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Introduction

The models of the instantaneous rate are mainly used to price and cover the discount bonds and the options on the discount bonds. Up to now, no model has been able to triumph as a reference model such as Black-Scholes's model for the options on assets. In this paper, our aim is to price interest rate option namely European path dependent option on yields. More precisely, we are interested in a call on a maximum. For this type of option, we give an analytical pricing formula.

In order to answer our pricing problem, we consider the affine class of one factor term structure models with time invariant parameter studied in a more general framework by Duffie and Kan [2]. Particular cases are the Cox et al. (CIR) (1985) and Vasicek (1977) models. In these models, the yield of the discount bond is an affine function of the instantaneous rate.

In section 2 an analytical formula for a European path dependent option on yields is derived. We examine an option on maximum and we discuss the problem of the numerical implementation of this formula. Some pratical results for the European call option on maximum are presented. A proof of Novikov's condition and a simulation program are gathered in appendices.

Let us first give some definitions and recall some preliminary results.

Definition 1.1. [3, p.504 (13.1.1)] For c ∈ R and b ∈ R, such that -b ∈ N, Kummer's function is defined by

M (c, b, z) = 1 + cz b + (c) 2 z 2 (b) 2 2! + ........ + (c) n z n (b) n n! + .... where, (c) n = c(c + 1)(c + 2).....(c + n -1), (c) 0 = 1.
Remark 1.2. The function M is analytical on R and satisfies Kummer's equation

(1.1) z d 2 w dz 2 + (b -z) dw dz -c w = 0.
As M is analytical, it is bounded in a neighborhood of 0.
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Let (Ω, F , (F t ) t≥0 , Q) be a filtered probability space, and let (w(t)) t≥0 be an (F t ) t≥0 standard Brownian motion. Let y t be the solution of the stochastic differential equation (1.2) dy t = µ(y t ) dt + σ(y t ) dw(t), starting from y 0 .

Theorem 1. = inf{t; y t ≥ a}, and let V a bounded function on [0, a], such that A(V ) = γV , where

A = 1 2 σ 2 (y) d 2 dy 2 + µ(y) d dy
is the infinitesimal generator associated of 1.2. Then, when y 0 ≤ a, we have

E Q y0 [e -γT (y) a 1 T (y) a <∞ ] = V (y 0 ) V (a) .

one factor affine model

We denote by B(t, t + τ ) the price at time t of a discount bond of maturity t + τ , i.e. the price of the asset delivering one euro at time t + τ (τ is independent of t).

The yield corresponding to this bond Y (t, t + τ ) at time t with maturity τ is defined by

Y (t, t + τ ) = - 1 τ log B(t, t + τ ).
Assume that, for each τ , the yield Y (t, t+τ ) is an affine function of the instantaneous interest rate r(t) :

Y (t, t + τ ) = 1 τ [A(τ )r(t) + b(τ )] ,
and that r(t) is also a solution of the stochastic differential equation of type (1.2).

In this case, under the risk neutral probability Q, the instantaneous interest rate r(t) satisfies the stochastic differential equation (2.1) dr(t) = (φ -λr(t)) dt + αr(t) + β dw(t), starting from r(0) = r 0 [2].

Option european on the maximum

The price at date 0 of a European call option on maximum of maturity T and strike price K is given by

C( sup u∈[0,T ] Y (u, u + τ ), 0, T, K) = E Q r0 [e -T 0 rsds ( sup u∈[0,T ] Y (u, u + τ ) -K) + ] .
By using the affine form Y (t, t + τ ) with respect to r t , the above formula can be written as

C( sup u∈[0,T ] Y (u, u + τ ), 0, T, K) = A(τ ) τ C( sup u∈[0,T ] r u , 0, T, k),
where C(sup u∈[0,T ] r u , 0, T, k) represents the price of European call on the instantaneous rate with a strike k = τ K-b(τ ) A(τ ) .

