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We use matching asymptotic expansions to treat the anti-plane elastic problem associated with a small defect located at the tip of a notch. In a first part, we develop the asymptotic method for any type of defect and present the sequential procedure which allows us to calculate the different terms of the inner and outer expansions at any order. That requires in particular to separate in each term its singular part from its regular part. In a second part, the asymptotic method is applied to the case of a crack of variable length located at the tip of a given notch. We show that the first two non trivial terms of the expansion of the energy release rate are sufficient to well approximate the dependence of the energy release rate on the crack length in the range of values of the length which are sufficient to treat the problem of nucleation. This problem is considered in the last part where we compare the nucleation and the propagation of a crack predicted by two different models: the classical Griffith law and the Francfort-Marigo law based on an energy minimization principle. Several numerical results illustrate the interest of the method.

Introduction

A major issue in fracture mechanics is how to model the initiation of a crack in a sound material, see [START_REF] Bourdin | The variational approach to fracture[END_REF]. There are two difficulties: the first one is to propose a law able to predict that nucleation; the second is a purely numerical issue. Indeed, it is difficult to compute with a good accuracy the energy release rate associated with a crack of small length which appears at the tip of a notch, see [START_REF] Marigo | Initiation of cracks in Griffith's theory: an argument of continuity in favor of global minimization[END_REF]. The classical finite element method leads to inaccurate results because of the overlap of two singularities which cannot be correctly captured by this method: one is due to the tip of the notch, the other is due to the tip of the crack. A specific method of approximation based on asymptotic expansions is preferable as it is developed in analogous situations with localized defects, see for instance [START_REF] Abdelmoula | The effective behavior of a fiber bridged crack[END_REF][START_REF] Abdelmoula | Construction and justification of Paris-like fatigue laws from Dugdale-type cohesive models[END_REF][START_REF] Bilteryst | An energy based analysis of the pull-out problem[END_REF][START_REF] Bonnaillie-Noel | On generalized Ventcel's type boundary conditions for Laplace operators in a bounded domain[END_REF][START_REF] Bonnaillie-Noel | Small Defects in Mechanics[END_REF][START_REF] David | Homogenized Interface Model Describing Inhomogeneities Localized on a Surface[END_REF][START_REF] Geymonat | The matched asymptotic expansion for the computation of the effective behavior of an elastic structure with a thin layer of holes[END_REF][START_REF] Leguillon | Calcul du taux de restitution de l'énergie au voisinage d'une singularité[END_REF][START_REF] Marigo | The effective behavior of elastic bodies containing microcracks or microholes localized on a surface[END_REF][START_REF] Vidrascu | Matched asymptotic expansion and domain decomposition for an elastic structure[END_REF]. The first part of the present paper is devoted to the presentation of this Matched Asymptotic Method (shortly, the MAM) in the case of a defect (which includes the case of a crack) located at the tip of a notch in the simplified context of antiplane linear elasticity. Therefore, our approach can be considered as a particular case of the previous works which have been devoted to the study of elliptic problems in corner domains, like [START_REF] Dauge | Elliptic Boundary Value Problems in Corner Domains -Smoothness and Asymptotic of Solutions[END_REF][START_REF] Dauge | Selfsimilar perturbation near a corner: matching versus multiscale expansions for a model problem[END_REF][START_REF] Grisvard | Elliptic problems in non smooth domains[END_REF][START_REF] Grisvard | Problèmes aux limites dans les polygones; Mode d'emploi[END_REF]. However, a major difference is that we want to use these asymptotic methods to predict the nucleation or the propagation of defects (like cracks) near those singular points. The second and third parts of our paper will be devoted to this task. That requires, of course, to introduce a criterion of nucleation. This delicate issue has not received a definitive answer at the present time and it was considered for a long time as a problem which could not be solved in the framework of Griffith theory of fracture [START_REF] Bui | Mécanique de la rupture fragile[END_REF][START_REF] Cherepanov | Mechanics of Brittle Fracture[END_REF][START_REF] Lawn | Fracture of Brittle Solids -Second Edition[END_REF][START_REF] Leblond | Mécanique de la rupture fragile et ductile, Collection Études en mécanique des matériaux et des structures[END_REF]. The main invoked reason is that the release of energy due to a small crack tends to zero when the length of the crack tends to zero, see [START_REF] Chambolle | Crack initiation in brittle materials[END_REF][START_REF] Marigo | Initiation of cracks in Griffith's theory: an argument of continuity in favor of global minimization[END_REF]. Therefore, according to the Griffith criterion which stands that the crack can propagate only when the energy release rate reaches a critical value characteristic of the material, no nucleation is possible because the energy release rate vanishes when there is no preexisting crack. This limitation of Griffith's theory was one of the motivations which lead Francfort and Marigo in [START_REF] Francfort | Revisiting brittle fracture as an energy minimization problem[END_REF] to replace the Griffith criterion by a principle of least energy, in the spirit of the original idea of Griffith [START_REF] Griffith | The phenomena of rupture and flow in solids[END_REF]. It turns out that the principle of least energy is really able to predict the nucleation of cracks in a sound body. However, as it was generically proved in [START_REF] Chambolle | Crack initiation in brittle materials[END_REF][START_REF] Francfort | Revisiting brittle fracture as an energy minimization problem[END_REF], the nucleation is necessarily brutal in the sense that a crack of finite length suddenly appears at a critical loading. Accordingly, we propose to revisit the problem of nucleation of a crack at the tip of a notch by comparing the two criteria. One of our goal is to use the MAM to obtain semi-analytical expressions for the critical loading at which a crack appears and the length of the nucleated crack.

Specifically, the paper is organized as follows. Section 2 is devoted to the description of the MAM on a generic anti-plane linear elastic problem where the body contains a defect near the tip of a notch. We first decompose the solution into two expansions: the outer expansion is valid far enough from the tip of the notch while the inner expansion is valid in a neighborhood of the tip of the notch. These expansions contain a sequence of inner and outer terms which are solutions of inner and outer problems and are connected by the matching conditions. Moreover each term contains a regular and a singular part. We explain how all the terms and the coefficients entering in their singular and regular parts are sequentially determined. The section finishes by an example where the exact solution is obtained in closed form and hence where we can verify the relevance of the MAM.

In Section 3, the MAM is applied to the case where the defect is a crack. Its main goal is to compute with a good accuracy the energy release rate associated with a crack of small length near the tip of the notch. Indeed, it is a real issue in the case of a genuine notch (by opposition to a crack) because the energy release rate starts from 0 when the length of the nucleated crack is 0, then is rapidly increasing with the length of the crack before reaching a maximum and is finally decreasing. Accordingly, after the setting of the problem, the computation of the energy release rate by the FEM is described, and the reason why the numerical results are less accurate when the crack length is small is given. Then, the MAM is used to compute the energy release rate for small values of the crack length. As expected, the computation shows that, the smaller the size of the defect, the more accurate is the approximation by the MAM at a certain order. It even appears that very accurate results can be obtained by computing a small number of terms in the matched asymptotic expansions. We discuss also the influence of the angle of the notch on the accuracy of the results, this angle playing an important role in the process of nucleation (because, in particular, the length m at which the maximum of the energy release rate is reached depends on the angle of the notch). It turns out that when the notch is sufficiently sharp, i.e. sufficiently close to a crack, the first two non trivial terms of the expansion of the energy release rate are sufficient to capture with a very good accuracy the dependence of the energy release rate on the crack length.

In section 4, we study the problem of crack nucleation at the tip of a notch. We first introduce the two competing evolution laws, i.e. the G-law and the FM-law : the first one is the usual Griffith's law based on the criterion of critical energy release rate, the second is that introduced in [START_REF] Francfort | Revisiting brittle fracture as an energy minimization problem[END_REF] and which is based on the concept of energy minimization. We recall some general results previously established in [START_REF] Marigo | Initiation of cracks in Griffith's theory: an argument of continuity in favor of global minimization[END_REF] and extend them to the present case of a notch-shaped body in an antiplane setting. By virtue of the good approximation given by the MAM, we are able to solve the evolution problem in a quasi closed form, the solution depending only on two coefficients that must be computed by the FEM. That permits a qualitative and quantitative comparison of the two laws.

The real problem and its expansion by the Matched Asymptotic Method

2.1. The real problem. Here, we consider a small geometrical defect of size (like a crack or a void) located near the corner of a notch, see Figure 1. The geometry of the notch is characterized by its angle ω, see Figure 2. The tip of the notch is taken as the origin of the space. We will introduce two scales of coordinates: the "macroscopic" coordinates x = (x 1 , x 2 ) used in the outer domain, and the "microscopic" coordinates y = x/ = (y 1 , y 2 ) used in the neighborhood of the tip of the notch where the defect is located, see Figure 2. In the case of a crack, the axis x 1 is chosen in such a way that the crack corresponds to the line segment (0, )×{0}. The unit vector orthogonal to the (x 1 , x 2 ) plane is denoted by e 3 .

The natural reference configuration of the sound two-dimensional body is Ω 0 while the associated body which contains a defect of size is Ω . The part of the boundary of Ω which is due to the defect is denoted by Γ , i.e.

Γ = ∂Ω \ ∂Ω 0 , (1) 
Γ is contained in the disk of center (0, 0) and radius . In the case of a crack, Γ is the crack itself, i.e. Γ = (0, ) × {0}. The two edges of the notch are denoted by Γ + and Γ -. To simplify the presentation, it is assumed that they are not modified by the introduction of the defect, see Figure 1. When using polar coordinates (r, θ), the pole is the tip of the notch and the origin of the polar angle is the edge Γ -. Accordingly, we have

r = |x|, Γ -= {(r, θ), 0 < r < r * , θ = 0}, Γ + = {(r, θ), 0 < r < r * , θ = ω}. (2) 
This body is made of an elastic isotropic material whose shear modulus is µ > 0. It is submitted to a loading such that the displacement field at equilibrium u be antiplane, i.e.

u (x) = u (x 1 , x 2 )e 3
where the subscript letter is used in order to recall that the real displacement depends on the size of the defect. We assume that the body forces are zero and then u must be an harmonic function in order to satisfy the equilibrium equations in the bulk:

∆u = 0 in Ω . (3) 
The edges of the notch are free while Γ is submitted to a density of (antiplane) surface forces.

