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AbstratThis ontribution is divided into two parts. In the �rst part, we show that it is possibleto get the marosopi �uid equations of a lattie Boltzmann sheme with an externalfore using the Taylor expansion method. In a seond part, we validate this generalexpansion by a detailed appliation to boundary onditions. We preise the result forquarti ondition for Poiseuille �ow with an external drift with the D2Q13 sheme.Key words : LBM, Poiseuille �ow, thermal, fore term, boune-bak, anti-boune-bak.PACS numbers : 02.60Cb (numerial simulation, solution of equations), 43.20.+g(General linear aoustis), 47.10.+g (Navier-Stokes equations).
∗ This ontribution has been presented by Mohamed-Mahdi Tekitek at the onferene�HONOM�, INRIA, Bordeaux, 18-22 Marh 2013. Edition 12 August 2013.





F. Dubois, P. Lallemand and MM. Tekitek.1) Lattie Boltzmann method
• The Lattie Boltzmann sheme is a mesosopi method. It deals with a small num-ber of funtions {fi} that an be interpreted as populations of �titious partiles. Ithas been developed more than 20 years ago by Qian et al. [11℄, Sui et al. [12℄among others. This method an simulate various �uid dynamis problems. In the follow-ing, the notation �DdQq� denotes a lattie Boltzmann sheme with d spae dimensionsand q direte veloities. Spae is desretized by a regular lattie L parametrized bya spatial sale ∆x. The time step is denoted by ∆t. A numerial elerity λ is nat-urally de�ned by λ ≡ ∆x

∆t
. The q disrete veloities an be written as vj = λ ej for

0 ≤ j ≤ q−1. A lassial example is given by the D2Q9 sheme illustrated on the Figure 1.
Figure 1. Stenil for the D2Q9 lattie Boltzmann sheme.
• The lattie Boltzmann sheme is formulated in both spaes of partiles and moments
mk, proposed by d'Humières [8℄. We introdue an invertible matrix M = (Mk j) for
0 ≤ k, j ≤ q − 1. Then the moments mk for 0 ≤ k ≤ q − 1 are de�ned by linearity:
mk ≡

∑

j Mk jfj . The moment vetor is omposed of two kinds of quantities: the �rst oneof onserved moments V ∈ R
N whih are not a�eted by the ollision step when thereis no foring term. If N = 1 we have exatly one salar Partial Di�erential Equation. If

N > 1 we study an underlying of N PDEs. The seond one of non onserved moments Yrelax during the ollision step. So the moment vetor m ∈ R
q an be written as(1) m =

(

V

Y

)

.An elementary time evolution of a lattie Boltzmann sheme with a fore is omposed byfour steps (see Guo at al. [6℄) : omputation of the dynamial variables, ollision (throughsimple relaxation), foring of the onserved moments and advetion.
• The omputation of the dynamial variables W from the �rst omponent V of themoments (1), is given by:(2) W = V + θ∆t F ,where θ is a �xed salar in ]0, 1[ and F ∈ R

N is a given drift term. Remark that thepost-proessing in this ontribution is obtained from the knowledge of these dynamialvariables.




Taylor expansion method with an external drift
• The ollision and relaxation step is a redistribution of the populations {fi} at eahnode x. The N �rst moments W are not a�eted by the relaxation.The other �non-onserved� moments relax with a time onstant τk towards the equilibrium values m

eq
k .where θ is a �xed salar in ]0, 1[ and F is a given drift term. This equilibrium value isonly fontion of the onserved variables W . In this ontribution, we suppose that theequilibrium values Y eq of the non-onserved moments are linear funtion of dynamialvariables. We have(3) Y eq = E W ,where E is a �xed matrix with q−N lines and N olumns. Thus the relaxation is simplydesribed by an ordinary di�erential equation: d

dt
(mk − m

eq
k ) + 1

τk
(mk − m

eq
k ) = 0 for

k ≥ N . Using an expliit �rst order Euler sheme, we obtain the algorithm:(4) m∗
k = (1− sk)mk + sk m

eq
k ,where the supersript ∗ indiates "post-ollision" state and where the relaxation rates

