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ASYMPTOTIC ANALYSIS OF SMALL DEFECTS NEAR A SINGULAR

POINT IN ANTI-PLANE ELASTICITY. APPLICATION TO THE

NUCLEATION OF A CRACK AT A NOTCH.

Thi Bach Tuyet Dang, Laurence Halpern, and Jean-Jacques Marigo

Abstract. We use matching asymptotic expansions to treat the anti-plane elastic problem asso-
ciated with a small defect located at the tip of a notch. In a first part, we develop the asymptotic
method for any type of defect and present the sequential procedure which allows us to calculate the
different terms of the inner and outer expansions at any order. That requires in particular to sepa-
rate in each term its singular part from its regular part. In a second part, the asymptotic method
is applied to the case of a crack of variable length located at the tip of a given notch. We show
that the first two non trivial terms of the expansion of the energy release rate are sufficient to well
approximate the dependence of the energy release rate on the crack length in the range of values of
the length which are sufficient to treat the problem of nucleation. This problem is considered in the
last part where we compare the nucleation and the propagation of a crack predicted by two different
models: the classical Griffith law and the Francfort-Marigo law based on an energy minimization
principle. Several numerical results illustrate the interest of the method.

1. Introduction

A major issue in fracture mechanics is how to model the initiation of a crack in a sound material,
see [7]. There are two difficulties: the first one is to propose a law able to predict that nucleation;
the second is a purely numerical issue. Indeed, it is difficult to compute with a good accuracy the
energy release rate associated with a crack of small length which appears at the tip of a notch,
see [33]. The classical finite element method leads to inaccurate results because of the overlap
of two singularities which cannot be correctly captured by this method: one is due to the tip of
the notch, the other is due to the tip of the crack. A specific method of approximation based on
asymptotic expansions is preferable as it is developed in analogous situations with localized defects,
see for instance [1, 2, 4, 5, 6, 16, 23, 32, 34, 40]. The first part of the present paper is devoted to the
presentation of this Matched Asymptotic Method (shortly, the MAM) in the case of a defect (which
includes the case of a crack) located at the tip of a notch in the simplified context of antiplane linear
elasticity. Therefore, our approach can be considered as a particular case of the previous works which
have been devoted to the study of elliptic problems in corner domains, like [14, 15, 26, 27]. However,
a major difference is that we want to use these asymptotic methods to predict the nucleation or the
propagation of defects (like cracks) near those singular points. The second and third parts of our
paper will be devoted to this task. That requires, of course, to introduce a criterion of nucleation.
This delicate issue has not received a definitive answer at the present time and it was considered for
a long time as a problem which could not be solved in the framework of Griffith theory of fracture
[8, 13, 30, 31]. The main invoked reason is that the release of energy due to a small crack tends to
zero when the length of the crack tends to zero, see [11, 33]. Therefore, according to the Griffith
criterion which stands that the crack can propagate only when the energy release rate reaches a
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critical value characteristic of the material, no nucleation is possible because the energy release
rate vanishes when there is no preexisting crack. This limitation of Griffith’s theory was one of the
motivations which lead Francfort and Marigo in [22] to replace the Griffith criterion by a principle
of least energy, in the spirit of the original idea of Griffith [25]. It turns out that the principle of
least energy is really able to predict the nucleation of cracks in a sound body. However, as it was
generically proved in [11, 22], the nucleation is necessarily brutal in the sense that a crack of finite
length suddenly appears at a critical loading. Accordingly, we propose to revisit the problem of
nucleation of a crack at the tip of a notch by comparing the two criteria. One of our goal is to use
the MAM to obtain semi-analytical expressions for the critical loading at which a crack appears
and the length of the nucleated crack.

Specifically, the paper is organized as follows. Section 2 is devoted to the description of the MAM
on a generic anti-plane linear elastic problem where the body contains a defect near the tip of a
notch. We first decompose the solution into two expansions: the outer expansion is valid far enough
from the tip of the notch while the inner expansion is valid in a neighborhood of the tip of the
notch. These expansions contain a sequence of inner and outer terms which are solutions of inner
and outer problems and are connected by the matching conditions. Moreover each term contains
a regular and a singular part. We explain how all the terms and the coefficients entering in their
singular and regular parts are sequentially determined. The section finishes by an example where
the exact solution is obtained in closed form and hence where we can verify the relevance of the
MAM.

In Section 3, the MAM is applied to the case where the defect is a crack. Its main goal is to
compute with a good accuracy the energy release rate associated with a crack of small length near
the tip of the notch. Indeed, it is a real issue in the case of a genuine notch (by opposition to a
crack) because the energy release rate starts from 0 when the length of the nucleated crack is 0,
then is rapidly increasing with the length of the crack before reaching a maximum and is finally
decreasing. Accordingly, after the setting of the problem, the computation of the energy release
rate by the FEM is described, and the reason why the numerical results are less accurate when the
crack length is small is given. Then, the MAM is used to compute the energy release rate for small
values of the crack length. As expected, the computation shows that, the smaller the size of the
defect, the more accurate is the approximation by the MAM at a certain order. It even appears
that very accurate results can be obtained by computing a small number of terms in the matched
asymptotic expansions. We discuss also the influence of the angle of the notch on the accuracy of
the results, this angle playing an important role in the process of nucleation (because, in particular,
the length `m at which the maximum of the energy release rate is reached depends on the angle of
the notch). It turns out that when the notch is sufficiently sharp, i.e. sufficiently close to a crack,
the first two non trivial terms of the expansion of the energy release rate are sufficient to capture
with a very good accuracy the dependence of the energy release rate on the crack length.

In section 4, we study the problem of crack nucleation at the tip of a notch. We first introduce the
two competing evolution laws, i.e. the G-law and the FM-law : the first one is the usual Griffith’s
law based on the criterion of critical energy release rate, the second is that introduced in [22] and
which is based on the concept of energy minimization. We recall some general results previously
established in [33] and extend them to the present case of a notch-shaped body in an antiplane
setting. By virtue of the good approximation given by the MAM, we are able to solve the evolution
problem in a quasi closed form, the solution depending only on two coefficients that must be
computed by the FEM. That permits a qualitative and quantitative comparison of the two laws.
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2. The real problem and its expansion by the Matched Asymptotic Method

2.1. The real problem. Here, we consider a small geometrical defect of size ` (like a crack or a
void) located near the corner of a notch, see Figure 1. The geometry of the notch is characterized by
its angle ω, see Figure 2. The tip of the notch is taken as the origin of the space. We will introduce
two scales of coordinates: the “macroscopic” coordinates x = (x1, x2) used in the outer domain,
and the “microscopic” coordinates y = x/` = (y1, y2) used in the neighborhood of the tip of the
notch where the defect is located, see Figure 2. In the case of a crack, the axis x1 is chosen in such
a way that the crack corresponds to the line segment (0, `)×{0}. The unit vector orthogonal to the
(x1, x2) plane is denoted by e3.

The natural reference configuration of the sound two-dimensional body is Ω0 while the associated
body which contains a defect of size ` is Ω`. The part of the boundary of Ω` which is due to the
defect is denoted by Γ`, i.e.

Γ` = ∂Ω` \ ∂Ω0, (1)

Γ` is contained in the disk of center (0, 0) and radius `. In the case of a crack, Γ` is the crack
itself, i.e. Γ` = (0, `)×{0}. The two edges of the notch are denoted by Γ+ and Γ−. To simplify
the presentation, it is assumed that they are not modified by the introduction of the defect, see
Figure 1. When using polar coordinates (r, θ), the pole is the tip of the notch and the origin of the
polar angle is the edge Γ−. Accordingly, we have

r = |x|, Γ− = {(r, θ), 0 < r < r∗, θ = 0}, Γ+ = {(r, θ), 0 < r < r∗, θ = ω}. (2)

This body is made of an elastic isotropic material whose shear modulus is µ > 0. It is submitted
to a loading such that the displacement field at equilibrium u` be antiplane, i.e.

u`(x) = u`(x1, x2)e3

where the subscript letter ` is used in order to recall that the real displacement depends on the size
of the defect. We assume that the body forces are zero and then u` must be an harmonic function
in order to satisfy the equilibrium equations in the bulk:

∆u` = 0 in Ω`. (3)

The edges of the notch are free while Γ` is submitted to a density of (antiplane) surface forces.
Accordingly, the boundary conditions on Γ` and Γ± are

∂u`
∂ν

= 0 on Γ±,
∂u`
∂ν

(x) =
g(y)

`
on Γ`. (4)

In (4), ν denotes the unit outer normal vector to Ω`, and we assume that the density of (antiplane)
surface forces depends on the microscopic variable y and has a magnitude of the order of 1/`.

The remaining part of the boundary of Ω` is divided into two parts: ΓD where the displacement is
prescribed and ΓN where (antiplane) surface forces are prescribed. Specifically, we have

u` = f on ΓD,
∂u`
∂ν

= h on ΓN . (5)
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Figure 1. The domain Ω` for the real problem

The following proposition is a characterization of those functions which are harmonic in an an-
gular sector and whose normal derivatives vanish on the edges of the sector. It is of constant use
throughout the paper.

Proposition 1. Let r1 and r2 be such that 0 ≤ r1 < r2 ≤ +∞ and let Dr2r1 be the angular sector

Dr2r1 = {(r, θ) : r ∈ (r1, r2), θ ∈ (0, ω)}.
Then any function u which is harmonic in Dr2r1 and which satisfies the Neumann condition ∂u/∂θ =
0 on the sides θ = 0 and θ = ω can be expanded as

u(r, θ) = a0 ln(r) + d0 +
∑
n∈N∗

(
anr
−nλ + dnr

nλ

)
cos(nλθ), λ =

π

ω
(6)

where the an and the dn constitute two sequences of real numbers which are characteristic of u.

