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Abstract

In a cellular medium, the plasmic membrane is a place of interactions between

the cell and its direct external environment. A classic model describes it as a fluid

mosaic. The fluid phase of the membrane allows a lateral degree of freedom to its

constituents: they seem to be driven by random motions along the membrane. On

the other hand, experimentations bring to light inhomogeneities on the membrane;

these micro-domains (the so-called rafts) are very rich in proteins and phospholipids.

Nevertheless, few functional properties of these micro-domains have been shown and

it appears necessary to build appropriate models of the membrane for recreating the

biological mechanism.

In this article, we propose a random walk model simulating the evolution

of certain constituents–the so-called ligands–along a heterogeneous membrane.

Inhomogeneities–the rafts–are described as being still clustered receptors. An im-

portant variable of interest to biologists is the time that ligands and receptors bind

during a fixed amount of time. This stochastic time can be interpreted as a measure-

ment of affinity/sentivity of ligands for receptors. It corresponds to the sojourn time in

a suitable set for a certain random walk.

We provide a method of calculation for the probability distribution of this random

variable and we next determine explicitly this distribution in the simple case when we

are dealing with only one ligand and one receptor. We finally address some further

more realistic models.
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1 Introduction

1.1 The biological context

In a cellular medium, the plasmic membrane is a place of interactions between the cell and

its direct external environment. A classic model describes it as a fluid mosaic. The fluid

phase of the membrane allows a lateral degree of freedom to its constituents: they seem

to be driven by random motions along the membrane. As a first estimate, the membrane

could be viewed as a two-dimensional manifold on which the constituents are driven by

a Brownian motion. This makes the local concentration of constituents independent from

their localization on the membrane. In other words, the membrane should be homogeneous.

In fact, experimentations brought to light inhomogeneities on the membrane. Indeed, dif-

ferent liquid phases were observed. Certain constituents tend to group in clusters inside

membrane domains, forming dense receptor spots (sometimes called rafts) and depleted

zones elsewhere, instead of covering homogeneously the membrane surface. These micro-

domains are generally very rich in proteins and phospholipids, but few functional properties

have been shown. Nowadays, the systematical presence of certain proteins and lipids in dif-

ferent liquid phases has become a marker of such inhomogeneities.

Cellular response to changes in the concentration of different chemical species (the so-

called ligands) in the extracellular medium is induced by the ligand binding to dedicated

transmembrane receptors. The receptor-ligand binding is based on local physical interac-

tions, ligand molecules randomly roam in the extracellular medium until they meet a recep-

tor at the cell surface and possibly dock. The binding mechanism, an important feature for

the biologists, provides a way of measurement of the affinity/sensitivity of the ligands for

the receptors.

We refer the reader to the paper by Caré & Soula [2] for an accurate description of the

biological context.

In this article, we simplify the cellular medium by reducing it to the dimension one

and by discretizing Brownian motion, that is we propose a naive one-dimensional random

walk model to simulate the extracellular traffic of ligands along a heterogeneous membrane.

Inhomogeneities–the rafts–are described as being a set of still monovalent receptors on the

membrane.

An important variable of interest to biologists in the aforementioned binding mechanism

is the docking-time, this is the time that ligands and receptors dock. Actually, this variable

is proportional to the time spent by ligands on receptors during a fixed amount of time–the

duration of observation–with the rule that if several ligands meet simultaneously the same

receptor, they are counted only one time because of the effect of the steric hindrance.

We propose a method of calculation for the probability distribution of this random vari-

able. Next, we shall consider particular cases and we shall determine explicitly this dis-

tribution in the simple case when we are dealing with only one ligand and one receptor.

Finally, we sketch more realistic models by introducing a circular random walk or Brown-

ian motion and we give some information about how to extend the results we have obtained

for the one-dimensional random walk to these cases.
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1.2 The random walk model

The cellular boundary is modeled as the (discrete) integer line Z = {. . . ,−1, 0, 1, . . . }. Set

N = {0, 1, 2, . . . } and N
∗ = N\{0} = {1, 2, . . . }. We are given r receptors a1, . . . , ar ∈ Z

such that a1 < · · · < ar, R = {a1, . . . , ar} and ℓ ligands which are modeled as ℓ inde-

pendent identically distributed Bernoulli random walks with parameter p ∈ (0, 1). The

steps of each random walk take the value +1 with probability p and −1 with the probabil-

ity q = 1 − p. The ℓ ligands thus induce an ℓ-dimensional random walk (S(ι))ι∈N on Z
ℓ

with, for any ι ∈ N,

S(ι) = (S1(ι), . . . , Sℓ(ι)).

Set E =

ℓ
⋃

j=1

Ej where the Ej’s are defined by

Ej = {(x1, . . . , xℓ) ∈ Z
ℓ : xj ∈ R} = Z

j−1 ×R× Z
ℓ−j.

The Ej’s can be viewed as unions of hyperplanes parallel to the j-th axis of coordinates;

indeed, Ej =
r
⋃

i=1

Eij where the E ij’s are the hyperplanes

Eij = {(x1, . . . , xℓ) ∈ Z
ℓ : xj = ai} = Z

j−1 × {ai} × Z
ℓ−j.

The time spent by ligands on certain receptors during a fixed amount of time, say n (n ∈
N
∗), is given by

T
n,E

= #{ι ∈ {1, . . . , n} : S(ι) ∈ E} =

n
∑

ι=1

1l{S(ι)∈E},

this is the sojourn time of the random walk (S(ι))ι∈N in the set E up to time n. Indeed,

S(ι) ∈ E means that there exists two indices i ∈ {1, . . . , r} and j ∈ {1, . . . , ℓ} such that

Sj(ι) = ai, that is, at least one ligand is located at one receptor. Moreover, if several ligands

Sj1 , . . . , Sjk meet simultaneously a same receptor ai at a certain time ι, i.e., Sj1(ι) = · · · =

Sjk(ι) = ai, then S(ι) ∈
ℓ
⋃

j=1

E ij and they are thus counted only one time in the quantity

1l{S(ι)∈E}.

It is clear that the computations of the expectation and the variance of T
n,E

are easy.

Computing the probability distribution of T
n,E

is quite more complicated. Our aim is to

describe a possible way for computing this latter. We provide matrix equations which may

be solved by using numerical schemes.

1.3 Settings

We shall adopt the following convention for the settings: the roman letters will be related to

the dimension 1 (scalars) while the bold letters will be related to the dimension ℓ (vectors

or matrices). We shall also put the space variables (x, y, z ∈ Z,x,y, z ∈ Z
ℓ, etc.) in

subscript and the time variables (ι, , k, n, etc.) in superscript. The letters i, j, l,m, etc.
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will be used as indices, e.g., for labeling the receptors. Be aware of the difference between

ι and i, between  and j. The letters p, q, r,p,q, r, etc. will be used for defining certain

probabilities, the letters G,H,K,G,H,K, etc. for defining certain generating functions

or matrices. the letters S,S for defining random walks, the letters n, τ, T,T for defining

certain times.

The settings Px and Ex denote the probability and expectation related to the

ℓ-dimensional random walk (S(ι))ι∈N started at a point x ∈ Z
ℓ at time 0. When the in-

dex of a one-dimensional random walk (Sj(ι))ι∈N will not be used, we shall relabel it as

any generic one-dimensional random walk: (S(ι))ι∈N. The settings Px and Ex denote the

probability and expectation related to the random walk (S(ι))ι∈N started at a point x ∈ Z

at time 0.

We introduce the first hitting time of the random walk (S(ι))ι∈N in E:

τ
E
= min{ι ∈ N

∗ : S(ι) ∈ E}
if there exists an index ι such that S(ι) ∈ E ; else we set τ

E
= +∞. Similarly, we introduce

the first hitting times of the single or multiple levels aj , aj′ , aj′′ together with that of the

set R for the random walk (S(ι))ι∈N:

τaj = min{ι ∈ N
∗ : S(ι) = aj},

τaj ,aj′ = min{ι ∈ N
∗ : S(ι) ∈ {aj , aj′}} = min(τaj , τaj′ ),

τaj ,aj′ ,aj′′ = min{ι ∈ N
∗ : S(ι) ∈ {aj , aj′ , aj′′}} = min(τaj , τaj′ , τaj′′ ),

τ
R
= min{ι ∈ N

∗ : S(ι) ∈ R} = min(τa1 , . . . , τar )

with the same convention: min(∅) = +∞.

Let us define several family of probabilities: for x,y ∈ Z
ℓ, ι, k, n ∈ N and  ∈ N

∗,

p
(ι)
x,y = Px{S(ι) = y} = P0{S(ι) = y − x},

q
()
x,y = Px{τE

= ,S(τ
E
) = y},

r
(k,n)
x = Px{Tn,E

= k},

We plainly have q
()
x,y = 0 if y /∈ E and r

(k,n)
x = 0 if k > n. We also introduce their related

generating functions: for |u|, |v| < 1,

Gx,y(u) =
∞
∑

ι=0

p
(ι)
x,yu

ι,

Hx,y(u) =

∞
∑

=1

q
()
x,yu

 = Ex(u
τ
E ,S(τ

E
) = y),

Kx(u, v) =
∑

k,n∈N:
k≤n

r
(k,n)
x ukvn =

∞
∑

n=0

Ex(u
T

n,E vn),

together with their associated matrices:

G(u) = (Gx,y(u))x,y∈E , H(u) = (Hx,y(u))x,y∈E , K(u, v) = (Kx(u, v))x∈E .

The matrices G and H are infinite squared-matrices and K is an infinite column-matrix.
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1.4 Background on 1D-random walk

In this part, we supply several well-known results concerning classical distributions related

to the one-dimensional Bernoulli random walk. We refer to [3], [5] or [6]. In order to

facilitate the reading and to make the paper self-contained, we shall provide many details.

In particular, we shall focus on the proofs which use generating functions since they serve

as a model of the main tool we shall use throughout the paper. The proofs which do not

involve any generating functions will be postponed to Appendices A and B.

1.4.1 Location of the random walk

Set, for x, y ∈ N and ι ∈ N,

p(ι)x,y = Px{S(ι) = y}, Gx,y(u) =

∞
∑

ι=0

p(ι)x,yu
ι.

