameter σ5 relative of the moment m5. Bottom: zoom of the top figure, with
a variation ∆q vs. the parameter θ ∈ [0.77, 0.78].
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• The proof of the above Proposition is elementary with traditional algebraic methods (see
e.g. [6]) but quite long to develop. We have implemented it without difficulty with a formal

computer software. In order to convince the reader, we test the resulting condition ξ = 0 with
appropriate numerical experiments presented in Figure 6 and 7. These experiments extend the

ones presented in [6].

5) D2Q13 for a linearized fluid

• To construct the scheme D2Q13, we add four more velocities to the previous scheme D2Q9
(see the figure 8). The details can be found e.g. in Higuera et al. [10]. Nine moments are

analogous to those proposed previously. The equilibrium values are parameterized according to

{

m
eq
3 = a1 ρ , m

eq
4 = m

eq
5 = 0, m

eq
6 = c1

λ Jx, m
eq
7 = c1

λ Jy,

m
eq
8 =−65+63c1

24λ Jx, m
eq
9 =−65+63c1

24λ Jy, m
eq
10 = a2 ρ , m

eq
11 = a3 ρ , m

eq
12 = 0.

In order to simulate isotropic models, the relaxation rates s3 to s12 satisfy the following relations:

s4 = s5, s6 = s7 and s8 = s9 as proposed e.g. in [2]. With the previous choices, with a forcing
term F = (0, Fx, 0) analogous to the one proposed previously for the D2Q9 scheme, the partial

equivalent equations take the form (23). In this case the sound speed cs, the shear viscosity ν

and the bulk viscosity ζ satisfy respectively c2
s =

28+a1
26 λ , ν = ∆t σ5

λ 2

2 and ζ =−∆t σ3
2+a1

26 λ 2.
In our compuation we set a1 = −12. Then ζ > 0. We study a Poiseuille flow with the D2Q13

lattice Boltzmann scheme in the framework of an imposed source term. The general choices are
analogous to the ones we did with the D2Q9 lattice Boltzmann scheme.

x∆

∆x

x

2

3

6

7 8

1

5

11 9

12

4

10

0
x1

x2

Figure 8. Stencil of the D2Q13 lattice Boltzmann scheme.

• Proposition 6. Precise position of the Poiseuille boundary with D2Q13.

When the parameter

ξ ≡−7+40σ5 σ7 −8σ5 (1−2θ)
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is null and with the above choices for the lattice Boltzmann scheme, the solid wall is located at
∆q = ∆x

2 at third order accuracy if and only if ξ = 0.

This proposition has been solved with the help of formal calculus. We did various experiments
analogous to those presented for the D2Q9 scheme. They are summarized in the captions of

Figures 9 and 10.
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Figure 9. Poiseuille flow for the D2Q13 scheme. Solid wall position ∆q vs. the parameter
ξ ≡ −7 + 40σ5 σ7 − 8σ5 (1− 2θ). Variations of the parameter θ of the relation (2) for the

forcing term (θ = 0.2 with bullets, θ = 0.5 with circles and θ = 0.7 with boxes) and of the
parameter σ5.

D2Q9 Conclusion

• In this contribution, we have extended the “Berliner version” [2] of the formal Taylor
expansion method for linear lattice Boltzmann scheme to the case of a possible external force.

We have established that the quartic parameters to enforce the precision of the lattice Boltzmann
scheme depend not only on the relaxation rates but also on the choice of the parameter θ for the
time integration (2) of the source term.

• We have derived quartic parameters for the D2Q13 model for a Poiseuille flow. Our numer-
ical results validate the formal Taylor development. Nevertheless, a rigorous numerical analysis
is still an open question. In future work, we wish to extend the quest of quartic parameters for
more general physical problems, study time dependent boundary conditions and give general
boundary conditions for any position of the wall relative to the lattice.
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Figure 10. Precise Poiseuille flow with the D2Q13 lattice Boltzmann scheme. Solid wall
position ∆q vs. the parameter θ for the forcing term in (2). Top: θ ∈ [0.1,0.9], bottom: zoom
of the top figure with θ ∈ [0.37,0.38].
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