sk ≡
∆t
τk

have to satisfy 0 < sk < 2 in order to maintain stability of the sheme. With thenotation (1) the relaxation step is performed in the moment spae as follows:(5) Y ∗ = (Id− S) Y + S Y eq ,where S is the diagonal matrix of the relaxation times sk for k ≥ N . We remark that thisollision step is loal in spae.
• Due to the fore term, the onserved moments during the ollision step, evolve a-ording to(6) V ∗ = V +∆t F .If ( )t denotes the transpose of the matrix ( ), the moments m∗ ≡ (V ∗, Y ∗)t afterollision are determined by the relations (5) and (6). After the foring and ollision steps,the partile distribution f ∗

j is reovered by the inversion of a linear system of small size:
f ∗
j =

∑

k M
−1
jk m∗

k.
• The advetion step orresponds to a method of harateristis with CFL= 1 for theadvetion with veloity vj . The partiles moves from a lattie node x to either itself (for
v0 = 0) or one of the q − 1 neighbors xj = x + vj ∆t for veloities vj 6= 0 as presentedin the Figure ??. We assume here that for eah node x and eah veloity vj, the vertex
x − vj∆t is also a node of the lattie. So a time step of a lattie Boltzmann sheme anbe written as:(7) fi(x, t+∆t) = f ∗

i (x− vi∆t, t) , 0 ≤ i ≤ q − 1 , x ∈ L ,where f ∗
i denotes the post-ollision population of partiles evaluated at the end of theprevious step.





F. Dubois, P. Lallemand and MM. Tekitek.2) Taylor expansion for equivalent equation
• In this ontribution, we extend the �Berliner version� [1℄ of the Taylor expansionmethod in order to derive marosopi equivalent equations when an external foring termis present. We suppose here that the dynamial variables W satisfy a partial di�erentialequation:(8) ∂tW = α1W +∆t α2W +∆t2 α3W + · · ·+ γ0F +∆t γ1F + . . .and the non onserved moments Y follow a dynamial variables of the type(9) Y = EW +∆t β1 W +∆t2 β2W + · · ·+∆t ρ0F +∆t2 ρ1 F + . . .Note here that the equation (8) will give the marosopi (equivalent) equation of thephysial problem. The equation (9) gives the expansion of the non onserved moments infuntion of the onserved quantities.
• The operators αj and βj are spae partial di�erential operators of order j. Due to (5),we �rst write the ollision step as follows: Y ∗ = (Id−S) Y +S Y eq = (Id−S) Y +S EWdue to (3). Then, aording to the relation (2), we have Y ∗ = (Id−S) Y +S E (V +∆t θ F )

= S E V + (Id− S)Y +∆t θ S E F .Then the moments m∗ after foring and relaxation an be presented as follows:(10) m∗ =

(

V ∗

Y ∗

)

=

(

I 0

SE I − S

)(

V

Y

)

+ ∆t

(

I

θSE

)

F .Seondly, we rewrite the sheme (7) in moment spae:
(

V

Y

)

k

(x, t+∆t) = mk(x, t+∆t) =
∑

j,l

Mk,j M
−1
j,l m∗

l (x− vj∆t, t)

=
∑

j,l,α

Mk,j M
−1
j,l (−vj)

α ∆t|α|

α!
∂αm

∗
l (x, t)and we injet the value (10) of m∗ in the previous expression. We arrange the previousformal series as inreasing powers of ∆t. We obtain the following equation:(11) (

V

Y

)

(t+∆t) =
∑

n≥0

∆tn
(

An Bn

Cn Dn

)(

V

Y

)

(t) +
∑

n≥0

∆tn+1

(

Gn

Hn

)

F.The order zero of the development (11) relative to ∆t is dedued from (10) by identi�a-tion:(12) (

A0 B0

C0 D0

)

=

(

I 0

S E I− S

)

,

(

G0

H0

)

=

(

I

θ S E

)

.

• Proposition 1. Taylor expansion at order 1.The equivalent equations and the non onserved moments for linear lattie Boltzmannsheme with external fore up to �rst order are given by the relations(13) ∂tW = α1 W + γ0 F + O(∆t) , Y = EW +∆t
(

β1W + ρ0 F
)

+ O(∆t2)with(14) {

α1 = A1 +B1E , β1 = S−1 (C1 +D1E −E α1) ,

γ0 = G0 = I , ρ0 = S−1 (H0 −E γ0 − θ S E) .