We have

p(ι)x,y =

(

ι
ι+x−y

2

)

p(ι+y−x)/2q(ι+x−y)/2 =

(

ι
ι+x−y

2

)

(pq)ι/2
(

p

q

)(y−x)/2

with the convention that
( ι
α

)

= 0 for α /∈ N or α > ι. By putting ̟x,y = p if x > y,

̟x,y = q if x < y, ̟x,y = 1 if x = y, we can rewrite p
(ι)
x,y as

p(ι)x,y =

(

ι
ι+|x−y|

2

)

(pq)ι/2
(

pq

̟2
x,y

)|x−y|/2

and next

Gx,y(u) =

(

pq

̟2
x,y

)|x−y|/2
∑

ι∈N: ι≥|x−y|,
ι and x−y with same parity

(

ι
ι+|x−y|

2

)

(pq)ι/2uι.

By performing the change of index ι 7→ 2ι+ |x− y| in the foregoing sum, we derive

Gx,y(u) =

(

pqu

̟x,y

)|x−y| ∞
∑

ι=0

(

2ι+ |x− y|
ι

)

(pqu2)ι. (1.1)

In order to simplify this last sum, we shall make use of the hypergeometric function

F
(

l+1
2 , l+2

2 ; l + 1; ζ
)

defined, with the usual notation am = a(a+1)(a+2) . . . (a+m−1),
by

F

(

l + 1

2
,
l + 2

2
; l + 1; ζ

)

=
∞
∑

m=0

( l+1
2 )m( l+2

2 )m
(l + 1)mm!

ζm =
∞
∑

m=0

(

2m+ l

m

)(

ζ

4

)m

.

By invoking Formula 15.1.14 of [1], p. 556, namely

F

(

l + 1

2
,
l + 2

2
; l + 1; ζ

)

=
2l

(

1 +
√
1− ζ

)l √
1− ζ

=
2l√
1− ζ

(

1−√
1− ζ

ζ

)l

,
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we derive the relationship

∞
∑

m=0

(

2m+ l

m

)

ζm =
1√

1− 4ζ

(

1−√
1− 4ζ

2ζ

)l

. (1.2)

Set

A(u) =
√

1− 4pqu2, B+(u) =
1 +A(u)

2pu
=

2qu

1−A(u)
, B−(u) =

1−A(u)

2pu
.

We deduce from (1.2) and (1.1) the following expression of Gx,y(u):

Gx,y(u) =































[B−(u)]x−y

A(u)
if x > y,

1

A(u)
if x = y,

[B+(u)]x−y

A(u)
if x < y.

(1.3)

1.4.2 Hitting times of the random walk

Let us now consider the family of hitting times related to (S(ι))ι∈N started at x ∈ Z: for

any a, b, c ∈ Z such that a < b < c, set

τa = min{ι ≥ 1 : S(ι) = a},
τa,b = min{ι ≥ 1 : S(ι) ∈ {a, b}},

τa,b,c = min{ι ≥ 1 : S(ι) ∈ {a, b, c}}.

We still adopt the convention min ∅ = +∞. In certain cases depending on the starting

point x, certain hitting times are related. In fact, we have

τa,b =

{

τa if x < a,

τb if x > b,

and

τa,b,c =























τa if x < a,

τa,b if x ∈ [a, b),

τb,c if x ∈ (b, c],

τc if x > c.

Notice that when the starting point is a, time τa is the return time to level a; when the start-

ing point is b, time τa,b,c depends on times τa,b and τb,c. Let us introduce the probabilities

q()x,a = Px{τa = },
q
()−
x,a,b = Px{τa,b = , S(τa,b) = a} = Px{τa = , τa < τb},
q
()+
x,a,b = Px{τa,b = , S(τa,b) = b} = Px{τb = , τb < τa},
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together with their related generating functions:

Hx,a(u) =

∞
∑

=1

q()x,au
 = Ex(u

τa),

H−
x,a,b(u) =

∞
∑

=1

q
()−
x,a,bu

 = Ex(u
τa , τa < τb),

H+
x,a,b(u) =

∞
∑

=1

q
()+
x,a,bu

 = Ex(u
τb , τb < τa).

One-sided threshold

For calculating the probability distribution of τa, we invoke a “continuity” argument

by observing that, for  ∈ N
∗, if S() = a then τa ≤ , that is there exists an index

l ∈ {1, . . . , } such that τa = l. This leads to the following relationship:

Px{S() = a} = Px{S() = a, τa ≤ } =


∑

l=1

Px{τa = l}Pa{S(− l) = a}

or, equivalently,

p()x,a =


∑

l=1

q(l)x,ap
(−l)
a,a .

Then, the generating functions satisfies the equation

Gx,a(u) = δa,x +Hx,a(u)Ga,a(u)

from which we deduce, by (1.3),

Hx,a(u) =



















Gx,a(u)

Ga,a(u)
if x 6= a,

1− 1

Ga,a(u)
if x = a,

(1.4)

=



















[B−(u)]x−a if x > a,

1−A(u) if x = a,

[B+(u)]x−a if x < a.

(1.5)

By using the hypergeometric function F
(

l
2 ,

l+1
2 ; l + 1; ζ

)

defined by

F

(

l

2
,
l + 1

2
; l + 1; ζ

)

=

∞
∑

m=0

( l2 )m( l+1
2 )m

(l + 1)mm!
ζm =

∞
∑

m=0

l

2m+ l

(

2m+ l

m

)(

ζ

4

)m

.

and referring to Formula 15.1.13 of [1], p. 556, namely

F

(

l

2
,
l + 1

2
; l + 1; ζ

)

=
2l

(

1 +
√
1− ζ

)l
= 2l

(

1−√
1− ζ

ζ

)l

,
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we derive the relationship

∞
∑

m=0

l

2m+ l

(

2m+ l

m

)

ζm =

(

1−√
1− 4ζ

2ζ

)l

. (1.6)

We then extract from (1.5) and (1.6), for x 6= a,

Hx,a(u) =

(

pqu

̟x,a

)|x−a| ∞
∑

=0

|x− a|
2+ |x− a|

(

2+ |x− a|


)

(pqu2)

=

(

pq

̟2
x,a

)|x−a|/2
∑

∈N: ≥|x−a|,
 and x−a with same parity

|x− a|


(


+|x−a|

2

)

(pq)/2u.

We finally obtain

q()x,a =
|x− a|



(


+|x−a|

2

)

(pq)/2
(

pq

̟2
x,a

)|x−a|/2

that is, for x 6= a,

q()x,a =
|x− a|


p()x,a =

|x− a|


(


+x−a

2

)

p(+a−x)/2q(+x−a)/2.

For x = a, we have, by considering the location of the first step of the walk,

Pa{τa = } = pPa+1{τa = − 1}+ q Pa−1{τa = − 1}

which leads to

q()a,a =
1



(


+1
2

)

(pq)(+1)/2.

Two-sided threshold

For calculating the probability distribution of τa,b, we use the strong Markov property

by writing that for x ∈ (a, b)

Hx,a(u) = Ex(u
τa) = Ex(u

τa , τa < τb) + Ex(u
τa , τb < τa)

= Ex(u
τa , τa < τb) + Ex(u

τb , τb < τa)Eb(u
τa)

= H−
x,a,b(u) +Hb,a(u)H

+
x,a,b(u).

Similarly,

Hx,b(u) = H+
x,a,b(u) +Ha,b(u)H

−
x,a,b(u)

and we obtain that H+
x,a,b(u) and H−

x,a,b(u) solves the linear system







Hb,a(u)H
+
x,a,b(u) +H−

x,a,b(u) = Hx,a(u),

H+
x,a,b(u) +Ha,b(u)H

−
x,a,b(u) = Hx,b(u),
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the solution of which writes



















H+
x,a,b(u) =

Ha,b(u)Hx,a(u)−Hx,b(u)

Ha,b(u)Hb,a(u)− 1
,

H−
x,a,b(u) =

Hb,a(u)Hx,b(u)−Hx,a(u)

Ha,b(u)Hb,a(u)− 1
.

(1.7)

Plugging the following expressions of Hx,a(u) and Hx,b(u)







Hx,a(u) = B−(u)x−a if x > a

Hx,b(u) = B+(u)x−b if x < b

into (1.7), we get that the generating function of τa,b is given by

Ex(u
τa,b) = Ex(u

τa , τa < τb) + Ex(u
τb , τb < τa)

where, for x ∈ (a, b),



















Ex(u
τa , τa < τb) =

B+(u)x−b −B−(u)x−b

B+(u)a−b −B−(u)a−b

Ex(u
τb , τb < τa) =

B+(u)x−a −B−(u)x−a

B+(u)b−a −B−(u)b−a

(1.8)

and then

Ex(u
τa,b) =

(1−B−(u)b−a)B+(u)x−a − (1−B+(u)b−a)B−(u)x−a

B+(u)b−a −B−(u)b−a
. (1.9)

The generating functions (1.8) can be inverted in order to write out explicitly the distribution

of τa,b. The inversion hinges on the decomposition of a certain rational fraction into partial

fractions. The details are postponed to Appendix A. The result writes

q
()−
x,a,b = 2

(

q

p

)(x−a)/2
[

∑

l∈N:
1≤l<(b−a)/2

cosx−a−1

(

lπ

b− a

)

sin

(

lπ

b− a

)

sin

(

l(x− a)π

b− a

)(

2
√
pq cos

(

lπ

b− a

))
]

u,

(1.10)

q
()+
x,a,b = 2

(

p

q

)(x−b)/2
[

∑

l∈N:
1≤l<(b−a)/2

cosb−x−1

(

lπ

b− a

)

sin

(

lπ

b− a

)

sin

(

l(b− x)π

b− a

)(

2
√
pq cos

(

lπ

b− a

))
]

u.
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In the particular case x = a, we have
{

Ea(u
τa , τa < τb) = puEa+1(u

τa , τa < τb) + quEa−1(u
τa , τa < τb)

Ea(u
τb , τb < τa) = puEa+1(u

τb , τb < τa) + quEa−1(u
τb , τb < τa)

which simplifies into
{

Ea(u
τa , τa < τb) = puEa+1(u

τa , τa < τb) + quE0(u
τ1),

Ea(u
τb , τb < τa) = puEa+1(u

τb , τb < τa).
(1.11)

Similarly, for x = b,
{

Eb(u
τa , τa < τb) = quEb−1(u

τa , τa < τb),

Eb(u
τb , τb < τa) = quEb−1(u

τb , τb < τa) + puE0(u
τ−1).