Theorem 3.1. Let r t the solution of (2.1), then

E Q r0 [e -γT (r) a ] = M ( γ λ , (φ + λβ α ) 2 α , 2λ(r0+β/α) α ) M ( γ λ , (φ + λβ α ) 2 α , 2λ(a+β/α) α ) .
Proof. By using the change of variable r(t) = r(t) + β α ; then r(t) satisfies

dr(t) = (φ + λβ α -λr(t)) dt + αr(t) dw(t) . (3.1)
In this case, the infinitesimal generator of r process is

à = (φ + λβ α -λr) d dr + α 2 r d 2 dr 2 . Let V (x) = M ( γ λ , 2 α (φ + λβ α ), 2λx α ). The function V is bounded on [0, a + β α ]
(by the properties of Kummer's equation (1.1)), and

ÃV (x) = (φ + λβ α -λx)V ′ (x) + α 2 xV ′′ (x).
Let us denote φ = φ + λβ α . By using the change of variable z = 2λx α , we get

ÃV (x) = ( φ -λx) ∂M ∂z ( γ λ , 2 φ α , 2λx α ) 2λ α + αx 2 ∂ 2 M ∂z 2 ( γ λ , 2 φ α , 2λx α ) 4λ 2 α 2 = λz ∂ 2 M ∂z 2 ( γ λ , 2 φ α , 2λx α ) + ( 2λ φ α -λz) ∂M ∂z ( γ λ , 2 φ α , 2λx α ) = λ γ λ M ( γ λ , 2 φ α , 2λx α ) (car M satisf ait(5.1)) = γ V (x).
So we can apply Theorem 1.3 on V , r, µ(r(t)) = (φ + λβ α -λr(t)), σ(r(t)) = αr(t) and r(0) = r 0 + β α , and therefore, since

T (r) a = T (r) a+ β α
, we have

E Q r0 [e -γT (r) a 1 T (r) a <∞ ] = V (r 0 + β α ) V (a + β α ) = M ( γ λ , 2 α (φ + λβ α ), 2λ(r0+β/α) α ) M ( γ λ , 2 α (φ + λβ α ), 2λ(a+β/α) α
) .

Letting γ go to zero , since M (0, b, z) = 1 , we find

Q(T (r) a < ∞) = E Q r0 [1 T (r) a <∞ ] = lim γ→0 + E Q r0 [e -γT (r) a 1 T (r) a <∞ ] = lim γ→0 + M ( γ λ , 2 α (φ + λβ α ), 2λ(r0+β/α) α ) M ( γ λ , 2 α (φ + λβ α ), 2λ(a+β/α) α ) = M (0, 2 α (φ + λβ α ), 2λ(r0+β/α) α ) M (0, 2 α (φ + λβ α ), 2λ(a+β/α) α ) = 1 , which gives us T (r) a < ∞, Q-almost surely. Then E Q r0 [e -γT (r) a ] = E Q r0 [e -γT (r) a 1 T (r) a <∞ ] = M ( γ λ , 2 α (φ + λβ α ), 2λ(r0+β/α) α ) M ( γ λ , 2 α (φ + λβ α ), 2λ(a+β/α) α ) .
3.1. Option price. We give in the following proposition an explicit formula to the Laplace transform of a European call option on the maximum of the instantaneous rate .

Proposition 3.2. For all ã > max(0, β α -θ √ α (φ + λβ α )) and all r 0 ≤ k, we have

U (k,r0) (ã) = e - θr 0 √ α M ( γ λ , ( φ0 + λβ α ) 2 α , 2 λ(r 0 + β/α) α ) ∞ k e θv √ α P ã(v) M ( γ λ , ( φ0 + λβ α ) 2 α , 2 λ(v+β/α) α ) dv ,
where M is the Kummer's function defined in 1.1, and for all ã, P ã(v) := ∞ 0 dT e -ãT B v (0, T ). Proof. Note that:

