Asymptotic analysis of small defects near a singular point in anti-plane elasticity. Application to the nucleation of a crack at a notch

Thi Bach Tuyet Dang, Laurence Halpern, Jean-Jacques Marigo

To cite this version:

Thi Bach Tuyet Dang, Laurence Halpern, Jean-Jacques Marigo. Asymptotic analysis of small defects near a singular point in anti-plane elasticity. Application to the nucleation of a crack at a notch. Mathematics and Mechanics of Complex Systems, 2013, sous presse. hal-00864498
ASYMPTOTIC ANALYSIS OF SMALL DEFECTS NEAR A SINGULAR POINT IN ANTI-PLANE ELASTICITY. APPLICATION TO THE NUCLEATION OF A CRACK AT A NOTCH.

Thi Bach Tuyet Dang, Laurence Halpern, and Jean-Jacques Marigo

ABSTRACT. We use matching asymptotic expansions to treat the anti-plane elastic problem associated with a small defect located at the tip of a notch. In a first part, we develop the asymptotic method for any type of defect and present the sequential procedure which allows us to calculate the different terms of the inner and outer expansions at any order. That requires in particular to separate in each term its singular part from its regular part. In a second part, the asymptotic method is applied to the case of a crack of variable length located at the tip of a given notch. We show that the first two non trivial terms of the expansion of the energy release rate are sufficient to well approximate the dependence of the energy release rate on the crack length in the range of values of the length which are sufficient to treat the problem of nucleation. This problem is considered in the last part where we compare the nucleation and the propagation of a crack predicted by two different models: the classical Griffith law and the Francfort-Marigo law based on an energy minimization principle. Several numerical results illustrate the interest of the method.

1. Introduction

A major issue in fracture mechanics is how to model the initiation of a crack in a sound material, see [7]. There are two difficulties: the first one is to propose a law able to predict that nucleation; the second is a purely numerical issue. Indeed, it is difficult to compute with a good accuracy the energy release rate associated with a crack of small length which appears at the tip of a notch, see [33]. The classical finite element method leads to inaccurate results because of the overlap of two singularities which cannot be correctly captured by this method: one is due to the tip of the notch, the other is due to the tip of the crack. A specific method of approximation based on asymptotic expansions is preferable as it is developed in analogous situations with localized defects, see for instance [1, 2, 4, 5, 6, 16, 23, 32, 34, 40]. The first part of the present paper is devoted to the presentation of this Matched Asymptotic Method (shortly, the MAM) in the case of a defect (which includes the case of a crack) located at the tip of a notch in the simplified context of antiplane linear elasticity. Therefore, our approach can be considered as a particular case of the previous works which have been devoted to the study of elliptic problems in corner domains, like [14, 15, 26, 27]. However, a major difference is that we want to use these asymptotic methods to predict the nucleation or the propagation of defects (like cracks) near those singular points. The second and third parts of our paper will be devoted to this task. That requires, of course, to introduce a criterion of nucleation. This delicate issue has not received a definitive answer at the present time and it was considered for a long time as a problem which could not be solved in the framework of Griffith theory of fracture [8, 13, 30, 31]. The main invoked reason is that the release of energy due to a small crack tends to zero when the length of the crack tends to zero, see [11, 33]. Therefore, according to the Griffith criterion which stands that the crack can propagate only when the energy release rate reaches a
critical value characteristic of the material, no nucleation is possible because the energy release rate vanishes when there is no preexisting crack. This limitation of Griffith’s theory was one of the motivations which lead Francfort and Marigo in [22] to replace the Griffith criterion by a principle of least energy, in the spirit of the original idea of Griffith [25]. It turns out that the principle of least energy is really able to predict the nucleation of cracks in a sound body. However, as it was generically proved in [11, 22], the nucleation is necessarily brutal in the sense that a crack of finite length suddenly appears at a critical loading. Accordingly, we propose to revisit the problem of nucleation of a crack at the tip of a notch by comparing the two criteria. One of our goal is to use the MAM to obtain semi-analytical expressions for the critical loading at which a crack appears and the length of the nucleated crack.

Specifically, the paper is organized as follows. Section 2 is devoted to the description of the MAM on a generic anti-plane linear elastic problem where the body contains a defect near the tip of a notch. We first decompose the solution into two expansions: the outer expansion is valid far enough from the tip of the notch while the inner expansion is valid in a neighborhood of the tip of the notch. These expansions contain a sequence of inner and outer terms which are solutions of inner and outer problems and are connected by the matching conditions. Moreover each term contains a regular and a singular part. We explain how all the terms and the coefficients entering in their singular and regular parts are sequentially determined. The section finishes by an example where the exact solution is obtained in closed form and hence where we can verify the relevance of the MAM.

In Section 3, the MAM is applied to the case where the defect is a crack. Its main goal is to compute with a good accuracy the energy release rate associated with a crack of small length near the tip of the notch. Indeed, it is a real issue in the case of a genuine notch (by opposition to a crack) because the energy release rate starts from 0 when the length of the nucleated crack is 0, then is rapidly increasing with the length of the crack before reaching a maximum and is finally decreasing. Accordingly, after the setting of the problem, the computation of the energy release rate by the FEM is described, and the reason why the numerical results are less accurate when the crack length is small is given. Then, the MAM is used to compute the energy release rate for small values of the crack length. As expected, the computation shows that, the smaller the size of the defect, the more accurate is the approximation by the MAM at a certain order. It even appears that very accurate results can be obtained by computing a small number of terms in the matched asymptotic expansions. We discuss also the influence of the angle of the notch on the accuracy of the results, this angle playing an important role in the process of nucleation (because, in particular, the length \(\ell_m \) at which the maximum of the energy release rate is reached depends on the angle of the notch). It turns out that when the notch is sufficiently sharp, i.e. sufficiently close to a crack, the first two non trivial terms of the expansion of the energy release rate are sufficient to capture with a very good accuracy the dependence of the energy release rate on the crack length.

In section 4, we study the problem of crack nucleation at the tip of a notch. We first introduce the two competing evolution laws, i.e. the G-law and the FM-law: the first one is the usual Griffith’s law based on the criterion of critical energy release rate, the second is that introduced in [22] and which is based on the concept of energy minimization. We recall some general results previously established in [33] and extend them to the present case of a notch-shaped body in an antiplane setting. By virtue of the good approximation given by the MAM, we are able to solve the evolution problem in a quasi closed form, the solution depending only on two coefficients that must be computed by the FEM. That permits a qualitative and quantitative comparison of the two laws.
2. The real problem and its expansion by the Matched Asymptotic Method

2.1. The real problem. Here, we consider a small geometrical defect of size ℓ (like a crack or a void) located near the corner of a notch, see Figure 1. The geometry of the notch is characterized by its angle ω, see Figure 2. The tip of the notch is taken as the origin of the space. We will introduce two scales of coordinates: the “macroscopic” coordinates $x = (x_1, x_2)$ used in the outer domain, and the “microscopic” coordinates $y = x/\ell = (y_1, y_2)$ used in the neighborhood of the tip of the notch where the defect is located, see Figure 2. In the case of a crack, the axis x_1 is chosen in such a way that the crack corresponds to the line segment $(0, \ell) \times \{0\}$. The unit vector orthogonal to the (x_1, x_2) plane is denoted by e_3.

The natural reference configuration of the sound two-dimensional body is Ω_0 while the associated body which contains a defect of size ℓ is Ω_ℓ. The part of the boundary of Ω_ℓ which is due to the defect is denoted by Γ_ℓ, i.e.

$$\Gamma_\ell = \partial \Omega_\ell \setminus \partial \Omega_0,$$

(1)

Γ_ℓ is contained in the disk of center $(0, 0)$ and radius ℓ. In the case of a crack, Γ_ℓ is the crack itself, i.e. $\Gamma_\ell = (0, \ell) \times \{0\}$. The two edges of the notch are denoted by $\Gamma^+ \Gamma^-$ and $\Gamma^- \Gamma^+$. To simplify the presentation, it is assumed that they are not modified by the introduction of the defect, see Figure 1. When using polar coordinates (r, θ), the pole is the tip of the notch and the origin of the polar angle is the edge $\Gamma^- \Gamma^+$. Accordingly, we have

$$r = |x|, \quad \Gamma^- = \{(r, \theta), 0 < r < r^*, \theta = 0\}, \quad \Gamma^+ = \{(r, \theta), 0 < r < r^*, \theta = \omega\}.$$

(2)

This body is made of an elastic isotropic material whose shear modulus is $\mu > 0$. It is submitted to a loading such that the displacement field at equilibrium u_ℓ be antiplane, i.e.

$$u_\ell(x) = u_\ell(x_1, x_2)e_3$$

where the subscript letter ℓ is used in order to recall that the real displacement depends on the size of the defect. We assume that the body forces are zero and then u_ℓ must be an harmonic function in order to satisfy the equilibrium equations in the bulk:

$$\Delta u_\ell = 0 \quad \text{in} \quad \Omega_\ell.$$

(3)

The edges of the notch are free while Γ_ℓ is submitted to a density of (antiplane) surface forces. Accordingly, the boundary conditions on Γ_ℓ and Γ^\pm are

$$\frac{\partial u_\ell}{\partial \nu} = 0 \quad \text{on} \quad \Gamma^\pm, \quad \frac{\partial u_\ell}{\partial \nu}(x) = \frac{g(y)}{\ell} \quad \text{on} \quad \Gamma_\ell.$$

(4)

In (4), ν denotes the unit outer normal vector to Ω_ℓ, and we assume that the density of (antiplane) surface forces depends on the microscopic variable y and has a magnitude of the order of $1/\ell$.

The remaining part of the boundary of Ω_ℓ is divided into two parts: Γ_D where the displacement is prescribed and Γ_N where (antiplane) surface forces are prescribed. Specifically, we have

$$u_\ell = f \quad \text{on} \quad \Gamma_D, \quad \frac{\partial u_\ell}{\partial \nu} = h \quad \text{on} \quad \Gamma_N.$$

(5)
The following proposition is a characterization of those functions which are harmonic in an an-
gular sector and whose normal derivatives vanish on the edges of the sector. It is of constant use
throughout the paper.

Proposition 1. Let r_1 and r_2 be such that $0 \leq r_1 < r_2 \leq +\infty$ and let $\mathcal{D}^2_{r_1}$ be the angular sector
\[\mathcal{D}^2_{r_1} = \{(r, \theta) : r \in (r_1, r_2), \theta \in (0, \omega)\}. \]
Then any function u which is harmonic in $\mathcal{D}^2_{r_1}$ and which satisfies the Neumann condition $\partial u/\partial \theta = 0$ on the sides $\theta = 0$ and $\theta = \omega$ can be expanded as
\[u(r, \theta) = a_0 \ln(r) + d_0 + \sum_{n \in \mathbb{N}} \left(a_n r^{-n\lambda} + d_n r^{n\lambda} \right) \cos(n\lambda \theta), \quad \lambda = \frac{\pi}{\omega} \] (6)
where the a_n and the d_n constitute two sequences of real numbers which are characteristic of u.

Proof. Since the normal derivative vanishes at $\theta = 0$ and $\theta = \omega$, $u(r, \theta)$ can be expanded in
Fourier series as:
\[u(r, \theta) = \sum_{n \in \mathbb{N}} f_n(r) \cos(n\lambda \theta). \]
In order that u be harmonic, the functions f_n must satisfy $r^2 f_n'' + rf_n' - n^2 \lambda^2 f_n = 0$, for each n.
We easily deduce that $f_0(r) = a_0 \ln(r) + d_0$ and $f_n(r) = a_n r^{-n\lambda} + d_n r^{n\lambda}$ for $n \geq 1$. \qed

2.2. The matching asymptotic method (MAM). We will write two asymptotic expansions of u_ℓ in terms of the small parameter ℓ. The inner expansion is valid in the neighborhood of the tip of the notch, while the the outer expansion, is valid far from this tip. These two expansions will be matched in an intermediate zone.