(1.12)

Three-sided threshold

At last, the probability distribution of τa,b,c is characterized by its generating function

Ex(u
τa,b,c) = Ex(u

τa , S(τa,b,c) = a) + Ex(u
τb , S(τa,b,c) = b)

+ Ex(u
τc , S(τa,b,c) = c)

= Ex(u
τa , τa < τb,c) + Ex(u

τb , τb < τa,c) + Ex(u
τc , τc < τa,b).

We already observed that all the above generating functions can be expressed by means of

those of τa,b and τb,c when the starting point x differs from b. When x = b, we have

Eb(u
τa,b,c , S(τa,b,c) = b) = Eb(u

τb , τb < τa,c)

= puEb+1(u
τb , τb < τc) + quEb−1(u

τb , τb < τa). (1.13)

These probabilities can be expressed by means of (1.8).

1.4.3 Stopped random walk

In this part, we consider the families of generic “stopping”–probabilities:

• Px{S() = y,  ≤ τa} (a ∈ R) for x, y ∈ (−∞, a] or x, y ∈ [a,+∞);

• Px{S() = y,  ≤ τa,b} (a, b ∈ R, a < b) for x, y ∈ [a, b];

• Px{S() = y,  ≤ τa,b,c} (a, b, c ∈ R, a < b < c) for x = y = b.

These probabilities represent the distributions of the random walk stopped when reaching

level a, a or b, a or b or c respectively. They can be evaluated by invoking the famous

reflection principle. Since this principle will not be used in our further analysis, we postpone

the intricate details to Appendix B. The result in the case of the one-sided barrier is, for

x, y < a or x, y > a,

Px{S() = y,  ≤ τa} = p()x,y −
(

p

q

)y−a

p
()
x,2a−y

=

[(


+x−y

2

)

−
(


+x+y

2 − a

)]

p(+y−x)/2q(+x−y)/2. (1.14)
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In the particular cases where x = a or y = a, we have the following facts: for x ∈ Z and

y = a,

Px{S() = a,  ≤ τa} = Px{τa = },
and for x = a and y ∈ Z,

Pa{S() = y,  ≤ τa} = pPa+1{S(− 1) = y, − 1 ≤ τa}
+ q Pa−1{S(− 1) = y, − 1 ≤ τa}.

These last probabilities can be computed with the aid of (1.14).

In the case of the two-sided barrier, the result writes, for x, y ∈ (a, b),

Px{S() = y,  ≤ τa,b}

=

∞
∑

l=−∞

(

p

q

)l(b−a)
[

p
()
x,y−2l(b−a) −

(

p

q

)y−a

p
()
x,2a−2l(b−a)−y

]

= p(+y−x)/2q(+x−y)/2
∞
∑

l=−∞

[(


+x−y

2 + l(b− a)

)

−
(


+x+y

2 − a+ l(b− a)

)]

.

(1.15)

The above sum actually is finite, limited to the indices l such that y−x−
2(b−a) ≤ l ≤ y−x+

2(b−a) for

the first binomial coefficient and such that 2a−x−y−
2(b−a) ≤ l ≤ 2a−x−y+

2(b−a) for the second one.

In the particular case where x ∈ {a, b} or y ∈ {a, b}, we have the following results. For

x ∈ [a, b], if y = a,

Px{S() = a,  ≤ τa,b} = Px{τa = , τa < τb} = q
()−
x,a,b,

and, if y = b,

Px{S() = b,  ≤ τa,b} = q
()+
x,a,b,

These probabilities are given by (1.14). For y ∈ [a, b], if x = a,

Pa{S() = y,  ≤ τa,b} = pPa+1{S(− 1) = y, − 1 ≤ τa,b}
+ q Pa−1{S(− 1) = y, − 1 ≤ τa},

and if x = b,

Pb{S() = y,  ≤ τa,b} = pPb+1{S(− 1) = y, − 1 ≤ τb}
+ q Pb−1{S(− 1) = y, − 1 ≤ τa,b}.

These probabilities are given by (1.14) and (1.15).

Finally, concerning the three-sided barrier, we simply have

Pb{S() = b,  ≤ τa,b,c} = pPb+1{S(− 1) = b, − 1 ≤ τb,c}
+ q Pb+1{S(− 1) = b, − 1 ≤ τa,b}.
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2 Methodology

The aim of this part is to describe a method of calculation for the probability distribution of

Tn,E which could be numerically exploited.

2.1 The probability distribution of S(ι)

We have, for x = (x1, . . . , xℓ),y = (y1, . . . , yℓ) ∈ Z
ℓ,

p
(ι)
x,y = Px{∀j ∈ {1, . . . , ℓ}, Sj(ι) = yj} =

ℓ
∏

j=1

Pxj{S(ι) = yj}

=

[

ℓ
∏

j=1

(

ι
ι+xj−yj

2

)

]

p[ι+
∑ℓ

j=1(yj−xj)]/2q[ι+
∑ℓ

j=1(xj−yj)]/2.

In the above formula, p
(ι)
x,y does not vanish if and only if for all j ∈ {1, . . . , ℓ}, xj − yj + ι

is even and |xj − yj| ≤ ι. Then the associated generating function is given by

Gx,y(u) =

(

p

q

)[
∑ℓ

j=1(yj−xj)]/2 ∞
∑

ι=0

[

ℓ
∏

j=1

(

ι
ι+xj−yj

2

)

]

(

pqu2
)ι/2

. (2.1)

Set

A(ξ1, . . . , ξℓ; z) =
∑

ι∈N: ι≥max(|ξ1|,...,|ξℓ|),
ι,ξ1,...,ξℓ with same parity

[

ℓ
∏

j=1

(

ι
ι+ξj
2

)

]

zι/2.

The function A does not vanish if and only if ξ1, . . . , ξℓ have the same parity. By performing

the change of index ι 7→ 2ι + |ξj0 |, where j0 is an index such that |ξj0 | is the maximum of

the |ξ1|, . . . , |ξℓ|, in the sum defining A, we get

A(ξ1, . . . , ξℓ; z) = z|ξj0 |
∞
∑

ι=0

[

ℓ
∏

j=1

( 2ι+ |ξj0 |
ι+

|ξj0
|+ξj
2

)

]

zι.

The quantity (2.1) can be rewritten as follows.

Proposition 2.1 For any x = (x1, . . . , xℓ),y = (y1, . . . , yℓ) ∈ Z
ℓ,

Gx,y(u) =

(

p

q

)[
∑ℓ

j=1(yj−xj)]/2
A
(

x1 − y1, . . . , xℓ − yℓ; pqu
2
)

.

We can express the function A by means of hypergeometric functions. To see this, we

set α = |ξj0 | and βj =
|ξj0 |+ξj

2 and assume, e.g., that ξj0 ≤ 0 so that βj0 = 0. In the

case where ξj0 ≥ 0, we would have α− βj0 = 0. Invoking the duplication formula for the
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Gamma function, we write

ℓ
∏

j=1

(

2ι+ α

ι+ βj

)

=

ℓ
∏

j=1

Γ(2ι+ α+ 1)

Γ(ι+ βj + 1)Γ(ι+ α− βj + 1)

=
2(2ι+α)ℓ

πℓ/2

ℓ
∏

j=1

Γ(ι+ α+1
2 )Γ(ι+ α+2

2 )

Γ(ι+ βj + 1)Γ(ι+ α− βj + 1)

=
2(2ι+α)ℓ

πℓ/2

[Γ(ι+ α+1
2 )Γ(ι+ α+2

2 )]ℓ

i!
∏

1≤j≤ℓ,j 6=j0
Γ(ι+ βj + 1)

∏

1≤j≤ℓ Γ(ι+ α− βj + 1)
.

Therefore, using the generalized hypergeometric function

sFt

( α1, . . . , αs

β1, . . . , βt
; z
)

=

∞
∑

m=0

(α1)m . . . (αs)m
(β1)m . . . (βt)m

zm

m!

=
Γ(β1) . . .Γ(βt)

Γ(α1) . . .Γ(αs)

∞
∑

m=0

Γ(m+ α1) . . .Γ(m+ αs)

Γ(m+ β1) . . .Γ(m+ βt)

zm

m!
,

we obtain

A(ξ1, . . . , ξℓ; z)

=
2αℓ

πℓ/2

[Γ(α+1
2 )Γ(α+2

2 )]ℓ
∏

1≤j≤ℓ,j 6=j0
Γ(βj + 1)

∏

1≤j≤ℓ Γ(α− βj + 1)
zα

× 2ℓF2ℓ−1

(

(α+ 1)/2, . . . , (α+ 1)/2, (α + 2)/2, . . . , (α + 2)/2
β1 + 1, . . . , βℓ + 1, α− β1 + 1, . . . , α− βℓ + 1

; 4ℓz

)

with the convention that in the list (α+1)/2, . . . , (α+1)/2, (α+2)/2, . . . , (α+2)/2 lying

within the function 2ℓF2ℓ−1 above,the terms (α+ 1)/2 and (α+ 2)/2 are repeated ℓ times

and in the list β1 + 1, . . . , βℓ + 1 the term βj0 + 1 which equals one is evicted. Observing

that the coefficient lying before the hypergeometric function can be simplified into

2αℓ

πℓ/2

[Γ(α+1
2 )Γ(α+2

2 )]ℓ
∏

1≤j≤ℓ,j 6=j0
Γ(βj + 1)

∏

1≤j≤ℓ Γ(α− βj + 1)

=
αℓ

∏ℓ
j=1 βj !

∏ℓ
j=1(α− βj)!

=

ℓ
∏

j=1

(

α

βj

)

,

we finally derive the following expression of A(ξ1, . . . , ξℓ; z).

