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Abstract

This contribution is divided into two parts. In the first part, we show that it is possible
to get the macroscopic fluid equations of a lattice Boltzmann scheme with an external
force using the Taylor expansion method. In a second part, we validate this general
expansion by a detailed application to boundary conditions. We precise the result for
quartic condition for Poiseuille flow with an external drift with the D2Q13 scheme.
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1) Lattice Boltzmann method

e The Lattice Boltzmann scheme is a mesoscopic method. It deals with a small num-
ber of functions {f;} that can be interpreted as populations of fictitious particles. It
has been developed more than 20 years ago by Qian et al. [11], Succi et al. [12]
among others. This method can simulate various fluid dynamics problems. In the follow-
ing, the notation “DdQq” denotes a lattice Boltzmann scheme with d space dimensions
and ¢ dicrete velocities. Space is descretized by a regular lattice £ parametrized by
a spatial scale Az. The time step is denoted by At. A numerical celerity A is nat-

urally defined by A = i—f. The ¢ discrete velocities can be written as v; = Ae; for
0 <j <qg—1. A classical example is given by the D2Q9 scheme illustrated on the Figure 1.
6 2 5
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Figure 1.  Stencil for the D2Q9 lattice Boltzmann scheme.

e The lattice Boltzmann scheme is formulated in both spaces of particles and moments
my, proposed by d’'Humiéres [8]. We introduce an invertible matrix M = (M) for
0 <k,j <qg—1. Then the moments m; for 0 < k < g — 1 are defined by linearity:
my = Zj Mj, ; f;. The moment vector is composed of two kinds of quantities: the first one
of conserved moments V' € RY which are not affected by the collision step when there
is no forcing term. If N = 1 we have exactly one scalar Partial Differential Equation. If
N > 1 we study an underlying of N PDEs. The second one of non conserved moments Y
relax during the collision step. So the moment vector m € R? can be written as

(1) m:(g).

An elementary time evolution of a lattice Boltzmann scheme with a force is composed by
four steps (see Guo at al. [6]) : computation of the dynamical variables, collision (through
simple relaxation), forcing of the conserved moments and advection.

e The computation of the dynamical variables W from the first component V' of the
moments (1), is given by:

2) W =V+0ALF,

where 6 is a fixed scalar in ]0,1[ and F € RY is a given drift term. Remark that the
post-processing in this contribution is obtained from the knowledge of these dynamical
variables.
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e The collision and relaxation step is a redistribution of the populations {f;} at each
node x. The N first moments W are not affected by the relaxation.The other “non-
conserved” moments relax with a time constant 75, towards the equilibrium values m;?.
where 6 is a fixed scalar in |0, 1] and F' is a given drift term. This equilibrium value is
only fonction of the conserved variables . In this contribution, we suppose that the
equilibrium values Y“? of the non-conserved moments are linear function of dynamical
variables. We have

(3) Y = EW,

where F' is a fixed matrix with ¢ — N lines and N columns. Thus the relaxation is simply

described by an ordinary differential equation: <(my — m?) + %

k > N. Using an explicit first order Euler scheme, we obtain the algorithm:

(my, — mg?) = 0 for

(4) my, = (1 — sg) mg + spmy

where the superscript * indicates "post-collision" state and where the relaxation rates
Sp = f—: have to satisfy 0 < s; < 2 in order to maintain stability of the scheme. With the

notation (1) the relaxation step is performed in the moment space as follows:
(5) Y'=(Id-9)Y +S5Y“,

where S is the diagonal matrix of the relaxation times s; for £ > N. We remark that this
collision step is local in space.

e Due to the force term, the conserved moments during the collision step, evolve ac-
cording to

(6) VS =V +ALF,

If ()* denotes the transpose of the matrix (), the moments m* = (V*, Y*)' after
collision are determined by the relations (5) and (6). After the forcing and collision steps,
the particle distribution f; is recovered by the inversion of a linear system of small size:
f5 =2 Mﬁel e

e The advection step corresponds to a method of characteristics with CFL= 1 for the
advection with velocity v;. The particles moves from a lattice node x to either itself (for
vo = 0) or one of the ¢ — 1 neighbors z; = x + v; At for velocities v; # 0 as presented
in the Figure ??7. We assume here that for each node x and each velocity v;, the vertex
x — v;At is also a node of the lattice. So a time step of a lattice Boltzmann scheme can
be written as:

(7) filr, t+At) = fi(x —v;At, t), 0<i<qg—1,z€eLl,

where f denotes the post-collision population of particles evaluated at the end of the
previous step.
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2) Taylor expansion for equivalent equation

e In this contribution, we extend the “Berliner version” [1| of the Taylor expansion
method in order to derive macroscopic equivalent equations when an external forcing term
is present. We suppose here that the dynamical variables W satisfy a partial differential

equation:

(8) OW = art W+ At ag W+ A2 asW + -+ F + Aty F ...
and the non conserved moments Y follow a dynamical variables of the type
(9) Y = EWH AW +ALBW + -+ AtpgF + At2p1 F + . ..