2.2.1. The outer expansion. Far from the tip of the notch, i.e. for $r \gg \ell$, u_ℓ does not see the notch, and we assume that it can be expanded as
\[u_\ell(x) = \sum_{i \in \mathbb{N}} \ell^{\ell \lambda} u^i(x). \] (7)
ASYMPTOTIC METHOD AND NUCLEATION OF CRACKS

\[\Gamma + \Gamma - \Gamma N \]

\[r \theta x \omega \Gamma D \]

\[\Gamma + \Gamma - \Gamma N \]

\[\theta \Gamma + \Gamma - y \rho \Gamma 1 \]

\[\Gamma + \Gamma - \Gamma N \]

\[u_i \]

\[\Delta u^0 = 0 \quad \text{in } \Omega^0 \]
\[\frac{\partial u^0}{\partial \nu} = 0 \quad \text{on } \Gamma^+ \cup \Gamma^- \]
\[\frac{\partial u^0}{\partial \nu} = h(x) \quad \text{on } \Gamma_N \]
\[u^0 = f(x) \quad \text{on } \Gamma_D \]

\[(8) \]

\[\Delta u^i = 0 \quad \text{in } \Omega^0 \]
\[\frac{\partial u^i}{\partial \nu} = 0 \quad \text{on } \Gamma^+ \cup \Gamma^- \]
\[\frac{\partial u^i}{\partial \nu} = 0 \quad \text{on } \Gamma_N \]
\[u^i = 0 \quad \text{on } \Gamma_D \]

\[(9) \]

Moreover, the behavior of \(u^i \) in the neighborhood of \(r = 0 \) is singular and the singularity will be given by the matching conditions.

2.2.2. The inner expansion. Near the tip of the notch, i.e. for \(r \ll 1 \), we assume that the displacement field \(u_\ell \) can be expanded as

\[u_\ell(x) = \ln(\ell) \sum_{i \in \mathbb{N}} \ell^{i \lambda} w^i(y) + \sum_{i \in \mathbb{N}} \ell^{i \lambda} v^i(y), \quad y = \frac{x}{\ell}. \]

\[(10) \]

In (10), even if this expansion is valid only in the neighborhood of \(r = 0 \), the fields \(v^i \) and \(w^i \) must be defined in the infinite inner domain \(\Omega^\infty \). The domain \(\Omega^\infty \) is the infinite angular sector \(\mathcal{D}^\infty_0 \) of the \((y_1, y_2)\) plane, from which the rescaled defect of size 1 is removed, see Figure 2-right. Accordingly, the rescaled boundary \(\Gamma_1 \) of the defect is

\[\Gamma_1 = \partial \Omega^\infty \setminus \partial \mathcal{D}^\infty_0. \]

\[(11) \]

(In the case of a crack, \(\Gamma_1 = (0, 1) \times \{0\} \).) Inserting this expansion into the set of equations constituting the real problem yields the sequence of problems for the \(u^i \):
The first inner problem \(i = 0 \)
\[
\begin{align*}
\Delta v^0 &= 0 \quad \text{in } \Omega^\infty \\
\frac{\partial v^0}{\partial \theta} &= 0 \quad \text{on } \theta = 0 \text{ and } \theta = \omega \\
\frac{\partial v^0}{\partial r} &= g(y) \quad \text{on } \Gamma_1
\end{align*}
\]
The outer expansion and the inner expansion are both valid in any intermediate zone \(\mathcal{D}_0^{r_2^2} \) such that \(1 \ll r_1 < r_2 \ll 1 \). Inserting (14) into the outer expansion (7) with \(r = \ell \rho \) leads to
\[
\begin{align*}
u^i(x) &= a_0^i \ln(r) + d_0^i + \sum_{n \in \mathbb{N}^*} \left(a_n^i r^{-n\lambda} + d_n^i r^{n\lambda} \right) \cos(n\lambda \theta).
\end{align*}
\]
As for the inner expansion, the displacement fields \(v^i \) and \(w^i \) are harmonic in the sector \(\mathcal{D}_1^\infty \) of the \(y \) plane and satisfy homogeneous Neumann boundary conditions on the edges. Therefore Proposition 1 applies, and
\[
\begin{align*}
v^i(y) &= c_0^i \ln(\rho) + b_0^i + \sum_{n \in \mathbb{N}^*} \left(c_n^i \rho^{-n\lambda} + b_n^i \rho^{n\lambda} \right) \cos(n\lambda \theta), \\
w^i(y) &= e_0^i \ln(\rho) + f_0^i + \sum_{n \in \mathbb{N}^*} \left(e_n^i \rho^{-n\lambda} + f_n^i \rho^{n\lambda} \right) \cos(n\lambda \theta).
\end{align*}
\]
The outer expansion and the inner expansion are both valid in any intermediate zone \(\mathcal{D}_1^{r_1^2} \) such that \(1 \ll r_1 < r_2 \ll 1 \). Inserting (15) and (16) into the inner expansion (10) leads to
\[
\begin{align*}
u^i(x) &= \sum_{i \in \mathbb{N}} \ln(\ell^{\lambda}) \ell^{\lambda} \left(c_0^i \ln(\rho) + b_0^i + \sum_{n \in \mathbb{N}^*} \left(c_n^i \rho^{-n\lambda} + b_n^i \rho^{n\lambda} \right) \cos(n\lambda \theta) \right),
\end{align*}
\]
with the convention that \(d_n^{i-n} = 0 \) when \(n > i \). Inserting (15) and (16) into the inner expansion (10) leads to
\[
\begin{align*}
u^i(x) &= \sum_{i \in \mathbb{N}} \ln(\ell) \ell^{\lambda} \left(c_0^i \ln(\rho) + b_0^i + \sum_{n \in \mathbb{N}^*} \left(e_n^i \rho^{-n\lambda} + f_n^i \rho^{n\lambda} \right) \cos(n\lambda \theta) \right) \\
&\quad + \sum_{i \in \mathbb{N}} \ell^{\lambda} \left(c_0^i \ln(\rho) + b_0^i + \sum_{n \in \mathbb{N}^*} \left(c_n^i \rho^{-n\lambda} + b_n^i \rho^{n\lambda} \right) \cos(n\lambda \theta) \right).
\end{align*}
\]
Both expansions (17) and (18) are valid provided that \(1 \ll \rho \ll 1/\ell \). Identification of these expansions provides the connections between the coefficients of the inner and outer expansions described in Table 1.

Remark 1. From Table 1 can be deduced that the fields \(w^i \) are constant in the whole inner domain:
\[
w^i(y) = a_0^i, \quad \forall y \in \Omega^\infty, \quad \forall i \geq 0.
\]
Therefore, these fields will be determined once the constants \(a_0^i \) will be known.
2.2.4. The singular behavior of the u^i and the v^i. On the matching conditions can be read the behavior of u^i in the neighborhood of $r = 0$ and the behavior of v^i at infinity. In particular, the form of their singularities is visible, according to the following definition.

Definition 1. A field u defined in Ω_0 is regular in Ω_0 if $u \in H^1(\Omega_0)$, i.e. $u \in L^2(\Omega_0)$ and $\nabla u \in L^2(\Omega_0)^2$. It is singular otherwise.

A field u defined in the unbounded domain Ω^∞ is regular in Ω^∞ if $\nabla u \in (L^2(\Omega^\infty))^2$ and $\lim_{\rho \to \infty} u(\rho, \theta) = 0$. It is singular otherwise.

Remark 2. In other words, a field is regular if the associated elastic energy is finite. It is singular otherwise. In the case of the unbounded domain Ω^∞, a constant field is with finite energy, but the condition at infinity is added in order to fix the constant and obtain the uniqueness in the forthcoming boundary value problems.

According to the analysis in the previous subsection, the field u^0 can be expanded in a neighborhood of the tip of the notch as

$$u^0(x) = a_0^0\ln(r) + \sum_{n \in \mathbb{N}} b_n^0 r^{-n\lambda}\cos(n\lambda \theta). \quad (20)$$

In the domain Ω_0, $\ln(r)$ is singular whereas $r^{-n\lambda}\cos(n\lambda \theta)$ is regular for $n \geq 0$, in the sense of Definition 1. Accordingly, u^0 is split into its singular and regular part as follows:

$$u^0(x) = u^0_S(x) + \bar{u}^0(x), \quad (21)$$

$$u^0_S(x) = a_0^0\ln(r), \quad \bar{u}^0 \in H^1(\Omega_0). \quad (22)$$

In the same way, for $i \geq 1$, the field u^i can be expanded in a neighborhood of the tip of the notch as

$$u^i(x) = a_0^i\ln(r) + \sum_{n=1}^{i} a_n^i r^{-n\lambda}\cos(n\lambda \theta) + \sum_{n \in \mathbb{N}} b_n^{i+n} r^{-n\lambda}\cos(n\lambda \theta). \quad (23)$$

Since $r^{-n\lambda}\cos(n\lambda \theta)$ is singular (for $n \geq 0$) in the sense of Definition 1, u^i is split into its singular and regular part as follows:

$$u^i(x) = u^i_S(x) + \bar{u}^i(x), \quad (24)$$

$$u^i_S(x) = a_0^i\ln(r) + \sum_{n=1}^{i} a_n^i r^{-n\lambda}\cos(n\lambda \theta), \quad \bar{u}^i \in H^1(\Omega_0). \quad (25)$$

For the fields v^i of the inner expansion, the behavior at infinity comes into play. By virtue of the analysis in the previous subsection, the field v^i for $i \geq 0$ can be expanded for large ρ as

$$v^i(y) = a_0^i\ln(\rho) + \sum_{n=0}^{i} b_n^i \rho^{-n\lambda}\cos(n\lambda \theta) + \sum_{n \in \mathbb{N}^*} a_n^{i+n} \rho^{-n\lambda}\cos(n\lambda \theta). \quad (26)$$

<table>
<thead>
<tr>
<th>e_n^i</th>
<th>$i \geq 0, n \geq 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f_n^i = a_0^i$</td>
<td>$i \geq 0$</td>
</tr>
<tr>
<td>$f_n^i = 0$</td>
<td>$i \geq 0, n \geq 1$</td>
</tr>
<tr>
<td>$a_n^i = 0$</td>
<td>$n > i \geq 0$</td>
</tr>
<tr>
<td>$c_n^i = a_n^{i+n}$</td>
<td>$i \geq 0, n \geq 0$</td>
</tr>
<tr>
<td>$b_n^i = 0$</td>
<td>$n > i \geq 0$</td>
</tr>
<tr>
<td>$d_n^i = b_n^{i+n}$</td>
<td>$i \geq 0, n \geq 0$</td>
</tr>
</tbody>
</table>

Table 1. The relations between the coefficients of the inner and outer expansions given by the matching conditions.
The field $\ln(\rho)$ as well as the fields $\rho^{n\lambda} \cos(n\lambda \theta)$, for $n \geq 0$, are singular in Ω^∞ in the sense of Definition 1 (even the constant field 1 corresponding to $n = 0$ is singular). Since the fields $\rho^{-n\lambda} \cos(n\lambda \theta)$ are regular when $n \geq 1$, v^i is split into its singular and regular part as follows:

$$v^i(y) = v^i_\ast(y) + \bar{v}^i(y),$$

$$v^i_\ast(y) = a_0^i \ln(\rho) + \sum_{n=0}^{i} b_n^i \rho^{n\lambda} \cos(n\lambda \theta), \quad \nabla \bar{v}^i \in L^2(\Omega^\infty), \quad \lim_{|y| \to \infty} \bar{v}^i(y) = 0. \quad (28)$$

Remark 3. This analysis of the singularities shows that the singular parts of the fields u^i and v^i will be known once the coefficients a_n^i and b_n^i are determined for $0 \leq n \leq i$.

2.2.5. *The problems defining the regular parts* \bar{u}^i and \bar{v}^i. The singular parts (u^i_\ast, v^i_\ast) are harmonic, and satisfy the homogeneous Neumann boundary conditions on the edges of the notch. Therefore the regular parts are harmonic too, with data expressed in terms of the singular fields.