Proposition 2.2 We have

A(ξ1, . . . , ξℓ; z) =

(

ℓ
∏

j=1

(|ξj0 |
βj

)

)

z|ξj0 |

×2ℓF2ℓ−1





|ξj0 |+1

2 , . . . ,
|ξj0 |+1

2 ,
|ξj0 |+2

2 , . . . ,
|ξj0 |+2

2

|ξj0 |+ξ1

2 + 1, . . . ,
|ξj0 |+ξℓ

2 + 1,
|ξj0 |−ξ1

2 + 1, . . . ,
|ξj0 |−ξℓ

2 + 1
; 4ℓz



.
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In the list
|ξj0 |+ξ1

2 +1, . . . ,
|ξj0 |+ξℓ

2 +1,
|ξj0 |−ξ1

2 +1, . . . ,
|ξj0 |−ξℓ

2 +1 lying within the function

2ℓF2ℓ−1 above, that of the two term
|ξj0 |+ξj0

2 + 1 and
|ξj0 |−ξj0

2 + 1 which equals one is

evicted.

2.2 The probability distribution of τ
E

Fix  ∈ N
∗. Notice that for y = (y1, . . . , yℓ) ∈ E , the event {τ

E
= ,S(τ

E
) = y} means

that S(ι) /∈ E for all ι ∈ {0, 1, . . . , − 1}, and S() = y. Moreover, the event {S(ι) /∈ E}

is equal to

ℓ
⋂

j=1

{Sj(ι) /∈ R} which means that Sj(ι) /∈ R for all j ∈ {1, . . . , ℓ}. Thus

q
()
x,y = Px{∀ι ∈ {0, 1, . . . , − 1},∀j ∈ {1, . . . , ℓ}, Sj(ι) /∈ R and Sj() = yj}

=

ℓ
∏

j=1

Pxj{∀ι ∈ {0, 1, . . . , − 1}, Sj(ι) /∈ R and Sj() = yj}

=
ℓ
∏

j=1

Pxj{S() = yj,  ≤ τ
R
}.

The quantity Pxj{S() = yj,  ≤ τ
R
} is nothing but the probability of the one-dimensional

random walk stopped when reaching the set R. Notice that one of the yj , 1 ≤ j ≤ ℓ, at

least, lies in R. It can be depicted more precisely as follows. Since the steps of the random

walk are ±1, the random variable τ
R

under the probability Pxj is the first hitting time of the

nearest neighbors of xj lying in R, that is,

• if xj ∈ (−∞, a1) (resp. xj ∈ (ar,+∞)), then τR = τa1 (resp. τR = τar );

• if xj ∈ (ai, ai+1) for a certain index i ∈ {2, . . . , r − 1}, then τ
R
= τai,ai+1

;

• if xj = a1 (resp. xj = ar), then τR = τa1,a2 (resp. τar−1,ar );

• if xj = ai for a certain index i ∈ {2, . . . , r − 1}, then τ
R
= τai−1,ai,ai+1

.

As a byproduct, we have

• if xj ∈ (−∞, a1) and yj ∈ (−∞, a1] (resp. xj ∈ (ar,+∞) and yj ∈ [ar,+∞)),
then

Pxj{S() = yj,  ≤ τ
R
} = Pxj{S() = yj,  ≤ τa1}

(resp. Pxj{S() = yj,  ≤ τR} = Pxj{S() = yj,  ≤ τar });

• if xj ∈ (ai, ai+1) and yj ∈ [ai, ai+1] for a certain index i ∈ {1, . . . , r},

Pxj{S() = yj,  ≤ τR} = Pxj{S() = yj,  ≤ τai,ai+1
};

• if xj = a1 and yj ∈ (−∞, a1) (resp. xj = ar and yj ∈ (ar,+∞)), then

Pxj{S() = yj,  ≤ τR} = Pxj{S() = yj,  ≤ τa1}
(resp. Pxj{S() = yj,  ≤ τ

R
} = Pxj{S() = yj,  ≤ τar });
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• if xj = a1 and yj ∈ [a1, a2] (resp. xj = ar and yj ∈ [ar−1, ar]), then

Pxj{S() = yj,  ≤ τR} = Pxj{S() = yj,  ≤ τa1,a2}
(resp. Pxj{S() = yj,  ≤ τ

R
} = Pxj{S() = yj,  ≤ τar−1,ar });

• if xj = ai for a certain index i ∈ {2, . . . , r − 1} and y ∈ [ai−1, ai) (resp. y ∈
(ai, ai+1]), then

Pxj{S() = yj,  ≤ τ
R
} = Pxj{S() = yj,  ≤ τai−1,ai}

(resp. Pxj{S() = yj,  ≤ τ
R
} = Pxj{S() = yj,  ≤ τai,ai+1

});

• if xj = yj = ai for a certain index i ∈ {2, . . . , r − 1}, then

Pxj{S() = yj,  ≤ τ
R
} = Pxj{S() = yj,  ≤ τai−1,ai,ai+1

}.

In the other cases, the probability Pxj{S() = yj,  ≤ τ
R
} vanishes.

All these probabilities belong to the following families of generic “stopping”-

probabilities which are explicitly given in Section 1.4.3. With all this at hand, we can

completely determine the joint probability distribution of (τ
E
,S(τ

E
)).

The marginal probability distribution of τ
E

can be easily related to that of τ
R

according

as

Px{τE
≥ } = Px{∀ι ∈ {0, 1, . . . , − 1},∀j ∈ {1, . . . , ℓ}, Sj(ι) /∈ R}

=

ℓ
∏

j=1

Pxj{∀ι ∈ {0, 1, . . . , − 1}, Sj(ι) /∈ R}

=

ℓ
∏

j=1

Pxj{τR ≥ }.

The probabilities Pxj{τR ≥ }, 1 ≤ j ≤ ℓ can be easily computed with the aid of the

distributions described in Section 1.4.2.

We propose another possible way for deriving the distribution of (τ
E
,S(τ

E
)) which is

characterized by the generating matrix H(u). If S(ι) ∈ E , then τ
E
≤ ι. Hence, using the

strong Markov property, we derive, for x ∈ Z
ℓ and y ∈ E , the relationship, for ι ∈ N

∗,

Px{S(ι) = y} =

ι
∑

=1

∑

z∈E

Px{τE
= ,S(τ

E
) = z}Pz{S(ι− ) = y}

or, equivalently,

p
(ι)
x,y =

ι
∑

=1

∑

z∈E

q
()
x,zp

(ι−)
z,y .

Therefore, taking the generating functions, for x ∈ Z
ℓ and y ∈ E ,

Gx,y(u) = δx,y +

∞
∑

ι=1

p
(ι)
x,yu

ι = δx,y +
∑

ι,∈N∗,z∈E:
≤ι

q
()
x,zp

(ι−)
z,y uι
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which can be rewritten as

Gx,y(u) = δx,y +
∑

z∈E

Hx,z(u)Gz,y(u), (2.2)

which leads, when restricting ourselves to x ∈ E , to the matrix equation (2.3) below. Setting

I
E

for the identity matrix (δx,y)x,y∈E , we have the following result.

Theorem 2.3 The generating squared-matrix H(u) of the numbers q
()
x,y, x,y ∈ E ,  ∈ N,

which characterizes the joint probability distribution of (τ
E
,S(τ

E
)), is a solution of the

following matrix equation:

[I
E
−H(u)]G(u) = I

E
. (2.3)

This means that the generating functions Hx,y(u), x,y ∈ E , are the solutions of a system

of an infinity of equations with an infinity of unknowns which seems difficult to solve.

2.3 The two first moments of T
n,E

We already observed that {S(ι) /∈ E} =

ℓ
⋂

j=1

{Sj(ι) /∈ R}. As a byproduct, for x =

(x1, . . . , xℓ) ∈ Z
ℓ,

Px{S(ι) /∈ E} =

ℓ
∏

j=1

Pxj{S(ι) /∈ R}

or

Px{S(ι) ∈ E} = 1−
ℓ
∏

j=1

(1− Pxj{S(ι) ∈ R}) = 1−
ℓ
∏

j=1

(

1−
r
∑

i=1

Pxj{S(ι) = ai}
)

.

Now, the expectation of T
n,E

can be easily computed as follows:

Ex(Tn,E
) =

n
∑

ι=1

Px{S(ι) ∈ E} = n−
n
∑

ι=1

ℓ
∏

j=1

(

1−
r
∑

i=1

Pxj{S(ι) = ai}
)

. (2.4)

The second moment of T
n,E

could be evaluated as follows:

Ex(T
2
n,E

) =
n
∑

ι=1

n
∑

=1

Px{S(ι),S() ∈ E}

=

n
∑

ι=1

Px{S(ι) ∈ E}+ 2
∑

1≤ι<≤n

Px{S(ι),S() ∈ E}.
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The foregoing double sum can be computed according as

∑

1≤ι<≤n

Px{S(ι),S() ∈ E} =
∑

1≤ι<≤n

∑

y∈E

Px{S(ι) = y}Py{S(− ι) ∈ E}

=

n−1
∑

ι=1

∑

y∈E

Px{S(ι) = y}
n−ι
∑

=1

Py{S() ∈ E}

=
n−1
∑

ι=1

∑

y∈E

Px{S(ι) = y}Ey(Tn−ι,E
).

Consequently,

Ex(T
2
n,E

) = Ex(Tn,E
) + 2

n−1
∑

ι=1

∑

y∈E

Px{S(ι) = y}Ey(Tn−ι,E
).

where Ex(Tn,E
) and the Ey(Tn−ι,E

), 1 ≤ ι ≤ n− 1, are given by (2.4).

2.4 The probability distribution of T
n,E

We now propose a way for computing the distribution of T
n,E

under Px which is determined

by the family of numbers r
(k,n)
x , 0 ≤ k ≤ n.

For 1 ≤ k ≤ n, if T
n,E

= k, then τ
E
≤ n, say τ

E
=  for a certain  ∈ {1, . . . , n}.

Moreover, the sojourn time in E up to τ
E

is only 1, and that after E up to n, which is

identical in distribution to T
n−,E

, equals k − 1. Hence, using the strong Markov property,

we derive the relationship, for 1 ≤ k ≤ n,

Px{Tn,E
= k} =

n
∑

=1

∑

y∈E

Px{τE
= ,S(τ

E
) = y}Py{Tn−,E

= k − 1}

or, equivalently, for 1 ≤ k ≤ n,

r
(k,n)
x =

n
∑

=1

∑

y∈E

q
()
x,yr

(k−1,n−)
y .

