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Joint distribution of the process and its sojourn time
in a half-line [a,+oc0) for pseudo-processes driven by a
high-order heat-type equation

Valentina CAMMAROTA* and Aimé LACHAL'

Abstract

Let (X (t))t>0 be the pseudo-process driven by the high-order heat-type equation % = :tgxlﬁ,
where N is an integer greater than 2. We consider the sojourn time spent by (X (¢)):>0 in [a, +00)
(a € R), up to a fixed time ¢t > 0: Tu(t) = f(f lja,+00)(X(s))ds. The purpose of this paper is to
explicit the joint pseudo-distribution of the vector (T4 (t), X (t)) when the pseudo-process starts at a
point x € R at time 0. The method consists in solving a boundary value problem satisfied by the

Laplace transform of the aforementioned distribution.
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1 Introduction

Let N be an integer greater than 2 and let x, = (—1)"N/2if N is even, s, = #1 if N is odd. Let us
introduce the pseudo-process X = (X (¢))¢>0 related to the high-order heat-type equation

ou Ny

E —HN&C—N. (11)

This pseudo-process is driven by a family of signed measures (I, ).cr, which are not probability measures,
such that for any positive integer n, any t >0, 0 =1ty <t; < --- <t, and = xg, Z1,...,Tn,y € R,

P{X(t) € dy} = p(t;x —y)dy
and

Pm{X(tl) e dxq,... ,X(tn) S dxn} = Hp(ti —ti_13Ti—1 — aci) dx;.
i=1
In the above definition, the function p stands for the “heat-kernel” associated with the equation (1.1).
It solves (1.1) together with the initial condition p(0;z) = §(z) and it is characterized by its Fourier

transform as
—+o00 7t'u,N . .
: e if N is even
e“p(t;x)da = ) ’
/ plti) { e =i i N s odd.

— 00

Pseudo-processes have been introduced and studied by many authors in the early 60’s: some pioneering
works are [6], [15], [16]. In these works, the efforts were made in providing accurate and proper definitions
of pseudo-processes driven by signed, complex or vectorial measures. The heat-type equations of order 3
and 4 are of special interest since they arise, for instance, in various problems of linear elasticity.

Subsequently, more specific aspects of the pseudo-process X introduced here have been considered.
In [1], [2], [4], [B], [8] to [14], [17] to [22], the authors paid attention to several classical functionals: first
or last overshooting time above or below a fixed level, up-to-date maximum and minimum functionals,
sojourn times in a half-line... Many explicit results are known about the pseudo-distribution of the various
aforementioned functionals. In this paper, we focus on the sojourn time of X in a half-line [a, +00) up
to a fixed time t. Set

T.(0) = [ Bvsoo)(X(3)) .

Actually, this continuous-time functional is not well-defined since the pseudo-process X can be simulta-
neously defined only at a finite number of instants. Nevertheless, some ad-hoc definitions can be given,
especially for computing certain expectations related to T,(t) (see definitions (1.2) and (1.3)).

The functional T,(t) has often been of interest: in [10], Krylov explicitly computed the distribution
of To(t) in the case where N is even and the starting point is exactly 0; he obtained the famous Lévy’s
arcsine law. In [9] and [18], Hochberg, Nikitin and Orsingher treated the case where N is equal to 3, 5
or 7 with a possible conditioning on an event depending on X (¢). In [11], Lachal explicitly determined
the distribution of Ty(t) in the general case (for any positive integer N) which is a Beta law. In a recent
work [5], we have obtained a representation for the joint pseudo-distribution of the vector (To(t), X (t))
when the starting point is exactly x = 0. For this, we introduced a construction of the pseudo-process
based on observations of X on dyadic times and we used Spitzer’s identity which works especially in the
case where z = 0.