Accordingly, the boundary conditions on Γ and Γ ± are

∂u ∂ν = 0 on Γ ± , ∂u ∂ν (x) = g(y) on Γ . (4) 
In (4), ν denotes the unit outer normal vector to Ω , and we assume that the density of (antiplane) surface forces depends on the microscopic variable y and has a magnitude of the order of 1/ .

The remaining part of the boundary of Ω is divided into two parts: Γ D where the displacement is prescribed and Γ N where (antiplane) surface forces are prescribed. Specifically, we have

u = f on Γ D , ∂u ∂ν = h on Γ N . ( 5 
) Γ + Γ - Γ N r θ x Γ Γ D Figure 1.
The domain Ω for the real problem

The following proposition is a characterization of those functions which are harmonic in an angular sector and whose normal derivatives vanish on the edges of the sector. It is of constant use throughout the paper.

Proposition 1. Let r 1 and r 2 be such that 0 ≤ r 1 < r 2 ≤ +∞ and let D r 2 r 1 be the angular sector

D r 2 r 1 = {(r, θ) : r ∈ (r 1 , r 2 ), θ ∈ (0, ω)}. Then any function u which is harmonic in D r 2
r 1 and which satisfies the Neumann condition ∂u/∂θ = 0 on the sides θ = 0 and θ = ω can be expanded as

u(r, θ) = a 0 ln(r) + d 0 + n∈N * a n r -nλ + d n r nλ cos(nλθ), λ = π ω (6) 
where the a n and the d n constitute two sequences of real numbers which are characteristic of u.

Proof. Since the normal derivative vanishes at θ = 0 and θ = ω, u(r, θ) can be expanded in Fourier series as:

u(r, θ) = n∈N f n (r) cos(nλθ).
In order that u be harmonic, the functions f n must satisfy r 2 f n + rf nn 2 λ 2 f n = 0, for each n.

We easily deduce that f 0 (r) = a 0 ln(r) + d 0 and f n (r) = a n r -nλ + d n r nλ for n ≥ 1.

2.2.

The matching asymptotic method (MAM). We will write two asymptotic expansions of u in terms of the small parameter . The inner expansion is valid in the neighborhood of the tip of the notch, while the the outer expansion, is valid far from this tip. These two expansions will be matched in an intermediate zone.

2.2.1. The outer expansion. Far from the tip of the notch, i.e. for r , u does not see the notch, and we assume that it can be expanded as

Γ + Γ - Γ N r θ x ω Γ D θ Γ + Γ - y ρ Γ 1 Figure 2.
The domains Ω 0 and Ω ∞ for, respectively, the outer (left) and the inner (right) problems In [START_REF] Bourdin | The variational approach to fracture[END_REF], even if this expansion is valid far enough from r = 0 only, u i must be defined in the whole outer domain Ω 0 which corresponds to the sound body, see Figure 2-left. Inserting this expansion into [START_REF] Barenblatt | The mathematical theory of equilibrium cracks in brittle fracture[END_REF][START_REF] Bilteryst | An energy based analysis of the pull-out problem[END_REF][START_REF] Bonnaillie-Noel | On generalized Ventcel's type boundary conditions for Laplace operators in a bounded domain[END_REF] yields the sequence of problems for the u i :

The first outer problem i = 0:

                 ∆u 0 = 0 in Ω 0 ∂u 0 ∂ν = 0 on Γ + ∪ Γ - ∂u 0 ∂ν = h(x) on Γ N u 0 = f (x) on Γ D (8) 
The other outer problems i ≥ 1:

                 ∆u i = 0 in Ω 0 ∂u i ∂ν = 0 on Γ + ∪ Γ - ∂u i ∂ν = 0 on Γ N u i = 0 on Γ D (9) 
Moreover, the behavior of u i in the neighborhood of r = 0 is singular and the singularity will be given by the matching conditions.

The inner expansion.

Near the tip of the notch, i.e. for r 1, we assume that the displacement field u can be expanded as

u (x) = ln( ) i∈N iλ w i (y) + i∈N iλ v i (y), y = x . (10) 
In [START_REF] Chambolle | Revisiting energy release rates in brittle fracture[END_REF], even if this expansion is valid only in the neighborhood of r = 0, the fields v i and w i must be defined in the infinite inner domain Ω ∞ . The domain Ω ∞ is the infinite angular sector D ∞ 0 of the (y 1 , y 2 ) plane, from which the rescaled defect of size 1 is removed, see Figure 2-right. Accordingly, the rescaled boundary Γ 1 of the defect is

Γ 1 = ∂Ω ∞ \ ∂D ∞ 0 . (11) 
(In the case of a crack, Γ 1 = (0, 1)×{0}.) Inserting this expansion into the set of equations constituting the real problem yields the sequence of problems for the v i :

The first inner problem i = 0

           ∆v 0 = 0 in Ω ∞ ∂v 0 ∂θ = 0 on θ = 0 and θ = ω ∂v 0 ∂ν = g(y) on Γ 1 (12) 
The other inner problems i ≥ 1

             ∆v i = 0 in Ω ∞ ∂v i ∂θ = 0 on θ = 0 and θ = ω ∂v i ∂ν = 0 on Γ 1 (13) 
The w i must satisfy, for every i ≥ 0 the same equations as the v i for i ≥ 1. To complement the set of equations, the behavior at infinity of the v i and the w i must be added. It is obtained by the matching conditions from the outer problems.

2.2.3. Matching conditions. In any sector D r 2 0 with r 2 1, the displacement fields u i in the outer expansion are harmonic and satisfy homogeneous Neumann boundary conditions on the edges. Therefore Proposition 1 applies, and

u i (x) = a i 0 ln(r) + d i 0 + n∈N * a i n r -nλ + d i n r nλ cos(nλθ). ( 14 
)
As for the inner expansion, the displacement fields v i and w i are harmonic in the sector D ∞ 1 of the y plane and satisfy homogeneous Neumann boundary conditions on the edges. Therefore Proposition 1 applies, with the microscopic coordinates y and ρ = |y| = r/ replacing the macroscopic coordinates x and r:

v i (y) = c i 0 ln(ρ) + b i 0 + n∈N * c i n ρ -nλ + b i n ρ nλ cos(nλθ), (15) 
w i (y) = e i 0 ln(ρ) + f i 0 + n∈N * e i n ρ -nλ + f i n ρ nλ cos(nλθ). ( 16 
)
The outer expansion and the inner expansion are both valid in any intermediate zone D r 2 r 1 such that r 1 < r 2 1. Inserting [START_REF] Dauge | Elliptic Boundary Value Problems in Corner Domains -Smoothness and Asymptotic of Solutions[END_REF] into the outer expansion [START_REF] Bourdin | The variational approach to fracture[END_REF] with r = ρ leads to

u (x) = i∈N ln( ) iλ a i 0 + i∈N iλ a i 0 ln(ρ) + d i 0 + n∈N * a i+n n ρ -nλ + d i-n n ρ nλ cos(nλθ) , (17) 
with the convention that d i-n n = 0 when n > i. Inserting ( 15) and ( 16) into the inner expansion (10) leads to

u (x) = i∈N ln( ) iλ e i 0 ln(ρ) + f i 0 + n∈N * e i n ρ -nλ + f i n ρ nλ cos(nλθ) + i∈N iλ c i 0 ln(ρ) + b i 0 + n∈N * c i n ρ -nλ + b i n ρ nλ cos(nλθ) . (18) 
Both expansions [START_REF] Del Piero | A unified model for adhesive interfaces with damage, viscosity, and friction[END_REF] and [START_REF] Del Piero | Elastic bars with cohesive energy[END_REF] are valid provided that 1 ρ 1/ . Identification of these expansions provides the connections between the coefficients of the inner and outer expansions decribed in Table 1.

Remark 1. From Table 1 can be deduced that the fields w i are constant in the whole inner domain:

w i (y) = a i 0 , ∀y ∈ Ω ∞ , ∀i ≥ 0. ( 19 
)
Therefore, these fields will be determined once the constants a i 0 will be known.

e i n = 0 i ≥ 0, n ≥ 0 f i 0 = a i 0 i ≥ 0 f i n = 0 i ≥ 0, n ≥ 1 a i n = 0 n > i ≥ 0 c i n = a i+n n i ≥ 0, n ≥ 0 b i n = 0 n > i ≥ 0 d i n = b i+n n i ≥ 0, n ≥ 0 Table 1.
The relations between the coefficients of the inner and outer expansions given by the matching conditions 2.2.4. The singular behavior of the u i and the v i . On the matching conditions can be read the behavior of u i in the neighborhood of r = 0 and the behavior of v i at infinity. In particular, the form of their singularities is visible, according to the following definition. 2 and lim ρ→∞ u(ρ, θ) = 0. It is singular otherwise. Remark 2. In other words, a field is regular if the associated elastic energy is finite. It is singular otherwise. In the case of the unbounded domain Ω ∞ , a constant field is with finite energy, but the condition at infinity is added in order to fix the constant and obtain the uniqueness in the forthcoming boundary value problems.