Taylor expansion method with an external driftProof of Proposition 1.We have from (11) and (12) V (t+∆t) = V +∆t ∂tV +O(∆t2) = V +∆t (A1V +B1Y )

+∆t G0 F +O(∆t2) and Y (t + ∆t) = Y + ∆t ∂tY + O(∆t2) = (Id − S) Y + S E V +

∆t (C1V + D1 Y ) + ∆tH0 F + O(∆t2). Using the relation (2) we have V = W − θ∆tFand the development at equilibrium (order zero) Y = EW + O(∆t), we obtain on onehand ∂tW = (A1 +B1E)W +G0F + O(∆t) and on the other hand
Y = EW +∆t S−1 [C1 +D1E − E (A1 +B1E)W ] + (H0 −Eγ0 − θ S E)F +O(∆t2) .By identi�ation of the previous relations with the Ansatz (8)(9), we obtain the relations(13) at �rst order with the oe�ients α1, β1, γ0 and ρ0 expliited in (14). �

• Proposition 2. Taylor expansion at order 2.The equivalent equations for linear lattie Boltzmann sheme with external fore, asdesribed in �rst setion, up to seond order, are:(15) {

∂tW = α1 W + γ0 F +∆t
(

α2W + γ1 F
)

+ O(∆t2)

Y = EW +∆t
(

β1W + ρ0 F
)

+∆t2
(

β2W + ρ1 F
)

+ O(∆t3)with oe�ients α1, β1, γ0 and ρ0 proposed in (14) and(16) 

















α2 = B1 β1 + A2 +B2 E − 1
2
α2
1

γ1 = B1 ρ0 +G1 − θ A1 −
1
2

[

α1 γ0 + (γ0 − 2θ) ∂t
]

β2 = S−1
[

D1 β1 −E α2 − β1 α1 − E
α2

1

2
+ C2 +D2E

]

ρ1 = S−1
[

D1ρ0 +H1 −Eγ1 − β1 γ0 −
1
2
Eα1 γ0 −

1
2
E γ0 ∂t − ρ0 ∂t − θ C1

]

.Proof of Proposition 2.We �rst di�erentiate relative to time the �rst relation of (13):
∂2
tW = ∂t

(

α1W+F
)

+O(∆t) = α1

(

α1W+F
)

+ ∂tF+O(∆t) = α2
1 W+(α1+∂t)F+O(∆t).We an therefore develop the dynamial variables W at time t +∆t up to seond order.Due to the de�nition (2), we have:

W (t+∆t) = V (t+∆t) + θ∆t F (t+∆t)

= V (t) +∆t
(

A1 V (t) +B1 Y (t)
)

+∆t2
(

A2 V (t) +B2 Y (t)
)

+ θ∆t F (t+∆t) + O(∆t3)

= W (t)− θ∆t F (t+∆t) + θ∆t F (t+∆t) + ∆t
(

A1 (W − θ∆t F )

+B1 (EW +∆t β1 W +∆t ρ0 F )
)

+∆t2
(

A2 W +B2 EW
)

+O(∆t3) .Then taking into aount the Taylor formula at seond order auray and the expressionof ∂2
tW :

W+∆t ∂tW+∆t2

2

(

α2
1 W+(α1+∂t)F+O(∆t3) = W−θ∆t2 ∂t F +∆t

(

A1W+B1EW
)

+

∆t2
(

−∆t F +B1 β1W +B1 ρ0 F + A2W +B2EW
)

+O(∆t3).After dividing by ∆t:
∂tW = (A1 +B1E)W + F +∆t

[

(A2 +B2E +B1 β1 −
1
2
α2
1)
]

W

+∆t
[

(G1 +B1 ρ0 − θ A1 −
1
2
α1 + (θ − 1

2
) ∂t)F

]

+O(∆t2)and the expressions of α2 and γ1 in (16) are established.
• For establish the seond set of relations of (15), we �rst look to the derivation relativeto time of the non-onserved moments Y . We have
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∂tY = ∂t

[

EW +∆t
(

β1W + ρ0 F
)]

+O(∆t2)

= E
[

α1W + F +∆t (α2 W + γ1 F ) + O(∆t2)
]

+∆t β1

(

α1W + F
)

+∆t ρ0 ∂t F + O(∆t2)

= E
(

α1W + F
)

+∆t
[

(E α2 + β1 α1)W + (E γ1 + β1 + ρ1 ∂t)F
]