The aim of this paper is to compute the joint pseudo-distribution of the vector (T, (¢), X (¢)) for any
starting point z € R, that is the pseudo-probability distribution function (ppdf in short)

Po{Ta(t) € ds, X (t) € dy}/(dsdy).
Since the pseudo-process X is invariant by translation, we have
P {T.(t) € ds, X () € dy}/(dsdy) = B,_o{To(t) € ds, X(t) € dy — a}/(ds dy)

and we only need to compute the ppdf B.{T(¢t) € ds, X(t) € dy}/(dsdy), s € [0,t], y € R, where
T(t) = To(t). The approach we used in [5] is not efficient in the present situation since Spitzer’s identity



does not allow us to treat the general case of any starting point = different from 0. So, we follow here
the Feynman-Kac approach which leads to solving partial differential equations. Set

x(s, tw,y) =P {T(t) € ds, X (t) € dy}/(dsdy),
@,(t;,y) = Bp(e7*TM, X () € dy) /dy = /Ot e " x(s, t;x,y) ds,
(s;x,y) = /OO e M (s, t;z,y) dt,
Pyl y) = /OOO e M, (t;x,y) dt,

0,(x,y) = / e pltie — y) dt.
0

Because of the lack of complete definition of the pseudo-process X over all continuous times, ad-hoc
definitions for defining properly general functionals of X have been proposed. In this paper, it is enough
to give only those concerning the functions x, @, and ¢, ,; we refer the reader to [20] for more general
functionals. The following definitions can be found in the literature: either

x(s,t;2,9) 4 Jim P AT (t) € ds, X (t) € dy}/(ds dy),
n—oo
w, (t;2,y) aefl 1i_>m E, (e_“Tnl(t),X(t) € dy)/dy, (1.2)
puur,y) Elim [ e B (e7 (0, X (1) € dy) /dy]at,
n o] 0
or
x5, ti,y) S lim BAT() € ds, X([21]/2") € dy}/(ds dy),
@, (t;,y) L lim E, (e 0, X ([271]/2") € dy) /dy, (1.3)
n—oo
o, (z,y) L lim [ e ME, (e #Tw®) X ([2"]/2") € dy) /dy]dt,
n o0 0
where
[2"1]

TH0) = L3 b ooy (XM, T20) = 5 3 By (X /27,
k=0 k=0

These definitions supply an appropriate support for computing the pseudo-distribution of T'(t). The first
is particularly suitable for the Feynman-Kac approach (it is based on a subdivision of the interval [0, ¢])
while the second is convenient for the Spitzer approach (it is related to a subdivision of the time axis
independent of t).

As in [10] for instance, the function w, is a solution of

., 0w,
Fx 5N (t;z,y) = W(If; z,y) + plio o0y (®), (5 2,9) (1.4)

with initial condition <, (0;,y) = d,(x) and the function ¢,  is a Feynman-Kac functional which solves
the differential equation

aN . .
i Lo A+ ) ey, (,y) — by (x) if >0, (1.5)
oxN A, (z,y) — dy() ifx<0.

Together with (1.5), the function ¢, , fulfills the conditions

¢, is (N — 1) times differentiable at 0 and (N — 2) times differentiable at y,

Nl Nl (1.6)
W(y Y) — W(y JY) = —Ky

An explanation of (1.4), (1.5) and (1.6), relies on an underlying integral equation which can be stated as
follows. The function w, satisfies the following integral equation:

t p4o0
w,(t;z,y) =p(t;z —y) — u// p(s;z —2)w (t —s;2,y)dsdz, (1.7)
0o
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and then, by taking the Laplace transform with respect to ¢, the function ¢, , satisfies the integral
equation below:

oo () = o) — / " o@.2) oy (5 ) dz. (18)

On one hand, since the heat-kernel p satisfies k, gzif,(t; x—y) = %(t; x —y) with p(0;z —y) = dy(x), we

can see by differentiating with respect to t and z, that (1.7) yields the differential equation (1.4). On the
N

other hand, since the function p, satisfies fiN%I—QJ&(x, y) = do,(z,y) — 0y(x) as well as conditions (1.6)