Definition 1. A field u defined in Ω 0 is regular in Ω 0 if u ∈ H 1 (Ω 0 ), i.e. u ∈ L 2 (Ω 0 ) and ∇u ∈ L 2 (Ω 0 ) 2 . It is singular otherwise. A field u defined in the unbounded domain Ω ∞ is regular in Ω ∞ if ∇u ∈ (L 2 (Ω ∞ ))
According to the analysis in the previous subsection, the field u 0 can be expanded in a neighborhood of the tip of the notch as u 0 (x) = a 0 0 ln(r)

+ n∈N b n n r nλ cos(nλθ). ( 20 
)
In the domain Ω 0 , ln(r) is singular whereas r nλ cos(nλθ) is regular for n ≥ 0, in the sense of Definition 1. Accordingly, u 0 is split into into its singular and regular part as follows:

u 0 (x) = u 0 S (x) + ū0 (x), (21) 
u 0 S (x) = a 0 0 ln(r), ū0 ∈ H 1 (Ω 0 ). (22) 
In the same way, for i ≥ 1, the field u i can be expanded in a neighborhood of the tip of the notch as

u i (x) = a i 0 ln(r) + i n=1 a i n r -nλ cos(nλθ) + n∈N b i+n n r nλ cos(nλθ). ( 23 
)
Since r -nλ cos(nλθ) is singular (for n ≥ 0) in the sense of Definition 1, u i is split into its singular and regular part as follows:

u i (x) = u i S (x) + ūi (x), (24) 
u i S (x) = a i 0 ln(r) + i n=1 a i n r -nλ cos(nλθ), ūi ∈ H 1 (Ω 0 ). ( 25 
)
For the fields v i of the inner expansion, the behavior at infinity comes into play. By virtue of the analysis in the previous subsection, the field v i for i ≥ 0 can be expanded for large ρ as

v i (y) = a i 0 ln(ρ) + i n=0 b i n ρ nλ cos(nλθ) + n∈N * a i+n n ρ -nλ cos(nλθ). (26) 
The field ln(ρ) as well as the fields ρ nλ cos(nλθ), for n ≥ 0, are singular in Ω ∞ in the sense of Definition 1 (even the constant field 1 corresponding to n = 0 is singular). Since the fields ρ -nλ cos(nλθ) are regular when n ≥ 1, v i is split into its singular and regular part as follows:

v i (y) = v i S (y) + vi (y), (27) 
v i S (y) = a i 0 ln(ρ) + i n=0 b i n ρ nλ cos(nλθ), ∇v i ∈ L 2 (Ω ∞ ), lim |y|→∞ vi (y) = 0. ( 28 
)
Remark 3. This analysis of the singularities shows that the singular parts of the fields u i and v i will be known once the coefficients a i n and b i n are determined for 0 ≤ n ≤ i.

2.2.5.

The problems defining the regular parts ūi and vi . The singular parts (u i S , v i S ) are harmonic, and satisfy the homogeneous Neumann boundary conditions on the edges of the notch. Therefore the regular parts are harmonic too, with data expressed in terms of the singular fields.

The first outer problem, i = 0 Find ū0 regular in Ω 0 such that

                 ∆ū 0 = 0 in Ω 0 ∂ ū0 ∂ν = 0 on Γ + ∪ Γ - ∂ ū0 ∂ν = h - ∂u 0 S ∂ν on Γ N ū0 = f -u 0 S on Γ D (29) 
The other outer problems, i ≥ 1 Find ūi regular in Ω 0 such that

                 ∆ū i = 0 in Ω 0 ∂ ūi ∂ν = 0 on Γ + ∪ Γ - ∂ ūi ∂ν = - ∂u i S ∂ν on Γ N ūi = -u i S on Γ D (30) 
The first inner problem, i = 0 Find v0 regular in Ω ∞ such that

             ∆v 0 = 0 in Ω ∞ ∂v 0 ∂ν = 0 on Γ + ∪ Γ - ∂v 0 ∂ν = g - ∂v 0 S ∂ν on Γ 1 (31) 
The other inner problems, i ≥ 1 Find vi regular in Ω ∞ such that

             ∆v i = 0 in Ω ∞ ∂v i ∂ν = 0 on Γ + ∪ Γ - ∂v i ∂ν = - ∂v i S ∂ν on Γ 1 (32) 
Consider first the outer problems. The well-posedness is a direct consequence of classical results for the Laplace equation:

Proposition 2. Let i ≥ 0.
For a given singular part u i S , i.e. if the coefficients a i n are known for all n such that 0 ≤ n ≤ i , then there exists a unique solution ūi of (30) (or of (29) when i = 0). Consequently, the coefficients b i+n n are then determined for all n ≥ 0.

As for the inner problems, since they are Neumann problems (except for the condition at infinity), defined in an infinite domain, more care must be taken. The well-posedness is ensured by a compatibility condition, as stated in Proposition 3. Proposition 3. Let i ≥ 0. For given b i n with 0 ≤ n ≤ i, there exists a regular solution vi for the i-th inner problem if and only is the coefficient a i 0 is such that

a 0 0 = - 1 ω Γ 1 g(s)ds, a i 0 = 0 for i ≥ 1. ( 33 
)
Moreover, if this condition is satisfied, then the solution is unique and therefore the coefficients a i+n n are determined for all n ≥ 0.

Proof. The inner problems are pure Neumann problems in which no Dirichlet boundary conditions are imposed to the v i except for the condition at infinity. Consequently, they admit a solution (if and) only if the Neumann data satisfy a global compatibility condition. Let us re-establish that condition. Let Ω R be the part of Ω ∞ included in the ball of radius R > 1, i.e. Ω R = Ω ∞ ∩ {y : |y| < R}. Consider first the case i = 0. Integrating the equation ∆v 0 = 0 over Ω R and using the boundary conditions leads to

0 = ∂Ω R ∂v 0 ∂ν ds = ω 0 ∂v 0 ∂ρ (R, θ)R dθ + Γ 1 g(s)ds. (34) 
Using (26

) yields R ∂v 0 ∂ρ (R, θ) = a 0 0 + n∈N * nλ -c 0 n R -nλ +b 0 n R nλ cos(nλθ).
Since ω 0 cos(nλθ)dθ = 0 for all n ≥ 1, after inserting in [START_REF] Marigo | The effective behavior of elastic bodies containing microcracks or microholes localized on a surface[END_REF], the desired condition for a 0 0 appears. For i ≥ 1, the same process is applied, and the integral over Γ 1 vanishes, yielding the desired condition.

If the compatibility condition ( 33) is satisfied, then the existence of a regular solution for vi is obtained by standard arguments. Note however that, since ∇v i belongs to L 2 (Ω ∞ ), vi tends to a constant at infinity and this constant is fixed to 0 by the additional regularity condition. As far as the uniqueness is concerned, the solution of this pure Neumann problem is unique up to a constant and the constant is fixed by the condition that vi vanishes at infinity. Once v i is determined, the coefficients a i+n n are obtained by virtue of Proposition 1 and (26).

Remark 4. If the forces applied to the boundary of the defect are equilibrated, i.e. if Γ 1 g(s)ds = 0, then all the coefficients a i 0 vanish and hence the terms in ln( ) disappear in the inner expansion. There is no more logarithmic singularities in the u i and the v i .

2.2.6.

The construction of the outer and inner expansions. Recall the relationship between the coefficients (a j n , b j n ) and the singular and regular parts of the u j and v j .

u j = u j S + ūj , u j S ←→ (a j n ) j n=0 , ūj ←→ (b j+n n ) n≥0 , v j = v j S + vj , v j S ←→ (a j 0 , (b j n ) j n=0 ), vj ←→ (a j+n n ) n≥0 . (35) 
Coefficients a j 0 vanish all but a 0 0 given by [START_REF] Marigo | Initiation of cracks in Griffith's theory: an argument of continuity in favor of global minimization[END_REF]. The scheme of the algorithm is the following. Suppose i ≥ 1, and u j and v j are known for 1 ≤ j ≤ i -1. The order of operations at step i is the following:

(1) u i S is determined by (v i-n ) 1≤n≤i , (2) ūi is determined by u i S , (3) v i S is determined by (ū i-n ) 0≤n≤i , ( 4 
) vi is determined by v i S . Details are given below. Initialization S1 Define a 0 0 by [START_REF] Marigo | Initiation of cracks in Griffith's theory: an argument of continuity in favor of global minimization[END_REF] , and hence u 0 S by [START_REF] Francfort | Revisiting brittle fracture as an energy minimization problem[END_REF]. S2 From u 0 S , define ū0 by [START_REF] Jaubert | Justification of Paris-type Fatigue Laws from Cohesive Forces Model via a Variational Approach[END_REF], and hence u 0 = u 0 S + ū0 is determined. S3 Define b n n for n ≥ 0 from [START_REF] Dugdale | Yielding of steel sheets containing slits[END_REF] as the coefficients of ū0 , see the next subsection for the practical method. Hence, v 0 S = a 0 0 + b 0 0 ln(ρ) is determined from [START_REF] Irwin | Fracture[END_REF] . S4 From v 0 S , v0 is computed by [START_REF] Leblond | Mécanique de la rupture fragile et ductile, Collection Études en mécanique des matériaux et des structures[END_REF], and hence v 0 = v 0 S + v0 is determined. S5 Define a n n for n ≥ 1 from (26) as the coefficients of v0 , see the next subsection for the practical method.

For i ≥ 1, suppose that u j and v j have been determined, together with the coefficients in [START_REF] Marigo | Initiation and propagation of fracture in the models of Griffith and Barenblatt[END_REF], for 0 ≤ j ≤ i -1.

R1 Since a i 0 = 0, and writing for 1

≤ n ≤ i, a i n = a (i-n)+n n
, u i S is given by [START_REF] Griffith | The phenomena of rupture and flow in solids[END_REF], where the coefficients are determined by those of the vj for 1 ≤ j ≤ i -1 . R2 ūi is obtained by solving [START_REF] Lawn | Fracture of Brittle Solids -Second Edition[END_REF]. R3 The coefficients b i+n n for n ≥ 0 are extracted from ūi in [START_REF] Geymonat | The matched asymptotic expansion for the computation of the effective behavior of an elastic structure with a thin layer of holes[END_REF][START_REF] Giacomini | Size effects on quasi-static growth of cracks[END_REF], see the next subsection for the practical method. R4 Since a i 0 = 0, and using b i n = b j+n n with j = in, v i S is determined from [START_REF] Irwin | Fracture[END_REF]. R5 vi is obtained by solving [START_REF] Leguillon | Calcul du taux de restitution de l'énergie au voisinage d'une singularité[END_REF]. R6 u i and v i are obtained by summing the singular and regular parts. This iterative method is summarized in Table 2. Table 2. Summary of the inductive method to obtain the coefficients a i n and b i n : in the corresponding cell is indicated the problem which must be solved 2.2.7. The practical method for determining the coefficients a i n and b i n for 0 ≤ n ≤ i. Throughout this section, C r denotes the arc of circle of radius r starting on Γ -and ending on Γ + :

a i n / b i n i=0 i=1 i=2 i=3 i=4 n=0 ( 
C r = {(r, θ) : 0 ≤ θ ≤ ω}.
The coefficients a i n and b i n can be obtained by path integrals (which are path independent) as asserted in the following Proposition. Proposition 4. Let i ≥ 0. Assume that vi and ūi are known. Then (1) For n ≥ 1, a i+n n is given by the following path integral over C ρ ,which is independent of ρ provided that ρ > 1:

a i+n n = 2ρ nλ ω ω 0 vi (ρ, θ) cos(nλθ)dθ. ( 36 
)
(2) For n ≥ 0, b i+n n is given by the following path integral over C r , which is independent of r provided that 0 < r < r * :

b i 0 = 1 ω ω 0 ūi (r, θ)dθ, b i+n n = 2r -nλ ω ω 0 ūi (r, θ) cos(nλθ)dθ for n ≥ 1. ( 37 
)
Proof. The proofs are identical for the two families of coefficients and then only that concerning b i+n n will be given. By [START_REF] Geymonat | The matched asymptotic expansion for the computation of the effective behavior of an elastic structure with a thin layer of holes[END_REF], ūi is given for 0 < r < r * by ūi (r, θ) = p∈N b i+p p r pλ cos(pλθ), which is for fixed r the Fourier series of ūi (r, •). Formulas (37) follow.