Therefore, taking the generating functions, for x ∈ Z
ℓ,

Kx(u, v) =

∞
∑

n=0

r
(0,n)
x vn +

∑

k,n∈N∗:
k≤n

r
(k,n)
x ukvn

=
∞
∑

n=0

r
(0,n)
x vn +

∑

k,n,∈N∗,y∈E:
k≤n and ≤n+1−k

q
()
x,yr

(k−1,n−)
y ukvn. (2.5)

On the other hand,

r
(0,n)
x = Px{Tn,E

= 0} = Px{τE
> n}
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and the corresponding generating function is

∞
∑

n=0

r
(0,n)
x vn =

∞
∑

n=0

(

1−
n
∑

k=0

Px{τE
= k}

)

vn

=
1

1− v
−

∞
∑

k=0

Px{τE
= k}

(

∞
∑

n=k

vn

)

=
1

1− v
−

∞
∑

k=0

vk

1− v
Px{τE

= k} =
1−Ex(v

τ
E )

1− v
. (2.6)

In view of (2.6), (2.5) can be rewritten as

Kx(u, v) =
1−Ex(v

τ
E )

1− v
+ u

∑

y∈E

Hx,y(v)Ky(u, v), (2.7)

This leads, when restricting ourselves to x ∈ E , to the following result.

Theorem 2.4 The generating column-matrix K(u, v) of the family of numbers Px{Tn,E
=

k}, x ∈ E , k, n ∈ N, is a solution of the following matrix equation:

[I
E
− uH(v)]K(u, v) =

1

1− v
[1l

E
− H̃(v)]. (2.8)

The above matrix 1l
E

is the column-matrix consisting of 1, that is (1)
x∈E

, H(v) is given

by (2.3) and H̃(v) is defined by

H̃(v) = (Ex(v
τ
E ))

x∈E
=

(

∑

y∈E

Hx,y(v)

)

x∈E

= H(v)1l
E
.

In other words, the generating matrix Kx(u, v), x ∈ E , are the solutions of a system of an

infinity of equations with an infinity of unknowns which seems difficult to solve.

Remark 2.5 A slightly simpler equation may be obtained by setting

K̃(u, v) = K(u, v)− 1

u(1− v)
1l

E
.

In fact, by (2.8),

[I
E
− uH(v)]K̃(u, v) = [I

E
− uH(v)]

[

K(u, v) − 1

u(1− v)
1l

E

]

=
1

1− v
[1l

E
− H̃(v)] − 1

u(1− v)
[1l

E
− uH̃(v)].

Thus, the modified generating function K̃(u, v) satisfies the matrix equation

[I
E
− uH(v)]K̃(u, v) =

u− 1

u(1− v)
1l

E
. (2.9)
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Finally, for a starting point x ∈ Z
ℓ \ E , Kx(u, v) can be expressed by means of the

Gx,y(u) and Ky(u, v), y ∈ E . Indeed, by (2.2), we have for x ∈ Z
ℓ \ E and y ∈ E ,

Gx,y(u) =
∑

z∈E

Hx,z(u)Gz,y(u),

that is, by introducing the row-matrices Gx(u) = (Gx,y(u))y∈E and Hx(u) =
(Hx,y(u))y∈E , the matrix Hx(u) solves the equation

Gx(u) = Hx(u)G(u).

Next (2.7) yields for x ∈ Z
ℓ \ E

Kx(u, v) =
1−Ex(v

τ
E )

1− v
+ uHx(u)K(u, v).

3 Particular cases

In this part, we focus on the particular cases where ℓ = 1 or r = 1. When ℓ = 1, we are

dealing with one ligand which can meet several receptors while in the case r = 1, we are

concerned by one receptor which can be reached by several ligands.

3.1 Case ℓ = 1

In this case, our model is a one-dimensional random walk model and we have E = R. We

adapt the general settings by putting

T
n,R

=

n
∑

ι=1

1l{S(ι)∈R},

and by writing, for 1 ≤ i, j ≤ r, ι ∈ N and  ∈ N
∗, the following probabilities:

p
(ι)
i,j = Pai{S(ι) = aj},

q
()
i,j = Pai{τR = , S(τ

R
) = aj} = Pai{τR = τaj = },

r
(k,n)
i = Pai{Tn,R

= k}.

We also introduce the generating functions

Gi,j(u) =

∞
∑

ι=0

p
(ι)
i,ju

ι,

Hi,j(u) =
∞
∑

=1

q
()
i,j u

 = Eai(u
τ
R , S(τ

R
) = aj),

Ki(u, v) =
∑

k,n∈N:
k≤n

r
(k,n)
i ukvn =

∞
∑

n=0

Eai

(

uTn,R
)

vn,
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together with the related (finite) matrices

G(u) = (Gi,j(u))1≤i,j≤r
, H(u) = (Hi,j(u))1≤i,j≤r

, K(u, v) = (Ki(u, v))1≤i≤r
.

Referring to Section 1.4, we explicitly have

p
(ι)
i,j =

(

ι
ι+ai−aj

2

)

p(ι+αj−αi)/2q(ι+αi−αj)/2.

Gi,j(u) =































[B−(u)]ai−aj

A(u)
if ai > aj,

1

A(u)
if ai = aj,

[B+(u)]ai−aj

A(u)
if ai < aj.

The matrix H(u) is three-diagonal. More precisely, we have Hi,j(u) = 0 for |i − j| ≥ 2
and

Hi,i(u) = Eai

(

uτai , τai < τai−1,ai+1

)

,

Hi,i+1(u) = Eai

(

u
τai+1 , τai+1

< τai
)

,

Hi,i−1(u) = Eai

(

u
τai−1 , τai−1

< τai
)

.

These quantities are explicitly given by (1.11), (1.12) and (1.13) in Section 1.4 which ex-

plicitly contains the matrix H(u).
The functions Hi,j(u) can be also obtained by equations (2.2) which read here

Gi,j(u) = δi,j +
r
∑

k=1

Hi,k(u)Gk,j(u).

This can be rewritten in terms of matrices as in (2.3), by introducing the unit rxr-matrix

Ir = (δi,j)1≤i,j≤r
,

G(u) = Ir +H(u)G(u)

and then

H(u) = Ir −G(u)−1. (3.1)

Remark 3.1 An alternative representation of H(u) can be obtained as follows. Let us

introduce the probabilities

ρ
()
i,j = Pai{τaj = }, ρ̃

()
i,j =

{

ρ
()
i,j if i 6= j

δ,0 if i = j

and their generating functions

Li,j(u) =

∞
∑

=1

ρ
()
i,ju

 = Eai(u
τaj ), L̃i,j(u) =

∞
∑

=1

ρ̃
()
i,ju

 =

{

Li,j(u) if i 6= j

1 if i = j
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together with their related matrices

L(u) = (Li,j(u))1≤i,j≤r
, L̃(u) = (L̃i,j(u))1≤i,j≤r

.

Actually, the ρ̃
()
i,j ’s are associated with time τ̃ai = min{ι ∈ N : S(ι) = ai}. Notice that τai

and τ̃ai coincide when the starting point differs from ai; in the case where the walk starts

at ai, τ̃ai = 0 while τai is the first return time at ai. We observe that

ρ
()
i,j = Pai{τR ≤ , τaj = }

=

−1
∑

ι=1

r
∑

k=1

Pai{τR = ι, S(τ
R
) = ak}Pak{τaj = − ι}

+

r
∑

k=1

Pai{τR = , S(τ
R
) = aj} =

−1
∑

ι=1

r
∑

k=1

q
(ι)
i,k ρ̃

(−ι)
k,j .

This implies the following relationship for the corresponding generating functions:

Li,j(u) =

r
∑

k=1

Hi,k(u)L̃k,j(u)

or, equivalently,

L(u) = H(u)L̃(u),

from which we deduce

H(u) = L(u)L̃(u)−1.

As a check, we notice that L̃(u)− L(u) is a diagonal matrix:

L̃(u)− L(u) = diag(1− Li,i(u))1≤i≤r
= diag(1/Gi,i(u))1≤i≤r

and then, by (1.4), G(u)[L̃(u)−L(u)] = L̃(u) which entails L(u)L̃(u)−1 = Ir−G(u)−1.

Finally, the functions Ki(v), 1 ≤ i ≤ r, are given by equation (2.7) which reads here

Ki(u, v) =
1− Eai(v

τ
R )

1− v
+ u

r
∑

j=1

Hi,j(v)Kj(u, v),

and the equivalent matrix equation (2.8) writes

[Ir − uH(v)]K(u, v) =
1

1− v
[1lr − H̃(v)].

The above column-matrix H̃(v) is defined by

H̃(v) = (Eai(v
τ
R ))

1≤i≤r
= H(v)1lr.

The solution is the finite column-matrix

K(u, v) =
1

1− v
[Ir − uH(v)]−1[1lr − H̃(v)]

=
1

1− v
[Ir − uH(v)]−1[Ir −H(v)]1lr. (3.2)



22 Aimé Lachal

Remark 3.2 Referring to Equation (2.9), we see that the modified generating function

K̃(u, v) = K(u, v)− 1
u(1−v)1lr is given by

K̃(u, v) =
u− 1

u(1− v)
[Ir − uH(v)]−11lr. (3.3)

Remark 3.3 By inserting the expression (3.1) of H(v) by means of G(v) into (3.2), we

get that

[Ir − uH(v)]−1[Ir −H(v)] = [(1− u)Ir + uG(v)−1]−1[G(v)−1]

= [(1− u)G(v) + uIr]
−1.

So, K(u, v) can be expressed in terms of G(v) as

K(u, v) =
1

1− v
[(1− u)G(v) + uIr]

−11lr.

This representation is simpler than (3.2). Nonetheless, it is not tractable for inverting the

generating function K(u, v) with respect to u.

Expanding [Ir − uH(v)]−1 into
∑∞

k=0 u
kH(v)k, we get by (3.2) (or (3.3))

K(u, v) =
1

1− v

∞
∑

k=0

uk[H(v)k(Ir −H(v))1lr]

from which we extract the following proposition.

