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Introduction

Bernstein processes or reciprocal diffusions combine two dynamic behaviors : forward and backward. These processes are useful tools of stochastic quantum mechanics, and also find applications in various other fields.

We give in this paper an explicit expression for the distribution density of a special Bernstein process. This process is similar to the Cox-Ingersoll-Ross process of financial mathematics. Indeed, more recently it has appeared that each onefactor affine interest rate model (in the sense of Leblanc-Scaillet) could be described using such a Bernstein process.

The groundbreaking idea of replacing the complex Schrödinger equation by forward and backward heat equations in duality goes back to Schrödinger.

Professor Paul Lescot has computed two solutions of the dual equation by using the Gaussian character of Ornstein-Uhlenbek process and Brownian motion. In this paper, this goal will be reached by using another class of diffusion which is that of Bessel processes.

Let us first give some definitions and recall some preliminary results. ∂η * ∂q η * and, for each given t > 0, the law of z(t) is η(t, q)η * (t, q)dq.The function η is assumed to be an everywhere positive solution to

θ 2 ∂η ∂t = - θ 4 2 ∂ 2 η ∂q 2 + V η (C (V ) 1 ) .
Similarly, η * is assumed to be everywhere positive and a solution to

-θ 2 ∂η * ∂t = - θ 4 2 ∂ 2 η * ∂q 2 + V η * (C (V )
2 ) .

Definition 1.2. [1, p.454 (2.1)] The Bessel function J λ with index λ ∈ C is defined by

J λ (z) = ( z 2 ) λ ∞ n=0 (-z 2 ) n 2 2n n! Γ(n + λ + 1)
.

This function satisfies the Bessel equation with parameter λ ∈ C

z 2 ω + z ω + (z 2 -λ 2 ) ω = 0 (1.1)
Definition 1.3. The Bessel modified function I ν with index ν ∈ R is defined by

I ν (z) = i -ν J ν (iz) .
This function satisfies the linear differential equation of second order

z 2 Ïν (z) + z İν (z) -(z 2 + ν 2 )I ν (z) = 0 . (1.2) Indeed, we have I ν (z) = i -ν J ν (iz) , İν (z) = i -ν i Jν (iz) et Ïν (z) = i -ν i 2 Jν (iz) . Equation (1.1) gives (iz) 2 i ν i -2 Ïν (z) + iz i ν i -1 İν (z) + (-z 2 -ν 2 ) i ν I ν (z) = 0 z 2 Ïν (z) + z İν (z) -(z 2 + ν 2 )I ν (z) = 0 , which yields (1.2).
We refer to [START_REF] Dieudonné | Calcul infinitésimal[END_REF] for details on Bessel functions.

Definition 1.4. For all δ ≥ 0 and x 0 ≥ 0, the unique solution of

Y t = x 0 + δt + 2 t 0 |Y s |dw s .
starting from x 0 , is called squared Bessel process of dimension δ. This process will be denoted by BESQ δ x0 . We refer to [START_REF] Göing | A survey and some generalizations of Bessel processes[END_REF] and [START_REF] Revuz | Continuous martingales and Brownian motion, volume 293 of Grundlehren der Mathematischen Wissenschaften[END_REF] for a survery on Bessel processes. Proposition 1.5. [5, p.441 (1.4)] If x 0 = 0, then the density q δ t of the law of Y t is given by

q δ t (0, y) = (2t) -δ 2 Γ( δ 2 ) -1 y δ 2 -1 exp(- y 2t ) , t > 0 . (1.3)
If x 0 > 0, then the density q δ t of the law of Y t is given by

q δ t (x 0 , y) = 1 2t ( y x 0 ) ν 2 exp(- x 0 + y 2t ) I ν ( √ x 0 y t ) , t > 0 (1.4)
where ν: = δ 2 -1.

ON AFFINE INTEREST RATE MODELS

Let (Ω, F , (F t ) t≥0 , Q) be a filtered probability space, and let w(t) t≥0 be an (F t ) t≥0 standard Brownian motion.

A one-factor affine interest rate model is characterized by the instantaneous rate r(t), satisfying the stochastic differential equation

dr(t) = αr(t) + β dw(t) + (φ -λr(t)) dt under the risk-neutral probability Q ([3], p.351).
Assuming α = 0, let us set, with the notations of Lescot [START_REF] Lescot | On affine interest rate models[END_REF],

φ = φ + λβ α , δ = 4 φ α , A = α 4 128 (δ -1)(δ -3) , and 
B = λ 2 8 .
Proposition 2.1. (Lescot [START_REF] Lescot | On affine interest rate models[END_REF]). Let X t be defined by

X t = αr(t) + β .
The process X is called the Cox-Ingersoll-Ross process. Define Z(t) by

Z(t) = αr(t) + β .
Then Z is a Bernstein process with θ = α 2 and the potential

V (t, q) = A q 2 + Bq 2 . Lemma 2.2. [2, p.314 (2))]. Let X 0 = x 0 , then X t = e -λt Y (s) ,
where s = α 2 (e λt -1)

4λ
and Y is BESQ δ x0 .