2.3. Verification in the case of a small cavity. This subsection is devoted to the verification of the construction of the Matched Asymptotic Expansion presented in the previous subsections on an example where the exact solution is obtained in a closed form and hence can be directly expanded. Specifically, we consider a Laplace's problem posed in a domain which consists in an angular sector delimited by two arc of circles. The radius of the outer circle is equal to 1 while the radius of the inner circle is , see Figure 3. Thus, Ω = {x = r cos θe 1 + r sin θe 2 : r ∈ ( , 1), θ ∈ (0, ω)}. 

Γ D Γ Γ + Γ -
+ ∪ Γ -∪ Γ , (38) 
where Γ ± = {(r, θ) : < r < 1, θ = 0 or ω}, Γ = {(r, θ) : r = , 0 ≤ θ ≤ ω}. (Note that Γ ± depend on , contrarily to the assumption made in the remaining part of the paper. But that has no influence on the results.) The displacement is prescribed on the outer boundary Γ D so that:

u (x) = cos λθ on Γ D , λ = π ω . (39) 
Note that Γ N is empty. Assuming that there is no body force, the exact solution of this anti-plane elastic problem is given by

u (x) = 2λ 1 + 2λ r -λ + 1 1 + 2λ r λ cos λθ. ( 40 
)
Inserting the Taylor series of 1/(1 + 2λ ) = i∈N (-1) i ( 2λ ) i for < 1, the expansion of u at a given x takes the form:

u (x) = r λ cos λθ + n∈N * 2nλ (r -λ -r λ ) cos λθ. (41) 
Thus (41) corresponds to the outer expansion where the odd terms vanish and the even terms are given by

u 0 (x) = r λ cos λθ, u 2n (x) = (-1) n (r λ -r -λ ) cos λθ, ∀n ≥ 1. ( 42 
)
To obtain the inner expansion, replace r by ρ in [START_REF] Vidrascu | Matched asymptotic expansion and domain decomposition for an elastic structure[END_REF], to get

u ( y) = λ 1 + 2λ (ρ -λ + ρ λ ) cos λθ. ( 43 
)
Inserting the Taylor series as before, the expansion of u ( y) is given by

u ( y) = n∈N (-1) n (2n+1)λ (ρ -λ + ρ λ ) cos λθ, (44) 
which corresponds to the inner expansion where the even terms vanish and the odd terms are given by v 2n+1 (y) = (-1)

n (ρ -λ + ρ λ ) cos λθ, ∀n ≥ 0. ( 45 
)
It remains to be checked that he procedure described in the previous subsections yields the same coefficients. Since g = 0, a i 0 = 0 for all i ≥ 0 and there is no logarithmic singularity, see Remark 4. The details for the first steps of the procedure are given below. S1 By [START_REF] Marigo | Initiation of cracks in Griffith's theory: an argument of continuity in favor of global minimization[END_REF], a 0 0 = 0 and hence u 0 S = 0. S2 Hence [START_REF] Jaubert | Justification of Paris-type Fatigue Laws from Cohesive Forces Model via a Variational Approach[END_REF] becomes: ∆u 0 = 0 in Ω 0 , ∂u 0 /∂θ = 0 on θ ∈ {0, ω}, u 0 = cos λθ on r = 1. The unique solution in H 1 (Ω 0 ) is u 0 given by (42). S3 By (37), b 1 1 = 1 and b n n = 0 for n = 1. Hence v 0 S = 0. S4 Since v 0 S = 0 and g = 0, (31) gives v0 = 0 and hence v 0 = 0. S5 By [START_REF] Negri | A comparative analysis on variational models for quasi-static brittle crack propagation[END_REF], a n n = 0 for n ≥ 1. S6 By [START_REF] Griffith | The phenomena of rupture and flow in solids[END_REF], u 1 S = 0. S7 By [START_REF] Lawn | Fracture of Brittle Solids -Second Edition[END_REF], ū1 = 0 and hence u 1 = 0. S8 By [START_REF] Negri | Quasi-static crack propagation by Griffith's criterion[END_REF], b n+1 n = 0 for all n. Hence v 1 S = ρ λ cos λθ. S9 Hence [START_REF] Leguillon | Calcul du taux de restitution de l'énergie au voisinage d'une singularité[END_REF] 

for i = 1 becomes: ∆v 1 = 0 in Ω ∞ , ∂v 1 /∂θ = 0 on θ ∈ {0, ω}, ∂v 1 /∂ρ = -λ cos λθ on ρ = 1.
The unique regular solution is v1 = ρ λ cos λθ and hence v 1 is given by (45). S10 By (36), a 2 1 = 1 and a n+1 n = 0 for n = 1. S11 By (25), u 2 S = r -λ cos λθ. S12 Hence [START_REF] Lawn | Fracture of Brittle Solids -Second Edition[END_REF] for i = 2 becomes: ∆ū 2 = 0 in Ω 0 , ∂ ū2 /∂θ = 0 on θ ∈ {0, ω}, ū2 =cos λθ on r = 1. The unique solution in H 1 (Ω 0 ) is ū2 = -r λ cos λθ and hence u 2 is given by (42).

• • •

Proceeding by induction, the expected expansions are finally recovered . The end of the verification is left to the reader.

Application to the case of a crack

3.1. Setting the problem. In this section, the method is applied to a defect which is a non cohesive crack. Specifically, let Ω be the rectangle (-H, L) × (-H, +H). Let a given parameter in (0, 1),

N = {x = (x 1 , x 2 ) : -H < x 1 ≤ 0, |x 2 | ≤ |x 1 |)}. The notch-shaped body is Ω 0 = Ω\N .
Finally the cracked body Ω is obtained by removing from Ω 0 the line segment Γ = (0, )×{0}, see Figure 4.

The boundary Γ D where the displacement is prescribed corresponds to the sides D ± and D L , with boundary conditions

u (x) =      +H on D + = {-H}×[ H, H], -H on D -= {-H}×[-H, -H], 0 on D L = {L}×[-H, H].
The remaining parts of the boundary (including the lips of the crack) are free, that is Remark 5. The amplitude of the prescribed displacement is normalized to H so that u has the dimension of a length. The fact that the amplitude is equal to the height H has no importance in the present context of linearized elasticity. We will introduce a time dependent amplitude of the prescribed displacement when we study the propagation of the crack. Then the prescribed displacement will take "reasonable" values, controlled by the toughness of the material. Remark 6. The case = 0 corresponds to a body with an initial crack of length H and this limiting case is also considered in this paper. The case = 1 corresponds to a corner with an angle π/2, the sides D ± being reduced to the points (-H, ±H). This limiting case will not be considered here.

∂u ∂x 2 = 0 on Γ = (0, )×{0} 0 on N ± = (-H, L)×{±H} and ∂u ∂n = 0 on Γ ± = {(x 1 , x 2 ) : -H < x 1 < 0, x 2 = ± x 1 }. ⊗ ⊗ ⊗ ⊙ ⊙ ⊙ O D + D - N D L Ω Γ N + N - Γ + Γ -
Remark 7. We only consider the case where the crack path is the line segment (0, L)×{0}. It is a rather natural assumption by virtue of the symmetry of the geometry and the loading. An interesting extension should be to consider non symmetric geometry or loading and hence to take the direction of the crack as a parameter. This extension is reserved for future works.

We are in the case where g = 0 on Γ . Therefore, by virtue of Proposition 3, all the coefficients a i 0 vanish and there is no logarithmic singularities. Accordingly, the solution can be expanded as follows:

Outer expansion u (x) = u 0 (x) + λ u 1 (x) + 2λ u 2 (x) + 3λ u 3 (x) + . . . Inner expansion u (x) = v 0 (y) + λ v 1 (y) + 2λ v 2 (y) + 3λ v 3 (y) + . . . with λ = π ω and ω = 2π -2 arctan( ). ( 46 
)
By symmetry of the geometry and the loading, the real field u is an odd function of x 2 , i.e.

u (x 1 , -x 2 ) = -u (x 1 , x 2 ), u (r, ω -θ) = -u (r, θ).
Therefore, all the fields u i , ūi , v i , vi admit the same symmetry. Therefore by Proposition 4, all coefficients b i+2n 2n and a i+2n 2n vanish. Consequently, the odd terms of the outer expansion and the even terms of the inner expansions vanish, i.e. u 2i+1 = 0 and v 2i = 0 for all i ∈ N. Finally, the solution admits the following expansions:

Outer expansion : u (x) = i∈N 2iλ u 2i (x), (47) 
Inner expansion : u (x) = i∈N (2i+1)λ v 2i+1 (y). ( 48 
)
By symmetry, the following coefficients vanish :

a i n = 0 when n or i -n are even, b i n = 0 when n is even or i -n is odd. ( 49 
)
Examine now the singularities of ∇u (in the sense that ∇u is not bounded) according to whether or not = 0, and according to whether or not = 0.