Proposition 3.4 The probability distribution of T
n,R

satisfies, for any k ∈ N,

∞
∑

n=k

(

(Pai{Tn,R
= k})

1≤i≤r

)

vn =
1

1− v
H(v)k[Ir −H(v)]1lr (3.4)

where each sides of the equality are column-matrices.

We could go further in the computations: expanding 1/(1 − v) into
∑∞

n=0 v
n, we obtain

by (3.4) that

∞
∑

n=k

(

(

r
(k,n)
i

)

1≤i≤r

)

vn =

(

∞
∑

n=k

vn

)

H(v)k[Ir −H(v)]1lr.

Introducing the matrix Q(ι) =
(

q
(ι)
i,j

)

1≤i,j≤r
, we rewrite H(v) as

∑∞
ι=1Q

(ι)vι. Then,

H(v)k =

∞
∑

ι=k







∑

ι1,...,ιk∈N∗:
ι1+···+ιk=ι

Q(ι1) . . .Q(ιk)






vι
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and

H(v)k[Ir −H(v)]

=

∞
∑

ι=k







∑

ι1,...,ιk∈N∗:
ι1+···+ιk=ι

Q(ι1) . . .Q(ιk) −
∑

ι1,...,ιk+1∈N∗:

ι1+···+ιk+1=ι

Q(ι1) . . .Q(ιk+1)






vι.

Next,

(

∞
∑

n=k

vn

)

H(v)k[Ir −H(v)]1lr

=

∞
∑

n=k







n
∑

ι=k







∑

ι1,...,ιk∈N∗:
ι1+···+ιk=ι

Q(ι1) . . .Q(ιk)1lr −
∑

ι1,...,ιk+1∈N∗:

ι1+···+ιk+1=ι

Q(ι1) . . .Q(ιk+1)1lr












vι.

We finally deduce the result below.

Theorem 3.5 The probability Pai{Tn,R = k} is the i-th term of the column-matrix

∑

ι1,...,ιk∈N∗:
k≤ι1+···+ιk≤n

Q(ι1) . . .Q(ιk)1lr −
∑

ι1,...,ιk+1∈N∗:

k≤ι1+···+ιk+1≤n

Q(ι1) . . .Q(ιk+1)1lr.

The expectation of T
n,R

can be derived by evaluating the derivative of its generating func-

tion at u = 1. Indeed,

∂K

∂u
(1, v) =

1

1− v
H(v)[Ir − uH(v)]−2[Ir −H(v)]1lr

∣

∣

∣

∣

u=1

=
1

1− v
H(v)[Ir −H(v)]−11lr.

Since

H(v)[Ir −H(v)]−1 = [Ir − (Ir −H(v))][Ir −H(v)]−1 = [Ir −H(v)]−1 − Ir,

we get the expectation of T
n,R

when the random walk starts at a receptor at time 0:

(Eai(Tn,R
))

1≤i≤r
=

1

1− v

(

[Ir −H(v)]−1 − Ir
)

1lr.

Next, the second moment of Tn,R can be extracted by computing the second derivative of

its generating function at u = 1:

∂2K

∂u2
(1, v) =

2

1− v
H(v)2[Ir − uH(v)]−3[Ir −H(v)]1lr

∣

∣

∣

∣

u=1

=
2

1− v
H(v)2[Ir −H(v)]−21lr.
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Since

H(v)2[Ir −H(v)]−2 +H(v)[Ir −H(v)]−1

= H(v)[Ir −H(v)]−2[H(v) + (Ir −H(v))]

= [Ir − (Ir −H(v))][Ir −H(v)]−2

= [Ir −H(v)]−2 − [Ir −H(v)]−1,

we get the variance of T
n,R

:

(varai(Tn,R))1≤i≤r
=

1

1− v

(

[Ir −H(v)]−2 − [Ir −H(v)]−1
)

1lr.

3.2 Case r = 1

In this case, we have one receptor: R = {a}, and then E =
ℓ
⋃

j=1

Ej where Ej is the

hyperplane Z
j−1 × {a} × Z

ℓ−j . Formulas (2.3) and (2.8) in Theorems 2.3 and 2.4 do not

simplify.

3.3 Case ℓ = 1 and r = 2

We have in this case E = R = {a1, a2}. We work with the modified generating function

K̃(u, v) given by (3.3). We have to invert the 2x2-matrix I2 − uH(v). Here, H(v) reads

H(v) =

(

H1,1(v) H1,2(v)
H2,1(v) H2,2(v)

)

=

(

Ea1(v
τa1 , τa1 < τa2 ) Ea1(v

τa2 , τa2 < τa1 )
Ea2(v

τa1 , τa1 < τa2 ) Ea2(v
τa2 , τa2 < τa1 )

)

.

The entries of this matrix are given by (1.11) and (1.12). Setting

∆(u, v) = 1− u[H1,1(v) +H2,2(v)] + u2[H1,1(v)H2,2(v)−H1,2(v)H2,1(v)],

we have

[I2 − uH(v)]−1 =
1

∆(u, v)

(

1− uH2,2(v) uH2,1(v)
uH1,2(v) 1− uH1,1(v)

)

and then, by (3.3),

K̃(u, v) =
u− 1

u(1− v)∆(u, v)

(

1 + u[H2,1(v) −H2,2(v)]
1− u[H1,1(v) −H1,2(v)]

)

.

3.4 Case ℓ = r = 1

We have in this case E = R = {a}. The sojourn time of interest reads now

Tn,a =

n
∑

ι=1

1l{S(ι)=a}.
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We are dealing with the local time of the one-dimensional random walk at a. We adapt the

settings by putting

p(ι) = Pa{S(ι) = a} = P0{S(ι) = 0},
q() = Pa{τa = } = P0{τ0 = },

r(k,n) = Pa{Tn,a = k} = P0{Tn,0 = k},

and

G(u) =

∞
∑

ι=0

p(ι)uι, H(u) =

∞
∑

=1

q()u = E0(u
τ0 ) .

We explicitly have

p(ι) =

(

ι

ι/2

)

(pq)ι/2, q() =
1

− 1

(



/2

)

(pq)/2,

G(u) =
1

A(u)
, H(u) = 1− 1

G(u)
= 1−A(u).

By (3.4), we have
∞
∑

n=k

r(k,n)vn =
A(v)

1− v
[1−A(v)]k.

In this case, we can explicitly invert the previous generating function. Indeed, by invok-

ing (1.2), we get

∞
∑

n=k

r(k,n)vn = (1− 4pqv2)

(

∞
∑

l=0

vl

)

∞
∑

m=0

2k
(

2m+ k

m

)

(pqv2)m+k

= 2k

(

1 + v + (1− 4pq)

∞
∑

l=2

vl

)

∞
∑

m=k

(

2m− k

m

)

(pq)mv2m.

The foregoing double sum can be easily transformed as follows:

∞
∑

l=2

vl
∞
∑

m=k

(

2m− k

m

)

(pq)mv2m =
∞
∑

n=2k+2

( [n/2]−1
∑

m=k

(

2m− k

m

)

(pq)m

)

vn

and then

∞
∑

n=k

r(k,n)vn = 2k

[

∞
∑

m=k

(

2m− k

m

)

(pq)mv2m +
∞
∑

m=k

(

2m− k

m

)

(pq)mv2m+1

+ (1− 4pq)

∞
∑

n=2k+2

( [n/2]−1
∑

m=k

(

2m− k

m

)

(pq)m

)

vn

]

.

Hence, by identifying the terms in vn, we find that for even n

r(k,n) = 2k

[

(

n− k

n/2

)

(pq)n/2 + (1− 4pq)

n/2−1
∑

m=k

(

2m− k

m

)

(pq)m

]

(3.5)
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and for odd n, observing that r(k,n) = r(k,n−1) since the last step of the random walk cannot

vanish in this case,

r(k,n) = 2k

[

(

n− k − 1

(n− 1)/2

)

(pq)(n−1)/2 + (1 − 4pq)

(n−3)/2
∑

m=k

(

2m− k

m

)

(pq)m

]

.

In the two above formulas we adopted the convention that
∑l

m=k = 0 when k > l. At this

stage, we see that in the particular case of the symmetric random walk (corresponding to

p = q = 1
2 ), the foregoing formulas simply reduce to

r(k,n) =



















(n−k
n/2

)

2n−k
if n is even,

( n−k−1
(n−1)/2

)

2n−k−1
if n is odd.

Going back to (3.5), we get for even n:

r(k,n) = 2k

[

(

n− k

n/2

)

(pq)n/2 +

n/2−1
∑

m=k

(

2m− k

m

)

(pq)m − 4

n/2−1
∑

m=k

(

2m− k

m

)

(pq)m+1

]

= 2k

[

(

n− k

n/2

)

(pq)n/2 +

n/2−1
∑

m=k

(

2m− k

m

)

(pq)m − 4

n/2
∑

m=k+1

(

2m− k − 2

m− 1

)

(pq)m

]

= 2k

[

(pq)k +

n/2
∑

m=k+1

[(

2m− k

m

)

− 4

(

2m− k − 2

m− 1

)]

(pq)m

]

= 2k

[

(pq)k +

n/2
∑

m=k+1

(2m− k − 2)!

m!(m− k)!
(k2 + k − 2m)(pq)m

]

= (2pq)k

[

1 +

n/2−k
∑

m=1

(2m+ k − 2)!

m!(m+ k)!
(k2 − k − 2m)(pq)m

]

.

Consequently, we have obtained the following result.

Theorem 3.6 The probability distribution of Tn,0 is given, for even n, by

P0{Tn,0 = k} = (2pq)k

[

1 +

n/2−k
∑

m=1

(2m+ k − 2)!

m!(m+ k)!
(k2 − k − 2m)(pq)m

]

and for odd n by P0{Tn,0 = k} = P0{Tn−1,0 = k}. When p = q = 1
2 (case of the symmetric

random walk), this distribution reduces, for even n, to

P0{Tn,0 = k} =

(n−k
n/2

)

2n−k
.
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In particular, we have

r0,n = 1−
n/2
∑

m=1

(2m
m

)

2m− 1
(pq)m.

This quantity, which represents the probability P0{Tn,0 = 0} is nothing but the probability

P0{τ0 > n}.