The first outer problem, $i = 0$

Find \bar{u}^0 regular in Ω_0 such that

$$\begin{align*}
\Delta \bar{u}^0 &= 0 & \text{in } & \Omega^0 \\
\frac{\partial \bar{u}^0}{\partial \nu} &= 0 & \text{on } & \Gamma^+ \cup \Gamma^- \\
\frac{\partial \bar{u}^0}{\partial \nu} &= 0 & \text{on } & \Gamma_N \\
\bar{u}^0 &= f - u^0_\ast & \text{on } & \Gamma_D
\end{align*} \quad (29)$$

The first inner problem, $i = 0$

Find \bar{v}^0 regular in Ω^∞ such that

$$\begin{align*}
\Delta \bar{v}^0 &= 0 & \text{in } & \Omega^\infty \\
\frac{\partial \bar{v}^0}{\partial \nu} &= 0 & \text{on } & \Gamma^+ \cup \Gamma^- \\
\frac{\partial \bar{v}^0}{\partial \nu} &= 0 & \text{on } & \Gamma_1 \\
\frac{\partial \bar{v}^0}{\partial \nu} &= g - \frac{\partial u^0_\ast}{\partial \nu} & \text{on } & \Gamma_1
\end{align*} \quad (31)$$

The other outer problems, $i \geq 1$

Find \bar{u}^i regular in Ω_0 such that

$$\begin{align*}
\Delta \bar{u}^i &= 0 & \text{in } & \Omega^0 \\
\frac{\partial \bar{u}^i}{\partial \nu} &= 0 & \text{on } & \Gamma^+ \cup \Gamma^- \\
\frac{\partial \bar{u}^i}{\partial \nu} &= 0 & \text{on } & \Gamma_N \\
\bar{u}^i &= \omega - u^i_\ast & \text{on } & \Gamma_D
\end{align*} \quad (30)$$

The other inner problems, $i \geq 1$

Find \bar{v}^i regular in Ω^∞ such that

$$\begin{align*}
\Delta \bar{v}^i &= 0 & \text{in } & \Omega^\infty \\
\frac{\partial \bar{v}^i}{\partial \nu} &= 0 & \text{on } & \Gamma^+ \cup \Gamma^- \\
\frac{\partial \bar{v}^i}{\partial \nu} &= 0 & \text{on } & \Gamma_1 \\
\frac{\partial \bar{v}^i}{\partial \nu} &= - \frac{\partial v^i_\ast}{\partial \nu} & \text{on } & \Gamma_1
\end{align*} \quad (32)$$

Consider first the outer problems. The well-posedness is a direct consequence of classical results for the Laplace equation:

Proposition 2. Let $i \geq 0$. For a given singular part u^i_\ast, i.e. if the coefficients a_n^i are known for all n such that $0 \leq n \leq i$, then there exists a unique solution \bar{u}^i of (30) (or of (29) when $i = 0$). Consequently, the coefficients b_n^{i+n} are then determined for all $n \geq 0$.

As for the inner problems, since they are Neumann problems (except for the condition at infinity), defined in an infinite domain, more care must be taken. The well-posedness is ensured by a compatibility condition, as stated in Proposition 3.

Proposition 3. Let $i \geq 0$. For given b_n^i with $0 \leq n \leq i$, there exists a regular solution \bar{v}^i for the i-th inner problem if and only is the coefficient a_0^i is such that

$$a_0^i = -\frac{1}{\omega} \int_{\Gamma_1} g(s) ds, \quad a_0^i = 0 \quad \text{for} \quad i \geq 1. \quad (33)$$

Moreover, if this condition is satisfied, then the solution is unique and therefore the coefficients a_n^{i+n} are determined for all $n \geq 0$.
If the forces applied to the boundary of the defect are equilibrated, i.e. if the Neumann data satisfy a global compatibility condition. Let us re-establish that condition. Let Ω^R be the part of Ω^∞ included in the ball of radius $R > 1$, i.e. $\Omega^R = \Omega^\infty \cap \{y : |y| < R\}$. Consider first the case $i = 0$. Integrating the equation $\Delta v^0 = 0$ over Ω^R and using the boundary conditions leads to

$$0 = \int_{\partial \Omega^R} \frac{\partial v^0}{\partial \nu} ds = \int_0^\omega \frac{\partial v^0}{\partial \rho} (R, \theta) R d\theta + \int_{\Gamma_1} g(s) ds.$$

(34)

Using (26) yields $R \frac{\partial v^0}{\partial \rho}(R, \theta) = a^0_0 + \sum_{n \in \mathbb{N}} n \lambda (-c^n_0 R^{-n\lambda} + b^n_0 R^{n\lambda}) \cos(n\lambda \theta)$. Since $\int_0^\omega \cos(n\lambda \theta)d\theta = 0$ for all $n \geq 1$, after inserting in (34), the desired condition for a^0_0 appears. For $i \geq 1$, the same process is applied, and the integral over Γ_1 vanishes, yielding the desired condition.

If the compatibility condition (33) is satisfied, then the existence of a regular solution for \bar{v}^i is obtained by standard arguments. Note however that, since $\nabla \bar{v}^i$ belongs to $L^2(\Omega^\infty)$, \bar{v}^i tends to a constant at infinity and this constant is fixed to 0 by the additional regularity condition. As far as the uniqueness is concerned, the solution of this pure Neumann problem is unique up to a constant and the constant is fixed by the condition that \bar{v}^i vanishes at infinity.

Once v^i is determined, the coefficients a^{i+n}_n are obtained by virtue of Proposition 1 and (26). □

Remark 4. If the forces applied to the boundary of the defect are equilibrated, i.e. if $\int_{\Gamma_1} g(s) ds = 0$, then all the coefficients a^i_0 vanish and hence the terms in $\ln(\ell)$ disappear in the inner expansion. There is no more logarithmic singularities in the u^i and the v^i.

2.2.6. The construction of the outer and inner expansions. Recall the relationship between the coefficients (a^j_n, b^j_n) and the singular and regular parts of the u_j and v_j.

$$u^j = u^j_S + \bar{u}^j, \quad u^j_S \longleftrightarrow (a^j_n)_{n=0}^\infty, \quad \bar{u}^j \longleftrightarrow (b^{j+n}_n)_{n=0}^\infty,$$

$$v^j = v^j_S + \bar{v}^j, \quad v^j_S \longleftrightarrow (a^j_0), (b^j_n)_{n=0}^\infty, \quad \bar{v}^j \longleftrightarrow (a^{j+n}_n)_{n=0}^\infty.$$

(35)

Coefficients a^j_n vanish all but a^0_0 given by (33).

The scheme of the algorithm is the following. Suppose $i \geq 1$, and u^j and v^j are known for $1 \leq j \leq i - 1$. The order of operations at step i is the following:

1. u^j_S is determined by $(\bar{v}^{j-n})_{1 \leq n \leq i}$,
2. \bar{u}^j is determined by u^j_S,
3. v^j_S is determined by $(\bar{u}^{j-n})_{0 \leq n \leq i}$,
4. \bar{v}^j is determined by v^j_S.

Details are given below.

Initialization

S1 Define a^0_0 by (33), and hence u^0_S by (22).
S2 From u^0_S, define \bar{u}^0 by (29), and hence $u^0 = u^0_S + \bar{u}^0$ is determined.
S3 Define b^n_0 for $n \geq 0$ from (20) as the coefficients of \bar{u}^0, see the next subsection for the practical method. Hence, $v^0_S = a^0_0 + b^0_0 \ln(\rho)$ is determined from (28).
S4 From v^0_S, \bar{v}^0 is computed by (31), and hence $v^0 = v^0_S + \bar{v}^0$ is determined.
S5 Define a^n_n for $n \geq 1$ from (26) as the coefficients of \bar{v}^0, see the next subsection for the practical method.
For $i \geq 1$, suppose that u^j and v^j have been determined, together with the coefficients in (35), for $0 \leq j \leq i - 1$.

R1 Since $a^i_0 = 0$, and writing for $1 \leq n \leq i$, $a^i_n = a^{(i-n)+n}_n$, u^j_S is given by (25), where the coefficients are determined by those of the \bar{v}^j for $1 \leq j \leq i - 1$.

R2 \bar{u}^i is obtained by solving (30).

R3 The coefficients b^{i+n}_n for $n \geq 0$ are extracted from \bar{u}^i in (23,24), see the next subsection for the practical method.

R4 Since $a^i_0 = 0$, and using $b^i_n = b^{i+n}_j$ with $j = i - n$, v^i_S is determined from (28).

R5 \bar{v}^i is obtained by solving (32).

R6 u^i and v^i are obtained by summing the singular and regular parts.

This iterative method is summarized in Table 2.

<table>
<thead>
<tr>
<th>a^i_n / b^i_n</th>
<th>$i=0$</th>
<th>$i=1$</th>
<th>$i=2$</th>
<th>$i=3$</th>
<th>$i=4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>n=0</td>
<td>(33) /Outer 0</td>
<td>0 / Outer 1</td>
<td>0 / Outer 2</td>
<td>0 / Outer 3</td>
<td>0 / Outer 4</td>
</tr>
<tr>
<td>n=1</td>
<td>0</td>
<td>Inner 0 / Outer 0</td>
<td>Inner 1 / Outer 1</td>
<td>Inner 2 / Outer 2</td>
<td>Inner 3 / Outer 3</td>
</tr>
<tr>
<td>n=2</td>
<td>0</td>
<td>0</td>
<td>Inner 0 / Outer 0</td>
<td>Inner 1 / Outer 1</td>
<td>Inner 2 / Outer 2</td>
</tr>
<tr>
<td>n=3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Inner 0 / Outer 0</td>
<td>Inner 1 / Outer 1</td>
</tr>
<tr>
<td>n=4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Inner 0 / Outer 0</td>
</tr>
</tbody>
</table>

Table 2. Summary of the inductive method to obtain the coefficients a^i_n and b^i_n: in the corresponding cell is indicated the problem which must be solved.

2.2.7. The practical method for determining the coefficients a^i_n and b^i_n for $0 \leq n \leq i$. Throughout this section, \mathcal{C}_r denotes the arc of circle of radius r starting on Γ^- and ending on Γ^+:

$$\mathcal{C}_r = \{(r,\theta) : 0 \leq \theta \leq \omega\}.$$

The coefficients a^i_n and b^i_n can be obtained by path integrals (which are path independent) as asserted in the following Proposition.

Proposition 4. Let $i \geq 0$. Assume that \bar{v}^i and \bar{u}^i are known. Then

1. For $n \geq 1$, a^{i+n}_n is given by the following path integral over \mathcal{C}_ρ, which is independent of ρ provided that $\rho > 1$:

$$a^{i+n}_n = \frac{2 \rho^n \lambda}{\omega} \int_0^\omega \bar{v}^i(\rho,\theta) \cos(n\lambda\theta) d\theta.$$ \hspace{1cm} (36)

2. For $n \geq 0$, b^{i+n}_n is given by the following path integral over \mathcal{C}_r, which is independent of r provided that $0 < r < r^*$:

$$b^i_0 = \frac{1}{\omega} \int_0^\omega \bar{u}^i(r,\theta) d\theta, \hspace{1cm} b^{i+n}_n = \frac{2 r^{-n \lambda}}{\omega} \int_0^\omega \bar{u}^i(r,\theta) \cos(n\lambda\theta) d\theta \hspace{1cm} \text{for} \hspace{1cm} n \geq 1.$$ \hspace{1cm} (37)

Proof. The proofs are identical for the two families of coefficients and then only that concerning b^{i+n}_n will be given. By (23), \bar{u}^i is given for $0 < r < r^*$ by

$$\bar{u}^i(r,\theta) = \sum_{p \in \mathbb{N}} b^{i+p} r^p \lambda \cos(p\lambda\theta),$$

which is for fixed r the Fourier series of $\bar{u}^i(r,\cdot)$. Formulas (37) follow. \hfill \Box
2.3. **Verification in the case of a small cavity.** This subsection is devoted to the verification of the construction of the Matched Asymptotic Expansion presented in the previous subsections on an example where the exact solution is obtained in a closed form and hence can be directly expanded. Specifically, we consider a Laplace’s problem posed in a domain which consists in an angular sector delimited by two arc of circles. The radius of the outer circle is equal to 1 while the radius of the inner circle is \(\ell \), see Figure 3. Thus,

\[
\Omega_\ell = \{ x = r \cos \theta e_1 + r \sin \theta e_2 : r \in (\ell, 1), \ \theta \in (0, \omega) \}.
\]

![Figure 3. The domain \(\Omega_\ell \) in the case of a cavity](image)