(see [11]), we can see in the same manner that (1.8) yields the differential equation (1.5) together with

conditions (1.6). An heuristic derivation of (1.7) consists in writing

¢ t
1—e T = u/ 1jo,400) (X (5)) exp (—u/ 11[0,+oo>(X(“))d“) ds
0 S

¢ t
= “/ Tp, o0y (X (5)) e HITO =T g — M/ 10,1 00) (X (s)) e T =)0 g5,
0 0

where (65)s>0 is the usual shift operator defined by X (t) o s = X (s +t) for all s,¢ > 0, and next in
applying the Markov property of the pseudo-process X:

ptiz —y) —wm(tz,y) =E (1 — e T X(¢) € dy)/dy

t
= H/ {Ez<]l[07+oo)(X(s)) e HITE=s)00:) X (1 — 5) 00, € dy) /dy} ds
0
t p+oo
= ,u// P.{X(s) € dz} {EZ(G_HT(t_S),X(t —3) € dy) /dy} ds
0Jo
t ptoo
:u// p(s;x —z)w (t — s;2,y) dsdz.
0Jo

All this should be made rigorous (in the case where N is even at least) by introducing the step process
obtained by sampling X on the dyadic times k/2", k,n € N, as, e.g., in [13] and [20]. We shall not go
further in this direction. In this work instead, our aim is to solve the boundary value problem (1.5)-(1.6)
and next to exhibit an explicit representation of the joint ppdf of the vector (Tp(t), X (¢)) under B,.

The paper is organized as follows. Section 2 contains some settings. In Section 3 we completely
solve the system (1.5)-(1.6) and derive explicitly ¢, (z,y). Section 4 and 5 are devoted to inverting
the two-parameters Laplace transform gokyu(x, y). Our main result is displayed in Theorems 5.1 and 5.2.
In each section, we shall split our analysis into two parts corresponding to the case where y > 0 and
y < 0. Because of the asymmetry of the problem, we shall write out all the results associated with the
aforementioned cases even if they look like similar. We shall provide all the details when y > 0 and omit
the analogous computations related to the case where y < 0.

2 Settings

In order to solve Eq. (1.5) it is useful to introduce the N*® roots (6;)icr of ky: OV = K, for all i € I
(I contains N successive integers). We also introduce the sets of indices J = {i € I : Re(¢;) > 0} and
K={ieI:Rel) <0} Wehave JUK =1, #J +#K = N, #J = #K = N/2 if N is even,

|#J — #K|=1if N is odd, s, = (—1)#/~! and
[[@—6:) =2V —&,. (2.1)
el
Set, for j,j' € J and k, k' € K,
0 O

4= 11 -0 Dr= 11 O — Op
JreN}y 7 J k' €K\ {k}

and

Cije = [[ 0,05 —0;40k), Djer = [] (0x0xr — 016;).
jred k'eK



For z = 0, formula (2.1) gives [],c; 0; = (—1)"¥ "'k, = (=1)#¥. On the other hand, since the non-real
roots labeled by J (respectively by K) are conjugate two by two, we have

[[0;=1 and [J 6x=(-1)*¥. (2.2)
jeJ keK
For a fixed index ¢ € I, we have
N -k, 2N -0V e Ne1—p g
.H-(x—&-/): 0, ~ 2.0 :Z@i xp:HNZQI_?-H’
v eI\{i} =0 = 0
which yields for z = 6;
Ky N
H (0; — 0) ]; (2.3)
i e1\{i} ’
By (2.2), we have for j € J
_ 0.
II ©-60)=p*! 1) = (2.4)
J'eI\{4} J €J\{J} J 61\{J}
and for k € K
Or — 0 1
o oo 1) T k)eB. v
K ER\{k} K ER\{k} K\t hk

In view of (2.3) and (2.4), we get for j' € J and k € K
Hie]\{j’}(e i 9')