Proof. Since the normal derivative vanishes at θ = 0 and θ = ω, u(r, θ) can be expanded in
Fourier series as:

u(r, θ) =
∑
n∈N

fn(r) cos(nλθ).

In order that u be harmonic, the functions fn must satisfy r2f ′′n + rf ′n − n2λ2fn = 0, for each n.
We easily deduce that f0(r) = a0 ln(r) + d0 and fn(r) = anr

−nλ + dnr
nλ for n ≥ 1. �

2.2. The matching asymptotic method (MAM). We will write two asymptotic expansions of
u` in terms of the small parameter `. The inner expansion is valid in the neighborhood of the tip
of the notch, while the the outer expansion, is valid far from this tip. These two expansions will be
matched in an intermediate zone.

2.2.1. The outer expansion. Far from the tip of the notch, i.e. for r � `, u` does not see the notch,
and we assume that it can be expanded as

u`(x) =
∑
i∈N

`iλui(x). (7)
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Figure 2. The domains Ω0 and Ω∞ for, respectively, the outer (left) and the inner
(right) problems

In (7), even if this expansion is valid far enough from r = 0 only, ui must be defined in the whole
outer domain Ω0 which corresponds to the sound body, see Figure 2-left. Inserting this expansion
into (3,4,5) yields the sequence of problems for the ui:

The first outer problem i = 0:

∆u0 = 0 in Ω0

∂u0

∂ν
= 0 on Γ+ ∪ Γ−

∂u0

∂ν
= h(x) on ΓN

u0 = f(x) on ΓD

(8)

The other outer problems i ≥ 1:

∆ui = 0 in Ω0

∂ui

∂ν
= 0 on Γ+ ∪ Γ−

∂ui

∂ν
= 0 on ΓN

ui = 0 on ΓD

(9)

Moreover, the behavior of ui in the neighborhood of r = 0 is singular and the singularity will be
given by the matching conditions.

2.2.2. The inner expansion. Near the tip of the notch, i.e. for r � 1, we assume that the displace-
ment field u` can be expanded as

u`(x) = ln(`)
∑
i∈N

`iλwi(y) +
∑
i∈N

`iλvi(y), y =
x

`
. (10)

In (10), even if this expansion is valid only in the neighborhood of r = 0, the fields vi and wi must
be defined in the infinite inner domain Ω∞. The domain Ω∞ is the infinite angular sector D∞0 of the
(y1, y2) plane, from which the rescaled defect of size 1 is removed, see Figure 2-right. Accordingly,
the rescaled boundary Γ1 of the defect is

Γ1 = ∂Ω∞ \ ∂D∞0 . (11)

(In the case of a crack, Γ1 = (0, 1)×{0}.) Inserting this expansion into the set of equations consti-
tuting the real problem yields the sequence of problems for the vi:
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The first inner problem i = 0
∆v0 = 0 in Ω∞

∂v0

∂θ
= 0 on θ = 0 and θ = ω

∂v0

∂ν
= g(y) on Γ1

(12)

The other inner problems i ≥ 1

∆vi = 0 in Ω∞

∂vi

∂θ
= 0 on θ = 0 and θ = ω

∂vi

∂ν
= 0 on Γ1

(13)

The wi must satisfy, for every i ≥ 0 the same equations as the vi for i ≥ 1. To complement the
set of equations, the behavior at infinity of the vi and the wi must be added. It is obtained by the
matching conditions from the outer problems.

2.2.3. Matching conditions. In any sector Dr20 with ` � r2 � 1, the displacement fields ui in
the outer expansion are harmonic and satisfy homogeneous Neumann boundary conditions on the
edges. Therefore Proposition 1 applies, and

ui(x) = ai0 ln(r) + di0 +
∑
n∈N∗

(
ainr
−nλ + dinr

nλ

)
cos(nλθ). (14)

As for the inner expansion, the displacement fields vi and wi are harmonic in the sector D∞1 of the y
plane and satisfy homogeneous Neumann boundary conditions on the edges. Therefore Proposition 1
applies, with the microscopic coordinates y and ρ = |y| = r/` replacing the macroscopic coordinates
x and r:

vi(y) = ci0 ln(ρ) + bi0 +
∑
n∈N∗

(
cinρ
−nλ + binρ

nλ

)
cos(nλθ), (15)

wi(y) = ei0 ln(ρ) + fi0 +
∑
n∈N∗

(
einρ
−nλ + finρ

nλ

)
cos(nλθ). (16)

The outer expansion and the inner expansion are both valid in any intermediate zone Dr2r1 such that
`� r1 < r2 � 1. Inserting (14) into the outer expansion (7) with r = `ρ leads to

u`(x) =
∑
i∈N

ln(`)`iλai0 +
∑
i∈N

`iλ
(
ai0 ln(ρ) + di0 +

∑
n∈N∗

(
ai+nn ρ−nλ + di−nn ρnλ

)
cos(nλθ)

)
, (17)

with the convention that di−nn = 0 when n > i. Inserting (15) and (16) into the inner expansion
(10) leads to

u`(x) =
∑
i∈N

ln(`)`iλ
(
ei0 ln(ρ) + fi0 +

∑
n∈N∗

(
einρ
−nλ + finρ

nλ
)

cos(nλθ)
)

+
∑
i∈N

`iλ
(
ci0 ln(ρ) + bi0 +

∑
n∈N∗

(
cinρ
−nλ + binρ

nλ
)

cos(nλθ)
)
. (18)

Both expansions (17) and (18) are valid provided that 1� ρ� 1/`. Identification of these expan-
sions provides the connections between the coefficients of the inner and outer expansions decribed
in Table 1.

Remark 1. From Table 1 can be deduced that the fields wi are constant in the whole inner domain:

wi(y) = ai0, ∀y ∈ Ω∞, ∀i ≥ 0. (19)

Therefore, these fields will be determined once the constants ai0 will be known.
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ein = 0 i ≥ 0, n ≥ 0
fi0 = ai0 i ≥ 0
fin = 0 i ≥ 0, n ≥ 1
ain = 0 n > i ≥ 0

cin = ai+nn i ≥ 0, n ≥ 0
bin = 0 n > i ≥ 0

din = bi+nn i ≥ 0, n ≥ 0
Table 1. The relations between the coefficients of the inner and outer expansions
given by the matching conditions

2.2.4. The singular behavior of the ui and the vi. On the matching conditions can be read the
behavior of ui in the neighborhood of r = 0 and the behavior of vi at infinity. In particular, the
form of their singularities is visible, according to the following definition.

Definition 1. A field u defined in Ω0 is regular in Ω0 if u ∈ H1(Ω0), i.e. u ∈ L2(Ω0) and
∇u ∈ L2(Ω0)2. It is singular otherwise.

A field u defined in the unbounded domain Ω∞ is regular in Ω∞ if ∇u ∈ (L2(Ω∞))2 and
limρ→∞ u(ρ, θ) = 0. It is singular otherwise.

Remark 2. In other words, a field is regular if the associated elastic energy is finite. It is singular
otherwise. In the case of the unbounded domain Ω∞, a constant field is with finite energy, but
the condition at infinity is added in order to fix the constant and obtain the uniqueness in the
forthcoming boundary value problems.

According to the analysis in the previous subsection, the field u0 can be expanded in a neighborhood
of the tip of the notch as

u0(x) = a0
0 ln(r) +

∑
n∈N

bnnr
nλ cos(nλθ). (20)

In the domain Ω0, ln(r) is singular whereas rnλ cos(nλθ) is regular for n ≥ 0, in the sense of
Definition 1. Accordingly, u0 is split into into its singular and regular part as follows:

u0(x) = u0
S(x) + ū0(x), (21)

u0
S(x) = a0

0 ln(r), ū0 ∈ H1(Ω0). (22)

In the same way, for i ≥ 1, the field ui can be expanded in a neighborhood of the tip of the notch
as

ui(x) = ai0 ln(r) +

i∑
n=1

ainr
−nλ cos(nλθ) +

∑
n∈N

bi+nn rnλ cos(nλθ). (23)

Since r−nλ cos(nλθ) is singular (for n ≥ 0) in the sense of Definition 1, ui is split into its singular
and regular part as follows:

ui(x) = uiS(x) + ūi(x), (24)

uiS(x) = ai0 ln(r) +

i∑
n=1

ainr
−nλ cos(nλθ), ūi ∈ H1(Ω0). (25)

For the fields vi of the inner expansion, the behavior at infinity comes into play. By virtue of the
analysis in the previous subsection, the field vi for i ≥ 0 can be expanded for large ρ as

vi(y) = ai0 ln(ρ) +

i∑
n=0

binρ
nλ cos(nλθ) +

∑
n∈N∗

ai+nn ρ−nλcos(nλθ). (26)
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The field ln(ρ) as well as the fields ρnλ cos(nλθ), for n ≥ 0, are singular in Ω∞ in the sense
of Definition 1 (even the constant field 1 corresponding to n = 0 is singular). Since the fields
ρ−nλ cos(nλθ) are regular when n ≥ 1, vi is split into its singular and regular part as follows:

vi(y) = viS(y) + v̄i(y), (27)

viS(y) = ai0 ln(ρ) +
i∑

n=0

binρ
nλ cos(nλθ), ∇v̄i ∈ L2(Ω∞), lim

|y|→∞
v̄i(y) = 0. (28)

Remark 3. This analysis of the singularities shows that the singular parts of the fields ui and vi

will be known once the coefficients ain and bin are determined for 0 ≤ n ≤ i.

2.2.5. The problems defining the regular parts ūi and v̄i. The singular parts (uiS , v
i
S) are harmonic,

and satisfy the homogeneous Neumann boundary conditions on the edges of the notch. Therefore
the regular parts are harmonic too, with data expressed in terms of the singular fields.