The sides of the notch and the inner circle are free and hence the boundary conditions on those parts of the boundary are

\[
\frac{\partial u_\ell}{\partial \nu} = 0 \quad \text{on} \quad \Gamma_\ell^+ \cup \Gamma_\ell^- \cup \Gamma_\ell,
\]

where \(\Gamma_\ell^+ = \{(r, \theta) : \ell < r < 1, \theta = 0 \text{ or } \omega\} \), \(\Gamma_\ell = \{(r, \theta) : r = \ell, 0 \leq \theta \leq \omega\} \). (Note that \(\Gamma_\ell^\pm \) depend on \(\ell \), contrarily to the assumption made in the remaining part of the paper. But that has no influence on the results.) The displacement is prescribed on the outer boundary \(\Gamma_D \) so that:

\[
u_\ell(x) = \cos \lambda \theta \quad \text{on} \quad \Gamma_D, \quad \lambda = \frac{\pi}{\omega},
\]

Note that \(\Gamma_N \) is empty. Assuming that there is no body force, the exact solution of this anti-plane elastic problem is given by

\[
u_\ell(x) = \left(\frac{\ell^2 \lambda}{1 + \ell^2 \lambda} r^{-\lambda} + \frac{1}{1 + \ell^2 \lambda} r^\lambda \right) \cos \lambda \theta.
\]

Inserting the Taylor series of \(1/(1 + \ell^2 \lambda) = \sum_{i \in \mathbb{N}} (-1)^i (\ell^2 \lambda)^i \) for \(\ell < 1 \), the expansion of \(u_\ell \) at a given \(\mathbf{x} \) takes the form:

\[
u_\ell(x) = r^\lambda \cos \lambda \theta + \sum_{n \in \mathbb{N}^*} \ell^{2n\lambda}(r^{-\lambda} - r^\lambda) \cos \lambda \theta.
\]

Thus (41) corresponds to the outer expansion where the odd terms vanish and the even terms are given by

\[
u_0(x) = r^\lambda \cos \lambda \theta, \quad \nu_{2n}(x) = (-1)^n (r^\lambda - r^{-\lambda}) \cos \lambda \theta, \quad \forall n \geq 1.
\]

To obtain the inner expansion, replace \(r \) by \(\ell \rho \) in (40), to get

\[
u_\ell(\ell y) = \frac{\ell^\lambda}{1 + \ell^2 \lambda} (\rho^{-\lambda} + \rho^\lambda) \cos \lambda \theta.
\]
Inserting the Taylor series as before, the expansion of \(u_\ell(y) \) is given by
\[
\sum_{n=0}^{\infty} \frac{u_\ell(y) - u_\ell(0)}{n!} y^n = \sum_{n=0}^{\infty} \frac{u_\ell'(0) + \cdots + u_\ell^{(n)}(0)}{n!} y^n = \sum_{n=0}^{\infty} \frac{u_\ell^{(n)}(0)}{n!} y^n.
\]
which corresponds to the inner expansion where the even terms vanish and the odd terms are given by
\[
v^{2n+1}(y) = (-1)^n (\rho^{-\lambda} + \rho^\lambda) \cos \lambda \theta, \quad \forall n \geq 0.
\]

It remains to be checked that the procedure described in the previous subsections yields the same coefficients. Since \(g = 0 \), \(a_i = 0 \) for all \(i \geq 0 \) and there is no logarithmic singularity, see Remark 4. The details for the first steps of the procedure are given below.

1. By (33), \(a_0^1 = 0 \) and hence \(u_0^1 = 0 \).
2. Hence (29) becomes: \(\Delta u^0 = 0 \) in \(\Omega_0 \), \(\partial u^0 / \partial \theta = 0 \) on \(\theta \in \{0, \omega\} \), \(u^0 = \cos \lambda \theta \) on \(r = 1 \). The unique solution in \(H^1(\Omega_0) \) is \(v^0 \) given by (42).
3. By (37), \(b_1^1 = 1 \) and \(b_{0}^1 = 0 \) for \(n \neq 1 \). Hence \(v^0_S = 0 \).
4. Since \(v^0_S = 0 \) and \(g = 0 \), (31) gives \(\bar{v}^0 = 0 \) and hence \(v^0 = 0 \).
5. By (36), \(a_0^n = 0 \) for \(n \geq 1 \).
6. By (25), \(u_S^0 = 0 \).
7. By (30), \(\bar{u}^1 = 0 \) and hence \(u^1 = 0 \).
8. By (37), \(b_i^{n+1} = 0 \) for all \(n \). Hence \(v_S^i = \rho^\lambda \cos \lambda \theta \).
9. Hence (32) for \(i = 1 \) becomes: \(\Delta \bar{v}^1 = 0 \) in \(\Omega_\infty \), \(\partial \bar{v}^1 / \partial \theta = 0 \) on \(\theta \in \{0, \omega\} \), \(\partial \bar{v}^1 / \partial r = -\lambda \cos \lambda \theta \) on \(r = 1 \). The unique regular solution is \(\bar{v}^1 = \rho^\lambda \cos \lambda \theta \) and hence \(u^1 \) is given by (45).
10. By (36), \(a_i^1 = 1 \) and \(a_i^{n+1} = 0 \) for \(n \neq 1 \).
11. By (25), \(u_S^n = r^{-\lambda} \cos \lambda \theta \).
12. Hence (30) for \(i = 2 \) becomes: \(\Delta \bar{w}^2 = 0 \) in \(\Omega_0 \), \(\partial \bar{w}^2 / \partial \theta = 0 \) on \(\theta \in \{0, \omega\} \), \(\bar{w}^2 = -\cos \lambda \theta \) on \(r = 1 \). The unique solution in \(H^1(\Omega_0) \) is \(\bar{w}^2 = r^{-\lambda} \cos \lambda \theta \) and hence \(u^2 \) is given by (42).

Proceeding by induction, the expected expansions are finally recovered. The end of the verification is left to the reader.

3. Application to the case of a crack

3.1. Setting the problem. In this section, the method is applied to a defect which is a non-cohesive crack. Specifically, let \(\Omega \) be the rectangle \((-H, L) \times (-H, +H)\). Let \(\epsilon \) a given parameter in \((0, 1)\), \(N = \{x = (x_1, x_2) : -H < x_1 \leq 0, |x_2| \leq \epsilon |x_1|\} \). The notch-shaped body is \(\Omega_0 = \Omega \setminus N \). Finally the cracked body \(\Omega_\ell \) is obtained by removing from \(\Omega_0 \) the line segment \(\Gamma_\ell = (0, \ell) \times \{0\} \), see Figure 4.

The boundary \(\Gamma_D \) where the displacement is prescribed corresponds to the sides \(D^\pm \) and \(D_L \), with boundary conditions
\[
u_\ell(x) = \begin{cases}
+H & \text{on } D^+ = \{-H\} \times [\epsilon H, H],
-H & \text{on } D^- = \{-H\} \times [-H, -\epsilon H],
0 & \text{on } D_L = \{L\} \times [-H, H].
\end{cases}
\]

The remaining parts of the boundary (including the lips of the crack) are free, that is
\[
\frac{\partial u_\ell}{\partial x_2} = \begin{cases}
0 & \text{on } \Gamma_\ell = (0, \ell) \times \{0\},
0 & \text{on } N^\pm = (-H, L) \times \{\pm H\}.
\end{cases}
\]
and
\[
\frac{\partial u_\ell}{\partial n} = 0 \quad \text{on} \quad \Gamma^\pm = \{(x_1, x_2) : -H < x_1 < 0, x_2 = \pm \epsilon x_1\}.
\]

Figure 4. Definition of the cracked notch-shaped body \(\Omega_\ell\) with the various parts of the boundary.

Remark 5. The amplitude of the prescribed displacement is normalized to \(H\) so that \(u_\ell\) has the dimension of a length. The fact that the amplitude is equal to the height \(H\) has no importance in the present context of linearized elasticity. We will introduce a time dependent amplitude of the prescribed displacement when we study the propagation of the crack. Then the prescribed displacement will take “reasonable” values, controlled by the toughness of the material.

Remark 6. The case \(\epsilon = 0\) corresponds to a body with an initial crack of length \(H\) and this limiting case is also considered in this paper. The case \(\epsilon = 1\) corresponds to a corner with an angle \(\pi/2\), the sides \(D^\pm\) being reduced to the points \((-H, \pm H)\). This limiting case will not be considered here.

Remark 7. We only consider the case where the crack path is the line segment \((0, L)\times\{0\}\). It is a rather natural assumption by virtue of the symmetry of the geometry and the loading. An interesting extension should be to consider non symmetric geometry or loading and hence to take the direction of the crack as a parameter. This extension is reserved for future works.

We are in the case where \(g = 0\) on \(\Gamma_\ell\). Therefore, by virtue of Proposition 3, all the coefficients \(a_0^i\) vanish and there is no logarithmic singularities. Accordingly, the solution can be expanded as follows:

Outer expansion
\[
u_\ell(x) = u^0(x) + \ell^\lambda u^1(x) + \ell^{2\lambda} u^2(x) + \ell^{3\lambda} u^3(x) + \ldots
\]

Inner expansion
\[
u_\ell(x) = v^0(y) + \ell^\lambda v^1(y) + \ell^{2\lambda} v^2(y) + \ell^{3\lambda} v^3(y) + \ldots
\]

with
\[
\lambda = \frac{\pi}{\omega} \quad \text{and} \quad \omega = 2\pi - 2 \arctan(\epsilon).
\]

By symmetry of the geometry and the loading, the real field \(u_\ell\) is an odd function of \(x_2\), i.e.
\[
u_\ell(x_1, -x_2) = -\nu_\ell(x_1, x_2), \quad \nu_\ell(r, \omega - \theta) = -\nu_\ell(r, \theta).
\]

Therefore, all the fields \(u^i, \bar{u}^i, v^i, \bar{v}^i\) admit the same symmetry. Therefore by Proposition 4, all coefficients \(b_{2n}^{i+2n}\) and \(a_{2n}^{i+2n}\) vanish. Consequently, the odd terms of the outer expansion and the
even terms of the inner expansions vanish, i.e. \(u^{2i+1} = 0 \) and \(v^{2i} = 0 \) for all \(i \in \mathbb{N} \). Finally, the solution admits the following expansions:

Outer expansion

\[
\ell u_\ell(x) = \sum_{i \in \mathbb{N}} \ell^{2i} u^{2i}(x), \quad (47)
\]

Inner expansion

\[
\ell u_\ell(x) = \sum_{i \in \mathbb{N}} \ell^{(2i+1)} v^{2i+1}(y). \quad (48)
\]

By symmetry, the following coefficients vanish:

\[
a_n^i = 0 \quad \text{when} \quad n \text{ or } i - n \text{ are even}, \quad b_n^i = 0 \quad \text{when} \quad n \text{ is even or } i - n \text{ is odd}. \quad (49)
\]

Examine now the singularities of \(\nabla u_\ell \) (in the sense that \(\nabla u_\ell \) is not bounded) according to whether or not \(\ell = 0 \), and according to whether or not \(\epsilon = 0 \).

(1) **When** \(\epsilon > 0 \) **and** \(\ell = 0 \). Then \(\nabla u_0 \) is infinite at the tip of the notch and in its neighborhood has the form

\[
\nabla u_0(x) = \frac{\lambda b_1^1}{r^{1-\lambda}} \left(\cos(\lambda \theta)e_r - \sin(\lambda \theta)e_\theta \right) + \text{regular terms}.
\]

(2) **When** \(\epsilon > 0 \) **and** \(\ell > 0 \). Then \(\nabla u_\ell \) is no more infinite at the tip of the notch but becomes infinite at the tip of the crack, with the usual singularity in \(1/\sqrt{r} \), see [8]. Specifically, \(\nabla u_\ell \) has the form

\[
\nabla u_\ell(x) = \frac{K_\ell}{\mu r^{\epsilon}} \left(\sin \left(\frac{\theta'}{2} \right) e_r + \cos \left(\frac{\theta'}{2} \right) e_\theta \right) + \text{regular terms}. \quad (50)
\]

In (50) \((r', \theta')\) denotes the polar coordinate system such that \(x = (\ell + r' \cos \theta')e_1 + r \sin \theta' e_2 \) and the angular function of \(\theta' \) is normalized so that \(K_\ell \) be the usual stress intensity factor. \(K_\ell \) depends on \(\ell \) and is “strongly” influenced by the presence of the notch when \(\ell \) is small. (In fact, \(K_\ell \) goes to 0 when \(\ell \) goes to 0 as we will see below.) So, even if the stresses are only singular at the tip of the crack, there is a kind of overlapping of the previous singularity at the tip of the notch. This phenomenon renders the computations by the finite element method less accurate when \(\ell \) is small.