Our main result is the following :

We determine two solutions of the dual equation (C

(V )
2 ), when the potential V is written as

V (t, q) = A q 2 + Bq 2 .
Firstly we search ρ t (q) the density of the law of Z t . Here, two cases arise : x 0 = 0 or x 0 > 0. Proposition 2.3. If x 0 = 0, then the density ρ t (q) of the law of Z t is written as

ρ t (q) = α -δ 2 δ 2 +1 λ δ 2 (e λt -1) -δ 2 Γ( δ 2 ) -1 q δ-1 exp( λδ 2 t) exp( -2λe λt q 2 α 2 (e λt -1) )1 {q>0} .
Proof. For fixed t and for all g bounded continuous,

E (g(X t )) = E [g (exp(-λt)Y (s))] = (1.3) ∞ 0 g(exp(-λt)y)(2s) -δ 2 Γ( δ 2 ) -1 y δ 2 -1 exp(- y 2s )dy = (2s) -δ 2 Γ( δ 2 ) -1 ∞ 0 g(exp(-λt)y)y δ 2 -1 exp(- y 2s )dy .
By the change of variable x = exp(-λt)y, we get

E (g(X t )) = (2s) -δ 2 Γ( δ 2 ) -1 ∞ 0 g(x)[x exp(λt)] δ 2 -1 exp(- e λt x 2s ) exp(λt)dx = ∞ 0 g(x)(2s) -δ 2 Γ( δ 2 ) -1 x δ 2 -1 exp( λδ 2 t) exp(- e λt x 2s )dx.
Then the density ℓ Xt of the law of X t is given by

ℓ Xt (x) = α -δ (2λ) δ 2 (e λt -1) -δ 2 Γ( δ 2 ) -1 x δ 2 -1 exp( λδ 2 t) exp( -2λe λt x α 2 (e λt -1) )1 {x>0} .
For fixed t and for all bounded continuous ϕ, we have

E[ϕ(Z t )] = E[ϕ( X t )] = ∞ 0 ϕ( √ x)ℓ Xt (x)dx .
By the change of variable q = √ x , we get

E[ϕ(Z t )] = ∞ 0 ϕ(q)α -δ (2λ) δ 2 (e λt -1) -δ 2 Γ( δ 2 ) -1 q δ-2 exp( λδ 2 t) exp( -2λe λt q 2 α 2 (e λt -1) ) 2qdq = ∞ 0 ϕ(q)α -δ 2 δ 2 +1 λ δ 2 (e λt -1) -δ 2 Γ( δ 2 ) -1 q δ-1 exp( λδ 2 t) exp( -2λe λt q 2 α 2 (e λt -1) ) dq .
This proves the result.

Let η(t, q) be defined by

η(t, q) = exp( λδt 4 - λq 2 α 2 ) q δ-1 2 .
The function η is a solution of

θ 2 ∂η ∂t = - θ 4 2 ∂ 2 η ∂q 2 + V η (C (V ) 1 ) , with V (t, q) = A q 2 + Bq 2 .
Proposition 2.4. The function η * (t, q) defined by

η * (t, q) = ρ t (q) η(t, q) = 2 δ 2 +1 α δ λ δ 2 Γ( δ 2 ) (e λt -1) -δ 2 q δ-1 2 exp( λδt 4 - λq 2 α 2 tanh( λt 2 )
) ,

satisfies the dual equation

-θ 2 ∂η * ∂t = - θ 4 2 ∂ 2 η * ∂q 2 + V η * (C (V )
2 ) .

Proof. Let C = α -δ 2 δ 2 +1 λ δ 2 Γ( δ 2 ) -1
and

C 1 = C(e λt -1) -δ 2 . We have ∂η * ∂t = - δ 2 (λe λt ) + λδ 4 - λq 2 α 2 (- 2λe λt (e λt -1) 2 ) C(e λt -1) -δ 2 -1 q δ-1 2 exp( λδt 4 - λq 2 α 2 tanh( λt 2 ) ) , ∂η * ∂q = ( δ -1 2 ) q δ-3 2 + q δ-1 2 (- 2λq α 2 tanh( λt 2 ) ) C 1 exp( λδt 4 - λq 2 α 2 tanh( λt 2 )
) ,

∂ 2 η * ∂q 2 = ( δ -1 2 )( δ -3 2 ) q δ-5 2 + ( δ -1 2 ) q δ-3 2 (- 2λq α 2 tanh( λt 2 
)

) + q δ-1 2 (- 2λ α 2 tanh( λt 2 ) ) + ( δ -1 2 ) q δ-3 2 (- 2λq α 2 tanh( λt 2 ) ) + q δ-1 2 (- 2λq α 2 tanh( λt 2 ) ) 2 C 1 exp( λδt 4 - λq 2 α 2 tanh( λt 2 ) 
) , and

V (t, q) η * (t, q) = ( A q 2 + Bq 2 ) η * (t, q) = ( α 4 2 7 (δ -1)(δ -3) q -2 + λ 2 2 3 q 2 ) η * (t, q) = α -δ+4 2 δ 2 -6 λ δ 2 (δ -1)(δ -3)q δ-5 2 + α -δ 2 δ 2 -2 λ δ 2 +2 q δ+3 2 Γ( δ 2 ) 
-1

(e λt -1) -δ 2 × exp( λδt 4 - λq 2 α 2 tanh( λt 2 )
) .