The first outer problem, i = 0
Find ū0 regular in Ω0 such that

∆ū0 = 0 in Ω0

∂ū0

∂ν
= 0 on Γ+ ∪ Γ−

∂ū0

∂ν
= h− ∂u0

S

∂ν
on ΓN

ū0 = f − u0
S on ΓD

(29)

The other outer problems, i ≥ 1
Find ūi regular in Ω0 such that

∆ūi = 0 in Ω0

∂ūi

∂ν
= 0 on Γ+ ∪ Γ−

∂ūi

∂ν
= −∂u

i
S

∂ν
on ΓN

ūi = −uiS on ΓD

(30)

The first inner problem, i = 0
Find v̄0 regular in Ω∞ such that

∆v̄0 = 0 in Ω∞

∂v̄0

∂ν
= 0 on Γ+ ∪ Γ−

∂v̄0

∂ν
= g − ∂v0

S

∂ν
on Γ1

(31)

The other inner problems, i ≥ 1
Find v̄i regular in Ω∞ such that

∆v̄i = 0 in Ω∞

∂v̄i

∂ν
= 0 on Γ+ ∪ Γ−

∂v̄i

∂ν
= −∂v

i
S

∂ν
on Γ1

(32)

Consider first the outer problems. The well-posedness is a direct consequence of classical results for
the Laplace equation:

Proposition 2. Let i ≥ 0. For a given singular part uiS, i.e. if the coefficients ain are known for
all n such that 0 ≤ n ≤ i , then there exists a unique solution ūi of (30) (or of (29) when i = 0).
Consequently, the coefficients bi+nn are then determined for all n ≥ 0.

As for the inner problems, since they are Neumann problems (except for the condition at infin-
ity), defined in an infinite domain, more care must be taken. The well-posedness is ensured by a
compatibility condition, as stated in Proposition 3.

Proposition 3. Let i ≥ 0. For given bin with 0 ≤ n ≤ i, there exists a regular solution v̄i for the
i-th inner problem if and only is the coefficient ai0 is such that

a0
0 = − 1

ω

∫
Γ1

g(s)ds, ai0 = 0 for i ≥ 1. (33)

Moreover, if this condition is satisfied, then the solution is unique and therefore the coefficients
ai+nn are determined for all n ≥ 0.



ASYMPTOTIC METHOD AND NUCLEATION OF CRACKS 9

Proof. The inner problems are pure Neumann problems in which no Dirichlet boundary conditions
are imposed to the vi except for the condition at infinity. Consequently, they admit a solution (if
and) only if the Neumann data satisfy a global compatibility condition. Let us re-establish that
condition. Let ΩR be the part of Ω∞ included in the ball of radius R > 1, i.e. ΩR = Ω∞ ∩ {y :
|y| < R}. Consider first the case i = 0. Integrating the equation ∆v0 = 0 over ΩR and using the
boundary conditions leads to

0 =

∫
∂ΩR

∂v0

∂ν
ds =

∫ ω

0

∂v0

∂ρ
(R, θ)Rdθ +

∫
Γ1

g(s)ds. (34)

Using (26) yields R
∂v0

∂ρ
(R, θ) = a0

0+
∑

n∈N∗ nλ
(
−c0

nR
−nλ+b0

nR
nλ
)

cos(nλθ). Since
∫ ω

0 cos(nλθ)dθ =

0 for all n ≥ 1, after inserting in (34), the desired condition for a0
0 appears. For i ≥ 1, the same

process is applied, and the integral over Γ1 vanishes, yielding the desired condition.

If the compatibility condition (33) is satisfied, then the existence of a regular solution for v̄i is
obtained by standard arguments. Note however that, since ∇v̄i belongs to L2(Ω∞), v̄i tends to a
constant at infinity and this constant is fixed to 0 by the additional regularity condition. As far as
the uniqueness is concerned, the solution of this pure Neumann problem is unique up to a constant
and the constant is fixed by the condition that v̄i vanishes at infinity.

Once vi is determined, the coefficients ai+nn are obtained by virtue of Proposition 1 and (26). �

Remark 4. If the forces applied to the boundary of the defect are equilibrated, i.e. if
∫

Γ1
g(s)ds = 0,

then all the coefficients ai0 vanish and hence the terms in ln(`) disappear in the inner expansion.
There is no more logarithmic singularities in the ui and the vi.

2.2.6. The construction of the outer and inner expansions. Recall the relationship between the

coefficients (ajn, b
j
n) and the singular and regular parts of the uj and vj .

uj = ujS + ūj , ujS ←→ (ajn)jn=0, ūj ←→ (bj+nn )n≥0,

vj = vjS + v̄j , vjS ←→ (aj0, (bjn)jn=0), v̄j ←→ (aj+nn )n≥0.
(35)

Coefficients aj0 vanish all but a0
0 given by (33).

The scheme of the algorithm is the following. Suppose i ≥ 1, and uj and vj are known for 1 ≤ j ≤
i− 1. The order of operations at step i is the following:

(1) uiS is determined by (v̄i−n)1≤n≤i,
(2) ūi is determined by uiS ,
(3) viS is determined by (ūi−n)0≤n≤i,
(4) v̄i is determined by viS .

Details are given below.

Initialization

S1 Define a0
0 by (33) , and hence u0

S by (22).
S2 From u0

S , define ū0 by (29), and hence u0 = u0
S + ū0 is determined.

S3 Define bnn for n ≥ 0 from (20) as the coefficients of ū0, see the next subsection for the
practical method. Hence, v0

S = a0
0 + b0

0 ln(ρ) is determined from (28) .
S4 From v0

S , v̄0 is computed by (31), and hence v0 = v0
S + v̄0 is determined.

S5 Define ann for n ≥ 1 from (26) as the coefficients of v̄0, see the next subsection for the
practical method.
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For i ≥ 1, suppose that uj and vj have been determined, together with the coefficients in (35), for
0 ≤ j ≤ i− 1.

R1 Since ai0 = 0, and writing for 1 ≤ n ≤ i, ain = a
(i−n)+n
n , uiS is given by (25), where the

coefficients are determined by those of the v̄j for 1 ≤ j ≤ i− 1 .
R2 ūi is obtained by solving (30).
R3 The coefficients bi+nn for n ≥ 0 are extracted from ūi in (23,24), see the next subsection for

the practical method.

R4 Since ai0 = 0, and using bin = bj+nn with j = i− n, viS is determined from (28).
R5 v̄i is obtained by solving (32).
R6 ui and vi are obtained by summing the singular and regular parts.

This iterative method is summarized in Table 2.

ain / bin i=0 i=1 i=2 i=3 i=4

n=0 (33) /Outer 0 0 / Outer 1 0 / Outer 2 0 / Outer 3 0 / Outer 4
n=1 0 Inner 0 / Outer 0 Inner 1 / Outer 1 Inner 2 / Outer 2 Inner 3 / Outer 3
n=2 0 0 Inner 0 / Outer 0 Inner 1/ Outer 1 Inner 2 / Outer 2
n=3 0 0 0 Inner 0 / Outer 0 Inner 1 / Outer 1
n=4 0 0 0 0 Inner 0 / Outer 0

Table 2. Summary of the inductive method to obtain the coefficients ain and bin:
in the corresponding cell is indicated the problem which must be solved

2.2.7. The practical method for determining the coefficients ain and bin for 0 ≤ n ≤ i. Throughout
this section, Cr denotes the arc of circle of radius r starting on Γ− and ending on Γ+:

Cr = {(r, θ) : 0 ≤ θ ≤ ω}.
The coefficients ain and bin can be obtained by path integrals (which are path independent) as
asserted in the following Proposition.

Proposition 4. Let i ≥ 0. Assume that v̄i and ūi are known. Then

(1) For n ≥ 1, ai+nn is given by the following path integral over Cρ ,which is independent of ρ
provided that ρ > 1:

ai+nn =
2ρnλ

ω

∫ ω

0
v̄i(ρ, θ) cos(nλθ)dθ. (36)

(2) For n ≥ 0, bi+nn is given by the following path integral over Cr, which is independent of r
provided that 0 < r < r∗:

bi0 =
1

ω

∫ ω

0
ūi(r, θ)dθ, bi+nn =

2r−nλ

ω

∫ ω

0
ūi(r, θ) cos(nλθ)dθ for n ≥ 1. (37)

Proof. The proofs are identical for the two families of coefficients and then only that concerning
bi+nn will be given. By (23), ūi is given for 0 < r < r∗ by

ūi(r, θ) =
∑
p∈N

bi+pp rpλ cos(pλθ),

which is for fixed r the Fourier series of ūi(r, ·). Formulas (37) follow. �
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2.3. Verification in the case of a small cavity. This subsection is devoted to the verification
of the construction of the Matched Asymptotic Expansion presented in the previous subsections
on an example where the exact solution is obtained in a closed form and hence can be directly
expanded. Specifically, we consider a Laplace’s problem posed in a domain which consists in an
angular sector delimited by two arc of circles. The radius of the outer circle is equal to 1 while the
radius of the inner circle is `, see Figure 3. Thus,

Ω` = {x = r cos θe1 + r sin θe2 : r ∈ (`, 1), θ ∈ (0, ω)}.