(3) **When** \(\epsilon = 0 \). Then the notch is already a crack and it is unnecessary to treat separately \(\ell = 0 \) and \(\ell > 0 \). In any case \(\nabla u_\ell \) has the classical singularity in \(1/\sqrt{r} \) as in (50) and there is no more overlapping of two singularities. The computations by the finite element method are accurate in the full range of values of \(\ell \).

3.2. **The issue of the computation of the energy release rate.** The main goal of this section is to obtain accurate values for the elastic energy \(P_\ell \) stored in the cracked body and for its derivative with respect to \(\ell \), the so-called energy release rate \(G_\ell \), when \(\ell \) is small. By definition, the elastic energy is given by

\[
P_\ell = \frac{1}{2} \int_{\Omega_\ell} \mu \nabla u_\ell \cdot \nabla u_\ell dx. \quad (51)
\]

By virtue of Clapeyron’s formula, the elastic energy stored in the body when the body is at equilibrium is equal to one half the work done by the external loads over the prescribed displacement on \(D^\pm \). Therefore, using the symmetry of \(u_\ell \), the elastic energy can also be written as an integral over \(D^+ \):

\[
P_\ell = -\int_{\ell H} H \frac{\partial u_\ell}{\partial x_1} (-H, x_2) dx_2, \quad (52)
\]

which involves only the displacement field far from the tip of the notch.
By definition, see \[7, 31\], the energy release rate \(G_\ell \) is the opposite of the derivative of the elastic energy with respect to the length of the crack:

\[G_\ell = -\frac{dP_\ell}{d\ell}. \] (53)

Even though \(P_\ell \) involves the \(\ell \) dependent displacement field \(u_\ell \), its derivative does not involve the derivative \(du_\ell /d\ell \) but can be expressed in terms of \(u_\ell \) only. This property is a consequence of the fact that \(u_\ell \) satisfies the equilibrium equations. Specifically, \(G_\ell \) can be computed either with the help of path integrals like the \(J \) integral of Rice \[39\] or by using the so-called \(G - \theta \) method developed in \[19\]. We recall below the main ingredients of both methods when \(0 < \ell < L \). The cases \(\ell = 0 \) and \(\ell = L \) are treated separately.

In the former method, the integral \(J_C \) over the path \(C \) is defined by

\[J_C = \int_C \left(\mu \frac{\partial u_\ell}{\partial x_1} \cdot \nabla u_\ell - \mu \frac{\partial u_\ell}{\partial n} \right) ds, \]

where \(n \) denotes the outer normal of the path. This integral is (theoretically) path-independent and equal to \(G_\ell \) provided that the path \(C \) starts from the lip of the crack, circumvents the tip of the crack and finishes on the lip of the crack like in Figure 5, see \[8\]. This path independency is used to obtain Irwin’s formula \[28, 31\]. Indeed, taking for path the circle \(C_r' \) centered at the tip of the crack with radius \(r' \), using (50) and passing to the limit when \(r' \to 0 \), the following link between the energy release rate and the stress intensity factor \(K_\ell \) introduced in (50) is obtained:

\[G_\ell = \lim_{r' \to 0} J_{C_{r'}} = \frac{K^2_\ell}{2\mu}. \]

For the computations, the particularities of the geometry and of the loading can be exploited, to choose a path made of line segments parallel to the axes like the path \(C \) in Figure 5:

\[C = \{a\} \times (-H, 0) \cup [a, b] \times (-H) \cup [b] \times (-H, H) \cup [a, b] \times (+H) \cup \{a\} \times (0, H) \] with \(0 < a < \ell < b < L \). Then \(J_C = G_\ell \). Therefore, since \(n_1 = 0 \) and \(\partial u_\ell /\partial n = 0 \) on the sides \(x_2 = \pm H \) and by virtue of the symmetry of \(u_\ell \), \(G_\ell \) takes the form

\[G_\ell = \mu \int_{\{b\} \times (0, H)} \left(\left(\frac{\partial u_\ell}{\partial x_2} \right)^2 - \left(\frac{\partial u_\ell}{\partial x_1} \right)^2 \right) dx_2 - \mu \int_{\{a\} \times (0, H)} \left(\left(\frac{\partial u_\ell}{\partial x_2} \right)^2 - \left(\frac{\partial u_\ell}{\partial x_1} \right)^2 \right) dx_2. \] (54)

From a theoretical point of view, \(a \) and \(b \) can be chosen arbitrarily, provided that they satisfy the constraints above. Indeed, the integral over the line segment \(x_1 = a \) (resp. \(x_1 = b \)) does not depend on \(a \) (resp. on \(b \)) because \(u_\ell \) is harmonic and satisfies homogeneous Neumann boundary conditions on \(N^\pm \) and \(\Gamma_\ell \). (This verification is left to the reader, see \[33, Proposition 8\] for a proof.) However, from a numerical point of view, it is no more true because the computed displacement field does not satisfy exactly the equilibrium equations. Consequently, the computed values of \(G_\ell \)
depend on the choice of \(a \) and \(b \). Moreover, since the integral over the line \(a \) involves the gradient of the displacement, this integral can be badly approximated when \(\ell \) is small because of the singularity.

The \(G - \theta \) method is based on a change of variables which sends the \(\ell \)-dependent domain \(\Omega_\ell \) onto a fix domain. In essence, it is the basic method to prove that \(\ell \mapsto \mathcal{P}_\ell \) is differentiable, see [19] for the genesis of this method and [10] for a discussion on a generalization of the concept of energy release rate. In turn the \(G - \theta \) approach gives a practical method to compute the energy release rate, see [10, 19]. Specifically, for a given \(\ell > 0 \), with a Lipschitz continuous vector field \(\theta \) defined on \(\Omega_\ell \), associate the following volume integral \(G_\theta \):

\[
G_\theta = \int_{\Omega_\ell} \left(\sum_{i,j=1}^2 \mu \frac{\partial u_\ell}{\partial x_j} \frac{\partial u_\ell}{\partial x_i} - \frac{\mu}{2} \nabla u_\ell \cdot \nabla u_\ell \text{ div} \theta \right) \, dx.
\]

It can shown that, if \(\theta \) is such that \(\theta(\ell, 0) = e_1 \) and \(\theta \cdot n = 0 \) on \(\partial \Omega_\ell \), then \(G_\theta \) is independent of \(\theta \) and equal to \(G_\ell \). Of course, this result of independency holds only when \(u_\ell \) is the true displacement field. If it is numerically approximated, then \(G_\theta \) becomes \(\theta \) dependent. In our case, owing to the simplicity of the geometry, we can use a very simple vector field \(\theta \) which renders the computations easier. Specifically, let \(\theta \) be given by

\[
\theta(x) = \begin{cases}
0 & \text{if } x_1 < 0, \\
x_1 e_1 & \text{if } 0 \leq x_1 \leq \ell, \\
\frac{L - x_1}{L - \ell} e_1 & \text{if } \ell \leq x_1 < L.
\end{cases}
\]

(55)

It satisfies the required conditions and hence \(G_\theta = G_\ell \). Accordingly, owing to the symmetry, \(G_\ell \) takes the form

\[
G_\ell = \frac{\mu}{L - \ell} \int_{\ell}^L \int_0^H \left(\left(\frac{\partial u_\ell}{\partial x_2} \right)^2 - \left(\frac{\partial u_\ell}{\partial x_1} \right)^2 \right) \, dx_2 \, dx_1 - \frac{\mu}{\ell} \int_{\ell}^L \int_0^H \left(\left(\frac{\partial u_\ell}{\partial x_2} \right)^2 - \left(\frac{\partial u_\ell}{\partial x_1} \right)^2 \right) \, dx_2 \, dx_1.
\]

(56)

Comparing (56) with (54), (56) can be seen as an average of all the line integrals appearing in (54) when \(a \) and \(b \) vary respectively from 0 to \(\ell \) and to \(L \). Accordingly, it can be expected that (56) gives more accurate computations than (54) when \(\ell \) is small.

3.3. Numerical results obtained for \(G_\ell \) by the FEM. All the computations based on the finite element method are implemented into the industrial code COMSOL. They are performed after introducing dimensionless quantities. Specifically, in all the computations, the dimensions of the body are \(H = 1 \) and \(L = 5 \), the shear modulus \(\mu = 1 \). That does not restrict the generality of the study because the scale dependencies are known in advance. Indeed, the true physical quantities are related to the normalized quantities (denoted with a tilde) by

\[
\ell = H \bar{\ell}, \quad u_\ell = H \bar{u}_\ell, \quad P_\ell = \mu H^2 \bar{P}_\ell, \quad G_\ell = \mu H \bar{G}_\ell.
\]

(57)

For a given \(\bar{\ell} \in (0, 5) \) and a given \(\epsilon \in (0, 1) \), we use the symmetry of the body and of the load to mesh only its upper half and prescribe \(\bar{u}_\ell = 0 \) on the segment \(\bar{\ell} \leq \bar{x}_1 \leq 5, \bar{x}_2 = 0 \). We use 6-nodes triangular elements, i.e. quadratic Lagrange interpolations. The mesh is refined near the singular corners and a typical mesh contains 25000 elements and 50000 degrees of freedom. We compute the discretized solution (still denoted) \(\bar{u}_\ell \) by solving the linear system. Then, the energy \(P_\ell \) and the energy release rate \(\bar{G}_\ell \) are obtained by a post-processing. The energy is obtained by a direct integration of the elastic energy density over the body. The derivative of the energy is obtained by using formula (56), which needs to integrate the different parts of the elastic energy density over the two rectangles \((0, \bar{\ell}) \times (0, 1) \) and \((\bar{\ell}, 5) \times (0, 1) \). For a given \(\epsilon \), we compute \(P_\ell \) and \(\bar{G}_\ell \) for \(\bar{\ell} \) varying from 0.001 to 5, first by steps of 0.001 in the interval (0, 0.05), then by steps of 0.002 in the interval (0.05, 0.2), finally by steps of 0.01 in the interval (0.2, 5). The computations can
be considered as sufficiently accurate for $\tilde{\ell} \geq 0.002$, even if this lower bound depends on ϵ, the computations being less accurate for small (but non-zero) values of ϵ. Below this value, if we try to refine the mesh near the corner of the notch, the results become mesh-sensitive, the linear system becomes ill-conditioned. Since only the part of the graph of \mathcal{G}_ℓ close to $\ell = 0$ is interesting when ϵ is small, we cannot obtain accurate results when ϵ is too small. (Of course, this remark does not apply when $\epsilon = 0$, because $\tilde{\ell} = 0$ is no more a “singular” case.)

The cases $\tilde{\ell} = 0$ and $\tilde{\ell} = 5$ with $\epsilon \neq 0$ are treated with specific meshes. We have only to compute \tilde{u}_0, \tilde{P}_0, \tilde{u}_L and \tilde{P}_L, since $\mathcal{G}_0 = \mathcal{G}_L = 0$.

The case $\epsilon = 0$ is treated separately by adapting the previous methods. In particular, to calculate \mathcal{G}_ℓ, the second integral in (56) is replaced by an integral over the rectangle $(-1,0) \times (0,1)$, and this integral is divided by $1 + \tilde{\ell}$ instead of $\tilde{\ell}$. Moreover, the mesh is refined only near the tip of the crack, $\tilde{\ell} = 0$ is no more a particular case and the computations of \mathcal{G}_ℓ are accurate in the full range of $\tilde{\ell}$.

Let us highlight the main features of the numerical results plotted in Figure 6. These properties will be the basic assumptions from which we study the crack propagation at the end of the present section.

P1 For $\epsilon = 0$, $\mathcal{G}_\ell/\mu H$ is monotonically decreasing from 0.4820 to 0 when ℓ/H grows from 0 to 5.