Note here that the equation (8) will give the macroscopic (equivalent) equation of the
physical problem. The equation (9) gives the expansion of the non conserved moments in
function of the conserved quantities.

e The operators a; and f3; are space partial differential operators of order j. Due to (5),
we first write the collision step as follows: Y* = (Id—S)Y +S5Y* = (Id-S)Y+SEW
due to (3). Then, according to the relation (2), we have Y* = (Id—S)Y+S E (V+At0 F)
= SEV+(Id-S)Y + At SEF.

Then the moments m* after forcing and relaxation can be presented as follows:

(10) m*:<}‘j):<SIE IES)<¥)+At(eSIE)F'

Secondly, we rewrite the scheme (7) in moment space:

(}‘i) (2, + At) = my(z, t + Al) ZM’W (z — v; At 1)
k

At
- ZM’W M;ll (—v;)” o —— Oumj (z,1)
7l
and we inject the value (10) of m* in the previous expression. We arrange the previous
formal series as increasing powers of At. We obtain the following equation:

(11) (}‘i)tJrAt ;At”<A B )( ) ;At"“( ")

The order zero of the development (11) relative to At is deduced from (10) by identifica-
tion:

@ (@) (e ts) ()= (ase)

e Proposition 1. Taylor expansion at order 1.
The equivalent equations and the non conserved moments for linear lattice Boltzmann
scheme with external force up to first order are given by the relations

(13) W =y W+rF + O(Al), Y = EW+AL (/W +po F) + O(A)
with

(14) {a1:A1+BlE> By =S1C1+D1E-Ew),

’YQ:GQZI, pozsil(Ho—E’)/o—QSE).

4
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Proof of Proposition 1.

We have from (11) and (12) V(¢ + At) =V + At 9,V + O(A#?) =V + At (A,V + B1Y)
+AtGo F +O(A#?) and Y(t + At) =Y + At 9,Y + O(At?) = (Id - S)Y + SEV +
At (C1V + DY) + At Hy F + O(At?). Using the relation (2) we have V = W — 0AtF
and the development at equilibrium (order zero) ¥ = E'W 4 O(At), we obtain on one
hand ;W = (A; + B1E)W + GoF + O(At) and on the other hand

Y = EW + AtS~[C) + DiE — E (A, + BiE)W] + (Hy — Evo — 0 S E) F + O(At?).
By identification of the previous relations with the Ansatz (8)(9), we obtain the relations
(13) at first order with the coefficients ay, 1, 7o and po explicited in (14). O

e Proposition 2. Taylor expansion at order 2.
The equivalent equations for linear lattice Boltzmann scheme with external force, as
described in first section, up to second order, are:

with coefficients oy, £1, 70 and pg proposed in (14) and
0%} :Blﬁl+A2‘|‘BQE_%a%
T :Blpo+G1—9A1—%[04170+(70—29)6t}
(1’2
B2 :S_l[Dlﬁl_Ea2_61051_E71+C2+D2E}
p =S [Dmo +Hy —Evi — By — %E@l Yo — %E’VO Oy — po Oy — 901} .

(16)

Proof of Proposition 2.
We first differentiate relative to time the first relation of (13):
PW = 0,(cn W+F)+0(At) = oy (o WHF)+ O F+O(At) = af W+ (a1 +0;) F+O(At).
We can therefore develop the dynamical variables W at time ¢ + At up to second order.
Due to the definition (2), we have:
W(t+ At) =V(t+ At) + 0 At F(t + At)
=V({t)+ At (A V() + B Y1)+ At (A V(t) + Bo Y () + 0 At F(t + At) + O(At)
=W () —O0ALF(t + At) + O At F(t+ At) + At (A (W — AL F)
+ B (EW +AtJ W+ At pg F)) + At (A, W + By EW) + O(A#?) .
Then taking into account the Taylor formula at second order accuracy and the expression
of O}W:
WA AL W+ 22 (2 W+ (ay+8,) FHO(AP) = W—0 A2, F + At (A, W+B, EW) +
A (= AtF+ B JiW +Bipg F + AW + B, EW) + O(A#).
After dividing by At:
OW = (A1 +BIE)YW + F+ At [(Ay+ Bs E+ By py — 303) | W
+AL [(G1+ Bipo—0 A1 — 31+ (0 — 1) 9,) F| + O(At?)
and the expressions of ay and 7 in (16) are established.