(1) When > 0 and = 0. Then ∇u 0 is infinite at the tip of the notch and in its neighborhood has the form

∇u 0 (x) = λb 1 1
r 1-λ cos(λθ)e rsin(λθ)e θ + regular terms.

(2) When > 0 and > 0. Then ∇u is no more infinite at the tip of the notch but becomes infinite at the tip of the crack, with the usual singularity in 1/ √ r, see [START_REF] Bui | Mécanique de la rupture fragile[END_REF]. Specifically, ∇u has the form

∇u (x) = K µ √ 2πr sin θ 2 e r + cos θ 2 e θ + regular terms. (50) 
In (50) (r , θ ) denotes the polar coordinate system such that x = ( + r cos θ )e 1 + r sin θ e 2 and the angular function of θ is normalized so that K be the usual stress intensity factor. K depends on and is "strongly" influenced by the presence of the notch when is small. (In fact, K goes to 0 when goes to 0 as we will see below.) So, even if the stresses are only singular at the tip of the crack, there is a kind of overlapping of the previous singularity at the tip of the notch. This phenomenon renders the computations by the finite element method less accurate when is small. (3) When = 0. Then the notch is already a crack and it is unnecessary to treat separately = 0 and > 0. In any case ∇u has the classical singularity in 1 √ r as in (50) and there is no more overlapping of two singularities. The computations by the finite element method are accurate in the full range of values of .

3.2.

The issue of the computation of the energy release rate. The main goal of this section is to obtain accurate values for the elastic energy P stored in the cracked body and for its derivative with respect to , the so-called energy release rate G , when is small. By definition, the elastic energy is given by

P = 1 2 Ω µ∇u • ∇u dx. ( 51 
)
By virtue of Clapeyron's formula, the elastic energy stored in the body when the body is at equilibrium is equal to one half the work done by the external loads over the prescribed displacement on D ± . Therefore, using the symmetry of u , the elastic energy can also be written as an integral over D + :

P = - H H µH ∂u ∂x 1 (-H, x 2 )dx 2 , (52) 
which involves only the displacement field far from the tip of the notch.

By definition, see [START_REF] Bourdin | The variational approach to fracture[END_REF][START_REF] Leblond | Mécanique de la rupture fragile et ductile, Collection Études en mécanique des matériaux et des structures[END_REF], the energy release rate G is the opposite of the derivative of the elastic energy with respect to the length of the crack:

G = - dP d . (53) 
Even though P involves the dependent displacement field u , its derivative does not involve the derivative du /d but can be expressed in terms of u only. This property is a consequence of the fact that u satisfies the equilibrium equations. Specifically, G can be computed either with the help of path integrals like the J integral of Rice [START_REF] Rice | A path independent integral and the approximate analysis of strain concentration by notches and cracks[END_REF] or by using the so-called Gθ method developed in [START_REF] Destuynder | Sur une interprétation mathématique de l'intégrale de Rice en théorie de la rupture fragile[END_REF]. We recall below the main ingredients of both methods when 0 < < L. The cases = 0 and = L are treated separately.

In the former method, the integral J C over the path C is defined by

J C = C µ 2 ∇u • ∇u n 1 -µ ∂u ∂n ∂u ∂x 1 ds,
where n denotes the outer normal of the path. This integral is (theoretically) path-independent and equal to G provided that the path C starts from the lip of the crack, circumvents the tip of the crack and finishes on the lip of the crack like in Figure 5, see [START_REF] Bui | Mécanique de la rupture fragile[END_REF]. This path independency is used to obtain Irwin's formula [START_REF] Irwin | Fracture[END_REF][START_REF] Leblond | Mécanique de la rupture fragile et ductile, Collection Études en mécanique des matériaux et des structures[END_REF]. Indeed, taking for path the circle C r centered at the tip of the crack with radius r , using (50) and passing to the limit when r → 0, the following link between the energy release rate and the stress intensity factor K introduced in (50) is obtained:

G = lim r →0 J C r = K 2 2µ .
For the computations, the particularities of the geometry and of the loading can be exploited, to choose a path made of line segments parallel to the axes like the path C in Figure 5:

⊗ ⊗ ⊗ ⊙ ⊙ ⊙ n a b C C C r
C = {a}×(-H, 0)∪[a, b]×{-H}∪{b}×(-H, H)∪[a, b]×{+H}∪{a}×(0, H) with 0 < a < < b < L.
Then J C = G . Therefore, since n 1 = 0 and ∂u /∂n = 0 on the sides x 2 = ±H and by virtue of the symmetry of u , G takes the form

G = µ {b}×(0,H) ∂u ∂x 2 2 - ∂u ∂x 1 2 dx 2 -µ {a}×(0,H) ∂u ∂x 2 2 - ∂u ∂x 1 2 dx 2 . ( 54 
)
From a theoretical point of view, a and b can be chosen arbitrarily, provided that they satisfy the constraints above. Indeed, the integral over the line segment x 1 = a (resp. (x 1 = b)) does not depend on a (resp. on b) because u is harmonic and satisfies homogeneous Neumann boundary conditions on N ± and Γ . (This verification is left to the reader, see [START_REF] Marigo | Initiation of cracks in Griffith's theory: an argument of continuity in favor of global minimization[END_REF]Proposition 8] for a proof.) However, from a numerical point of view, it is no more true because the computed displacement field does not satisfy exactly the equilibrium equations. Consequently, the computed values of G depend on the choice of a and b. Moreover, since the integral over the line a involves the gradient of the displacement, this integral can be badly approximated when is small because of the singularity.

The Gθ method is based on a change of variables which sends the -dependent domain Ω onto a fix domain. In essence, it is the basic method to prove that → P is differentiable, see [START_REF] Destuynder | Sur une interprétation mathématique de l'intégrale de Rice en théorie de la rupture fragile[END_REF] for the genesis of this method and [START_REF] Chambolle | Revisiting energy release rates in brittle fracture[END_REF] for a discussion on a generalization of the concept of energy release rate. In turn the Gθ approach gives a practical method to compute the energy release rate, see [START_REF] Chambolle | Revisiting energy release rates in brittle fracture[END_REF][START_REF] Destuynder | Sur une interprétation mathématique de l'intégrale de Rice en théorie de la rupture fragile[END_REF]. Specifically, for a given > 0, with a Lipschtiz continuous vector field θ defined on Ω , associate the following volume integral G θ :

G θ = Ω   2 i,j=1 µ ∂θ i ∂x j ∂u ∂x i ∂u ∂x j - µ 2 ∇u • ∇u divθ   dx.
It can shown that, if θ is such that θ( , 0) = e 1 and θ • n = 0 on ∂Ω , then G θ is independent of θ and equal to G . Of course, this result of independency holds only when u is the true displacement field. If it is numerically approximated, then G θ becomes θ dependent. In our case, owing to the simplicity of the geometry, we can use a very simple vector field θ which renders the computations easier. Specifically, let θ be given by

θ(x) =          0 if x 1 < 0, x 1 e 1 if 0 ≤ x 1 ≤ , L -x 1 L - e 1 if ≤ x 1 < L. (55) 
It satisfies the required conditions and hence G θ = G . Accordingly, owing to the symmetry, G takes the form

G = µ L - L H 0 ∂u ∂x 2 2 - ∂u ∂x 1 2 dx 2 dx 1 - µ 0 H 0 ∂u ∂x 2 2 - ∂u ∂x 1 2 dx 2 dx 1 . (56) 
Comparing ( 56) with (54), (56) can be seen as an average of all the line integrals appearing in (54) when a and b vary respectively from 0 to and to and L. Accordingly, it can be expected that (56) gives more accurate computations than (54) when is small.

3.3.

Numerical results obtained for G by the FEM. All the computations based on the finite element method are implemented into the industrial code COMSOL. They are performed after introducing dimensionless quantities. Specifically, in all the computations, the dimensions of the body are H = 1 and L = 5, the shear modulus µ = 1. That does not restrict the generality of the study because the scale dependencies are known in advance. Indeed, the true physical quantities are related to the normalized quantities (denoted with a tilde) by

= H ˜ , u = H ũ , P = µH 2 P , G = µH G . ( 57 
)
For a given ˜ ∈ (0, 5) and a given ∈ (0, 1), we use the symmetry of the body and of the load to mesh only its upper half and prescribe ũ = 0 on the segment ˜ ≤ x1 ≤ 5, x2 = 0. We use 6-nodes triangular elements, i.e. quadratic Lagrange interpolations. The mesh is refined near the singular corners and a typical mesh contains 25000 elements and 50000 degrees of freedom. We compute the discretized solution (still denoted) ũ by solving the linear system. Then, the energy P and the energy release rate G are obtained by a post-processing. The energy is obtained by a direct integration of the elastic energy density over the body. The derivative of the energy is obtained by using formula (56), which needs to integrate the different parts of the elastic energy density over the two rectangles (0, ˜ ) × (0, 1) and ( ˜ , 5) × (0, 1). For a given , we compute P and G for ˜ varying from 0.001 to 5, first by steps of 0.001 in the interval (0, 0.05), then by steps of 0.002 in the interval (0.05, 0. be considered as sufficiently accurate for ˜ ≥ 0.002, even if this lower bound depends on , the computations being less accurate for small (but non-zero) values of . Below this value, if we try to refine the mesh near the corner of the notch, the results become mesh-sensitive, the linear system becomes ill-conditioned. Since only the part of the graph of G close to ˜ = 0 is interesting when is small, we cannot obtain accurate results when is too small.(Of course, this remark does not apply when = 0, because ˜ = 0 is no more a "singular" case.)

The cases ˜ = 0 and ˜ = 5 with = 0 are treated with specific meshes. We have only to compute ũ0 , P0 , ũL and PL , since G0 = GL = 0.

The case = 0 is treated separately by adapting the previous methods. In particular, to calculate G , the second integral in (56) is replaced by an integral over the rectangle (-1, 0)×(0, 1), and this integral is divided by 1 + ˜ instead of ˜ . Moreover, the mesh is refined only near the tip of the crack, ˜ = 0 is no more a particular case and the computations of G are accurate in the full range of ˜ .

Let us highlight the main features of the numerical results plotted in Figure 6. These properties will be the basic assumptions from which we study the crack propagation at the end of the present section.