P2 For $\epsilon > 0$, $\mathcal{G}_\ell/\mu H$ starts from 0 at $\ell/H = 0$, then is rapidly increasing. This growth is so important (for instance, $\mathcal{G}_\ell/\mu H = 0.1443$ when $\ell/H = 0.002$ for $\epsilon = 0.4$) that it cannot be correctly captured by the FEM.

P3 Still for $\epsilon > 0$, \mathcal{G}_ℓ is monotonically increasing as long as $\ell \leq \ell_m$. At $\ell = \ell_m$, \mathcal{G} takes its maximal value G_m. Those values which depend on ϵ are given in the table below. It turns out that ℓ_m/H is rather small.

<table>
<thead>
<tr>
<th>ϵ</th>
<th>0</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>ℓ_m/H</td>
<td>0</td>
<td>0.024</td>
<td>0.058</td>
<td>0.092</td>
<td>0.130</td>
</tr>
<tr>
<td>$G_m/\mu H$</td>
<td>0.4820</td>
<td>0.3900</td>
<td>0.3260</td>
<td>0.2733</td>
<td>0.2279</td>
</tr>
</tbody>
</table>

P4 For $\epsilon > 0$ again, \mathcal{G}_ℓ is monotonically decreasing from G_m to 0 when ℓ grows from ℓ_m to $5H$.

![Figure 6](image-url)

Figure 6. Computation by the Finite Element Method of the energy release rate \mathcal{G}_ℓ as a function of the crack length ℓ for five values of the notch angle.
3.4. Evaluation of the energy release rate by the MAM.

By virtue of (52), \(P_\ell \) can be expanded by using the outer expansion of \(u_\ell \). Using (47) leads to

\[
P_\ell = \sum_{i \in \mathbb{N}} P_{2i} \left(\frac{\ell}{H} \right)^{2i\lambda} \mu H^2,
\]

where the coefficients \(P_{2i} \) of the expansions are dimensionless. The expansion of the energy release rate can be immediately deduced from that of the energy:

\[
G_\ell = -\sum_{i \in \mathbb{N}^*} 2i\lambda P_{2i} \left(\frac{\ell}{H} \right)^{2i\lambda-1} \mu H
\]

and it is not necessary to use the path integrals \(J_C \) or the \(G-\theta \) method. Let us remark that

\[
G_0 = \begin{cases}
0 & \text{if } \epsilon \neq 0 \\
-P_2 \mu H = K_0^2/2 > 0 & \text{if } \epsilon = 0
\end{cases}
\]

because \(\lambda > 1/2 \) in the former case while \(\lambda = 1/2 \) in the latter.

To obtain the \(i^{th} \) term of the expansion of \(P_\ell \) and \(G_\ell \), both the singular part \(u_\ell^S \) and the regular part \(\bar{u}_\ell \) must be recovered. The singular part involves the coefficients \(a_n^i \) for \(1 \leq n \leq i \) which are obtained as the regular parts of the \(v_j^i \) for \(j \leq i \), see Section 2.2.6. Therefore, the inner problems must be solved, to determine the coefficients \(b_n^i \) for \(0 \leq n \leq i \). In practise, these coefficients are obtained by using Proposition 4 after the inner and the outer problems have been solved with a finite element method. The advantage is that those problems do not contain a small defect and the accuracy is guaranteed. The drawback is that more and more problems have to be solved, in order to obtain accurate values of \(G_\ell \) when \(\ell/H \) is not small.

\[
\begin{array}{cccccccc}
\epsilon & a_1^2 & P_2 & a_3^4 & a_3^6 & P_4 & a_5^6 & P_6 \\
0 & -0.3930 & -0.4820 & 0.1888 & 0.0987 & 0.3282 & -0.1365 & -0.0537 & -0.0494 & -0.2013 \\
0.1 & -0.3756 & -0.4413 & 0.1766 & 0.0943 & 0.3001 & -0.1279 & -0.0507 & -0.0472 & -0.1931 \\
0.2 & -0.3559 & -0.3957 & 0.1619 & 0.0893 & 0.2673 & -0.1165 & -0.0470 & -0.0446 & -0.1787 \\
0.3 & -0.3342 & -0.3486 & 0.1453 & 0.0838 & 0.2320 & -0.1029 & -0.0427 & -0.0418 & -0.1603 \\
0.4 & -0.3106 & -0.3005 & 0.1273 & 0.0778 & 0.1952 & -0.0880 & -0.0380 & -0.0389 & -0.1385 \\
\end{array}
\]

Table 3. The computed values of the (non zero) coefficients \(a_n^i \) for \(1 \leq n \leq i \leq 6 \) and of the leading terms \(P_2, P_4 \) and \(P_6 \) of the expansion of the potential energy for several values of the angle of the notch

\[
\begin{array}{cccccccc}
\epsilon & b_1^1 & b_1^3 & b_3^3 & b_1^5 & b_3^5 & b_3^5 \\
0 & -0.7834 & 0.2384 & -0.2059 & -0.1943 & 0.1058 & -0.0172 \\
0.1 & -0.7482 & 0.2091 & -0.2085 & -0.1730 & 0.0992 & -0.0283 \\
0.2 & -0.7089 & 0.1777 & -0.2081 & -0.1489 & 0.0905 & -0.0379 \\
0.3 & -0.6657 & 0.1451 & -0.2045 & -0.1232 & 0.0800 & -0.0454 \\
0.4 & -0.6187 & 0.1125 & -0.1977 & -0.0974 & 0.0683 & -0.0508 \\
\end{array}
\]

Table 4. The computed values of the (non-zero) coefficients \(b_n^i \) for \(1 \leq n \leq i \leq 5 \) for several values of the angle of the notch

In the tables 3 and 4 are given the computed values of the first coefficients of the inner and outer expansions (still with \(H = 1, L = 5, \mu = 1 \)). These tables contain all the terms which are necessary.
to compute the expansions of the energy up to the sixth order, i.e. P_2i for $i \in \{0, 1, 2, 3\}$. (Note that P_0 does not appear in the expansion of G_ℓ.) The graphs of $\ell \rightarrow G_\ell$ obtained from these expansions are plotted on Figure 7 in the cases $\epsilon = 0.2$ and $\epsilon = 0.4$. They are compared with the values obtained directly by the finite element code Comsol. From these comparisons, the following conclusions can be drawn:

C1 For very small values of ℓ, the first non trivial term (corresponding to $i = 1$ in (59)) of the Matched Asymptotic Expansion (denoted by MAM 2 on Figure 7) is sufficient to well approximate G_ℓ while the FEM is unable to deliver accurate values.

C2 For values of ℓ of the order of ℓ_m, at least the first two non trivial terms (corresponding to $i = 1$ and 2 in (59)) of the MAE (denoted by MAM 4 on Figure 7), are necessary to capture the change of monotonicity of G_ℓ. Indeed, the first term being monotonically increasing is unable, alone, to capture that change of behavior.

C3 Still for values of ℓ of the order of ℓ_m, the first two terms are really sufficient to well approximate G_ℓ provided that ℓ_m/H is sufficiently small. Specifically, the first two terms are sufficient as long as $\ell/H < 0.2$.

C4 Accordingly, the approximation of G_ℓ by the first two non trivial terms of MAE can be used, in the range $[0, 2\ell_m]$ of ℓ when $\epsilon \in (0, 0.4)$.

C5 As ℓ/H grows beyond 0.2, more and more terms of the MAE must be added, in order to get a good approximation of G_ℓ. Consequently, in the range of “large” values of ℓ/H, the direct FEM is accurate and hence is better to use.

Figure 7. Comparisons of the graph of G_ℓ obtained by the Matched Asymptotic Method or by the finite element code COMSOL in the cases $\epsilon = 0.2$ (above) and $\epsilon = 0.4$ (below). The diamonds correspond to the points obtained by FEM while the curves MAM $2i$, $i \in \{1, 2, 3\}$, correspond to the values obtained by considering the first i non trivial terms in the expansion of G_ℓ.
4. Application to the determination of the nucleation of the crack

The theoretical and numerical results obtained in the previous sections are used here to study the delicate issue of the nucleation of a crack in a sound body or the most classical question of the onset of a preexisting crack. Specifically, we consider the notched body Ω_0 which either contains a preexisting crack $\ell_0 > 0$ or is sound, i.e. $\ell_0 = 0$. We have also to distinguish different cases according to whether $\epsilon = 0$ or $\epsilon > 0$. The nucleation or the onset of cracking is governed by either the so-called G-law or the so-called FM-law and one goal of this section is to compare those laws. The interested reader can also refer to [7, 22, 36, 37, 33] where other comparisons between G-law and FM-law are proposed.

The notched body is submitted to a time-dependent loading process which consists in a monotonically increasing amplitude of the displacement prescribed on the sides D^\pm. Specifically, consider the new boundary conditions

$$u = \pm t H \quad \text{on} \quad D^\pm, \quad t \geq 0,$$

the other remain unchanged. (Note that the "time" parameter t is dimensionless.) The evolution problem consists in finding the time evolution of the length of the crack, i.e. $t \mapsto \ell(t)$ for $t \geq 0$, under the initial condition $\ell(0) = \ell_0 \in [0, L)$. For that, we first remark that, for a given time $t \geq 0$ and a given crack length $\ell \in [0, L]$, the displacement field which equilibrates the body is

$$u(t, \ell) = t u_\ell,$$

where u_ℓ is the displacement field introduced in Section 3.1. Accordingly, the potential energy and the energy release rate at time t with a crack length ℓ can be expressed as

$$P(t, \ell) = \ell^2 P_\ell, \quad G(t, \ell) = \ell^2 G_\ell,$$

where P_ℓ and G_ℓ are given by (51) and (53).

The two evolutions law are based on the crucial Griffith’s assumption [25] concerning the surface energy associated with a crack. Specifically, assume that there exists a material constant $G_c > 0$ such that the surface energy of the body with a crack of length ℓ is

$$S(\ell) = G_c \ell.$$

Accordingly, the total energy of the body at equilibrium at time t with a crack of length ℓ becomes

$$E(t, \ell) := P(t, \ell) + S(\ell) = t^2 P_\ell + G_c \ell.$$

Throughout this section we assume that $\ell \mapsto P_\ell$ is continuously differentiable and monotonically decreasing. Moreover, some monotonic properties of $\ell \mapsto G_\ell$ will be added when necessary according to the analysis made in the previous sections.

4.1. The two evolution laws. Let us briefly introduce the two evolution laws, the reader interested by the details should refer to [33]. The first one, called the G-law, is the usual Griffith law based on the critical potential energy release rate criterion, see [8, 31, 38]. In essence, this law only investigates smooth (i.e. at least continuous) evolutions of the crack length with the loading. It consists in the three following items:

Definition 2 (G-law). Let $\ell_0 \in [0, L]$. A continuous function $t \mapsto \ell(t)$ is said satisfying (or solution of) the G-law in the interval $[t_0, t_1]$ with the initial condition $\ell(t_0) = \ell_0$, if the three following properties hold

1. **Irreversibility:** $t \mapsto \ell(t)$ is not decreasing;
2. **Energy release rate criterion:** $G(t, \ell(t)) \leq G_c, \quad \forall t \in [t_0, t_1]$;
3. **Energy balance:** $\ell(t)$ is increasing only if $\ell(t) = G_c$, i.e. if $G(t, \ell(t)) < G_c$ at some t, then $\ell(t') = \ell(t)$ for every t' in a certain neighborhood $[t, t + h]$ of t.