e For establish the second set of relations of (15), we first look to the derivation relative
to time of the non-conserved moments Y. We have
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Y =0 [EW + At (B W + po F)] + O(A#?)
=E [y W+ F+ At (as W+ F) + O(A#?)]
+AL Sy (an W+ F) 4 At pg 0, F + O(At?)

=E(W+F)+At[(Eas+ Bra) W+ (Evi + B+ p1 &) F] + O(A#?).
We differentiate relative to time at second order:
RY = [E(aW +F)] +O(At) = Eay (W + F)+ EO, F + O(At) = EalW +
(Ea; + E0) F+ O(At). Then we have
SY({t)=SEV — (Y(t+At)=Y(t)) + At(CLV + DY +0SEF)
+A2 (CoV + DY + Hy F) + O(At?)
=SE(W-—-0AtF)— At [E (a1W+F) + At [(Ea2+61a1)W+(E71+51 +p18t)F]
AP TEQ}W 4 (Eay+ EQ,) F] + At [Cy (W — 0 AL F) + Dy (EW + At g, W
+Atpo F) + 0 SEF| + At* (CoW + Dy EW + Hy F) 4+ O(At?)
=S[EW+AtBW+Atpg Fl + A [(Co+ Do E+ Dy 1 —LE o} — (Eas + Braq))W
+(Hi+Dipo—0Cy — LHEar+ Ed) — (Evi+ B+ pody)) F] + O(AE?)
and the expressions of f, and p; proposed at the second line of the relations (16) are
established because g is the identity matrix. O

3) Application to boundary condition

e Boundary conditions are performed to impose a given velocity (or a given pressure)
on somea given part of the physical boundary. These conditions have to be translated
in terms of the numerical scheme. In general there is a difference between the assumed
wall position and the "measured" one. For some particular lattice Boltzmann parameters,
this difference is null up to order two on Ax. This defines so-called “quartic” parameters
(see [3]). For the general framework of this kind of methodology, we refer to Ginzburg
and Adler [4], Ginzburg et al. [5] and Ginzburg and d’Humiéres [9]. In this section, we
study the impact of the knowledge given in the relations (15)(16) on the analysis of the
boundary conditions for the lattice Boltzmann schemes. We focus on the D1Q3 scheme
for a scalar problem and the D2Q9 and D2Q13 schemes for the linearized fluid.

2 0 1
L @ o
X— AX X X+ AX

Figure 2.  Stencil of the lattice Boltzmann scheme D1Q3.

e DI1Q3 for a thermics model problem.
We introduce the following matrix moment M for the D1Q3 lattice Boltzmann scheme:

11 1
DIQ3: M = 0 A =\
222 A2 )2

We consider only one conservation law (N = 1) and we set p = W = fo + f1 + f2.
The equilibrium values Y*? of the two non-conserved moments are given according to
Y = Ep with E = (0, \2()b.
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e Proposition3. Diffusion model with the D1Q3 lattice Boltzmann scheme.
With the previous lattice Boltzmann D1Q3 scheme, we have the equivalent equation
9p

& - /{% — F = O(A#?) at second order for a stationary force F, with the thermal

diffusivity x = % At N0y and oy = i - %

Proof of Proposition 3.

There is only one sclar conservation and W = p. According to the proposition 2, we have
the equivalent equation up to order two: oW = a; W + F + At (a2 W+ F) +O(At?).
The associated coefficients can be computed easily: a; = 0, ay = )\201(%2, Yo = 1 and
m=(0- %) 0;. We have in consequence v, F' = 0 if 9, F' = 0 and the equivalent equation

is established. O
e Boundary Conditions for thermics

We consider the elementary one-dimensional Poisson problem with homogeneous Dirichlet
boundary conditions:

(17) —Au(x)=c for0<z<l1, u(0) =u(l)=0.

The solution of the problem (17) is quadratic and is presented in Figure 3. A uniform
body force F' is considered to take into account the source term c in the right hand side of
the Poisson equation. We denote by x;, the first node at the left in the domain ]0, 1] and
by z. a fictitious outside node. The node x; is supposed to be located at a distance Ag
of the solid wall position z; (see Figure 3). We implement a so-called “anti-bounce-back”
boundary condition (see Bouzidi et al. [2, 9]) to take into account the Dirichlet boundary
conditions:

(18) fi(my, t+ At) = —f5(zp,t) + @

where ® is a given boundary term that has to be precised.