4 Further investigations

In a more realistic model, the plasmic membrane should be viewed as a closed curve and its

roaming constituents should be modeled for instance by random walks on the finite torus

Z/NZ = {0, 1, . . . , N − 1} for a fixed possibly large integer N (with the usual rule N ≡ 0
[modN ]) or by Brownian motions on the continuous torus R/Z.

Moreover, the rafts could be built by aggregating several receptors, that is by choosing

several sequences of successive receptors: {a1, a1+1, . . . , a1+l1−1}, {a2, a2+1, . . . , a2+
l2 − 1}, . . . , {ar, ar + 1, . . . , ar + lr − 1} with a1 + l1 ≤ a2, a2 + l2 ≤ a3, . . . , ar−1 +
lr−1 ≤ ar, where the l1, . . . , lr are the length of the rafts. The effect of this kind of non-

homogeneous repartition of receptors on the binding distribution could provide a possible

functional property of rafts. In addition, the localizations and the lengths of the rafts could

be random and then we should also consider that the numbers a1, . . . , ar and l1, . . . , lr are

random variables.

So far we concentrate on diffusion-limited reaction neglecting the binding duration.

But in the reality, ligand-receptor binding induces some delay in the mechanism, that is

when a ligand meets a receptor, they bind during a certain (possibly random) amount of

time before unbinding. So, we should also introduce convenient delayed random walk or

Brownian motion for recreating the real biological process.

In Subsection 4.1, we give some information about a possible random walk model on

the torus Z/NZ and in Subsection 4.2, we address possible continuous models involving

Brownian motion on the line R or on the torus R/Z.

4.1 A random walk model on Z/NZ

For building a model on Z/NZ with a deterministic set of receptors R′ = {a1, . . . , ar}, we

introduce an ℓ–dimensional random walk (S′(ι))ι∈N on the finite set (Z/NZ)ℓ. Set

E
′ =

ℓ
⋃

j=1

[

(Z/NZ)j−1 ×R′ × (Z/NZ)ℓ−j
]

.

This set is finite: #E
′ = ℓrN ℓ−1, and the sojourn time of interest writes here

T′
n,E′ =

n
∑

ι=1

1l{S′(ι)∈E ′}.

For tackling the computation of the probability distribution of T′
n,E′ , we observe that we

can pass from the one–dimensional random walk (S′(ι))ι∈N on Z/NZ to a walk on Z in
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the following manner: set, for ι ∈ N,

S(ι) = S′(ι) + αιN

where αι is the number of upcrossings of level 0 (i.e. times σ such that S′(σ − 1) =
N − 1, S′(σ) = 0, S′(σ + 1) = 1) minus that of downcrossing of 0 (i.e. times σ such

that S′(σ − 1) = 1, S′(σ) = 0, S′(σ + 1) = N − 1) up to time ι. Then, (S(ι))ι∈N is a

random walk on Z. Conversely, S′(ι) = S(ι) mod N = S(ι) −N [S(ι)/N ]. Notice that

in our new setting, we mark with primes all quantities related to the walks on Z/NZ and

(Z/NZ)ℓ, while those related to the walks on Z and Z
ℓ are not marked with any prime.

In this correspondence, the set of receptors R′ in Z/NZ becomes an infinite set R =
R′ + NZ = {a1 + mN, . . . , ar + mN ;m ∈ Z} of receptors in Z and the subset E ′ of

(Z/NZ)ℓ becomes the subset of Zℓ

E =

ℓ
⋃

j=1

(

Z
j−1 ×R× Z

ℓ−j
)

. (4.1)

Of course,

T′
n,E′ =

n
∑

ι=1

1l{S(ι)∈E}.

The analysis done in the case of the walk on Z
ℓ (associated with the set (4.1) now) can

be carried out for the walk on (Z/NZ)ℓ exactly in the same way mutatis mutandis: the

generating matrix K′(u, v) of the family of numbers Px{T′
n,E′ = k}, x ∈ E

′, k, n ∈ N, is

given by

K′(u, v) =
1

1− v
[I

E
′
− uH′(v)]−1[I

E
′
−H′(v)]1l

E
′

where I
E
′ is the identity matrix on E

′: I
E
′ = (δx,y)x,y∈E′ , 1l

E
′ is the column-matrix con-

sisting of 1, that is (1)
x∈E ′ , and

H′(v) = I
E
′ −G′(v)−1.

In the foregoing definition of H′(v), G′(v) is the matrix generating function of the proba-

bilities P′
x{S′(ι) = y}, x,y ∈ E

′ which are given by

P′
x{S′(ι) = y} =

ℓ
∏

j=1

P
′
xj
{S′(ι) = yj}.

The probabilities related to the case ℓ = 1 can be evaluated as follows. For x, y ∈ Z/NZ,

P
′
x{S′(ι) = y} =

∑

k∈Z

Px{S(ι) = y + kN}

=
∑

k∈Z:
(x−y−ι)/N≤k≤(x−y+ι)/N

(

ι
ι+y−x+kN

2

)

p(ι+y−x+kN)/2q(ι+x−y−kN)/2.
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Let us have a look to the case ℓ = r = 1. For this we introduce the following families

of hitting times related to (S(ι))ι∈N: for a, b, c ∈ Z such that a < b < c,

τa,b = min{ι ≥ 1 : S(ι) ∈ {a, b}},
τa,b,c = min{ι ≥ 1 : S(ι) ∈ {a, b, c}},

and that related to (S′(ι))ι∈N: for a ∈ Z/NZ,

τ ′a = min{ι ≥ 1 : S′(ι) = a}.

It is clear that, if the starting point of (S′(ι))ι∈N is a,

τ ′a = τa−N,a,a+N .

Because of this relationship, the probability distribution of time τ ′a can be explicitly written

out. In the same way as (1.13), we have

H ′(v) = E
′
a

(

vτ
′
a
)

= E
′
0

(

vτ
′
0
)

= E0(v
τ−N,0,N ) = pv E1(v

τ0,N ) + qvE−1(v
τ−N,0).

Invoking (1.9) and the fact that B+(v)B−(v) = q/p, we obtain

E1(v
τ0,N ) =

(1−B−(v)N )B+(v) − (1−B+(v)N )B−(v)

B+(v)N −B−(v)N

=
B+(v) −B−(v)

B+(v)N −B−(v)N
+

q

p

B+(v)N−1 −B−(v)N−1

B+(v)N −B−(v)N
,

E−1(v
τ0,N ) =

(1−B−(v)N )B+(v)N−1 − (1−B+(v)N )B−(v)N−1

B+(v)N −B−(v)N

=
B+(v)N−1 −B−(v)N−1

B+(v)N −B−(v)N
+

(

q

p

)N−1 B+(v)−B−(v)

B+(v)N −B−(v)N
,

which entails

H ′(v) =

[(

q

p

)N

+ 1

]

pv
B+(v)−B−(v)

B+(v)N −B−(v)N
+ 2qv

B+(v)N−1 −B−(v)N−1

B+(v)N −B−(v)N
.

Finally, the probability distribution of the sojourn time T′
n,0 is characterized by the gener-

ating function, as in (3.4),

∞
∑

n=k

P
′
0{T′

n,0 = k}vn =
1

1− v
[H ′(v)]k[1−H ′(v)].

It seems difficult to extract the probabilities P
′
0{T′

n,0 = k}, 1 ≤ k ≤ n, from this last

identity.
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4.2 Brownian models on R and R/Z

At last, we evoke the continuous counterpart to our model in the one-dimensional case.

Analogous continuous models hinge on linear Brownian motion (that is the membrane is

viewed as the real line R) and circular Brownian motion (in this case, the membrane is

modeled as the torus R/Z). In both cases, the rafts (clustered receptors) are viewed as

intervals [a1, b1], . . . , [ar, br] of R or R/Z, and ligands move like independent Brownian

motions (B1(s))s≥0, . . . , (Bℓ(s))s≥0 on R or R/Z. Set

B(s) = (B1(s), . . . , Bℓ(s)) for any s ≥ 0,

and

R =
r
⋃

i=1

[ai, bi], E =
ℓ
⋃

j=1

[

R
j−1 ×R× R

ℓ−j
]

or

ℓ
⋃

j=1

[

(R/Z)j−1 ×R× (R/Z)ℓ−j
]

.

The process (B(s))s≥0 is a Brownian motion on R
ℓ or (R/Z)ℓ. The time that ligands bind

with rafts up to a fixed time t is given by the sojourn time of (B(s))s≥0 in E:

T
t,E

=

∫ t

0
1l{B(s)∈E} ds.

In the case of linear Brownian motion (ℓ = 1), the computation of the probability distribu-

tion of T
t,E

will be the object of a forthcoming work ([4]).

Appendix

A Distribution of the first hitting time for the random walk

The generating function (1.7) writes

H+
x,a,b(u) = (2pu)b−x [1 +A(u)]x−a − [1−A(u)]x−a

[1 +A(u)]b−a − [1−A(u)]b−a

Let us introduce the rational fraction defined for x, y ∈ N such that x < y, by

fx,y(ζ) =
(1 + ζ)x − (1 − ζ)x

(1 + ζ)y − (1 − ζ)y
=

∑[(x−1)/2]
m=0

(

x
2m+1

)

ζ2m

∑[(y−1)/2]
m=0

( y
2m+1

)

ζ2m
.

We want to decompose this fraction into partial fractions. The poles of fx,y are the roots of

the polynomial
∑[(y−1)/2]

m=0

( y
2m+1

)

ζ2m which are those of (1 + ζ)y − (1 − ζ)y except for

0. It is easily seen that they consist of the family of numbers ζl =
e2ilπ/y−1
e2ilπ/y+1

= i tan(lπ/y)

for 1 ≤ l ≤ y − 1 such that l 6= y/2. Moreover, the function ζ 7→ fx,y(ζ) is even, so we

decompose it as

fx,y(ζ) =
∑

l∈N:
1≤l<y/2

αl

ζ2 − ζ2l
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with αl = limζ→ζl(ζ
2 − ζ2l )f(ζ). We have

αl =
(1 + ζl)

x − (1− ζl)
x

limζ→ζl
(1+ζ)y−(1−ζ)y

ζ2−ζ2l

=
2ζl
y

(1 + ζl)
x − (1− ζl)

x

(1 + ζl)y−1 + (1− ζl)y−1

= 2(−1)l−1 cosy−x−3

(

lπ

y

)

sin

(

lπ

y

)

sin

(

lxπ

y

)

.