P1 For = 0, G /µH is monotonically decreasing from 0.4820 to 0 when /H grows from 0 to 5. P2 For > 0, G /µH starts from 0 at /H = 0, then is rapidly increasing. This growth is so important (for instance, G /µH = 0.1443 when /H = 0.002 for = 0.4) that it cannot be correctly captured by the FEM. P3 Still for > 0, G is monotonically increasing as long as P4 For > 0 again, G is monotonically decreasing from G m to 0 when grows from m to 5H.

≤ m . At = m , G

3.4.

Evaluation of the energy release rate by the MAM. By virtue of (52), P can be expanded by using the outer expansion of u . Using (47) leads to

P = i∈N P 2i H 2iλ µH 2 , ( 58 
)
where the coefficients P 2i of the expansions are dimensionless. The expansion of the energy release rate can be immediately deduce from that of the energy:

G = - i∈N * 2iλP 2i H 2iλ-1 µH ( 59 
)
and it is not necessary to use the path integrals J C or the Gθ method. Let us remark that

G 0 = 0 if = 0 -P 2 µH = K 2 0 /2 > 0 if = 0 ( 60 
)
because λ > 1/2 in the former case while λ = 1/2 in the latter.

To obtain the i th term of the expansion of P and G , both the singular part u i S and the regular part ūi of u i must be recovered. The singular part involves the coefficients i n for 1 ≤ n ≤ i which are obtained as the regular parts of the v j for j ≤ i, see Section 2.2.6. Therefore, the inner problems must be solved, to determine the coefficients b i n for 0 ≤ n ≤ i. In practise, these coefficients are obtained by using Proposition 4 after the inner and the outer problems have been solved with a finite element method. The advantage is that those problems do not contain a small defect and the accuracy is guaranteed. The drawback is that more and more problems have to be solved, in order to obtain accurate values of G when /H is not small. In the tables 3 and 4 are given the computed values of the first coefficients of the inner and outer expansions (still with H = 1, L = 5, µ = 1). These tables contain all the terms which are necessary to compute the expansions of the energy up to the sixth order, i.e. P 2i for i ∈ {0, 1, 2, 3}. (Note that P 0 does not appear in the expansion of G .) The graphs of → G obtained from these expansions are plotted on Figure 7 in the cases = 0.2 and = 0.4. They are compared with the values obtained directly by the finite element code Comsol. From these comparisons, the following conclusions can be drawn: C1 For very small values of , the first non trivial term (corresponding to i = 1 in (59)) of the Matched Asymptotic Expansion (denoted by MAM 2 on Figure 7) is sufficient to well approximate G while the FEM is unable to deliver accurate values. C2 For values of of the order of m , at least the first two non trivial terms (corresponding to i = 1 and 2 in (59)) of the MAE (denoted by MAM 4 on Figure 7), are necessary to capture the change of monotonicity of G . Indeed, the first term being monotonically increasing is unable, alone, to capture that change of behavior. C3 Still for values of of the order of m , the first two terms are really sufficient to well approximate G provided that m /H is sufficiently small. Specifically, the first two terms are sufficient as long as /H < 0.2. C4 Accordingly, the approximation of G by the first two non trivial terms of MAE can be used, in the range [0, 2 m ] of when ∈ (0, 0.4). C5 As /H grows beyond 0.2, more and more terms of the MAE must be added, in order to get a good approximation of G . Consequently, in the range of "large" values of /H, the direct FEM is accurate and hence is better to use. 

Application to the determination of the nucleation of the crack

The theoretical and numerical results obtained in the previous sections are used here to study the delicate issue of the nucleation of a crack in a sound body or the most classical question of the onset of a preexisting crack. Specifically, we consider the notched body Ω 0 which either contains a preexisting crack 0 > 0 or is sound, i.e. 0 = 0. We have also to distinguish different cases according to whether = 0 or > 0. The nucleation or the onset of cracking is governed by either the so-called G-law or the so-called FM-law and one goal of this section is to compare those laws. The interested reader can also refer to [START_REF] Bourdin | The variational approach to fracture[END_REF][START_REF] Francfort | Revisiting brittle fracture as an energy minimization problem[END_REF][START_REF] Negri | A comparative analysis on variational models for quasi-static brittle crack propagation[END_REF][START_REF] Negri | Quasi-static crack propagation by Griffith's criterion[END_REF][START_REF] Marigo | Initiation of cracks in Griffith's theory: an argument of continuity in favor of global minimization[END_REF] where other comparisons between G-law and FM-law are proposed.

The notched body is submitted to a time-dependent loading process which consists in a monotonically increasing amplitude of the displacement prescribed on the sides D ± . Specifically, consider the new boundary conditions

u = ±tH on D ± , t ≥ 0. ( 61 
)
the other remain unchanged. (Note that the "time" parameter t is dimensionless.) The evolution problem consists in finding the time evolution of the length of the crack, i.e. t → (t) for t ≥ 0, under the initial condition (0) = 0 ∈ [0, L). For that, we first remark that, for a given time t ≥ 0 and a given crack length ∈ [0, L], the displacement field which equilibrates the body is

u(t, ) = tu , (62) 
where u is the displacement field introduced in Section 3.1. Accordingly, the potential energy and the energy release rate at time t with a crack length can be expressed as

P(t, ) = t 2 P , G(t, ) = t 2 G , (63) 
where P and G are given by ( 51) and (53).

The two evolutions law are based on the crucial Griffith's assumption [START_REF] Griffith | The phenomena of rupture and flow in solids[END_REF] concerning the surface energy associated with a crack. Specifically, assume that there exists a material constant G c > 0 such that the surface energy of the body with a crack of length is

S( ) = G c . (64) 
Accordingly, the total energy of the body at equilibrium at time t with a crack of length becomes

E(t, ) := P(t, ) + S( ) = t 2 P + G c . (65) 
Throughout this section we assume that → P is continuously differentiable and monotonically decreasing. Moreover, some monotonic properties of → G will be added when necessary according to the analysis made in the previous sections.

4.1.

The two evolution laws. Let us briefly introduce the two evolution laws, the reader interested by the details should refer to [START_REF] Marigo | Initiation of cracks in Griffith's theory: an argument of continuity in favor of global minimization[END_REF]. The first one, called the G-law, is the usual Griffith law based on the critical potential energy release rate criterion, see [START_REF] Bui | Mécanique de la rupture fragile[END_REF][START_REF] Leblond | Mécanique de la rupture fragile et ductile, Collection Études en mécanique des matériaux et des structures[END_REF][START_REF] Nguyen | Stability and Nonlinear Solid Mechanics[END_REF]. In essence, this law only investigates smooth (i.e. at least continuous) evolutions of the crack length with the loading. It consists in the three following items:

Definition 2 (G-law ). Let 0 ∈ [0, L]. A continuous function t → (t) is said satisfying (or solution of ) the G-law in the interval [t 0 , t 1 ]
with the initial condition (t 0 ) = 0 , if the three following properties hold

(1) Irreversibility: t → (t) is not decreasing;

(2) Energy release rate criterion:

G(t, (t)) ≤ G c , ∀t ∈ [t 0 , t 1 ]; (3) Energy balance: (t) is increasing only if G(t, (t)) = G c , i.e. if G(t, (t)) < G c at some t, then (t ) = (t) for every t in a certain neighborhood [t, t + h) of t.
The third item implies that the release of potential energy is equal to the created surface energy when the crack propagates which justifies its name of energy balance. Consequently, if t → (t) is absolutely continuous, then the third item is equivalent to ∂E ∂ (t, (t)) ˙ (t) = 0 for almost all t and the following equality holds for almost all t:

d dt E(t, (t)) = ∂E ∂t (t, (t)). (66) 
A major drawback of the G-law is to be unable to take into account discontinuous crack evolutions, which renders it useless in many situations as we will see in the next subsection. It must be replaced by another law which admits discontinuous solutions. Another motivation of changing the G-law is to reinforce the second item by introducing a full stability criterion, see [START_REF] Francfort | Revisiting brittle fracture as an energy minimization problem[END_REF][START_REF] Nguyen | Stability and Nonlinear Solid Mechanics[END_REF][START_REF] Bourdin | The variational approach to fracture[END_REF]. Specifically, let us consider the following local stability condition

∀t ≥ 0, ∃h(t) > 0 : E(t, (t)) ≤ E(t, l) ∀l ∈ [ (t), (t) + h(t)], (67) 
which requires that the total energy at t is a "unilateral" local minimum. (The qualifier unilateral is added because the irreversibility condition leads to compare the energy at t with only that corresponding to greater crack length, see [START_REF] Bourdin | The variational approach to fracture[END_REF]). Taking l = (t) + h with h > 0 in (67), dividing by h and passing to the limit when h → 0, we recover the critical energy release rate criterion. Thus, the second item can be seen as a first order stability condition, weaker than (67). A stronger requirement consists in replacing local minimality by global minimality. It was the condition introduced by Francfort-Marigo in [START_REF] Francfort | Revisiting brittle fracture as an energy minimization problem[END_REF] in the spirit of the original Griffith idea [START_REF] Griffith | The phenomena of rupture and flow in solids[END_REF] and that we will adopt here. Thus, the second evolution law, called FM-law, consists in the three following items Definition 3 (FM-law ). A function t → (t) (defined for t ≥ 0 and with values in [0, L]) is said satisfying (or solution of ) the FM-law if the three following properties hold

(1) Irreversibility: t → (t) is not decreasing;

(2) Global stability: E(t, (t)) ≤ E(t, l), ∀t ≥ 0 and ∀l ∈ [ (t), L];

(3) Energy balance: E(t, (t)) = E(0, 0 ) + t 0 ∂E ∂t (t , (t )) dt , ∀t ≥ 0. Let us note that the irreversibility condition is unchanged, while the energy balance condition is now written as the integrated form of (66), which does not require that t → (t) be continuous. Note also that the energy balance implies (0) = 0 because 0 = E(0, (0))-E(0, 0 ) = G c ( (0)-0 ), and that the second item is automatically satisfied at t = 0 because E(0, l) = G c l.

4.2.