C Aq

Figure 3. Left: quadratic solution of a one-dimensional Poisson problem. Right:
“anti-bounce-back” numerical boundary condition for the D1Q3 lattice Boltzmann scheme.
The boundary node z; is located at the distance Ag of the theoretical boundary. The
incoming particles fi(x;) are determined with the knowledge of the outgoing density of
particles fa(xyp).

e Proposition 4. Quartic treatment of a D1Q3 boundary condition.

For the above D1Q3 lattice Boltzmann scheme, we define ¢ = —3 + 80109 — 807 (1 — 20).
The numerical solution of the Poisson problem (17) vanishes at third order formal accuracy
for the position Ag = % if the condition ¢ = 0 is satisfied.

7
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Figure 4. Solid wall position Aq vs. the parameter { = —3 + 80109 — 807(1 — 20)
for the D1Q3 scheme for thermal model. We have considered variations of the parameter
0 of the relation (2) for the forcing term (6 = 0.2 with bullets, § = 0.5 with circles and
0 = 0.7 with boxes) and of the parameter o9 relative to the last moment.
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Figure 5. Analogous to the figure 4. On the left: regular variation of the parameter 0
for 6 € [0.1,0.9]. Right: zoom of the left figure for 6 € [0.31,0.32].

Proof of Proposition 4.

Using the equation (9) on the nonconserved moment, we have Y = EW + At /W +
At BoW + At po F + At? p; F. Then we perform a collision step to get Y* = (I—S)Y +
SEY + Atf S E F. With the help of the inverse moments matrix M !, we deduce:

fi = 5= 2m3 + Ami] and f; = 557 [2m} — Amj]. We impose the anti-bounce-back
condition on the boundary: fi(x,, t+ At) = — fo(x., t+ At) +P. Due to the fundamental
time iteration of a lattice Boltzmann scheme (7), we can write this relation under the
form f](ze,t) = —f5(xp,t) + ®. Using a Taylor development of the moments, we obtain:

Fr(@e) + f5 () = Ep(a) + APNED [ -3 4 80105 — 804(1 — 260)] Z4(x;) + O(AL).

Ox2

8
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We can precise that ® = £(2+() p(x;) in the right hand side of (18). Then the conclusion
holds if we give a null value for the second order term in the previous relation. We remark
that for 0 = % we found the same result that the one we proposed previously [3]. O

e D2Q9 for a linear acoustic type fluid

This scheme is described and analyzed in [10]. The matrix M is now 9x9. For a fluid
model, we have N = 3 and the conserved moments are the density mg = p and the two
components of the momentum: m; = J, and my = J,. The nonconserved moments m,

for k& > 3 are detailed in [10]. Their equilibrium values are classical: m3? = —2p, my? = p,
mgl = =2 mgl = —% and m7? = mg? = 0. The relaxation rates are labelled from s3 to

sg with the two constraints s5; = sg and s; = sg to recover an isotropic model compatible
with the physics. The particle directions are represented on the figure 1. With a forcing
term of the type F' = (0, F, 0), the partial equivalent equations at the order 2 are given
by

( Op 0J, 0J, 9
hlad i A
8t+8x+8y2 O(AL),
oJ, AXdp A 0 (0J, 0J, - 2
oJy, AXop A 0 (0J, 0J
DIy L 29P A A il et} AJ,| = O(A).
(Ot +30y 3 t[038y<8x i 0y)+07 Jy] O(At)

e Two-dimensional Poiseuille low with the D2Q9 lattice Boltzmann scheme

We study this classical problem in = [1, N, x[1, N,] with the help of an imposed volumic
uniform body force F, to model the pressure gradient. We enforce periodic condition at
the inlet (¢ = 1) and at the outlet (i = N,). A “bounce-back” boundary condition is
imposed on the walls to take into account the null velocity J, = 0 on the upper and lower
boundary.

e Proposition 5. Precise position of the Poiseuille boundary with D2Q9.