ΓD
Γ�

Γ+
�

Γ−
�

Figure 3. The domain Ω` in the case of a cavity

The sides of the notch and the inner circle are free and hence the boundary conditions on those
parts of the boundary are

∂u`
∂ν

= 0 on Γ+
` ∪ Γ−` ∪ Γ`, (38)

where Γ±` = {(r, θ) : ` < r < 1, θ = 0 or ω}, Γ` = {(r, θ) : r = `, 0 ≤ θ ≤ ω}. (Note that Γ±`
depend on `, contrarily to the assumption made in the remaining part of the paper. But that has
no influence on the results.) The displacement is prescribed on the outer boundary ΓD so that:

u`(x) = cosλθ on ΓD, λ =
π

ω
. (39)

Note that ΓN is empty. Assuming that there is no body force, the exact solution of this anti-plane
elastic problem is given by

u`(x) =
( `2λ

1 + `2λ
r−λ +

1

1 + `2λ
rλ
)

cosλθ. (40)

Inserting the Taylor series of 1/(1 + `2λ) =
∑

i∈N(−1)i(`2λ)i for ` < 1, the expansion of u` at a
given x takes the form:

u`(x) = rλ cosλθ +
∑
n∈N∗

`2nλ(r−λ − rλ) cosλθ. (41)

Thus (41) corresponds to the outer expansion where the odd terms vanish and the even terms are
given by

u0(x) = rλ cosλθ, u2n(x) = (−1)n(rλ − r−λ) cosλθ, ∀n ≥ 1. (42)

To obtain the inner expansion, replace r by `ρ in (40), to get

u`(`y) =
`λ

1 + `2λ
(ρ−λ + ρλ) cosλθ. (43)



12 THI BACH TUYET DANG, LAURENCE HALPERN, AND JEAN-JACQUES MARIGO

Inserting the Taylor series as before, the expansion of u`(`y) is given by

u`(`y) =
∑
n∈N

(−1)n`(2n+1)λ(ρ−λ + ρλ) cosλθ, (44)

which corresponds to the inner expansion where the even terms vanish and the odd terms are given
by

v2n+1(y) = (−1)n(ρ−λ + ρλ) cosλθ, ∀n ≥ 0. (45)

It remains to be checked that he procedure described in the previous subsections yields the same
coefficients. Since g = 0, ai0 = 0 for all i ≥ 0 and there is no logarithmic singularity, see Remark 4.
The details for the first steps of the procedure are given below.

S1 By (33), a0
0 = 0 and hence u0

S = 0.
S2 Hence (29) becomes: ∆u0 = 0 in Ω0, ∂u0/∂θ = 0 on θ ∈ {0, ω}, u0 = cosλθ on r = 1. The

unique solution in H1(Ω0) is u0 given by (42).
S3 By (37), b1

1 = 1 and bnn = 0 for n 6= 1. Hence v0
S = 0.

S4 Since v0
S = 0 and g = 0, (31) gives v̄0 = 0 and hence v0 = 0.

S5 By (36), ann = 0 for n ≥ 1.
S6 By (25), u1

S = 0.
S7 By (30), ū1 = 0 and hence u1 = 0.
S8 By (37), bn+1

n = 0 for all n. Hence v1
S = ρλ cosλθ.

S9 Hence (32) for i = 1 becomes: ∆v̄1 = 0 in Ω∞, ∂v̄1/∂θ = 0 on θ ∈ {0, ω}, ∂v̄1/∂ρ =
−λ cosλθ on ρ = 1. The unique regular solution is v̄1 = ρλ cosλθ and hence v1 is given by
(45).

S10 By (36), a2
1 = 1 and an+1

n = 0 for n 6= 1.
S11 By (25), u2

S = r−λ cosλθ.
S12 Hence (30) for i = 2 becomes: ∆ū2 = 0 in Ω0, ∂ū2/∂θ = 0 on θ ∈ {0, ω}, ū2 = − cosλθ on

r = 1. The unique solution in H1(Ω0) is ū2 = −rλ cosλθ and hence u2 is given by (42).
· · ·

Proceeding by induction, the expected expansions are finally recovered . The end of the verification
is left to the reader.

3. Application to the case of a crack

3.1. Setting the problem. In this section, the method is applied to a defect which is a non
cohesive crack. Specifically, let Ω be the rectangle (−H,L) × (−H,+H). Let ε a given parameter
in (0, 1), N = {x = (x1, x2) : −H < x1 ≤ 0, |x2| ≤ ε|x1|)}. The notch-shaped body is Ω0 = Ω\N .
Finally the cracked body Ω` is obtained by removing from Ω0 the line segment Γ` = (0, `)×{0},
see Figure 4.

The boundary ΓD where the displacement is prescribed corresponds to the sides D± and DL, with
boundary conditions

u`(x) =


+H on D+ = {−H}×[εH,H],

−H on D− = {−H}×[−H,−εH],

0 on DL = {L}×[−H,H].

The remaining parts of the boundary (including the lips of the crack) are free, that is

∂u`
∂x2

=

{
0 on Γ` = (0, `)×{0}
0 on N± = (−H,L)×{±H}
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and
∂u`
∂n

= 0 on Γ± = {(x1, x2) : −H < x1 < 0, x2 = ±εx1}.

⊗
⊗
⊗

⊙
⊙
⊙

O

D+

D−

N DLΩ�
Γ�

N+

N−

Γ+

Γ−

Figure 4. Definition of the cracked notch-shaped body Ω` with the various parts
of the boundary.

Remark 5. The amplitude of the prescribed displacement is normalized to H so that u` has the
dimension of a length. The fact that the amplitude is equal to the height H has no importance in
the present context of linearized elasticity. We will introduce a time dependent amplitude of the pre-
scribed displacement when we study the propagation of the crack. Then the prescribed displacement
will take “reasonable” values, controlled by the toughness of the material.

Remark 6. The case ε = 0 corresponds to a body with an initial crack of length H and this limiting
case is also considered in this paper. The case ε = 1 corresponds to a corner with an angle π/2, the
sides D± being reduced to the points (−H,±H). This limiting case will not be considered here.

Remark 7. We only consider the case where the crack path is the line segment (0, L)×{0}. It is a
rather natural assumption by virtue of the symmetry of the geometry and the loading. An interesting
extension should be to consider non symmetric geometry or loading and hence to take the direction
of the crack as a parameter. This extension is reserved for future works.

We are in the case where g = 0 on Γ`. Therefore, by virtue of Proposition 3, all the coefficients
ai0 vanish and there is no logarithmic singularities. Accordingly, the solution can be expanded as
follows:

Outer expansion u`(x) = u0(x) + `λu1(x) + `2λu2(x) + `3λu3(x) + . . .

Inner expansion u`(x) = v0(y) + `λv1(y) + `2λv2(y) + `3λv3(y) + . . .

with

λ =
π

ω
and ω = 2π − 2 arctan(ε). (46)

By symmetry of the geometry and the loading, the real field u` is an odd function of x2, i.e.

u`(x1,−x2) = −u`(x1, x2), u`(r, ω − θ) = −u`(r, θ).

Therefore, all the fields ui, ūi, vi, v̄i admit the same symmetry. Therefore by Proposition 4, all
coefficients bi+2n

2n and ai+2n
2n vanish. Consequently, the odd terms of the outer expansion and the
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even terms of the inner expansions vanish, i.e. u2i+1 = 0 and v2i = 0 for all i ∈ N. Finally, the
solution admits the following expansions:

Outer expansion : u`(x) =
∑
i∈N

`2iλu2i(x), (47)

Inner expansion : u`(x) =
∑
i∈N

`(2i+1)λv2i+1(y). (48)

By symmetry, the following coefficients vanish :

ain = 0 when n or i− n are even, bin = 0 when n is even or i− n is odd. (49)

Examine now the singularities of ∇u` (in the sense that ∇u` is not bounded) according to whether
or not` = 0, and according to whether or notε = 0.

(1) When ε > 0 and ` = 0. Then ∇u0 is infinite at the tip of the notch and in its neighborhood
has the form

∇u0(x) =
λb1

1

r1−λ

(
cos(λθ)er − sin(λθ)eθ

)
+ regular terms.

(2) When ε > 0 and ` > 0. Then ∇u` is no more infinite at the tip of the notch but becomes
infinite at the tip of the crack, with the usual singularity in 1/

√
r, see [8]. Specifically, ∇u`

has the form

∇u`(x) =
K`

µ
√

2πr′

(
sin
(θ′

2

)
er + cos

(θ′
2

)
eθ

)
+ regular terms. (50)

In (50) (r′, θ′) denotes the polar coordinate system such that x = (`+r′ cos θ′)e1 +r sin θ′e2

and the angular function of θ′ is normalized so that K` be the usual stress intensity factor.
K` depends on ` and is “strongly” influenced by the presence of the notch when ` is small.
(In fact, K` goes to 0 when ` goes to 0 as we will see below.) So, even if the stresses are only
singular at the tip of the crack, there is a kind of overlapping of the previous singularity
at the tip of the notch. This phenomenon renders the computations by the finite element
method less accurate when ` is small.

(3) When ε = 0. Then the notch is already a crack and it is unnecessary to treat separately
` = 0 and ` > 0. In any case ∇u` has the classical singularity in 1

√
r as in (50) and there is

no more overlapping of two singularities. The computations by the finite element method
are accurate in the full range of values of `.

3.2. The issue of the computation of the energy release rate. The main goal of this section
is to obtain accurate values for the elastic energy P` stored in the cracked body and for its derivative
with respect to `, the so-called energy release rate G`, when ` is small. By definition, the elastic
energy is given by

P` =
1

2

∫
Ω`

µ∇u` · ∇u`dx. (51)

By virtue of Clapeyron’s formula, the elastic energy stored in the body when the body is at
equilibrium is equal to one half the work done by the external loads over the prescribed displacement
on D±. Therefore, using the symmetry of u`, the elastic energy can also be written as an integral
over D+:

P` = −
∫ H

εH
µH

∂u`
∂x1

(−H,x2)dx2, (52)

which involves only the displacement field far from the tip of the notch.
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By definition, see [7, 31], the energy release rate G` is the opposite of the derivative of the elastic
energy with respect to the length of the crack:

G` = −dP`
d`

. (53)

Even though P` involves the ` dependent displacement field u`, its derivative does not involve the
derivative du`/d` but can be expressed in terms of u` only. This property is a consequence of the
fact that u` satisfies the equilibrium equations. Specifically, G` can be computed either with the help
of path integrals like the J integral of Rice [39] or by using the so-called G− θ method developed
in [19]. We recall below the main ingredients of both methods when 0 < ` < L. The cases ` = 0
and ` = L are treated separately.