Therefore,

fx,y(ζ) = 2
∑

l∈N:
1≤l<y/2

(−1)l−1
cosy−x−3

(

lπ
y

)

sin
(

lπ
y

)

sin
(

lxπ
y

)

ζ2 + tan2
(

lπ
y

) .

Let us apply this formula to H+
x,a,b(u) = (2pu)b−xfx−a,b−a(A(u)). Since

A(u)2 + tan2
(

lπ

b− a

)

=
1

cos2
(

lπ
b−a

)

[

1− 4pq

(

cos2
(

lπ

b− a

))

u2
]

,

we get that

H+
x,a,b(u) = 2(2pu)b−x

∑

l∈N:
1≤l<(b−a)/2

cosb−x−1
(

lπ
b−a

)

sin
(

lπ
b−a

)

sin
( l(b−x)π

b−a

)

1− 4pq
[

cos2
(

lπ
b−a

)]

u2
.

Using the expansion

1

1− 4pq
[

cos2
(

lπ
b−a

)]

u2
=

∞
∑

=0

[

4pq cos2
(

lπ

b− a

)]

u2,

we find

H+
x,a,b(u) =

∞
∑

=0

2(2p)b−x

[

∑

l∈N:
1≤l<(b−a)/2

cosb−x−1

(

lπ

b− a

)

sin

(

lπ

b− a

)

sin

(

l(b− x)π

b− a

)(

4pq cos2
(

lπ

b− a

))
]

u2+b−x.

Performing the change of index  7→ (+ x− b)/2 into the above sum, we obtain

H+
x,a,b(u) =

∞
∑

=b−x

2

(

p

q

)(x−b)/2
[

∑

l∈N:
1≤l<(b−a)/2

cosb−x−1

(

lπ

b− a

)

sin

(

lπ

b− a

)

sin

(

l(b− x)π

b− a

)(

2
√
pq cos

(

lπ

b− a

))
]

u

from which we finally derive the expression (1.10) of the probability q
()+
x,a,b. In a quite analo-

gous way, we can deduce the probability q
()−
x,a,b from H−

x,a,b(u) = (2qu)x−afb−x,b−a(A(u)).
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B Distribution of the stopped random walk

As mentioned in Section 1.4.2, the stopping-probabilities can be evaluated by invoking the

famous reflection principle. We provide the details in this Appendix.

One-sided threshold

Our aim is to compute the probability of the random walk stopped when hitting the

threshold a: Px{S() = y,  ≤ τa}. We begin by first evaluating Px{S() = y, τa < }. We

have, for x, y ∈ Z such that x, y < a or x, y > a,

Px{S() = y, τa < } =

−1
∑

ι=1

Px{τa = ι}Pa{S(− ι) = y}.

The reflection principle stipulates that

Pa{S(− ι) = y} =

(

p

q

)y−a

Pa{S(− ι) = 2a− y}.

Hence,

Px{S() = y, τa < } =

−1
∑

ι=1

Px{τa = ι}
(

p

q

)y−a

Pa{S(− ι) = 2a− y}

=

(

p

q

)y−a

Px{S() = 2a− y, τa < }

=

(

p

q

)y−a

Px{S() = 2a− y}.

In the last equality, we used the fact that x and 2a− y are around a and then the condition

τa <  is redundant. Therefore,

Px{S() = y,  ≤ τa} = Px{S() = y} −
(

p

q

)y−a

Px{S() = 2a− y}

which is nothing but (1.14).

Two-sided threshold

Here, we aim to compute the probability of the random walk stopped when hitting one

of the two thresholds a and b: Px{S() = y,  ≤ τa,b} under the assumption x ∈ (a, b). For

this, we introduce the successive hitting times of levels a and b (with the usual convention

min ∅ = +∞):

σ0 = τa, σ2l+1 = min{ > σ2l : S() = b}, σ2l+2 = min{ > σ2l+1 : S() = a},
ς0 = τb, ς2l+1 = min{ > ς2l : S() = a}, ς2l+2 = min{ > ς2l+1 : S() = b}.

Notice that if τa < τb, then σl+1 = ςl and if τa > τb, then ςl+1 = σl. In both cases, we see

that

min(σl, ςl) =

{

σl if τa < τb
ςl if τa > τb

, max(σl, ςl) =

{

σl+1 if τa < τb
ςl+1 if τa > τb
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and that

max(σl, ςl) = min(σl+1, ςl+1).

With these properties at hands, we write the event {τa,b < } as follows:

{τa,b < } = {τa < τb, τa < } ∪ {τa > τb, τb < }

=

(

⋃

l∈N

{τa < τb, σ2l <  ≤ σ2l+2}
)

∪
(

⋃

l∈N

{τa > τb, ς2l <  ≤ ς2l+2}
)

=

(

⋃

l∈N

{τa < τb, σ2l <  ≤ ς2l+1}
)

∪
(

⋃

l∈N

{τa > τb, ς2l <  ≤ σ2l+1}
)

=
⋃

l∈N

{min(σ2l, ς2l) <  ≤ max(σ2l+1, ς2l+1)}.

Now, the probability of the stopped random walk can be written as

Px{S() = y,  ≤ τa,b}

= Px{S() = y} −
∞
∑

l=0

Px{S() = y,min(σ2l, ς2l) <  ≤ max(σ2l+1, ς2l+1)}. (B.1)

Let us evaluate the term lying within the sum (B.1):

Px{S() = y,min(σ2l, ς2l) <  ≤ max(σ2l+1, ς2l+1)}
= Px{S() = y,min(σ2l, ς2l) < } − Px{S() = y,max(σ2l+1, ς2l+1) < }
= Px{(S() = y, σ2l < ) ∪ (S() = y, ς2l < )}

− Px{(S() = y, σ2l+1 < ) ∩ (S() = y, ς2l+1 < )}
= Px{S() = y, σ2l < }+ Px{S() = y, ς2l < }

− Px{(S() = y, σ2l < ) ∩ (S() = y, ς2l < )}
− Px{S() = y, σ2l+1 < } − Px{S() = y, ς2l+1 < }
+ Px{(S() = y, σ2l+1 < ) ∪ (S() = y, ς2l+1 < )}. (B.2)

We observe that

Px{(S() = y, σ2l+1 < ) ∪ (S() = y, ς2l+1 < )}
= Px{S() = y,min(σ2l+1, ς2l+1) < }
= Px{S() = y,max(σ2l, ς2l) < }
= Px{(S() = y, σ2l < ) ∩ (S() = y, ς2l < )}.

Thus, two terms of the sum (B.2) cancel and it remains

Px{S() = y,min(σ2l, ς2l) <  ≤ max(σ2l+1, ς2l+1)}
= Px{S() = y, σ2l < }+ Px{S() = y, ς2l < }

− Px{S() = y, σ2l+1 < } − Px{S() = y, ς2l+1 < }. (B.3)
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By using the principle of reflection with respect to level a, we get for the first term of the

sum (B.3):

Px{S() = y, σ2l < } =

−1
∑

ι=1

Px{σ2l = ι}Pa{S(− ι) = y}

=

−1
∑

ι=1

Px{σ2l = ι}
(

p

q

)y−a

Pa{S(− ι) = 2a− y}

=

(

p

q

)y−a

Px{S() = 2a− y, σ2l < }

=

(

p

q

)y−a

Px{S() = 2a− y, σ2l−1 < }. (B.4)

In the last step, we used the fact than, when x, y ∈ (a, b), 2a−y < a and then the condition

S() = 2a − y, σ2l−1 <  is enough to assure σ(2l) < . Similarly, reflection with respect

to level b yields

Px{S() = 2a− y, σ2l−1 < }

=

(

p

q

)2a−b−y

Px{S() = y + 2(b− a), σ2l−2 < }. (B.5)

So, the following recursive relationship entails from (B.4) and (B.5):

Px{S() = y, σ2l < } =

(

p

q

)a−b

Px{S() = y + 2(b− a), σ2l−2 < }. (B.6)

By iterating (B.6) with respect to index l, we plainly obtain

Px{S() = y, σ2l < } =

(

p

q

)l(a−b)

Px{S() = y + 2l(b− a), τa < }. (B.7)

A last application of the principle of reflection to (B.7) supplies

Px{S() = y, σ2l < } =

(

p

q

)y−a+l(b−a)

Px{S() = 2a− 2l(b− a)− y}. (B.8)

Analogously, concerning the second term of the sum (B.3), we successively have

Px{S() = y, σ2l+1 < }

=

(

p

q

)l(b−a)

Px{S() = y − 2l(b− a), σ1 < }

=

(

p

q

)y−b−l(b−a)

Px{S() = 2b+ 2l(b− a)− y, τa < }

=

(

p

q

)(l+1)(b−a)

Px{S() = y − 2(l + 1)(b− a)}. (B.9)
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We obtain in a quite similar manner the two last terms of (B.3):

Px{S() = y, ς2l < }

=

(

p

q

)y−b−l(b−a)

Px{S() = 2b+ 2l(b− a)− y}

=

(

p

q

)y−a−(l+1)(b−a)

Px{S() = 2a+ 2(l + 1)(b− a)− y},
(B.10)

Px{S() = y, ς2l+1 < }

=

(

p

q

)−(l+1)(b−a)

Px{S() = y + 2(l + 1)(b− a)}.

Finally, by summing (B.8), (B.9) and (B.10), we deduce from (B.1) and (B.3):

Px{S() = y, τa,b < }

=

∞
∑

l=0

[

(

p

q

)y−a+l(b−a)

p
()
x,2a−2l(b−a)−y −

(

p

q

)(l+1)(b−a)

p
()
x,y−2(l+1)(b−a)

+

(

p

q

)y−a−(l+1)(b−a)

p
()
x,2a+2(l+1)(b−a)−y −

(

p

q

)−(l+1)(b−a)

p
()
x,y+2(l+1)(b−a)

]

=

∞
∑

l=−∞

(

p

q

)l(b−a)
[

(

p

q

)y−a

p
()
x,2a−2l(b−a)−y − p

()
x,y−2l(b−a)

]

+ Px{S() = y}

from which (1.15) ensues.
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