The third item implies that the release of potential energy is equal to the created surface energy when the crack propagates which justifies its name of energy balance. Consequently, if $t \mapsto \ell(t)$ is absolutely continuous, then the third item is equivalent to $\frac{d}{dt} \mathcal{E}(t, \ell(t)) = \frac{\partial}{\partial \ell} \mathcal{E}(t, \ell(t)) \frac{d\ell}{dt} = 0$ for almost all t and the following equality holds for almost all t:

$$
\frac{d}{dt} \mathcal{E}(t, \ell(t)) = \frac{\partial}{\partial \ell} \mathcal{E}(t, \ell(t)).
$$

(66)

A major drawback of the G-law is to be unable to take into account discontinuous crack evolutions, which renders it useless in many situations as we will see in the next subsection. It must be replaced by another law which admits discontinuous solutions. Another motivation of changing the G-law is to reinforce the second item by introducing a full stability criterion, see [22, 38, 7]. Specifically, let us consider the following local stability condition

$$
\forall t \geq 0, \exists h(t) > 0 : \mathcal{E}(t, \ell(t)) \leq \mathcal{E}(t, L) \quad \forall \ell \in [\ell(t), \ell(t) + h(t)],
$$

(67)

which requires that the total energy at t is a “unilateral” local minimum. (The qualifier unilateral is added because the irreversibility condition leads to compare the energy at t with only that corresponding to greater crack length, see [7]). Taking $l = \ell(t) + h$ with $h > 0$ in (67), dividing by h and passing to the limit when $h \to 0$, we recover the critical energy release rate criterion. Thus, the second item can be seen as a first order stability condition, weaker than (67). A stronger requirement consists in replacing local minimality by global minimality. It was the condition introduced by Francfort-Marigo in [22] in the spirit of the original Griffith idea [25] and that we will adopt here. Thus, the second evolution law, called FM-law, consists in the three following items

Definition 3 (FM-law). A function $t \mapsto \ell(t)$ (defined for $t \geq 0$ and with values in $[0, L]$) is said satisfying (or solution of) the FM-law if the three following properties hold

1. **Irreversibility:** $t \mapsto \ell(t)$ is not decreasing;
2. **Global stability:** $\mathcal{E}(t, \ell(t)) \leq \mathcal{E}(t, l)$, $\forall t \geq 0$ and $\forall \ell \in [\ell(t), L]$;
3. **Energy balance:** $\mathcal{E}(t, \ell(t)) = \mathcal{E}(0, \ell_0) + \int_0^t \frac{d}{dt} \mathcal{E}(t', \ell(t')) dt'$, $\forall t \geq 0$.

Let us note that the irreversibility condition is unchanged, while the energy balance condition is now written as the integrated form of (66), which does not require that $t \mapsto \ell(t)$ be continuous. Note also that the energy balance implies $\ell(0) = \ell_0$ because $0 = \mathcal{E}(0, \ell(0)) - \mathcal{E}(0, \ell_0) = G_c(\ell(0) - \ell_0)$, and that the second item is automatically satisfied at $t = 0$ because $\mathcal{E}(0, l) = G_cl$.

4.2. **The main properties of the G-law and the FM-law.** We recall or establish in this subsection some results for the two evolution laws under the assumptions of monotonicity of $\ell \mapsto G_\ell$ resulting of the numerical computations, see P1–P4 in Section 3.3. Some of those results have a general character and have been previously established in [7, 22, 33] while the other ones are specific to the present problem. In the case of properties which have already been obtained, we simply recall them without proofs.

Let us first consider the case when the notch is in fact a crack. Then, the two laws are equivalent by virtue of

Proposition 5. In the case $\epsilon = 0$, since $\ell \mapsto G_\ell$ is decreasing from $G_0 > 0$ to 0 when ℓ goes from 0 to L (see Property P1), the G-law and the FM-law admit the same and unique solution. Specifically, the preexisting crack begins to propagate at time t_1 such that $t_1^2 G_{\ell_0} = G_c$. Then the crack propagates continuously and $\ell(t)$ is such that $t^2 G_{\ell(t)} = G_c$. Since $G_L = 0$, the crack will not reach the end L in a finite time.

Proof. See [33, Proposition 18].

In the case of a genuine notch, as far as the nucleation and the propagation of a crack with the G-law are concerned, we have
Proposition 6. In the case $\epsilon > 0$, according to $\ell_0 = 0$ or $\ell_0 \in (0, \ell_m)$ or $\ell_0 \in [\ell_m, L)$, the crack evolution predicted by the G-law is as follows

1. If $\ell_0 = 0$, since $G_0 = 0$, the unique solution to G-law is $\ell(t) = 0$ for all t, i.e. there is no crack nucleation;
2. If $\ell_0 \in (0, \ell_m)$, then the preexisting crack begins to propagate at time t_i such that $t_i^2 G_{\ell_0} = G_c$. But at t_i, the propagation is necessarily discontinuous and hence there is no continuous solution to G-law for $t \geq t_i$;
3. If $\ell_0 \in [\ell_m, L)$, since $\ell \mapsto G_\ell$ is monotonically decreasing in the interval (ℓ_m, L), the situation is the same as in Proposition 5. There exists a unique solution for the G-law: the crack begins to propagate at t_i (still given by $t_i^2 G_{\ell_0} = G_c$) and then propagates continuously until L which is reached asymptotically.

Proof. Let us give the sketch of the proof for the first two items.

1. Since $\ell_0 = 0$ and $G_0 = 0$, then for all $t \geq 0$ one gets $0 = G(t, 0) < G_c$ and hence $\ell(t) = 0$ is a solution. The uniqueness follows from the initial condition and the energy balance.
2. Since $0 < \ell_0 < \ell_m$, then $G_{\ell_0} > 0$ and hence $t^2 G_{\ell_0} = G(t, \ell_0) \leq G_c$ if and only if $t \in [0, t_i]$. Since the inequality is strict when $t \in [0, t_i)$, then $\ell(t) = 0$ is the unique solution in this interval because of the initial condition and the energy balance. By continuity, it is also the unique solution in the closed interval $[0, t_i]$. On the other hand, since $G(t, \ell_0) > G_c$ when $t > t_i$, the crack must begin to propagate at t_i.

Let us show that no (continuous) evolution can satisfy the G-law for $t > t_i$. Indeed, by construction $G(t_i, \ell(t_i)) = t_i^2 G_{\ell_0} = G_c$. But since $\ell(t) \geq \ell_i$ for $t > t_i$ and since $\ell \mapsto G_\ell$ is monotonically increasing in the neighborhood of $\ell_0 < \ell_m$, it holds for $t \in (t_i, t_i + h)$ and a sufficiently small $h > 0$:

$$\ell_0 < \ell(t) < \ell_m, \quad G(t, \ell(t)) > G(t_i, \ell_0) = G_c.$$

Therefore the energy release rate criterion cannot be satisfied by a continuous evolution in a neighborhood of t_i. The unique possibility is that the length of the crack jumps from ℓ_0 to some $\ell_i > \ell_m$ at time t_i. But that requires to reformulate the G-law.

The proof of the third item is the same as in the previous Proposition and hence refers to [33, Proposition 18].

Remark 8. This property of no nucleation of a crack at a notch or of brutal propagation of a short crack is due to the fact that a notch with Neumann boundary conditions induces a weak singularity only, i.e. $\lambda > 1/2$. If one changes the boundary conditions by imposing the displacement on one edge of the notch and the stress on the other edge, then the singularity becomes strong for ω large enough and in such a case all the properties of nucleation are changed, see [22, Proposition 4.19].

Consider now the FM-law. It is proved in [33, Proposition 3] that, in the case of a monotonically increasing loading, the FM-law is equivalent to a minimization problem of the total energy at each time, as precisely stated in the following Lemma.

Lemma 7. Let $\ell_0 \in [0, L)$ be the initial length of the crack. A function $t \mapsto \ell(t)$ satisfies the FM-law if and only if, at each t, $\ell(t)$ is a minimizer of $l \mapsto E(t, l)$ over $[\ell_0, L]$. Therefore, the FM-law admits at least one solution and each solution grows from ℓ_0 to L.

This property holds true for any $\epsilon \geq 0$. In the case $\epsilon > 0$ we can deduce precise results:

Proposition 8. In the case $\epsilon > 0$, according to $\ell_0 \in [0, \ell_m)$ or $\ell_0 \in [\ell_m, L)$, the crack evolution predicted by the FM-law is as follows.
(1) If $\ell_0 \in (0, \ell_m)$, then the nucleation (if $\ell_0 = 0$) or the propagation of the preexisting crack (if $\ell_0 \neq 0$) starts at time $t_i > 0$ and at this time the crack length jumps instantaneously from ℓ_0 to ℓ_i. The length ℓ_i is the unique length in (ℓ_m, L) such that

$$
\int_{\ell_0}^{\ell_i} G_\ell d\ell = (\ell_i - \ell_0)G_{\ell_i} \quad \text{or equivalently} \quad P_{\ell_0} - P_{\ell_i} = (\ell_i - \ell_0)G_{\ell_i}
$$

while the time t_i is given by

$$
t_i^2 G_{\ell_i} = G_c.
$$

After this jump, the crack propagates continuously from ℓ_i to L, the evolution satisfying then the G-law, i.e.

$$
t^2 G_{\ell(t)} = G_c, \quad \forall t > t_i.
$$

(2) If $\ell_0 \in [\ell_m, L)$, since $\ell \mapsto G_\ell$ is monotonically decreasing in the interval (ℓ_m, L), the situation is the same as in Proposition 5. There exists a unique solution for the FM-law which is the same as for the G-law: the crack begins to propagate at t_i such that $t_i^2 G_{\ell_0} = G_c$ and then propagates continuously until L which is reached asymptotically.

Remark 9. Before the proof of this Proposition, let us comment and interpret the equation (68) giving the jump of the crack at t_i.

- Let us first prove that ℓ_i is well defined by (68). Let $\ell \mapsto g(\ell)$ be the function defined for $\ell \in (\ell_m, L)$ by

$$
g(\ell) = \int_{\ell_0}^{\ell} G_\ell \, d\ell - (\ell - \ell_0)G_\ell.
$$

Its derivative is given by $g'(\ell) = -(\ell - \ell_0)G'_\ell$ and hence is positive because G_ℓ is decreasing in (ℓ_m, L). Since $G_{\ell} < G_m := G_{\ell_m}$, $g(\ell_m) < 0$ whereas $g(L) > 0$ because $G_L = 0$. Therefore, there exists a unique $\ell \in (\ell_m, L)$ such that $g(\ell) = 0$, what is precisely the definition of ℓ_i.

- The equation (68) giving ℓ_i has a graphical interpretation. Indeed, the integral over (ℓ_0, ℓ_i) represents the area under the graph of $\ell \mapsto G_\ell$ between the lengths ℓ_0 and ℓ_i. On the other hand the product $(\ell_i - \ell_0)G_{\ell_i}$ represents the area of the rectangle whose height is $G_i := G_{\ell_i}$. Therefore, since these two areas are equal, the two gray areas of Figure 8 are also equal. This rule of equality of the areas determines ℓ_i and, by essence, the line $G = G_i$ is the classical Maxwell line which appears in any problem of minimization of a non convex function.
• Note that \(\ell_i \) is independent of the toughness \(G_c \) and of the shear modulus \(\mu \) of the material. It is a characteristic of the structure and merely depends on the geometry and the type of loading. Here, it depends on \(\epsilon, H \) and \(L \). For a given \(\epsilon \) and a given ratio \(L/H \), \(\ell_i \) is proportional to \(H \), \(\ell_i = \hat{\ell}_i H \). This property is a consequence of the Griffith assumption on the surface energy.

• The critical loading amplitude \(t_i \) depends on the toughness and on the size of the body. Since \(G_{\ell_i} = \tilde{G}_{\ell_i} \mu H \), \(t_i \) varies like \(1/\sqrt{H} \). This size effect is also a consequence of the Griffith assumption on the surface energy.