In the former method, the integral JC over the path C is defined by

JC =

∫
C

(
µ

2
∇u` · ∇u`n1 − µ

∂u`
∂n

∂u`
∂x1

)
ds,

where n denotes the outer normal of the path. This integral is (theoretically) path-independent
and equal to G` provided that the path C starts from the lip of the crack, circumvents the tip of the
crack and finishes on the lip of the crack like in Figure 5, see [8]. This path independency is used
to obtain Irwin’s formula [28, 31]. Indeed, taking for path the circle Cr′ centered at the tip of the
crack with radius r′, using (50) and passing to the limit when r′ → 0, the following link between
the energy release rate and the stress intensity factor K` introduced in (50) is obtained:

G` = lim
r′→0
JCr′ =

K2
`

2µ
.

For the computations, the particularities of the geometry and of the loading can be exploited, to

⊗
⊗
⊗

⊙
⊙
⊙

n

a b�

C

C

Cr�

Figure 5. Examples of path for which JC is equal to G`.

choose a path made of line segments parallel to the axes like the path C in Figure 5:

C = {a}×(−H, 0)∪[a, b]×{−H}∪{b}×(−H,H)∪[a, b]×{+H}∪{a}×(0, H) with 0 < a < ` < b < L.

Then JC = G`. Therefore, since n1 = 0 and ∂u`/∂n = 0 on the sides x2 = ±H and by virtue of the
symmetry of u`, G` takes the form

G` = µ

∫
{b}×(0,H)

((∂u`
∂x2

)2
−
(∂u`
∂x1

)2
)
dx2 − µ

∫
{a}×(0,H)

((∂u`
∂x2

)2
−
(∂u`
∂x1

)2
)
dx2. (54)

From a theoretical point of view, a and b can be chosen arbitrarily, provided that they satisfy the
constraints above. Indeed, the integral over the line segment x1 = a (resp. (x1 = b)) does not
depend on a (resp. on b) because u` is harmonic and satisfies homogeneous Neumann boundary
conditions on N± and Γ`. (This verification is left to the reader, see [33, Proposition 8] for a proof.)
However, from a numerical point of view, it is no more true because the computed displacement
field does not satisfy exactly the equilibrium equations. Consequently, the computed values of G`
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depend on the choice of a and b. Moreover, since the integral over the line a involves the gradient of
the displacement, this integral can be badly approximated when ` is small because of the singularity.

The G− θ method is based on a change of variables which sends the `-dependent domain Ω` onto
a fix domain. In essence, it is the basic method to prove that ` 7→ P` is differentiable, see [19] for
the genesis of this method and [10] for a discussion on a generalization of the concept of energy
release rate. In turn the G − θ approach gives a practical method to compute the energy release
rate, see [10, 19]. Specifically, for a given ` > 0, with a Lipschtiz continuous vector field θ defined
on Ω`, associate the following volume integral Gθ:

Gθ =

∫
Ω`

 2∑
i,j=1

µ
∂θi
∂xj

∂u`
∂xi

∂u`
∂xj
− µ

2
∇u` · ∇u` divθ

 dx.

It can shown that, if θ is such that θ(`, 0) = e1 and θ · n = 0 on ∂Ω`, then Gθ is independent of θ
and equal to G`. Of course, this result of independency holds only when u` is the true displacement
field. If it is numerically approximated, then Gθ becomes θ dependent. In our case, owing to the
simplicity of the geometry, we can use a very simple vector field θ which renders the computations
easier. Specifically, let θ be given by

θ(x) =


0 if x1 < 0,
x1

`
e1 if 0 ≤ x1 ≤ `,

L− x1

L− ` e1 if ` ≤ x1 < L.

(55)

It satisfies the required conditions and hence Gθ = G`. Accordingly, owing to the symmetry, G`
takes the form

G` =
µ

L− `

∫ L

`

∫ H

0

((∂u`
∂x2

)2
−
(∂u`
∂x1

)2
)
dx2dx1 −

µ

`

∫ `

0

∫ H

0

((∂u`
∂x2

)2
−
(∂u`
∂x1

)2
)
dx2dx1. (56)

Comparing (56) with (54), (56) can be seen as an average of all the line integrals appearing in (54)
when a and b vary respectively from 0 to ` and to ` and L. Accordingly, it can be expected that
(56) gives more accurate computations than (54) when ` is small.

3.3. Numerical results obtained for G` by the FEM. All the computations based on the
finite element method are implemented into the industrial code COMSOL. They are performed
after introducing dimensionless quantities. Specifically, in all the computations, the dimensions of
the body are H = 1 and L = 5, the shear modulus µ = 1. That does not restrict the generality of
the study because the scale dependencies are known in advance. Indeed, the true physical quantities
are related to the normalized quantities (denoted with a tilde) by

` = H ˜̀, u` = Hũ`, P` = µH2P̃`, G` = µHG̃`. (57)

For a given ˜̀∈ (0, 5) and a given ε ∈ (0, 1), we use the symmetry of the body and of the load to

mesh only its upper half and prescribe ũ` = 0 on the segment ˜̀≤ x̃1 ≤ 5, x̃2 = 0. We use 6-nodes
triangular elements, i.e. quadratic Lagrange interpolations. The mesh is refined near the singular
corners and a typical mesh contains 25000 elements and 50000 degrees of freedom. We compute
the discretized solution (still denoted) ũ` by solving the linear system. Then, the energy P̃` and

the energy release rate G̃` are obtained by a post-processing. The energy is obtained by a direct
integration of the elastic energy density over the body. The derivative of the energy is obtained
by using formula (56), which needs to integrate the different parts of the elastic energy density

over the two rectangles (0, ˜̀) × (0, 1) and (˜̀, 5) × (0, 1). For a given ε, we compute P̃` and G̃` for
˜̀ varying from 0.001 to 5, first by steps of 0.001 in the interval (0, 0.05), then by steps of 0.002
in the interval (0.05, 0.2), finally by steps of 0.01 in the interval (0.2, 5). The computations can
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0
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0.2
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0.4
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G`
µH
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ε = 0.2
ε = 0.3
ε = 0.4

Figure 6. Computation by the Finite Element Method of the energy release rate
G` as a function of the crack length ` for five values of the notch angle.

be considered as sufficiently accurate for ˜̀ ≥ 0.002, even if this lower bound depends on ε, the
computations being less accurate for small (but non-zero) values of ε. Below this value, if we try to
refine the mesh near the corner of the notch, the results become mesh-sensitive, the linear system
becomes ill-conditioned. Since only the part of the graph of G̃` close to ˜̀ = 0 is interesting when
ε is small, we cannot obtain accurate results when ε is too small.(Of course, this remark does not

apply when ε = 0, because ˜̀= 0 is no more a “singular” case.)

The cases ˜̀ = 0 and ˜̀ = 5 with ε 6= 0 are treated with specific meshes. We have only to compute
ũ0, P̃0, ũL and P̃L, since G̃0 = G̃L = 0.

The case ε = 0 is treated separately by adapting the previous methods. In particular, to calculate
G̃`, the second integral in (56) is replaced by an integral over the rectangle (−1, 0)×(0, 1), and this

integral is divided by 1+ ˜̀ instead of ˜̀. Moreover, the mesh is refined only near the tip of the crack,
˜̀= 0 is no more a particular case and the computations of G̃` are accurate in the full range of ˜̀.

Let us highlight the main features of the numerical results plotted in Figure 6. These properties
will be the basic assumptions from which we study the crack propagation at the end of the present
section.

P1 For ε = 0, G`/µH is monotonically decreasing from 0.4820 to 0 when `/H grows from 0 to
5.

P2 For ε > 0, G`/µH starts from 0 at `/H = 0, then is rapidly increasing. This growth is so
important (for instance, G`/µH = 0.1443 when `/H = 0.002 for ε = 0.4) that it cannot be
correctly captured by the FEM.

P3 Still for ε > 0, G` is monotonically increasing as long as ` ≤ `m. At ` = `m, G takes its
maximal value Gm. Those values which depend on ε are given in the table below. It turns
out that `m/H is rather small.

ε 0 0.1 0.2 0.3 0.4
`m/H 0 0.024 0.058 0.092 0.130
Gm/µH 0.4820 0.3900 0.3260 0.2733 0.2279

P4 For ε > 0 again, G` is monotonically decreasing from Gm to 0 when ` grows from `m to 5H.
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3.4. Evaluation of the energy release rate by the MAM. By virtue of (52), P` can be
expanded by using the outer expansion of u`. Using (47) leads to

P` =
∑
i∈N

P2i

(
`

H

)2iλ

µH2, (58)

where the coefficients P2i of the expansions are dimensionless. The expansion of the energy release
rate can be immediately deduce from that of the energy:

G` = −
∑
i∈N∗

2iλP2i

(
`

H

)2iλ−1

µH (59)

and it is not necessary to use the path integrals JC or the G− θ method. Let us remark that

G0 =

{
0 if ε 6= 0

−P2µH = K2
0/2 > 0 if ε = 0

(60)

because λ > 1/2 in the former case while λ = 1/2 in the latter.

To obtain the ith term of the expansion of P` and G`, both the singular part uiS and the regular part
ūi of ui must be recovered. The singular part involves the coefficients ain for 1 ≤ n ≤ i which are
obtained as the regular parts of the vj for j ≤ i, see Section 2.2.6. Therefore, the inner problems
must be solved, to determine the coefficients bin for 0 ≤ n ≤ i. In practise, these coefficients are
obtained by using Proposition 4 after the inner and the outer problems have been solved with a
finite element method. The advantage is that those problems do not contain a small defect and the
accuracy is guaranteed. The drawback is that more and more problems have to be solved, in order
to obtain accurate values of G` when `/H is not small.