( sup u∈[0,T ] r u -k) + = ∞ k 1 sup [0,T ] ru>v dv ,
and

T v = inf {t; r t > v} = T (r) v . Let U (k,r0) be the Laplace transform of C(sup u∈[0,T ] r u , 0, T, k) considered as function of T , then for all ã > max(0, β α -θ √ α (φ + λβ α )), U (k,r0) (ã) = ∞ 0 e -ãT C( sup u∈[0,T ] r u , 0, T, k)dT = E Q r0 [ ∞ k dv ∞ 0 dT e -ãT -T 0 rsds 1 sup [0,T ] ru>v ] = E Q r0 [ ∞ k dv ∞ Tv dT e -ãT -T 0 rsds ] = E Q r0 [ ∞ k dv ∞ Tv dT e -ã(T -Tv )-ãTv-Tv 0 rsds-T Tv rsds ] = ∞ k dvE Q r0 [e -ãTv -Tv 0 rsds E Q r0 [ ∞ Tv dT e -ã(T -Tv)-T Tv rsds /T v ]] = ∞ k dvE Q r0 [e -ãTv -Tv 0 rsds ]E Q v [ ∞ 0 dT e -ãT -T 0 rsds ].
The last equality is due to the strong Markov property and the time homogeneity of the instantaneous interest rate process. First, we will determine : 

E Q r0 [e -ãTv -
E Q r0 [e -ãTv -Tv 0 rsds ] = E Q (r0+ β α ) [e -(ã-β α )Tv -Tv 0 rsds ] .
Let us now do the change of measure

dQ * dQ = exp - t 0 θ r(s) dw(s) - 1 2 t 0 θ 2 rs ds = exp - 1 √ α t 0 θ[dr s -(φ + λβ α -λr s ) ds] - 1 2 t 0 θ 2 rs ds ;
this is due of equation (3.1) for r(t). Here, Novikov's condition :

E Q r0 (e 1 2
T 0 θ 2 rsds ) < ∞ is satisfied and it is the subject of Lemma 4.1 (see Appendix on Novikov's condition).

By Girsanov'Theorem, Q * is a probability, and therefore

E Q r0 [e -ãTv -Tv 0 rsds ] = E Q (r0+ β α ) [e -(ã-β α )Tv -Tv 0 rsds ] = E Q * (r0+ β α ) e -(ã-β α )Tv -Tv 0 rsds e 1 √ α Tv 0 θ[drs-(φ+ λβ α -λrs) ds]+ 1 2 Tv 0 θ 2 rsds = E Q * (r0+ β α ) e -(ã-β α )Tv -Tv 0 rsds e θ √ α (v-r0)-θ √ α ((φ+ λβ α )Tv e Tv 0 ( λθ √ α + θ 2 
2 )rsds .

We choose θ as : λθ

√ α + θ 2 2 = 1 (α > 0 and λ ∈ R * ) , this gives us : √ αθ 2 + 2λθ -2 √ α = 0, and θ = -λ ± √ λ 2 + 2α √ α
In the following, we choose θ = -λ+

√ λ 2 +2α √ α
, whence θ > 0 . 

E Q r0 [e -ãTv -Tv 0 rsds ] = e θ √ α (v-r0) E Q * (r0+ β α ) e -ã-β α + θ √ α (φ+ λβ α ) Tv . Let γ = ã -β α + θ √ α (φ + λβ α ), then : E Q r0 [e -ãTv-Tv 0 rsds ] = e θ √ α (v-r0) E Q * (r0+ β α ) (e -γTv
Then à * = ( φ0 + λβ α -λr) d dr + αr 2 d 2 dr 2 .
Here, we take λ > 0 and φ + λβ α > 0, therefore, by Theorem 1.3 applied to rt under

Q * , E Q * (r0+ β α ) (e -γTv ) = M ( γ λ , ( φ0 + λβ α ) 2 α , 2 λ(r0+β/α) α ) M ( γ λ , ( φ0 + λβ α ) 2 α , 2 λ(v+β/α) α ) .
Whence,

E Q r0 [e -ãTv -Tv 0 rsds ] = e θ √ α (v-r0) M ( γ λ , ( φ0 + λβ α ) 2 α , 2 λ(r0+β/α) α ) M ( γ λ , ( φ0 + λβ α ) 2 α , 2 λ(v+β/α) α ) .
Also,

E Q v [ ∞ 0 dT e -ãT -T 0 rsds ] = ∞ 0 dT E Q v [e -ãT -T 0 rsds ] = ∞ 0 dT e -ãT B v (0, T ),
where B v (0, T ) denotes the price of a discount bond corresponding to the interest rate process starting from v.

