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Abstract—A three week field survey over April 2010 allowed
for the acquisition of 120 Ground Penetrating Radar (GPR)
profiles, adding to a 40 km long walk across an Arctic glacier. The
profiles were acquired using a Malå equipment with 100 MHz
antennas, walking slowly enough to record a 2.224 µs trace every
30 cm on the average. Some acquisitions were repeated with 50
MHz or 200 MHz antenna to improve data quality. The GPR was
coupled to a GPS system to position traces. Each profile has been
manually edited using standard GPR data processing, to pick
the reflection arrival time from the ice-bedrock interface. Travel-
times were converted to ice thickness using a velocity of 0.17 m/ns.
Dual-frequency GPS mapping and snow coverage thickness were
acquired during the same survey. Using interpolation methods,
we derived the underlying bedrock topography and evaluated the
ice volume.
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I. INTRODUCTION

Ground-Penetrating Radar is an efficient tool for evaluating

ice thickness of glaciers, internal ice structures, water channel

locations and glacier thermal regime [1]–[5].

The Austre Lovénbreen is a northward-flowing valley

glacier located on the Brogger peninsula, north-western

Spitzbergen, Svalbarg. Its neighbouring glacier, Midtre

Lovénbreen, has been extensively studied [1], [8]–[11].

Most of the time, climatic conditions do not allow the

acquisition of more than few profiles across a glacier [2]. We

have been fortunate enough to enjoy nice weather during the

three week survey in April 2010, and we have acquired more

than 40 km of GPR profiles. This paper presents first results of

this high density coverage GPR survey, the estimated glacier

substratum topography and the ice volume estimation of the

East Lovénbreen (Svalbard).

II. DATA COLLECTION

We used a Ramac GPR operating at 50, 100 and 200 MHz

to collect more than 70 km of mono-offset profiles (Figure 1)

over the surface of the East Lovénbreen (Svalbard) during

3 weeks in April 2010. Both the 50 MHz and 100 MHz

data were collected in the form of 2806 samples and a time

window of 2.224 µs. The 200 MHz data were collected in

Fig. 1. GPR profiles over the East Lovénbreen (copyright FORMOSAT).

the form of 740 samples and a time window of 0.586 µs.

All data were stacked 8 times on collection. Positioning of all

GPR mono-offset profiles was done using a Globalsat ET-312

Coarse/Acquisition (C/A) code GPS receiver connected di-

rectly to the control unit of the GPR set to 1 measurement per

second while two operators were pulling the device, walking

at a peaceful rate. Each trace acquisition was triggered every

0.5 s. The average distance between each trace acquisition

was calculated afterwards to 0.3 m. In addition to the mono-

offset profiles, two Common Mid Points (CMP) profiles were

acquired on the glacier snout using the 100 MHz antennas.

During the GPR survey, a dense elevation map was per-



formed using GPS measurements with a snowmobile: a Trim-

ble Geo-XH dual frequency receiver, with electromagnetic

delay correction post-processing using the nearby (<10 km

away) Ny-Ålesund reference dataset, provided the raw data

to generate a DEM of the glacier after interpolation of the

dataset.

III. GLACIER STRUCTURES

GPR data have been processed using Seismic Unix software

[6], [7]. No migration has yet been carried out due to non-

equidistant traces. A residual median filter was applied in

vertical direction using a time window corresponding to the

cut-off frequency of 50 MHz, each trace has been normalized

to its root mean square value and band-passed filtered (25-50-

150-200 MHz pass band). Each profile was vertically chopped

above the arrival time of the minimum amplitude of the direct

air wave (manually selected). Traces in each profile were

horizontally repositioned to a constant distance step using GPS

informations. Finally elevation correction was done using the

altitude given by the ET312 C/A GPS. Reflection arrival times

were translated using a constant velocity set to be 0.17 m/ns

in the ice as in [8].