ε a2
1 P2

0 -0.3930 -0.4820
0.1 -0.3756 -0.4413
0.2 -0.3559 -0.3957
0.3 -0.3342 -0.3486
0.4 -0.3106 -0.3005

a4
1 a4

3 P4

0.1888 0.0987 0.3282
0.1766 0.0943 0.3001
0.1619 0.0893 0.2673
0.1453 0.0838 0.2320
0.1273 0.0778 0.1952

a6
1 a6

3 a6
5 P6

-0.1365 -0.0537 -0.0494 -0.2013
-0.1279 -0.0507 -0.0472 -0.1931
-0.1165 -0.0470 -0.0446 -0.1787
-0.1029 -0.0427 -0.0418 -0.1603
-0.0880 -0.0380 -0.0389 -0.1385

Table 3. The computed values of the (non zero) coefficients ain for 1 ≤ n ≤ i ≤ 6
and of the leading terms P2, P4 and P6 of the expansion of the potential energy for
several values of the angle of the notch

ε b1
1 b3

1 b3
3

0 -0.7834 0.2384 -0.2059
0.1 -0.7482 0.2091 -0.2085
0.2 -0.7089 0.1777 -0.2081
0.3 -0.6657 0.1451 -0.2045
0.4 -0.6187 0.1125 -0.1977

b5
1 b5

3 b5
5

-0.1943 0.1058 -0.0172
-0.1730 0.0992 -0.0283
-0.1489 0.0905 -0.0379
-0.1232 0.0800 -0.0454
-0.0974 0.0683 -0.0508

Table 4. The computed values of the (non-zero) coefficients bin for 1 ≤ n ≤ i ≤ 5
for several values of the angle of the notch

In the tables 3 and 4 are given the computed values of the first coefficients of the inner and outer
expansions (still with H = 1, L = 5, µ = 1). These tables contain all the terms which are necessary
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to compute the expansions of the energy up to the sixth order, i.e. P2i for i ∈ {0, 1, 2, 3}. (Note that
P0 does not appear in the expansion of G`.) The graphs of ` 7→ G` obtained from these expansions
are plotted on Figure 7 in the cases ε = 0.2 and ε = 0.4. They are compared with the values obtained
directly by the finite element code Comsol. From these comparisons, the following conclusions can
be drawn:

C1 For very small values of `, the first non trivial term (corresponding to i = 1 in (59)) of
the Matched Asymptotic Expansion (denoted by MAM 2 on Figure 7) is sufficient to well
approximate G` while the FEM is unable to deliver accurate values.

C2 For values of ` of the order of `m, at least the first two non trivial terms (corresponding to
i = 1 and 2 in (59)) of the MAE (denoted by MAM 4 on Figure 7), are necessary to capture
the change of monotonicity of G`. Indeed, the first term being monotonically increasing is
unable, alone, to capture that change of behavior.

C3 Still for values of ` of the order of `m, the first two terms are really sufficient to well
approximate G` provided that `m/H is sufficiently small. Specifically, the first two terms
are sufficient as long as `/H < 0.2.

C4 Accordingly, the approximation of G` by the first two non trivial terms of MAE can be used,
in the range [0, 2`m] of ` when ε ∈ (0, 0.4).

C5 As `/H grows beyond 0.2, more and more terms of the MAE must be added, in order to
get a good approximation of G`. Consequently, in the range of “large” values of `/H, the
direct FEM is accurate and hence is better to use.
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Figure 7. Comparisons of the graph of G` obtained by the Matched Asymptotic
Method or by the finite element code COMSOL in the cases ε = 0.2 (above) and
ε = 0.4 (below). The diamonds correspond to the points obtained by FEM while
the curves MAM 2i, i ∈ {1, 2, 3}, correspond to the values obtained by considering
the first i non trivial terms in the expansion of G`.
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4. Application to the determination of the nucleation of the crack

The theoretical and numerical results obtained in the previous sections are used here to study the
delicate issue of the nucleation of a crack in a sound body or the most classical question of the
onset of a preexisting crack. Specifically, we consider the notched body Ω0 which either contains
a preexisting crack `0 > 0 or is sound, i.e. `0 = 0. We have also to distinguish different cases
according to whether ε = 0 or ε > 0. The nucleation or the onset of cracking is governed by either
the so-called G-law or the so-called FM-law and one goal of this section is to compare those laws.
The interested reader can also refer to [7, 22, 36, 37, 33] where other comparisons between G-law
and FM-law are proposed.

The notched body is submitted to a time-dependent loading process which consists in a monoton-
ically increasing amplitude of the displacement prescribed on the sides D±. Specifically, consider
the new boundary conditions

u = ±tH on D±, t ≥ 0. (61)

the other remain unchanged. (Note that the ”time” parameter t is dimensionless.) The evolution
problem consists in finding the time evolution of the length of the crack, i.e. t 7→ `(t) for t ≥ 0,
under the initial condition `(0) = `0 ∈ [0, L). For that, we first remark that, for a given time t ≥ 0
and a given crack length ` ∈ [0, L], the displacement field which equilibrates the body is

u(t, `) = tu`, (62)

where u` is the displacement field introduced in Section 3.1. Accordingly, the potential energy and
the energy release rate at time t with a crack length ` can be expressed as

P(t, `) = t2P`, G(t, `) = t2G`, (63)

where P` and G` are given by (51) and (53).

The two evolutions law are based on the crucial Griffith’s assumption [25] concerning the surface
energy associated with a crack. Specifically, assume that there exists a material constant Gc > 0
such that the surface energy of the body with a crack of length ` is

S(`) = Gc`. (64)

Accordingly, the total energy of the body at equilibrium at time t with a crack of length ` becomes

E(t, `) := P(t, `) + S(`) = t2P` + Gc`. (65)

Throughout this section we assume that ` 7→ P` is continuously differentiable and monotonically
decreasing. Moreover, some monotonic properties of ` 7→ G` will be added when necessary according
to the analysis made in the previous sections.

4.1. The two evolution laws. Let us briefly introduce the two evolution laws, the reader inter-
ested by the details should refer to [33]. The first one, called the G-law, is the usual Griffith law
based on the critical potential energy release rate criterion, see [8, 31, 38]. In essence, this law only
investigates smooth (i.e. at least continuous) evolutions of the crack length with the loading. It
consists in the three following items:

Definition 2 (G-law). Let `0 ∈ [0, L]. A continuous function t 7→ `(t) is said satisfying (or solution
of) the G-law in the interval [t0, t1] with the initial condition `(t0) = `0, if the three following
properties hold

(1) Irreversibility: t 7→ `(t) is not decreasing;
(2) Energy release rate criterion: G(t, `(t)) ≤ Gc, ∀t ∈ [t0, t1];
(3) Energy balance: `(t) is increasing only if G(t, `(t)) = Gc, i.e. if G(t, `(t)) < Gc at some t,

then `(t′) = `(t) for every t′ in a certain neighborhood [t, t+ h) of t.
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The third item implies that the release of potential energy is equal to the created surface energy
when the crack propagates which justifies its name of energy balance. Consequently, if t 7→ `(t) is

absolutely continuous, then the third item is equivalent to ∂E
∂` (t, `(t)) ˙̀(t) = 0 for almost all t and

the following equality holds for almost all t:

d

dt
E(t, `(t)) =

∂E
∂t

(t, `(t)). (66)

A major drawback of the G-law is to be unable to take into account discontinuous crack evolutions,
which renders it useless in many situations as we will see in the next subsection. It must be replaced
by another law which admits discontinuous solutions. Another motivation of changing the G-law
is to reinforce the second item by introducing a full stability criterion, see [22, 38, 7]. Specifically,
let us consider the following local stability condition

∀t ≥ 0,∃h(t) > 0 : E(t, `(t)) ≤ E(t, l) ∀l ∈ [`(t), `(t) + h(t)], (67)

which requires that the total energy at t is a “unilateral” local minimum. (The qualifier unilateral
is added because the irreversibility condition leads to compare the energy at t with only that
corresponding to greater crack length, see [7]). Taking l = `(t)+h with h > 0 in (67), dividing by h
and passing to the limit when h→ 0, we recover the critical energy release rate criterion. Thus, the
second item can be seen as a first order stability condition, weaker than (67). A stronger requirement
consists in replacing local minimality by global minimality. It was the condition introduced by
Francfort-Marigo in [22] in the spirit of the original Griffith idea [25] and that we will adopt here.
Thus, the second evolution law, called FM-law, consists in the three following items

Definition 3 (FM-law). A function t 7→ `(t) (defined for t ≥ 0 and with values in [0, L]) is said
satisfying (or solution of) the FM-law if the three following properties hold

(1) Irreversibility: t 7→ `(t) is not decreasing;
(2) Global stability: E(t, `(t)) ≤ E(t, l), ∀t ≥ 0 and ∀l ∈ [`(t), L];

(3) Energy balance: E(t, `(t)) = E(0, `0) +
∫ t

0
∂E
∂t′ (t

′, `(t′)) dt′, ∀t ≥ 0.

Let us note that the irreversibility condition is unchanged, while the energy balance condition is
now written as the integrated form of (66), which does not require that t 7→ `(t) be continuous.
Note also that the energy balance implies `(0) = `0 because 0 = E(0, `(0))−E(0, `0) = Gc(`(0)−`0),
and that the second item is automatically satisfied at t = 0 because E(0, l) = Gcl.

4.2. The main properties of the G-law and the FM-law . We recall or establish in this
subsection some results for the two evolution laws under the assumptions of monotonicity of ` 7→ G`
resulting of the numerical computations, see P1–P4 in Section 3.3. Some of those results have a
general character and have been previously established in [7, 22, 33] while the other ones are specific
to the present problem. In the case of properties which have already been obtained, we simply recall
them without proofs.

Let us first consider the case when the notch is in fact a crack. Then, the two laws are equivalent
by virtue of

Proposition 5. In the case ε = 0, since ` 7→ G` is decreasing from G0 > 0 to 0 when ` goes
from 0 to L (see Property P1), the G-law and the FM-law admit the same and unique solution.
Specifically, the preexisting crack begins to propagate at time ti such that ti

2G`0 = Gc. Then the
crack propagates continuously and `(t) is such that t2G`(t) = Gc. Since GL = 0, the crack will not
reach the end L in a finite time.