It is then straightforward to see that, for all (t, q

) ∈ R * + × R * + , -θ 2 ∂η * ∂t = - θ 4 2 ∂ 2 η * ∂q 2 + V η * (C (V )
2 ) .

Proposition 2.5. If x 0 > 0, then the density ρ t (q) of the law Z t is given by

ρ t (q) = 4λ α 2 z ν 0 e λt( δ 4 + 1 2 ) (e λt -1) I ν ( 4λz 0 e λt 2 q α 2 (e λt -1) ) q δ 2 exp(- 2λ α 2 ( z 2 0 + e λt q 2 (e λt -1)
))1 {q>0} .

Proof. We have

X t = e -λt Y (s) , s = α 2 4λ (e λt -1)
and

Z t = √ X t Z 0 = √ x 0 .
For fixed t, for all g bounded continuous, using (1.4), we get

E(g(Z t )) = E g( e -λt Y (s)) = ∞ 0 g( e -λt y) 1 2s ( y x 0 ) ν 2 exp(- x 0 + y 2s ) I ν ( √ x 0 y s )dy .
By the change of variable z = e -λt y, we obtain

E(g(Z t )) = ∞ 0 g(z) 1 2s ( e λt z 2 z 2 0 ) ν 2 exp(- z 2 0 + e λt z 2 2s ) I ν ( z 0 ze λt 2 s ) 2ze λt dz .
We then find the density ρ t (q) of the law de Z t by replacing s and ν by their value.

Proposition 2.6. The function η * (t, q) defined by

η * (t, q) = ρ t (q) η(t, q) = 4λ α 2 z ν 0 e λt 2
(e λt -1) I ν ( 4λz 0 e λt 2 q α 2 (e λt -1)

)

q 1 2 exp( λq 2 α 2 - 2λ α 2 ( z 2 0 + e λt q 2 (e λt -1) ))
satisfies the dual equation (C

(V )
2 ).

Proof. We have

∂η * ∂t = (- 2λ 2 α 2 z ν 0 e λt 2 (e λt + 1) (e λt -1) 2 q 1 2 + 8λ 3 α 4 z ν 0 e 3λt 2 (e λt -1) 3 q 5 2 + 8λ 3 α 4 z ν 0 e 3λt 2 (e λt -1) 3 z 2 0 q 1 2 )I ν ( 4λz 0 e λt 2 q α 2 (e λt -1) ) - 8z 0 λ 3 α 4 z ν 0 e λt e λt + 1 (e λt -1) 3 q 3 2 I ν ′ ( 4λz 0 e λt 2 q α 2 (e λt -1) ) exp λq 2 α 2 - 2λ α 2 z 2 0 + e λt q 2 e λt -1 , ∂η * ∂q = ( 1 2 q -1 2 - 2λ α 2 
(e λt + 1) (e λt -1) q

2 ) I ν ( 4λz 0 e λt 2 q α 2 (e λt -1) ) + 4λz 0 α 2 e λt 3 
(e λt -1) q

1 2 I ν ′ ( 4λz 0 e λt 2 q α 2 (e λt -1) ) × 4λ α 2 z ν 0 e λt 2 (e λt -1) exp λq 2 α 2 - 2λ α 2 z 2 0 + e λt q 2 e λt -1 , ∂ 2 η * ∂q 2 = (- 1 4 q -3 2 - 4λ α 2 (e λt + 1) (e λt -1) q 1 2 + 4λ 2 α 4
(e λt + 1) 2 (e λt -1) 2 q 5

2 )I ν ( 4λz 0 e λt 2 q α 2 (e λt -1) )

+ ( 4λz 0 α 2 e λt 2 
(e λt -1) q -1 2 -16λ 2 z 0 α 4 e λt 2

(e λt + 1) (e λt -1) 2 q z 2 0 + e λt q 2 e λt -1 , and V (t, q) η * (t, q) = ( A q 2 + Bq 2 ) η * (t, q) = ( α 4 2 7 (δ -1)(δ -3) q -2 + λ 2 2 3 q 2 ) η * (t, q) = λ α 2 2 5 (δ -1)(δ -3) q -3 2 + λ 3 2α 2 q 5 2 e λt 2 z ν 0 (e λt -1)

I ν ( 4λz 0 e λt 2 q α 2 (e λt -1) )

× exp( λq 2 α 2 -2λ α 2 ( z 2 0 + e λt q 2 (e λt -1)

)) .

Taking into account Equation (1.2) of the Bessel function I ν , it is then straightforward to see that for all (t, q) ∈ R *

+ × R * + , -θ 2 ∂η * ∂t = - θ 4 2 ∂ 2 η * ∂q 2 + V η * (C (V )
2 ) .