The following result allows us to study the variation of the option price according to the strike k.

Corollary 3.3. We have

∂ ∂k C( sup u∈[0,T ] r u , 0, T, k) = -e θ √ α (k-r0) M ( γ λ , ( φ0 + λβ α ) 2 α , 2 λ(r0+β/α) α ) M ( γ λ , ( φ0 + λβ α ) 2 α , 2 λ(k+β/α) α ) B k (0, T ). Proof. Indeed, ∂ ∂k U (k,r0) (ã) = ∞ 0 e -ãT ∂ ∂k C(sup u∈[0,T ] r u , 0, T, k) dT and ∂ ∂k U (k,r0) (ã) = -e - θr 0 √ α M ( γ λ , ( φ0 + λβ α ) 2 α , 2 λ(r0+β/α) α ) M ( γ λ , ( φ0 + λβ α ) 2 α , 2 λ(k+β/α) α ) e θk √ α P ã(k) = - ∞ 0 e -ãT e θ √ α (k-r0) M ( γ λ , ( φ0 + λβ α ) 2 α , 2 λ(r0+β/α) α ) M ( γ λ , ( φ0 + λβ α ) 2 α , 2 λ(k+β/α) α ) B k (0, T ) dT .
Whence Corollary 3.3 by the injectivity of the Laplace transform.

Corollary 3.4. We have also

∂ ∂K C( sup u∈[0,T ] Y (u, u + τ ), 0, T, K) = ∂ ∂k C( sup u∈[0,T ] r u , 0, T, k) . Proof. Indeed, ∂ ∂K C( sup u∈[0,T ] Y (u, u + τ ), 0, T, K) = A(τ ) τ ∂ ∂K C( sup u∈[0,T ] r u , 0, T, k) = A(τ ) τ ∂ ∂k C( sup u∈[0,T ] r u , 0, T, k) ∂k ∂K = A(τ ) τ ∂ ∂k C( sup u∈[0,T ] r u , 0, T, k) τ A(τ ) = ∂ ∂k C( sup u∈[0,T ] r u , 0, T, k) .
Whence the corollary 3.4.

Finally, we have an explicit formula of the option price derivative on the maximum of the yield with respect to the strike K:

Corollary 3.5. ∂ ∂K C(u ∈ sup [0,T ] Y (u, u + τ ), 0, T, K) = -e θ √ α ( τ K-b(τ ) A(τ ) -r0) M ( γ λ , ( φ0 + λβ α ) 2 α , 2 λ(r0+β/α) α ) M ( γ λ , ( φ0 + λβ α ) 2 α , 2 λ( τ K-b(τ ) A(τ ) +β/α) α ) B ( τ K-b(τ ) A(τ )
) (0, T ) . # the parameters of our model are given by : p:=10; r_{0}:=0.1; phi:=0.02; lambda:=0.2; alpha:=0.02; beta:=0.002; k:=0. 