The main properties of the G-law and the FM-law . We recall or establish in this subsection some results for the two evolution laws under the assumptions of monotonicity of → G resulting of the numerical computations, see P1-P4 in Section 3.3. Some of those results have a general character and have been previously established in [START_REF] Bourdin | The variational approach to fracture[END_REF][START_REF] Francfort | Revisiting brittle fracture as an energy minimization problem[END_REF][START_REF] Marigo | Initiation of cracks in Griffith's theory: an argument of continuity in favor of global minimization[END_REF] while the other ones are specific to the present problem. In the case of properties which have already been obtained, we simply recall them without proofs.

Let us first consider the case when the notch is in fact a crack. Then, the two laws are equivalent by virtue of Proposition 5. In the case = 0, since → G is decreasing from G 0 > 0 to 0 when goes from 0 to L (see Property P1), the G-law and the FM-law admit the same and unique solution. Specifically, the preexisting crack begins to propagate at time t i such that t i 2 G 0 = G c . Then the crack propagates continuously and (t) is such that t 2 G (t) = G c . Since G L = 0, the crack will not reach the end L in a finite time.

Proof. See [START_REF] Marigo | Initiation of cracks in Griffith's theory: an argument of continuity in favor of global minimization[END_REF]Proposition 18]. In the case of a guenuine notch, as far as the nucleation and the propagation of a crack with the G-law are concerned, we have Proposition 6. In the case > 0, according to 0 = 0 or 0 ∈ (0, m ) or 0 ∈ [ m , L), the crack evolution predicted by the G-law is as follows (1) If 0 = 0, since G 0 = 0, the unique solution to G-law is (t) = 0 for all t, i.e. there is no crack nucleation; (2) If 0 ∈ (0, m ), then the preexisting crack begins to propagate at time t i such that t i 2 G 0 = G c . But at t i the propagation is necessarily discontinuous and hence there is no continuous solution to G-law for t ≥ t i ;

(3) If 0 ∈ [ m , L), since → G is monotonically decreasing in the interval ( m , L), the situation is the same as in Proposition 5. There exists a unique solution for the G-law: the crack begins to propagate at t i (still given by t i 2 G 0 = G c ) and then propagates continuously until L which is reached asymptotically.

Proof. Let us give the sketch of the proof for the first two items.

(1) Since 0 = 0 and G 0 = 0, then for all t ≥ 0 one gets 0 = G(t, 0) < G c and hence (t) = 0 is a solution. The uniqueness follows from the initial condition and the energy balance. (2) Since 0 < 0 < m , then G 0 > 0 and hence

t 2 G 0 = G(t, 0 ) ≤ G c if and only if t ∈ [0, t i ].
Since the inequality is strict when t ∈ [0, t i ), then (t) = 0 is the unique solution in this interval because of the initial condition and the energy balance. By continuity, it is also the unique solution in the closed interval [0, t i ]. On the other hand, since G(t, 0 ) > G c when t > t i , the crack must begin to propagate at t i .

Let us show that no (continuous) evolution can satisfy the G-law for t > t i . Indeed, by construction G(t i , (t i )) = t i 2 G 0 = G c . But since (t) ≥ i for t > t i and since → G is monotonically increasing in the neighborhood of 0 < m , it holds for t ∈ (t i , t i + h) and a sufficiently small h > 0:

0 < (t) < m , G(t, (t)) > G(t i , 0 ) = G c .
Therefore the energy release rate criterion cannot be satisfied by a continuous evolution in a neighborhood of t i . The unique possibility is that the length of the crack jumps from 0 to some i > m at time t i . But that requires to reformulate the G-law.

The proof of the third item is the same as in the previous Proposition and hence refers to [START_REF] Marigo | Initiation of cracks in Griffith's theory: an argument of continuity in favor of global minimization[END_REF]Proposition18].

Remark 8. This property of no nucleation of a crack at a notch or of brutal propagation of a short crack is due to the fact that a notch with Neumann boundary conditions induces a weak singularity only, i.e. λ > 1/2. If one changes the boundary conditions by imposing the displacement on one edge of the notch and the stress on the other edge, then the singularity becomes strong for ω large enough and in such a case all the properties of nucleation are changed, see [START_REF] Francfort | Revisiting brittle fracture as an energy minimization problem[END_REF]Proposition 4.19].

Consider now the FM-law. It is proved in [START_REF] Marigo | Initiation of cracks in Griffith's theory: an argument of continuity in favor of global minimization[END_REF]Proposition 3] that, in the case of a monotonically increasing loading, the FM-law is equivalent to a minimization problem of the total energy at each time, as precisely stated in the following Lemma Lemma 7. Let 0 ∈ [0, L) be the initial length of the crack. A function t → (t) satisfies the FMlaw if and only if, at each t, (t) is a minimizer of l → E(t, l) over [ 0 , L]. Therefore, the FM-law admits at least one solution and each solution grows from 0 to L.

This property holds true for any ≥ 0. In the case > 0 we can deduce precise results: Proposition 8. In the case > 0, according to 0 ∈ [0, m ) or 0 ∈ [ m , L), the crack evolution predicted by the FM-law is as follows

(1) If 0 ∈ [0, m ), then the nucleation (if 0 = 0) or the propagation of the preexisting crack (if 0 = 0) starts at time t i > 0 and at this time the crack length jumps instantaneously from 0 to i . The length i is the unique length in ( m , L) such that

i 0 G d = ( i -0 )G i or equivalently P 0 -P i = ( i -0 )G i (68)
while the time t i is given by

t i 2 G i = G c . ( 69 
)
After this jump, the crack propagates continuously from i to L, the evolution satisfying then the G-law, i.e.

t 2 G (t) = G c , ∀t > t i .
( ), since → G is monotonically decreasing in the interval ( m , L), the situation is the same as in Proposition 5. There exists a unique solution for the FM-law which is the same as for the G-law: the crack begins to propagate at t i such that t i 2 G 0 = G c and then propagates continuously until L which is reached asymptotically. Remark 9. Before the proof of this Proposition, let us comment and interpret the equation (68) giving the jump of the crack at t i .

) If 0 ∈ [ m , L 2 
• Let us first prove that i is well defined by (68). Let → g( ) be the function defined for ∈ ( m , L) by

g( ) = 0 G l dl -( -0 )G .
Its derivative is given by g

( ) = -( -0 )G and hence is positive because G is decreasing in ( m , L). Since G < G m := G m , g( m ) < 0 whereas g(L) > 0 because G L = 0.
Therefore, there exists a unique ∈ ( m , L) such that g( ) = 0, what is precisely the definition of i . • The equation (68) giving i has a graphical interpretation. Indeed, the integral over ( 0 , i ) represents the area under the graph of → G between the lengths 0 and i . On the other hand the product ( i -0 )G i represents the area of the rectangle whose height is G i := G i . Therefore, since these two areas are equal, the two gray areas of Figure 8 are also equal. This rule of equality of the areas determines i and, by essence, the line G = G i is the classical Maxwell line which appears in any problem of minimization of a non convex function. • Note that i is independent of the toughness G c and of the shear modulus µ of the material. It is a characteristic of the structure and merely depends on the geometry and the type of loading. Here, it depends on , H and L. For a given and a given ratio L/H, i is proportional to H, i = ˜ i H. This property is a consequence of the Griffith assumption on the surface energy. • The critical loading amplitude t i depends on the toughness and on the size of the body. Since G i = G i µH, t i varies like 1/ √ H. This size effect is also a consequence of the Griffith assumption on the surface energy.

• By virtue of (68) and (69), the energy balance holds at time t i even if the crack jumps at this time, i.e. the total energy of the body just before the jump is equal to the total energy just after. Indeed, those energies are respectively given by

E(t i -, 0 ) = t i 2 P 0 + G c 0 , E(t i +, i ) = t i 2 P i + G c i .
Using (68), (69) and the equality P 0 -P

i = i 0 G d , then E(t i -, 0 ) = E(t i +, i ).
Proof of Proposition 8. We just prove the first part of the Proposition and the reader should refer to [START_REF] Marigo | Initiation of cracks in Griffith's theory: an argument of continuity in favor of global minimization[END_REF]Proposition 18] for the proof of the second part. Let 0 ∈ [0, m ). By virtue of Lemma 7, (t) is a minimizer of → E(t, ) over [ 0 , L]. (The minimum exists because the energy is continuous and the interval is compact.) Let i , t i be given by ( 68)-( 69), let G i = G i and let * i be the other length such that G * i = G i , see Figure 8. Let us first remark that the function → ḡ( ) defined on [ 0 , L] by ḡ( ) := G i ( -0 ) -P 0 -P is non negative and vanishes only at 0 and i . Indeed, its derivative is ḡ ( ) = G i -G . Hence, ḡ is first increasing from 0 when grows from 0 to * i , then decreasing to 0 when grows from * i to i , and finally increasing again from 0 when grows from i to L.

Let us show that 0 is the unique minimizer of the total energy when t < t i . From (68) and (69), we get for all ∈ [ 0 , L] and all t ≤ t i :

E(t, ) -E(t, 0 ) = -t 2 (P 0 -P ) + G c ( -0 ) ≥ t 2 ḡ( ) ≥ 0.
Moreover, the inequalities above are equalities if and only if = 0 when t < t i and the result follows. Using the same estimates, we can deduce that 0 and i are the two minimizers of the total energy at t = t i .

Let us show now that the minimizer is in the open interval ( i , L) when t > t i . From (68) and (69), we get for all ∈ [ 0 , i ) and all t > t i :

E(t, ) -E(t, i ) = t 2 (P -P i ) -G c ( i -) > t i 2 P -P i -G i ( i -) = t i 2 ḡ( ) -ḡ( i ) = t i 2 ḡ( ) ≥ 0.
Hence, the minimizer cannot be in [ 0 , i ). Since the derivative of the total energy at = i is equal to G c -t 2 G i < 0, i is not the minimizer. In the same manner, since the derivative of the total energy at = L is equal to G ct 2 G L = G c > 0, L cannot be the minimizer. Therefore, the minimizer is in the interval ( i , L) when t > t i . Hence, it must be such that the derivative of the total energy vanishes, which yields t 2 G (t) = G c . Since → G is monotonically decreasing from G i to 0 when goes from i to L, there exists a unique (t)

∈ ( i , L) such that G (t) = G c /t 2 < G i .
The proof of the first part is complete.