With the above choices for the lattice Boltzmann scheme, the solid wall is at Aq = %
up to third order when the parameter £ = —3 + 80g0; — 80(1 — 26) is equal to zero.

e The proof of Proposition 5 is elementary with traditional algebraic methods but
quite long to develop. We have implemented it without difficulty with a formal computer
softwave. In order to convince the reader, we test the resulting condition ¢ = 0 with
appropriate numerical experiments presented in Figure 6. These experiments extend the
ones presented in [3].
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Figure 6. Poiseuille flow with the D2Q9 lattice Boltzmann scheme. Left: solid wall
position Ag vs. the parameter £ = —3 + 80g0; — 80 (1 —26). Variations of the parameter
6 of the relation (2) for the forcing term (6 = 0.2 with bullets, § = 0.5 with circles and
0 = 0.7 with boxes) and of the parameter o5 relative of the moment mjy. Right: zoom of
the left figure, with a variation Aq vs. the parameter 6 € [0.77, 0.78].
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Figure 7.  Stencil of the D2Q13 lattice Bolzmann scheme.

e D2Q13 for a linearized fluid

To construct the scheme D2Q13, we add four more velocities to the previous schme D2Q9
(see the figure 7). The details can be found e.g. in Higuera et al. [7]. Nine moments
are analogous to those proposed previously. The equilibrium values are parameterized

- eq _ eq _ ,eq _ g _ ¢ eq _ ¢ eq _ _ 65+63c
according to my" = a1 p, my = ms =0, mg = leza mr = Tl‘]y’ mg = _T)\ljxa
mg! = =SB mil = ayp, mi% = azp and m{4 = 0. In order to simulate isotropic

models, the relaxation rates sz to s satisfy the following relations : s4 = s5, sg = 7
and sg = sg as proposed e.g. in [1]. With the previous choices, with a forcing term
F = (0, F}, 0) analogous to the one proposed previously for the D2Q9 scheme, the partial

10
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equivalent equations take the form

(Op 0J, 0J, 9
— — = O(At
33+ ax; % 0 (8)5 )0’J
x o Op T y 2
- _ = —4 —vAJ, — F,=0(A
B R EE e
y 2 0P x y 2
r 2 —vAJ, = O(At).
L Ot +Csay 8y[8x+8y} v Ay (AL)

The sound speed c,, the shear viscosity v and the bulk viscosity ( satisfy respectively

2 _ 28+a; 2 _ A2 _ 24+a; )2
c; =55t A, v =Atos 5 and ( = —At oz gt A%

e Two-dimensional Poiseuille low with the D2Q13 lattice Boltzmann scheme

The general choices are analogous to the ones we did with the D2Q9 lattice Boltzmann
scheme.

e Proposition 6. Precise position of the Poiseuille boundary with D2Q13.

When the parameter £ = —7 + 4005 07 — 805 (1 — 26) is null and with the above choices

for the lattice Boltzmann scheme, the solid wall is located at Aq = % at third order

accuracy if and only if £ = 0.

e This proposition has been solved with the help of formal calculus. We did various
experiments analogous to the one presented for the D2Q9 scheme. They are summarized
in the captions of Figures 8 and 9.

0.004 : :
6=0.2 o - r
6=0.5 --©o- o
P
0.002 Zd
@f!
0.001 ,,z
S
X o5
< 0 *
(on 7
< 0001 .
0. v
-0.002 D’.
7
-0.003
=

-0.004
-2 -1.5 -1 -0.5 0 0.5 1 15 2

€

Figure 8.  Poiseuille flow for the D2Q13 scheme. Solid wall position Ag vs. the
parameter £ = —7 + 4005 07 — 805 (1 — 20). Variations of the parameter 6 of the relation
(2) for the forcing term (# = 0.2 with bullets, § = 0.5 with circles and § = 0.7 with boxes)
and of the parameter 5.
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Figure 9. Precise Poiseuille flow with the D2Q13 lattice Boltzmann scheme. Solid
wall position Aq vs. the parameter ¢ for the forcing term in (2). Left: 6 € [0.1,0.9], right:
zoom of the left figure with 6 € [0.37,0.38].

4)  Conclusion

In this contribution, we have extended the “Berliner version” [1] of the formal Taylor
expansion method for linear lattice Boltzmann scheme to the case of a possible external
force. We have established that the quartic parameters to enforce the precision of the
lattice Boltzmann scheme depend not only on the relaxation rate but also on the choice
of the parameter @ for the time integration (2) of the source term. We have derived
quartic parameters for the D2Q13 model for a Poiseuille flow. Our numerical results
validate the formal Taylor development. Nevertheless, a rigorous numerical analysis is
still an open question. In future work, we wish to extend the quest of quartic parameters
for more general physical problems, study time dependent boundary conditions and give
more general boundary conditions for any position of the wall relative to the lattice.
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