Numerical

= m = 5 n = m = 6 n = m = 7 n = m = 8 n = m = 9 n = m =

  1; h:=evalf(exp(-k)) theta:=evalf((-lambda + sqrt(lambda^2+2*alpha))/sqrt(alpha)) phitild:=phi + lambda*beta/alpha lamdatild:=evalf(lambda + theta*sqrt(alpha)) gamatild:= atild -beta/alpha + evalf(theta*(phi+lambda*beta/alpha)/sqrt(alpha)) mu:=lambda*sqrt(1+2*alpha/lambda^2) K:=simplify((mu-lambda)/(mu+lambda)) A(T):={1+K}/{mu}*(1-exp(-mu*tau))/(mu*(1+K*exp(-mu*tau))) b(T):= 2*phitild*log((1+K*exp(-mu*tau))/(1+K))/alpha +(phitild*(mu-lambda)/alpha-beta/alpha)*tau + beta*A(tau)/alpha Kmmer:=convert(series(KummerM(C,B,z),z,p), polynom) # here, p is fixed on 10 with(inttrans): invlaplace(lapcall,atild,1) # here, we choose for example, the time of maturity T= 1 C(supr_{u}, 0, k, T=1):= exp(-theta*r_{0}/sqrt(alpha))*invlaplace(lapcall,atild,1) C(supY(u,u + tau) := (A(10)/10)*C(supr_{u}, 0, k, T=1) # here, we take tau = 10

  3. [1, p.354] Let T

	(y) a

  ). Under the probability Q * , the instantaneous rate r(t) satisfies

	(3.2) α)r(t)) dt + αr(t) dw By applying Theorem 1.3, we get that dr(t) = (φ + λβ α -(λ + θ √
	Ã * = (φ +	λβ α	-(λ + θ	√	α)r)	d dr	+	αr 2	d 2 dr 2 ,
	is the infinitesimal generator associed on (3.2). Let us denote λ = λ + θ √ α
	and		φ0 = φ -	βθ √ α	.		

* (t), where w * (t) is a (Q * , F t ) Brownian motion, with dw * (t) = dw(t) + θ r(t) dt .

  Simulations.

	Table1. Parameters for European call option in the one factor affine model
	Case	φ	λ	α	β	T	τ	K
	1	0.02 0.2 0.02	0.002	1	10 0.1
	2	0.02 0.2 0.02	0.002	1	0.25 0.1
	3	0.02 0.2 0.02	0.002 0.25 10 0.1
	4	0.02 0.2 0.02	0.002 0.25 0.25 0.1
	5	0.02 0.2 0.0002 0.00002	1	10 0.1
	6	0.02 0.2 0.0002 0.00002	1	0.25 0.1
	7	0.02 0.2 0.0002 0.00002 0.25 10 0.1
	8	0.02 0.2 0.0002 0.00002 0.25 0.25 0.1
	Table2. Prices of European call option on maximum in the one factor affine
	Case n			model			

  Program. The functions and the procedures implemented in Maple are given below :

			10
	1	0.0013974 0.0018056 0.0026666 0.0035363 0.0037346	0.0045306
	2	0.0035322 0.0045639 0.0067402 0.0089386 0.0094398	0.0114518
	3	0.0003312 0.0004357 0.0005177 0.0005772 0.0006170	0.0010445
	4	0.00083718 0.0011014 0.0013088 0.0014589 0.0015595	0.0026402
	5	0.0003745 0.0004252 0.0006730 0.0009531 0.0009302	0.0011855
	6	0.0008460 0.0009607 0.0015204 0.0021532 0.0021014	0.0026781
	7	0.0001336 0.0001634 0.0001853 0.0002002 0.0002093	0.0003791
	8	0.0003018 0.0003691 0.0004187 0.0004523 0.0004729	0.0008564
	5.2. Digits := 10;	

appendix: Novikov's condition

In this section, we check Novikov's condition which allows us to apply Girsanov's Theorem.

Lemma 4.1.

T 0 θ 2 rsds ) < +∞ .

Proof. Indeed, for all a > 0,

The issue here is to show that lim

In these cases, it suffices to take a = θ 2 2 in order to obtain Novikov's condition. Remark 4.2. B r ′ 0 (T ) is the price of discount bond at time T worth one euro at time t = 0, for the instantaneous rate given by -r ′ t = a rt .

Appendix : Simulation

We illustrate in this section the valuation of the European call option on the maximum of the instantaneous rate in the one factor affine mode bu using its explicite formula of the Laplace's transform given in the proposition 3.2. The functions and the procedure which are used are programmed in Maple and their codes are given in the following section.