Three processed radargrams are shown on Figures 2, 3

and 4. AA’ was acquired along the glacier axis toward North

while BB’ was acquired from East toward West across the

glacier (see Figure 1). Along AA’, the strong continuous

reflection is interpreted as the ice/bedrock interface. At the

beginning of the profile, multiple scattering occurs that could

be resulting from slide rocks present in the ice. Around 700

m, the bedrock topography is rising by 50 m over a distance

of 200 m creating a verrou. Many reflections are present on

top of the rock bar, parallel to the bedrock surface, resulting

from internal ice fractures. Going North the bedrock surface is

easy to follow all the way down to the glacier front moraine.

On BB’ radargram, the bedrock reflection is very clear except

on two areas. In the middle part of the glacier (around 1100

m away of the beginning of the profile), an area with much

scattering is appearing on the deepest part of the glacier that

we attribute to warm ice presence as in [8], [12]. On the

last 500 m of this profile, multiple scattering is associated

to slide rocks. At 1400 m along the profile, 30 m deep,

some large hyperbolas are attributed to some ice embedded

channels. Figure 4 shows one processed profile across the

glacier tongue along the profile CC’of Figure 1. This profile

crosses a supraglacial stream noticeable on summer satelite

images. At the cross of this stream, the radargram shows

many reflections (around 800 m along the horizontal axis).

This feature can be followed on all parallel profiles acquired

toward the glacier front.

IV. ICE VOLUME ESTIMATION

In every GPR profile, the arrival time of the reflection

coming from the ice/bedrock interface was picked using

REFLEXW Sandmeier Scientific Software and translated into

ice thickness using 0.17 m/ns velocity. A total of 129258

georeferenced data points with GPR-derived ice thickness, in

Fig. 5. Top: map of the GPR tracks (blue) and analyzed intersection points
with points located less than 3 m from each other at each track intersection.
Bottom: histogram of the depth difference distribution. Most points lie in
a gaussian distribution with standard deviation less than 5 m, with a few
outlying points yielding errors of over 30 m (probably associated with an
ice-rock misinterpretation during the interface picking procedure).

addition to a glacier contour line derived from satellite pictures

taken during summer (grey line in Figure 1), were interpolated

over the entire glacier surface using kriging.

Depth estimate quality assessment was performed by an-

alyzing the error between ice-thickness estimates from inde-

pendent traces intersecting: the thickness difference between

points lying less than 3 m apart was computed and the

histogram of the ice-thickness distribution is plotted (Fig.

5). The standard deviation of the ice-thickness distribution is

less than 5 m wide, in agreement with values found in the

litterature [2]. As a result, the ice volume was estimated to

0.345±0.017 km3 supposing a 5% uncertainty on ice thickness

measurements.

Dual-frequency GPS measurements were used to produce

a precise DEM of the glacier surface. The same uncertainty



Fig. 2. Radargram AA’acquired along the glacier axis with 100 MHz antennas

Fig. 3. Radargram BB’ acquired across the glacier axis with 100 MHz antennas

Fig. 4. Radargram CC’ acquired across the glacier tongue with 100 MHz antennas

analysis carried on the dual-frequency GPR measurements

yields to an altitude distribution with a standard deviation less

than 0.6 m. Snow cover, evaluated through snow drilling at

the time of the GPR and dual GPS measurements, was also

interpolated and substracted to all other datasets. All resulting

continuous datasets were derived at a 10 m spatial resolution.

Ice thickness was then substracted to the glacier surface DEM

to obtain a bedrock DEM (Figure 6).

Figure 7 emphasizes the asymmetry of the bedrock under-

neath the ice. The included radargram shows a channel in the

middle. This feature is observed on every profile parallel to

the one shown on Figure 7 across the glacier tongue. We think

that it could be related to the transform fault presented in the

geology map of [13] in between the Slatto and the Haavimb

summits. The concavity of the bedrock changes of sign on

each side of the channel. It could be explained by a change



in the underlying rock hardness. This assymetry is seen also

on Figure 6.

V. CONCLUSION

The high density GPR data coverage coupled to accurate

DEM bring some reliable ice volume estimation necessary for

future glacier mass balance. Those data bring complementary

information to geology studies of the area especially in com-

plex geological structure area. Bedrock morphology can now

be used to investigate water flow path beneath the glacier.

Englacial channel network could be reconstituted due to the

high number of GPR profiles.
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