Proof. See [33, Proposition 18]. �

In the case of a guenuine notch, as far as the nucleation and the propagation of a crack with the
G-law are concerned, we have
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Proposition 6. In the case ε > 0, according to `0 = 0 or `0 ∈ (0, `m) or `0 ∈ [`m, L), the crack
evolution predicted by the G-law is as follows

(1) If `0 = 0, since G0 = 0, the unique solution to G-law is `(t) = 0 for all t, i.e. there is no
crack nucleation;

(2) If `0 ∈ (0, `m), then the preexisting crack begins to propagate at time ti such that ti
2G`0 = Gc.

But at ti the propagation is necessarily discontinuous and hence there is no continuous
solution to G-law for t ≥ ti;

(3) If `0 ∈ [`m, L), since ` 7→ G` is monotonically decreasing in the interval (`m, L), the situation
is the same as in Proposition 5. There exists a unique solution for the G-law: the crack begins
to propagate at ti (still given by ti

2G`0 = Gc) and then propagates continuously until L which
is reached asymptotically.

Proof. Let us give the sketch of the proof for the first two items.

(1) Since `0 = 0 and G0 = 0, then for all t ≥ 0 one gets 0 = G(t, 0) < Gc and hence `(t) = 0 is
a solution. The uniqueness follows from the initial condition and the energy balance.

(2) Since 0 < `0 < `m, then G`0 > 0 and hence t2G`0 = G(t, `0) ≤ Gc if and only if t ∈ [0, ti].
Since the inequality is strict when t ∈ [0, ti), then `(t) = 0 is the unique solution in this
interval because of the initial condition and the energy balance. By continuity, it is also the
unique solution in the closed interval [0, ti]. On the other hand, since G(t, `0) > Gc when
t > ti, the crack must begin to propagate at ti.

Let us show that no (continuous) evolution can satisfy the G-law for t > ti. Indeed, by
construction G(ti, `(ti)) = ti

2G`0 = Gc. But since `(t) ≥ `i for t > ti and since ` 7→ G` is
monotonically increasing in the neighborhood of `0 < `m, it holds for t ∈ (ti, ti + h) and a
sufficiently small h > 0:

`0 < `(t) < `m, G(t, `(t)) > G(ti, `0) = Gc.

Therefore the energy release rate criterion cannot be satisfied by a continuous evolution in
a neighborhood of ti. The unique possibility is that the length of the crack jumps from `0
to some `i > `m at time ti. But that requires to reformulate the G-law.

The proof of the third item is the same as in the previous Proposition and hence refers to [33,
Proposition18]. �

Remark 8. This property of no nucleation of a crack at a notch or of brutal propagation of a short
crack is due to the fact that a notch with Neumann boundary conditions induces a weak singularity
only, i.e. λ > 1/2. If one changes the boundary conditions by imposing the displacement on one
edge of the notch and the stress on the other edge, then the singularity becomes strong for ω large
enough and in such a case all the properties of nucleation are changed, see [22, Proposition 4.19].

Consider now the FM-law. It is proved in [33, Proposition 3] that, in the case of a monotonically
increasing loading, the FM-law is equivalent to a minimization problem of the total energy at each
time, as precisely stated in the following Lemma

Lemma 7. Let `0 ∈ [0, L) be the initial length of the crack. A function t 7→ `(t) satisfies the FM-
law if and only if, at each t, `(t) is a minimizer of l 7→ E(t, l) over [`0, L]. Therefore, the FM-law
admits at least one solution and each solution grows from `0 to L.

This property holds true for any ε ≥ 0. In the case ε > 0 we can deduce precise results:

Proposition 8. In the case ε > 0, according to `0 ∈ [0, `m) or `0 ∈ [`m, L), the crack evolution
predicted by the FM-law is as follows
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(1) If `0 ∈ [0, `m), then the nucleation (if `0 = 0) or the propagation of the preexisting crack (if
`0 6= 0) starts at time ti > 0 and at this time the crack length jumps instantaneously from
`0 to `i. The length `i is the unique length in (`m, L) such that

∫ `i

`0

G`d` = (`i − `0)G`i or equivalently P`0 − P`i = (`i − `0)G`i (68)

while the time ti is given by

ti
2G`i = Gc. (69)

After this jump, the crack propagates continuously from `i to L, the evolution satisfying
then the G-law, i.e.

t2G`(t) = Gc, ∀t > ti.

(2) If `0 ∈ [`m, L), since ` 7→ G` is monotonically decreasing in the interval (`m, L), the situation
is the same as in Proposition 5. There exists a unique solution for the FM-law which is the
same as for the G-law: the crack begins to propagate at ti such that ti

2G`0 = Gc and then
propagates continuously until L which is reached asymptotically.

Remark 9. Before the proof of this Proposition, let us comment and interpret the equation (68)
giving the jump of the crack at ti.

• Let us first prove that `i is well defined by (68). Let ` 7→ g(`) be the function defined for
` ∈ (`m, L) by

g(`) =

∫ `

`0

Gl dl − (`− `0)G`.

Its derivative is given by g′(`) = −(`− `0)G′` and hence is positive because G` is decreasing
in (`m, L). Since G` < Gm := G`m, g(`m) < 0 whereas g(L) > 0 because GL = 0. Therefore,
there exists a unique ` ∈ (`m, L) such that g(`) = 0, what is precisely the definition of `i.
• The equation (68) giving `i has a graphical interpretation. Indeed, the integral over (`0, `i)

represents the area under the graph of ` 7→ G` between the lengths `0 and `i. On the other
hand the product (`i − `0)G`i represents the area of the rectangle whose height is Gi := G`i.
Therefore, since these two areas are equal, the two gray areas of Figure 8 are also equal. This
rule of equality of the areas determines `i and, by essence, the line G = Gi is the classical
Maxwell line which appears in any problem of minimization of a non convex function.
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Figure 8. Graphical interpretation of the criterion of crack nucleation given by
FM-law and which obeys to the Maxwell rule of equal areas.

• Note that `i is independent of the toughness Gc and of the shear modulus µ of the
material. It is a characteristic of the structure and merely depends on the geometry and
the type of loading. Here, it depends on ε, H and L. For a given ε and a given ratio L/H,

`i is proportional to H, `i = ˜̀
iH. This property is a consequence of the Griffith assumption

on the surface energy.
• The critical loading amplitude ti depends on the toughness and on the size of

the body. Since G`i = G̃`iµH, ti varies like 1/
√
H. This size effect is also a consequence of

the Griffith assumption on the surface energy.
• By virtue of (68) and (69), the energy balance holds at time ti even if the crack jumps

at this time, i.e. the total energy of the body just before the jump is equal to the total energy
just after. Indeed, those energies are respectively given by

E(ti−, `0) = ti
2P`0 + Gc`0, E(ti+, `i) = ti

2P`i + Gc`i.

Using (68), (69) and the equality P`0 − P`i =
∫ `i
`0
G`d`, then E(ti−, `0) = E(ti+, `i).

Proof of Proposition 8. We just prove the first part of the Proposition and the reader should
refer to [33, Proposition 18] for the proof of the second part. Let `0 ∈ [0, `m). By virtue of Lemma 7,
`(t) is a minimizer of ` 7→ E(t, `) over [`0, L]. (The minimum exists because the energy is continuous
and the interval is compact.) Let `i, ti be given by (68)-(69), let Gi = G`i and let `∗i be the other
length such that G`∗i = Gi, see Figure 8. Let us first remark that the function ` 7→ ḡ(`) defined on

[`0, L] by

ḡ(`) := Gi(`− `0)−
(
P`0 − P`

)
is non negative and vanishes only at `0 and `i. Indeed, its derivative is ḡ′(`) = Gi − G`. Hence, ḡ is
first increasing from 0 when ` grows from `0 to `∗i , then decreasing to 0 when ` grows from `∗i to `i,
and finally increasing again from 0 when ` grows from `i to L.

Let us show that `0 is the unique minimizer of the total energy when t < ti. From (68) and (69),
we get for all ` ∈ [`0, L] and all t ≤ ti:

E(t, `)− E(t, `0) = −t2(P`0 − P`) + Gc(`− `0) ≥ t2ḡ(`) ≥ 0.



ASYMPTOTIC METHOD AND NUCLEATION OF CRACKS 25

Moreover, the inequalities above are equalities if and only if ` = `0 when t < ti and the result
follows. Using the same estimates, we can deduce that `0 and `i are the two minimizers of the total
energy at t = ti.

Let us show now that the minimizer is in the open interval (`i, L) when t > ti. From (68) and (69),
we get for all ` ∈ [`0, `i) and all t > ti:

E(t, `)−E(t, `i) = t2(P`−P`i)−Gc(`i−`) > ti
2
(
P`−P`i−Gi(`i−`)

)
= ti

2
(
ḡ(`)− ḡ(`i)

)
= ti

2ḡ(`) ≥ 0.