+O(∆t2) .We di�erentiate relative to time at seond order:
∂2
t Y = ∂t

[

E
(

α1W + F
)]

+ O(∆t) = E α1

(

α1W + F ) + E ∂t F + O(∆t) = E α2
1 W +

(E α1 + E ∂t)F +O(∆t). Then we have
S Y (t) = S E V −

(

Y (t +∆t)− Y (t)
)

+∆t (C1 V +D1 Y + θ S E F )

+∆t2 (C2 V +D2 Y +H1 F ) + O(∆t3)

= S E (W − θ∆t F )−∆t
[

E
(

α1W + F
)

+∆t
[

(E α2 + β1 α1)W + (E γ1 + β1 + ρ1 ∂t)F
]

−∆t2

2

[

E α2
1W + (E α1 + E ∂t)F

]

+∆t
[

C1 (W − θ∆t F ) +D1 (EW +∆t β1W

+∆t ρ0 F ) + θ S E F
]

+∆t2 (C2W +D2EW +H1 F ) + O(∆t3)

= S
[

EW +∆t β1W +∆t ρ0 F
]

+∆t2
[(

C2 +D2E +D1 β1 −
1
2
E α2

1 − (E α2 + β1 α1)
)

W

+
(

H1 +D1 ρ0 − θ C1 −
1
2
(E α1 + E ∂t)− (E γ1 + β1 + ρ0 ∂t)

)

F
]

+O(∆t3)and the expressions of β2 and ρ1 proposed at the seond line of the relations (16) areestablished beause γ0 is the identity matrix. �3) Appliation to boundary ondition
• Boundary onditions are performed to impose a given veloity (or a given pressure)on somea given part of the physial boundary. These onditions have to be translatedin terms of the numerial sheme. In general there is a di�erene between the assumedwall position and the "measured" one. For some partiular lattie Boltzmann parameters,this di�erene is null up to order two on ∆x. This de�nes so-alled �quarti� parameters(see [3℄). For the general framework of this kind of methodology, we refer to Ginzburgand Adler [4℄, Ginzburg et al. [5℄ and Ginzburg and d'Humières [9℄. In this setion, westudy the impat of the knowledge given in the relations (15)(16) on the analysis of theboundary onditions for the lattie Boltzmann shemes. We fous on the D1Q3 shemefor a salar problem and the D2Q9 and D2Q13 shemes for the linearized �uid.

2

x + ∆x      xx      x− ∆

10Figure 2. Stenil of the lattie Boltzmann sheme D1Q3.
• D1Q3 for a thermis model problem.We introdue the following matrix moment M for the D1Q3 lattie Boltzmann sheme:D1Q3: M =





1 1 1

0 λ −λ

−2 λ2 λ2 λ2



 .We onsider only one onservation law (N = 1) and we set ρ = W = f0 + f1 + f2 .The equilibrium values Y eq of the two non-onserved moments are given aording to
Y eq = E ρ with E = (0, λ2 ζ)t.





Taylor expansion method with an external drift
• Proposition 3. Di�usion model with the D1Q3 lattie Boltzmann sheme.With the previous lattie Boltzmann D1Q3 sheme, we have the equivalent equation
∂ρ

∂t
− κ ∂2ρ

∂x2 − F = O(∆t2) at seond order for a stationary fore F , with the thermaldi�usivity κ = 2+ζ

3
∆t λ2 σ1 and σ1 ≡

1
s1
− 1

2
.Proof of Proposition 3.There is only one slar onservation and W ≡ ρ. Aording to the proposition 2, we havethe equivalent equation up to order two: ∂tW = α1W +F +∆t

(

α2W + γ1 F
)

+O(∆t2).The assoiated oe�ients an be omputed easily: α1 = 0, α2 = λ2σ1
ζ+2
3
, γ0 = 1 and

γ1 = (θ− 1
2
) ∂t. We have in onsequene γ1 F = 0 if ∂t F = 0 and the equivalent equationis established. �

• Boundary Conditions for thermisWe onsider the elementary one-dimensional Poisson problem with homogeneous Dirihletboundary onditions:(17) −△ u(x) = c for 0 < x < 1 , u(0) = u(1) = 0 .The solution of the problem (17) is quadrati and is presented in Figure 3. A uniformbody fore F is onsidered to take into aount the soure term c in the right hand side ofthe Poisson equation. We denote by xb the �rst node at the left in the domain ]0, 1[ andby xe a �titious outside node. The node xb is supposed to be loated at a distane ∆qof the solid wall position xi (see Figure 3). We implement a so-alled �anti-boune-bak�boundary ondition (see Bouzidi et al. [2, 9℄) to take into aount the Dirihlet boundaryonditions:(18) f1(xb, t+∆t) = −f ∗
2 (xb, t) + Φwhere Φ is a given boundary term that has to be preised.