4.3.

Computation of the crack nucleation by the MAM. Let us consider the cases where is sufficiently small in order that → G be well approximated by the first two non trivial terms of its Matched Asymptotic Expansion for in the interval [0, 2 m ], see C4. Accordingly, we have

G µH ≈ 2λ |P 2 | H 2λ-1 -4λ |P 4 | H 4λ-1 , (70) 
using the fact that P 2 < 0 and P 4 > 0. Therefore, the length m where G is maximal and the maximum G m are approximated by

m H ≈ (2λ -1) |P 2 | 2(4λ -1) |P 4 | 1 2λ , G m µH ≈ 4λ 2 |P 2 | 4λ -1 (2λ -1) |P 2 | 2(4λ -1) |P 4 | 2λ-1 2λ . (71) 
Comparing with the values obtained by the FEM (see P3 and Table 5), it appears that the agreement is very good for the maximum G m , less good for m . The reason is that the localization of m by the FEM is quite imprecise because the graph of G is very flat near m : for instance, for = 0.3, G computed at ˜ = 0.092 is equal to 0.27327 while it is equal to 0.27307 at ˜ = 0.082, i.e. with a relative difference less than 10 -4 .

One can see also in Table 5 that the contribution of the next term, i.e. MAM 6, is weak when is less than 0.2. Its influence, in particular on i , can be no more neglected when ≥ 0. Using MAM 4 to calculate the nucleation, we obtain the following result Proposition 9. In the case of a genuine notch > 0,

(1) if the body does not contain a preexisting crack ( 0 = 0), then the time t i at which the crack nucleates and the length i of the nucleated crack at this time are approximated with the MAM 4 by ,

t i 2 ≈ 1 λ 2 1 2λ G c G m ≈ t c 2 8λ 3 4λ -1 |P 2 | 2-1 2λ 4P 4 2λ -1 1-1 2λ , (72) 
where t c 2 = G c /µH; (2) if the body contains a preexisting crack of length 0 such that 0 < 0 < m , then the length i at which the crack jumps at the onset of the propagation is the unique solution greater than m of

0 = |P 2 | (2λ -1) 2λ i -2λ 0 2λ-1 i + 2λ 0 H 2λ -P 4 (4λ -1) 4λ i + 4λ 0 4λ-1 i -4λ 0 , (73) 
while the time t i at which the onset occurs is given by t i 2 = G c /G i . Therefore, i and t i decrease from the values given by (72) to m and G c /G m given by (71) when 0 runs from 0 to m .

Proof. When 0 = 0, using MAM 4, then (68) becomes 0 = (2λ -1)

|P 2 | i H 2λ -(4λ -1) |P 4 | i H 4λ .
Using (71), (72) can be deduced after some calculations left to the reader. In the same manner, (73) is a direct consequence of (68) and (70). The monotonicity of i and t i with respect to 0 is easily checked from the graphical interpretation of (73), see Figure 8.

Therefore, since 1/2 < λ < 1 for a genuine notch, the length of the nucleated crack i is less than 2 m while the critical time t i is not greater than 2 where P 2 ≈ -0.4820 and P 4 ≈ 0.3282. Therefore we recover the response associated with a crack when the notch angle tends to 2π. The FM-law delivers an evolution which depends continuously of the parameter , in contrast with the G-law .

As long as the dependence of t i on 0 is concerned, it turns out that the FM-law predicts that the variation of t i is small when 0 goes from 0 to m as can be seen on Figure 9 for = 0.4. Indeed, t i /t c decreases from 2.153 to 2.105 when 0 varies from 0 to m = 0.112 H. That constitutes also a strong difference with the prediction of the G-law for which t i goes to infinity when 0 goes to 0. 

Conclusion and Perspectives

We have presented here a general method based on matched asymptotic expansions which can be applied to determine the mechanical fields and all related mechanical quantities in the case of a defect located at the tip of a notch. Applying this method to the case of a non cohesive crack, it turns out that it is sufficient to solve a few inner and outer problems to compute with a very good accuracy the dependency of the energy and the energy release rate on the length of the crack. Moreover, this approximation can be used for very small values of the length of the crack and hence to determine the onset of the cracking, whereas a classical finite element method gives rise to inaccurate results. In particular, the matched asymptotic method permits to compare the nucleation process of a crack at the tip of the notch which is predicted by the classical Griffith criterion with that predicted by the principle of energy minimization proposed in [START_REF] Francfort | Revisiting brittle fracture as an energy minimization problem[END_REF]. It turns out that the latter principle gives rise to much more relevant results than the former, from a physical viewpoint.

A natural extension of this work is to consider situations where the geometry and the loading have no symmetry and hence the direction that the nucleated crack will choose must also be predicted. Let us note that the G-law alone is not able to give an answer, and another criterion must be supplemented. In an anti-plane setting, the principle of local symmetry which is by essence made for an isotropic plane setting, cannot be used. It turns out that the FM-law in its general statement can also predict the direction and more generally the path of the crack, see [START_REF] Chambolle | When and how do cracks propagate?[END_REF][START_REF] Chambolle | Revisiting energy release rates in brittle fracture[END_REF][START_REF] Francfort | Revisiting brittle fracture as an energy minimization problem[END_REF]. So, an interesting challenge should be to use the MAM and the FM-law in a non symmetric case to predict also the direction of nucleation. Another natural and desirable extension of the present work is to develop the method in a plane elasticity setting. It seems that there is no conceptual difficulty to do that. The last perspective concerns the choice of the surface energy. Indeed, the present study is based on the crucial Griffith assumption that the surface energy is proportional to the crack area. This assumption has very important consequences on the nucleation as we have seen in the paper. With this hypothesis, there is no cohesive force and hence the model does not contain the concept of critical stress. An important step will be to apply the MAM in the case of a cohesive crack [START_REF] Barenblatt | The mathematical theory of equilibrium cracks in brittle fracture[END_REF][START_REF] Dugdale | Yielding of steel sheets containing slits[END_REF][START_REF] Del Piero | A unified model for adhesive interfaces with damage, viscosity, and friction[END_REF] which automatically contains a critical stress and even a characteristic length. The goal will be to study the influence of those critical stress and characteristic length on the nucleation and the propagation of a crack in the spirit of the previous works based on the variational approach to fracture [START_REF] Abdelmoula | Construction and justification of Paris-like fatigue laws from Dugdale-type cohesive models[END_REF][START_REF] Bourdin | The variational approach to fracture[END_REF][START_REF] Charlotte | Initiation of cracks with cohesive force models: a variational approach[END_REF][START_REF] Del Piero | Elastic bars with cohesive energy[END_REF][START_REF] Ferdjani | Insensitivity to small defects of the rupture of materials governed by the Dugdale model[END_REF][START_REF] Giacomini | Size effects on quasi-static growth of cracks[END_REF][START_REF] Jaubert | Justification of Paris-type Fatigue Laws from Cohesive Forces Model via a Variational Approach[END_REF][START_REF] Marigo | Initiation and propagation of fracture in the models of Griffith and Barenblatt[END_REF].
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 6 Figure 6. Computation by the Finite Element Method of the energy release rate G as a function of the crack length for five values of the notch angle.

Table 3 .Table 4 .
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 7 Figure 7. Comparisons of the graph of G obtained by the Matched Asymptotic Method or by the finite element code COMSOL in the cases = 0.2 (above) and = 0.4 (below). The diamonds correspond to the points obtained by FEM while the curves MAM 2i, i ∈ {1, 2, 3}, correspond to the values obtained by considering the first i non trivial terms in the expansion of G .

Figure 8 .

 8 Figure 8. Graphical interpretation of the criterion of crack nucleation given by FM-law and which obeys to the Maxwell rule of equal areas.
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 9 Figure 9. Time at which a preexisting crack starts in function of its length in the case where the notch parameter = 0.4. Plain line: from the FM-law ; dashed line: from the G-law

  takes its maximal value G m . Those values which depend on are given in the table below. It turns out that m /H is rather small.

		0	0.1	0.2	0.3	0.4
	m /H	0	0.024 0.058 0.092 0.130
	G m /µH 0.4820 0.3900 0.3260 0.2733 0.2279

Table 5 .

 5 3. Note also that MAM 4 underestimates while MAM 6 overestimates the lengths m and i . This bounding property is due to the alternate change of sign of the coefficients P 2i with i. However, it is checked numerically only, we are not able to prove it. /µH by FEM 0.4820 0.3864 0.3195 0.2650 0.2188 G i /µH by MAM 4 0.4820 0.3877 0.3195 0.2635 0.2157 G i /µH by MAM 6 0.4820 0.3881 0.3208 0.2662 0.2201 t i /t c by FEM 1.440 1.605 1.766 1.938 2.132 t i /t c by MAM 4 1.440 1.606 1.769 1.916 2.153 t i /t c by MAM 6 1.440 1.605 1.766 1.938 2.131 Comparisons of the values of m , G m , i , G i and t i obtained by the FEM with those obtained by MAM 4 and MAM 6.

		0	0.1	0.2	0.3	0.4
	λ	0.5	0.5164 0.5335 0.5511 0.5689
	m /H by FEM	0	0.024 0.058 0.092 0.130
	m /H by MAM 4	0	0.0255 0.0533 0.0823 0.1124
	m /H by MAM 6	0	0.0267 0.0584 0.0953 0.1387
	G m /µH by FEM 0.4820 0.3900 0.3260 0.2733 0.2279
	G m /µH by MAM 4 0.4820 0.3917 0.3264 0.2724 0.2257
	G m /µH by MAM 6 0.4820 0.3917 0.3274 0.2743 0.2287
	i /H by FEM	0	0.0517 0.1131 0.1814 0.2561
	i /H by MAM 4	0	0.0499 0.1020 0.1544 0.2067
	i /H by MAM 6	0	0.0530 0.1163 0.1923 0.2964
	G i				

  1/4 G c /G m . For very sharp notch, i.e. when is small, then 2λ ≈ 1 + /π and

	i ≈	|P 2 | πP 4	H, t i	2 ≈	G c |P 2 | µH	,

u (x) = i∈N iλ u i (x).(7)
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