Hence, the minimizer cannot be in [`0, `i). Since the derivative of the total energy at ` = `i is equal
to Gc−t2Gi < 0, `i is not the minimizer. In the same manner, since the derivative of the total energy
at ` = L is equal to Gc − t2GL = Gc > 0, L cannot be the minimizer. Therefore, the minimizer is
in the interval (`i, L) when t > ti. Hence, it must be such that the derivative of the total energy
vanishes, which yields t2G`(t) = Gc. Since ` 7→ G` is monotonically decreasing from Gi to 0 when `

goes from `i to L, there exists a unique `(t) ∈ (`i, L) such that G`(t) = Gc/t
2 < Gi. The proof of the

first part is complete. �

4.3. Computation of the crack nucleation by the MAM. Let us consider the cases where ε
is sufficiently small in order that ` 7→ G` be well approximated by the first two non trivial terms of
its Matched Asymptotic Expansion for ` in the interval [0, 2`m], see C4. Accordingly, we have

G`
µH
≈ 2λ |P2|

(
`

H

)2λ−1

− 4λ |P4|
(
`

H

)4λ−1

, (70)

using the fact that P2 < 0 and P4 > 0. Therefore, the length `m where G` is maximal and the
maximum Gm are approximated by

`m
H
≈
(

(2λ− 1) |P2|
2(4λ− 1) |P4|

) 1
2λ

,
Gm

µH
≈ 4λ2 |P2|

4λ− 1

(
(2λ− 1) |P2|
2(4λ− 1) |P4|

) 2λ−1
2λ

. (71)

Comparing with the values obtained by the FEM (see P3 and Table 5), it appears that the agree-
ment is very good for the maximum Gm, less good for `m. The reason is that the localization of `m
by the FEM is quite imprecise because the graph of G` is very flat near `m: for instance, for ε = 0.3,
G` computed at ˜̀ = 0.092 is equal to 0.27327 while it is equal to 0.27307 at ˜̀ = 0.082, i.e. with a
relative difference less than 10−4.

One can see also in Table 5 that the contribution of the next term, i.e. MAM 6, is weak when ε
is less than 0.2. Its influence, in particular on `i, can be no more neglected when ε ≥ 0.3. Note
also that MAM 4 underestimates while MAM 6 overestimates the lengths `m and `i. This bounding
property is due to the alternate change of sign of the coefficients P2i with i. However, it is checked
numerically only, we are not able to prove it.
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ε 0 0.1 0.2 0.3 0.4
λ 0.5 0.5164 0.5335 0.5511 0.5689

`m/H by FEM 0 0.024 0.058 0.092 0.130
`m/H by MAM 4 0 0.0255 0.0533 0.0823 0.1124
`m/H by MAM 6 0 0.0267 0.0584 0.0953 0.1387
Gm/µH by FEM 0.4820 0.3900 0.3260 0.2733 0.2279

Gm/µH by MAM 4 0.4820 0.3917 0.3264 0.2724 0.2257
Gm/µH by MAM 6 0.4820 0.3917 0.3274 0.2743 0.2287
`i/H by FEM 0 0.0517 0.1131 0.1814 0.2561
`i/H by MAM 4 0 0.0499 0.1020 0.1544 0.2067
`i/H by MAM 6 0 0.0530 0.1163 0.1923 0.2964
Gi/µH by FEM 0.4820 0.3864 0.3195 0.2650 0.2188

Gi/µH by MAM 4 0.4820 0.3877 0.3195 0.2635 0.2157
Gi/µH by MAM 6 0.4820 0.3881 0.3208 0.2662 0.2201

ti/tc by FEM 1.440 1.605 1.766 1.938 2.132
ti/tc by MAM 4 1.440 1.606 1.769 1.916 2.153
ti/tc by MAM 6 1.440 1.605 1.766 1.938 2.131

Table 5. Comparisons of the values of `m, Gm, `i, Gi and ti obtained by the FEM
with those obtained by MAM 4 and MAM 6.

Using MAM 4 to calculate the nucleation, we obtain the following result

Proposition 9. In the case of a genuine notch ε > 0,

(1) if the body does not contain a preexisting crack (`0 = 0), then the time ti at which the crack
nucleates and the length `i of the nucleated crack at this time are approximated with the
MAM 4 by

`i
H
≈ 2

1
2λ
`m
H
≈
(

(2λ− 1) |P2|
(4λ− 1) |P4|

) 1
2λ

, ti
2 ≈ 1

λ 2
1
2λ

Gc

Gm
≈ tc

2

8λ3

(
4λ− 1

|P2|

)2− 1
2λ
(

4P4

2λ− 1

)1− 1
2λ

, (72)

where tc
2 = Gc/µH;

(2) if the body contains a preexisting crack of length `0 such that 0 < `0 < `m, then the length
`i at which the crack jumps at the onset of the propagation is the unique solution greater
than `m of

0 = |P2|
(

(2λ− 1)`2λi − 2λ`0`
2λ−1
i + `2λ0

)
H2λ − P4

(
(4λ− 1)`4λi + 4λ`0`

4λ−1
i − `4λ0

)
, (73)

while the time ti at which the onset occurs is given by ti
2 = Gc/G`i. Therefore, `i and ti

decrease from the values given by (72) to `m and
√

Gc/Gm given by (71) when `0 runs from
0 to `m.

Proof. When `0 = 0, using MAM 4, then (68) becomes

0 = (2λ− 1) |P2|
(
`i
H

)2λ

− (4λ− 1) |P4|
(
`i
H

)4λ

.

Using (71), (72) can be deduced after some calculations left to the reader. In the same manner,
(73) is a direct consequence of (68) and (70). The monotonicity of `i and ti with respect to `0 is
easily checked from the graphical interpretation of (73), see Figure 8. �

Therefore, since 1/2 < λ < 1 for a genuine notch, the length of the nucleated crack `i is less than
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2`m while the critical time ti is not greater than 21/4
√
Gc/Gm. For very sharp notch, i.e. when ε is

small, then 2λ ≈ 1 + ε/π and

`i ≈
ε |P2|
πP4

H, ti
2 ≈ Gc

|P2|µH
,

where P2 ≈ −0.4820 and P4 ≈ 0.3282. Therefore we recover the response associated with a crack
when the notch angle tends to 2π. The FM-law delivers an evolution which depends continuously
of the parameter ε, in contrast with the G-law .

As long as the dependence of ti on `0 is concerned, it turns out that the FM-law predicts that the
variation of ti is small when `0 goes from 0 to `m as can be seen on Figure 9 for ε = 0.4. Indeed,
ti/tc decreases from 2.153 to 2.105 when `0 varies from 0 to `m = 0.112H. That constitutes also a
strong difference with the prediction of the G-law for which ti goes to infinity when `0 goes to 0.

� = 0.4

ti/tc

�0/H
0.00 0.02 0.04 0.06 0.08 0.10
0

1

2

3

4

Figure 9. Time at which a preexisting crack starts in function of its length in the
case where the notch parameter ε = 0.4. Plain line: from the FM-law ; dashed line:
from the G-law

5. Conclusion and Perspectives

We have presented here a general method based on matched asymptotic expansions which can be
applied to determine the mechanical fields and all related mechanical quantities in the case of a
defect located at the tip of a notch. Applying this method to the case of a non cohesive crack,
it turns out that it is sufficient to solve a few inner and outer problems to compute with a very
good accuracy the dependency of the energy and the energy release rate on the length of the
crack. Moreover, this approximation can be used for very small values of the length of the crack
and hence to determine the onset of the cracking, whereas a classical finite element method gives
rise to inaccurate results. In particular, the matched asymptotic method permits to compare the
nucleation process of a crack at the tip of the notch which is predicted by the classical Griffith
criterion with that predicted by the principle of energy minimization proposed in [22]. It turns out
that the latter principle gives rise to much more relevant results than the former, from a physical
viewpoint.

A natural extension of this work is to consider situations where the geometry and the loading
have no symmetry and hence the direction that the nucleated crack will choose must also be
predicted. Let us note that the G-law alone is not able to give an answer, and another criterion
must be supplemented. In an anti-plane setting, the principle of local symmetry which is by essence
made for an isotropic plane setting, cannot be used. It turns out that the FM-law in its general
statement can also predict the direction and more generally the path of the crack, see [9, 10, 22].
So, an interesting challenge should be to use the MAM and the FM-law in a non symmetric case
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to predict also the direction of nucleation. Another natural and desirable extension of the present
work is to develop the method in a plane elasticity setting. It seems that there is no conceptual
difficulty to do that. The last perspective concerns the choice of the surface energy. Indeed, the
present study is based on the crucial Griffith assumption that the surface energy is proportional
to the crack area. This assumption has very important consequences on the nucleation as we have
seen in the paper. With this hypothesis, there is no cohesive force and hence the model does not
contain the concept of critical stress. An important step will be to apply the MAM in the case of
a cohesive crack [3, 20, 17] which automatically contains a critical stress and even a characteristic
length. The goal will be to study the influence of those critical stress and characteristic length on
the nucleation and the propagation of a crack in the spirit of the previous works based on the
variational approach to fracture [2, 7, 12, 18, 21, 24, 29, 35].
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II b 309, 945–950.

[33] Marigo, J.-J.: 2010, ‘Initiation of cracks in Griffith’s theory: an argument of continuity in favor of global mini-
mization’. J. Nonlinear Sci. 20(6), 831–868.

[34] Marigo, J.-J. and C. Pideri: 2011, ‘The effective behavior of elastic bodies containing microcracks or microholes
localized on a surface’. Int. J. Damage Mech. 20, 1151–1177.

[35] Marigo, J.-J. and L. Truskinovky: 2004, ‘Initiation and propagation of fracture in the models of Griffith and
Barenblatt’. Continuum Mech. Therm. 16(4), 391–409.

[36] Negri, M.: 2008, ‘A comparative analysis on variational models for quasi-static brittle crack propagation’. Ad-
vances in Calculus of Variations 3(2), 149—212.

[37] Negri, M. and C. Ortner: 2008, ‘Quasi-static crack propagation by Griffith’s criterion’. Math. Mod. Meth. Appl.
S. 18, 1895–1925.

[38] Nguyen, Q. S.: 2000, Stability and Nonlinear Solid Mechanics. London: Wiley & Son.
[39] Rice, J. R.: 1968, ‘A path independent integral and the approximate analysis of strain concentration by notches

and cracks’. J. Appl. Mech. 35, 379–386.
[40] Vidrascu, M., G. Geymonat, S. Hendili, and F. Krasucki: 2012, ‘Matched asymptotic expansion and domain

decomposition for an elastic structure’. In: 21st International Conference on Domain Decomposition Methods.
Rennes, France.
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France.

E-mail address: halpern@math.univ-paris13.fr
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