H

L

f2 Ω
∆x

∆q

= ??f1

x i

xb
xe

Figure 3. Left: quadrati solution of a one-dimensional Poisson problem. Right:�anti-boune-bak� numerial boundary ondition for the D1Q3 lattie Boltzmann sheme.The boundary node xb is loated at the distane ∆q of the theoretial boundary. Theinoming partiles f1(xb) are determined with the knowledge of the outgoing density ofpartiles f2(xb).
• Proposition 4. Quarti treatment of a D1Q3 boundary ondition.For the above D1Q3 lattie Boltzmann sheme, we de�ne ξ ≡ −3 + 8σ1σ2 − 8σ1 (1− 2θ).The numerial solution of the Poisson problem (17) vanishes at third order formal aurayfor the position ∆q = ∆x

2
if the ondition ξ = 0 is satis�ed.
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Figure 5. Analogous to the �gure 4. On the left: regular variation of the parameter θfor θ ∈ [0.1, 0.9]. Right: zoom of the left �gure for θ ∈ [0.31, 0.32].Proof of Proposition 4.Using the equation (9) on the nononserved moment, we have Y = EW + ∆t β1W +

∆t2 β2W +∆t ρ0 F +∆t2 ρ1 F. Then we perform a ollision step to get Y ∗ = (I− S) Y +

S E Y +∆t θ S E F. With the help of the inverse moments matrix M−1, we dedue:
f ∗
1 = 1

2λ2 [2m
∗
2 + λm∗

1] and f ∗
2 = 1

2λ2 [2m
∗
2 − λm∗

1]. We impose the anti-boune-bakondition on the boundary: f1(xb, t+∆t) = −f2(xe, t+∆t)+Φ. Due to the fundamentaltime iteration of a lattie Boltzmann sheme (7), we an write this relation under theform f ∗
1 (xe, t) = −f ∗

2 (xb, t) + Φ. Using a Taylor development of the moments, we obtain:
f ∗
1 (xe) + f ∗

2 (xb) =
(2+ζ)

3
ρ(xi) + ∆t2λ2 (2+ζ)

72

[

− 3 + 8σ1σ2 − 8σ1(1− 2θ)
]

∂2ρ

∂x2 (xi) + O(∆t3).





Taylor expansion method with an external driftWe an preise that Φ = 1
3
(2+ζ) ρ(xi) in the right hand side of (18). Then the onlusionholds if we give a null value for the seond order term in the previous relation. We remarkthat for θ = 1

2
we found the same result that the one we proposed previously [3℄. �

• D2Q9 for a linear aousti type �uidThis sheme is desribed and analyzed in [10℄. The matrix M is now 9×9. For a �uidmodel, we have N = 3 and the onserved moments are the density m0 ≡ ρ and the twoomponents of the momentum: m1 ≡ Jx and m2 ≡ Jy. The nononserved moments mkfor k ≥ 3 are detailed in [10℄. Their equilibrium values are lassial: meq
3 = −2ρ, meq

4 = ρ,
m

eq
5 = −Jx

λ
, meq

6 = −Jy
λ

and m
eq
7 = m

eq
8 = 0. The relaxation rates are labelled from s3 to

s8 with the two onstraints s5 = s6 and s7 = s8 to reover an isotropi model ompatiblewith the physis. The partile diretions are represented on the �gure 1. With a foringterm of the type F = (0, Fx, 0), the partial equivalent equations at the order 2 are givenby


























∂ρ

∂t
+

∂Jx

∂x
+

∂Jy

∂y
= O(∆t2) ,

∂Jx

∂t
+

λ

3

∂ρ

∂x
−

λ2

3
∆t

[

σ3
∂

∂x

(∂Jx

∂x
+

∂Jy

∂y

)

+ σ7 ∆Jx

]

− Fx = O(∆t2) ,

∂Jy

∂t
+

λ

3

∂ρ

∂y
−

λ2

3
∆t

[

σ3
∂

∂y

(∂Jx

∂x
+

∂Jy

∂y

)

+ σ7 ∆Jy

]

= O(∆t2) .