• By virtue of (68) and (69), the energy balance holds at time \(t_i \) even if the crack jumps at this time, i.e. the total energy of the body just before the jump is equal to the total energy just after. Indeed, those energies are respectively given by

\[
E(t_i-, \ell_0) = t_i^2 \mathcal{P}_{\ell_0} + G_c \ell_0, \quad E(t_i+, \ell_i) = t_i^2 \mathcal{P}_{\ell_i} + G_c \ell_i.
\]

Using (68), (69) and the equality \(\mathcal{P}_{\ell_0} - \mathcal{P}_{\ell_i} = \int_{\ell_0}^{\ell_i} G_{\ell} d\ell \), then

\[
E(t_i-, \ell_0) = E(t_i+, \ell_i).
\]

PROOF OF PROPOSITION 8. We just prove the first part of the Proposition and the reader should refer to [33, Proposition 18] for the proof of the second part. Let \(\ell_0 \in [0, \ell_m) \). By virtue of Lemma 7, \(\ell(t) \) is a minimizer of \(\ell \mapsto E(t, \ell) \) over \([\ell_0, \ell_m) \). (The minimum exists because the energy is continuous and the interval is compact.) Let \(\ell_i, t_i \) be given by (68)-(69), let \(G_{\ell_i} = \tilde{G}_{\ell_i} \) and let \(\ell_i^* \) be the other length such that \(G_{\ell_i^*} = G_i \), see Figure 8. Let us first remark that the function \(\ell \mapsto \tilde{g}(\ell) \) defined on \([\ell_0, \ell_m] \) by

\[
\tilde{g}(\ell) := G_i (\ell - \ell_0) - (\mathcal{P}_{\ell_0} - \mathcal{P}_{\ell_i})
\]

is non negative and vanishes only at \(\ell_0 \) and \(\ell_i \). Indeed, its derivative is \(\tilde{g}'(\ell) = G_i - G_{\ell_i} \). Hence, \(\tilde{g} \) is first increasing from 0 when \(\ell \) grows from \(\ell_0 \) to \(\ell_i^* \), then decreasing to 0 when \(\ell \) grows from \(\ell_i^* \) to \(\ell_i \), and finally increasing again from 0 when \(\ell \) grows from \(\ell_i \) to \(L \).

Let us show that \(\ell_0 \) is the unique minimizer of the total energy when \(t < t_i \). From (68) and (69), we get for all \(\ell \in [\ell_0, \ell_m] \) and all \(t \leq t_i \):

\[
E(t, \ell) - E(t, \ell_0) = -t^2 (\mathcal{P}_{\ell_0} - \mathcal{P}_{\ell}) + G_c (\ell - \ell_0) \geq t^2 \tilde{g}(\ell) \geq 0.
\]
Moreover, the inequalities above are equalities if and only if \(\ell = \ell_0 \) when \(t < t_i \) and the result follows. Using the same estimates, we can deduce that \(\ell_0 \) and \(\ell_i \) are the two minimizers of the total energy at \(t = t_i \).

Let us show now that the minimizer is in the open interval \((\ell_i, L)\) when \(t > t_i \). From (68) and (69), we get for all \(\ell \in [\ell_0, \ell_i] \) and all \(t > t_i \):

\[
\mathcal{E}(t, \ell) - \mathcal{E}(t, \ell_i) = t^2 (P_\ell - P_{\ell_i}) - G_c(\ell_i - \ell) > t_i^2 (P_\ell - P_{\ell_i} - G_i(\ell_i - \ell)) = t_i^2 (\bar{g}(\ell) - \bar{g}(\ell_i)) = t_i^2 \bar{g}(\ell) \geq 0.
\]

Hence, the minimizer cannot be in \([\ell_0, \ell_i]\). Since the derivative of the total energy at \(\ell = \ell_i \) is equal to \(G_c - t^2 G_i < 0 \), \(\ell_i \) is not the minimizer. In the same manner, since the derivative of the total energy at \(\ell = L \) is equal to \(G_c - t^2 G_L = G_c > 0 \), \(L \) cannot be the minimizer. Therefore, the minimizer is in the interval \((\ell_i, L)\) when \(t > t_i \). Hence, it must be such that the derivative of the total energy vanishes, which yields \(t^2 G_{\ell(t)} = G_c \). Since \(\ell \mapsto G_\ell \) is monotonically decreasing from \(G_i \) to 0 when \(\ell \) goes from \(\ell_i \) to \(L \), there exists a unique \(\ell(t) \in (\ell_i, L) \) such that \(G_{\ell(t)} = G_c/t^2 < G_i \). The proof of the first part is complete. \(\square \)

4.3. Computation of the crack nucleation by the MAM

Let us consider the cases where \(\epsilon \) is sufficiently small in order that \(\ell \mapsto G_\ell \) be well approximated by the first two non-trivial terms of its Matched Asymptotic Expansion for \(\ell \) in the interval \([0, 2\ell_m]\), see C4. Accordingly, we have

\[
\frac{G_\ell}{\mu H} \approx 2\lambda |P_2| \left(\frac{\ell}{H} \right)^{2\lambda - 1} - 4\lambda |P_4| \left(\frac{\ell}{H} \right)^{4\lambda - 1},
\]

using the fact that \(P_2 < 0 \) and \(P_4 > 0 \). Therefore, the length \(\ell_m \) where \(G_\ell \) is maximal and the maximum \(G_m \) are approximated by

\[
\frac{\ell_m}{H} \approx \left(\frac{(2\lambda - 1) |P_2|}{2(4\lambda - 1) |P_4|} \right)^{\frac{1}{2\lambda}}, \quad \frac{G_m}{\mu H} \approx \frac{4\lambda^2 |P_2|}{4\lambda - 1} \left(\frac{(2\lambda - 1) |P_2|}{2(4\lambda - 1) |P_4|} \right)^{\frac{2\lambda - 1}{2\lambda}}.
\]

Comparing with the values obtained by the FEM (see P3 and Table 5), it appears that the agreement is very good for the maximum \(G_m \), less good for \(\ell_m \). The reason is that the localization of \(\ell_m \) by the FEM is quite imprecise because the graph of \(G_\ell \) is very flat near \(\ell_m \); for instance, for \(\epsilon = 0.3 \), \(G_\ell \) computed at \(\ell = 0.092 \) is equal to 0.27327 while it is equal to 0.27307 at \(\ell = 0.082 \), i.e. with a relative difference less than 10^{-4}.

One can see also in Table 5 that the contribution of the next term, i.e. MAM 6, is weak when \(\epsilon \) is less than 0.2. Its influence, in particular on \(\ell_i \), can be no more neglected when \(\epsilon \geq 0.3 \). Note also that MAM 4 underestimates while MAM 6 overestimates the lengths \(\ell_m \) and \(\ell_i \). This bounding property is due to the alternate change of sign of the coefficients \(P_{2i} \) with \(i \). However, it is checked numerically only, we are not able to prove it.
Using MAM 4 to calculate the nucleation, we obtain the following result

Proposition 9. In the case of a genuine notch $\epsilon > 0$,

1. if the body does not contain a preexisting crack ($\ell_0 = 0$), then the time t_i at which the crack nucleates and the length ℓ_i of the nucleated crack at this time are approximated with the MAM 4 by

$$\frac{\ell_i}{H} \approx 2\pi \frac{\ell_m}{H} \approx \left(\frac{(2\lambda - 1) |P_2|}{(4\lambda - 1) |P_4|} \right) \frac{1}{\lambda}, \quad t_i^2 \approx \frac{1}{\lambda} \frac{G_c}{2\pi G_m} \approx \frac{t_c^2}{8\lambda^3} \left(\frac{4\lambda - 1}{|P_2|} \right)^{2-\frac{1}{\lambda}} \left(\frac{4P_4}{2\lambda - 1} \right)^{1-\frac{1}{\lambda}}, \quad (72)$$

where $t_c^2 = G_c/\mu H$;

2. if the body contains a preexisting crack of length ℓ_0 such that $0 < \ell_0 < \ell_m$, then the length ℓ_i at which the crack jumps at the onset of the propagation is the unique solution greater than ℓ_m of

$$0 = |P_2| \left((2\lambda - 1)\ell_i^{2\lambda} - 2\lambda\ell_0\ell_i^{2\lambda-1} + \ell_0^{2\lambda} \right) H^{2\lambda} - P_4 \left((4\lambda - 1)\ell_i^{4\lambda} + 4\lambda\ell_0\ell_i^{4\lambda-1} - \ell_0^{4\lambda} \right), \quad (73)$$

while the time t_i at which the onset occurs is given by $t_i^2 = G_c/G_0$. Therefore, ℓ_i and t_i decrease from the values given by (72) to ℓ_m and $\sqrt{G_c/G_m}$ given by (71) when ℓ_0 runs from 0 to ℓ_m.

Proof. When $\ell_0 = 0$, using MAM 4, then (68) becomes

$$0 = (2\lambda - 1) |P_2| \left(\frac{\ell_i}{H} \right)^{2\lambda} - (4\lambda - 1) |P_4| \left(\frac{\ell_i}{H} \right)^{4\lambda}.$$
2\ell_m while the critical time \(t_i \) is not greater than \(2^{1/4}\sqrt{G_c/G_m} \). For very sharp notch, i.e. when \(\epsilon \) is small, then \(2\lambda \approx 1 + \epsilon/\pi \) and

\[
\ell_i \approx \frac{\epsilon |P_2|}{\pi P_4} H, \quad t_i^2 \approx \frac{G_c}{|P_2| \mu H},
\]

where \(P_2 \approx -0.4820 \) and \(P_4 \approx 0.3282 \). Therefore we recover the response associated with a crack when the notch angle tends to \(2\pi \). The FM-law delivers an evolution which depends continuously of the parameter \(\epsilon \), in contrast with the G-law.

As long as the dependence of \(t_i \) on \(\ell_0 \) is concerned, it turns out that the FM-law predicts that the variation of \(t_i \) is small when \(\ell_0 \) goes from 0 to \(\ell_m \) as can be seen on Figure 9 for \(\epsilon = 0.4 \). Indeed, \(t_i/t_c \) decreases from 2.153 to 2.105 when \(\ell_0 \) varies from 0 to \(\ell_m = 0.112 H \). That constitutes also a strong difference with the prediction of the G-law for which \(t_i \) goes to infinity when \(\ell_0 \) goes to 0.

![Figure 9. Time at which a preexisting crack starts in function of its length in the case where the notch parameter \(\epsilon = 0.4 \). Plain line: from the FM-law; dashed line: from the G-law](image)

5. Conclusion and Perspectives

We have presented here a general method based on matched asymptotic expansions which can be applied to determine the mechanical fields and all related mechanical quantities in the case of a defect located at the tip of a notch. Applying this method to the case of a non cohesive crack, it turns out that it is sufficient to solve a few inner and outer problems to compute with a very good accuracy the dependency of the energy and the energy release rate on the length of the crack. Moreover, this approximation can be used for very small values of the length of the crack and hence to determine the onset of the cracking, whereas a classical finite element method gives rise to inaccurate results. In particular, the matched asymptotic method permits to compare the nucleation process of a crack at the tip of the notch which is predicted by the classical Griffith criterion with that predicted by the principle of energy minimization proposed in [22]. It turns out that the latter principle gives rise to much more relevant results than the former, from a physical viewpoint.

A natural extension of this work is to consider situations where the geometry and the loading have no symmetry and hence the direction that the nucleated crack will choose must also be predicted. Let us note that the G-law alone is not able to give an answer, and another criterion must be supplemented. In an anti-plane setting, the principle of local symmetry which is by essence made for an isotropic plane setting, cannot be used. It turns out that the FM-law in its general statement can also predict the direction and more generally the path of the crack, see [9, 10, 22]. So, an interesting challenge should be to use the MAM and the FM-law in a non symmetric case.
to predict also the direction of nucleation. Another natural and desirable extension of the present work is to develop the method in a plane elasticity setting. It seems that there is no conceptual difficulty to do that. The last perspective concerns the choice of the surface energy. Indeed, the present study is based on the crucial Griffith assumption that the surface energy is proportional to the crack area. This assumption has very important consequences on the nucleation as we have seen in the paper. With this hypothesis, there is no cohesive force and hence the model does not contain the concept of critical stress. An important step will be to apply the MAM in the case of a cohesive crack [3, 20, 17] which automatically contains a critical stress and even a characteristic length. The goal will be to study the influence of those critical stress and characteristic length on the nucleation and the propagation of a crack in the spirit of the previous works based on the variational approach to fracture [2, 7, 12, 18, 21, 24, 29, 35].

References

(T. B. T. Dang) Laboratoire de Mécanique des Solides, École Polytechnique, CNRS, UMR 7649, F-91128 Palaiseau cedex, France

E-mail address: tuyet@lms.polytechnique.fr

(L. Halpern) LAGA, Université Paris 13, Sorbonne Paris Cité, CNRS, UMR 7539, F-93430, Villetteuse, France.

E-mail address: halpern@math.univ-paris13.fr

(J.-J. Marigo) Laboratoire de Mécanique des Solides, École Polytechnique, CNRS, UMR 7649, F-91128 Palaiseau cedex, France

E-mail address: marigo@lms.polytechnique.fr