• Two-dimensional Poiseuille �ow with the D2Q9 lattie Boltzmann shemeWe study this lassial problem in Ω = [1, Nx]×[1, Ny] with the help of an imposed volumiuniform body fore Fx to model the pressure gradient. We enfore periodi ondition atthe inlet (i = 1) and at the outlet (i = Nx). A �boune-bak� boundary ondition isimposed on the walls to take into aount the null veloity Jx = 0 on the upper and lowerboundary.
• Proposition 5. Preise position of the Poiseuille boundary with D2Q9.With the above hoies for the lattie Boltzmann sheme, the solid wall is at ∆q = ∆x

2up to third order when the parameter ξ ≡ −3 + 8σ8σ5 − 8σ8(1− 2θ) is equal to zero.
• The proof of Proposition 5 is elementary with traditional algebrai methods butquite long to develop. We have implemented it without di�ulty with a formal omputersoftwave. In order to onvine the reader, we test the resulting ondition ξ = 0 withappropriate numerial experiments presented in Figure 6. These experiments extend theones presented in [3℄.
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Figure 6. Poiseuille �ow with the D2Q9 lattie Boltzmann sheme. Left: solid wallposition ∆q vs. the parameter ξ ≡ −3+8σ8σ5−8σ8 (1−2θ). Variations of the parameter
θ of the relation (2) for the foring term (θ = 0.2 with bullets, θ = 0.5 with irles and
θ = 0.7 with boxes) and of the parameter σ5 relative of the moment m5. Right: zoom ofthe left �gure, with a variation ∆q vs. the parameter θ ∈ [0.77, 0.78].
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• D2Q13 for a linearized �uidTo onstrut the sheme D2Q13, we add four more veloities to the previous shme D2Q9(see the �gure 7). The details an be found e.g. in Higuera et al. [7℄. Nine momentsare analogous to those proposed previously. The equilibrium values are parameterizedaording to m

eq
3 = a1 ρ, meq

4 = m
eq
5 = 0, meq

6 = c1
λ
Jx, meq

7 = c1
λ
Jy, meq

8 = −65+63 c1
24 λ

Jx,
m

eq
9 = −65+63 c1

24λ
Jy, meq

10 = a2 ρ, meq
11 = a3 ρ and m

eq
12 = 0. In order to simulate isotropimodels, the relaxation rates s3 to s12 satisfy the following relations : s4 = s5, s6 = s7and s8 = s9 as proposed e.g. in [1℄. With the previous hoies, with a foring term

F = (0, Fx, 0) analogous to the one proposed previously for the D2Q9 sheme, the partial




Taylor expansion method with an external driftequivalent equations take the form


























∂ρ

∂t
+

∂Jx

∂x
+

∂Jy

∂y
= O(∆t2) ,

∂Jx

∂t
+ c2s

∂ρ

∂x
− ζ

∂

∂x

[∂Jx

∂x
+

∂Jy

∂y

]

− ν∆Jx − Fx = O(∆t2) ,

∂Jy

∂t
+ c2s

∂ρ

∂y
− ζ

∂

∂y

[∂Jx

∂x
+

∂Jy

∂y

]

− ν∆Jy = O(∆t2) .The sound speed cs, the shear visosity ν and the bulk visosity ζ satisfy respetively
c2s =

28+a1
26

λ2, ν = ∆t σ5
λ2

2
and ζ = −∆t σ3

2+a1
26

λ2.
• Two-dimensional Poiseuille �ow with the D2Q13 lattie Boltzmann shemeThe general hoies are analogous to the ones we did with the D2Q9 lattie Boltzmannsheme.
• Proposition 6. Preise position of the Poiseuille boundary with D2Q13.When the parameter ξ ≡ −7 + 40σ5 σ7 − 8σ5 (1 − 2θ) is null and with the above hoiesfor the lattie Boltzmann sheme, the solid wall is loated at ∆q = ∆x

2
at third orderauray if and only if ξ = 0.

• This proposition has been solved with the help of formal alulus. We did variousexperiments analogous to the one presented for the D2Q9 sheme. They are summarizedin the aptions of Figures 8 and 9.
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