(0 — O ) = =NAj (2.6)
kl;[K HJ“GI\{J }(9 = 0j)
and next I 0y — 0) NA
) — /) = kK'eK k! — J’
II ©r 0= - P 2.7)

ke KA\{k}
We also recall the expression of the A-potential o, (see [11]):

?29 69 \f(z y) forxe(—oo,y],

7
o\(x,y) = 1€ (2.8)
— Z ere’“‘/_(”” V) for x € [y, +00).
CNAR heK

3 Solving the system (1.5)-(1.6)

In this part, we explicitly solve the boundary problem (1.5)-(1.6). We divide our analysis into two cases:
the case where y > 0 and the case where y < 0.
3.1 Casey>0
Assume that y > 0. Eq. (1.5) can be written as
Ao, (z,y if x € (—o0,0),
- e (~20,0)

Ry~ (@, y) = A+ p)p, (z,y) ifzec(0,y),
A+ ) e, (z,y) ifz € (y,+00).

In the particular case where y = 0, the interval (0, y) is empty. The solution of this equation has the form

sz(y) Ve if x € (—00,0),
il
oo (my) = 4 D aiy) VT it e (0,y),
e i€l
3 eily) VI it g e (y, +00),
il




where the unknowns (a;(y))icr, (b:(y))icr and (¢;(y))icr are to be determined.
First, by combining (1.8) and (2.8), we see that, for large enough negative z, ¢, (,y) is a linear

combination of eei%z, j € J. Then b; = 0 for all i € K. Second, by (1.8), we see that the integral
fOOO 0,(%, 2) p, (2,y) dz must be convergent. Due to (2.8), this implies that for large enough positive ,

@, (z,y) is only a linear combination of Y Atue e K. Thus, ¢; = 0 for any i € J. As a byproduct,
we have to search ¢, = in the form

Z b;i(y) fiVie if x € (—00,0),
jeJ
N z -
o (y) = 4 2w @)V it e (0,y),
M ’LEI
> e(y) e VFET if g € (y, +00).
keK

By the conditions (1.6), the unknowns (a;(y))icr, (bj(y));jes and (cx(y))rer verify

AN b ()0 = A+ )V Y aily) fo<p< N -1,
jeJ iel
0 fO<p<N-2
Y, Ny — — b
D ai(y)ret VI N " oy (y)ope VAT Y — Fin ifp=N—1.

i€l keK (A + p)t—U/N

In order to simplify the notations we set v = /A + g and § = ¥/A. The system writes

51021) prfypzaz ifoSpSN*L
JjeJ iel
0 fO<p<N-2, (3.1)
Zaj Gp 9;7y+2ak — iy )919 Orvy — ZNl fp— N1,
JjeJ keK AN=
Put
i a;(y) " ifielJ,
a; = )
(ai(y) — ci(y)) e’ if i€ K.

The second equation of (3.1) yields the following system of N equations with the N unknowns a;(y),
1€ 1:
o if0<p<N-—2,
D@l =9 AN

iel ,YN—I

This is a classical Vandermonde system the solution of which is

a;(y) = — ot , €1
N Hi/el\{i}(oi — 0i)
In view of (2.3) we have
N 0; .
ai(y) = NN ! el
We notice that a;(y) does not depend on y. We deduce that
a;(y) = Le_‘g”y ifjed
J N,YNfl ’
_ bk —0xvy fkeK
ar(y) NovT +oek(y) ifkeK.

Now, we need to compute the ¢k (y), k € K. The first equation of (3.1) yields

S b )00 + > (~ar)(0:7)" = Y a;(y)(0;7)" for 0<p< N - 1.

jeJ kEK jeJ



This can be rewritten into a matrix form as
: (6 (¥)) e
<<<9j5>p>0<p<N1 . ((m)p)OSpSN_l) . ( ) =0y (0 o) 52)
jeJ kEK (—ax(W)rer/) jer

where the index p € {0,...,N — 1} in (0,;0)? and (6x7)? stands for the row index and the indices j € J
in (0;0)” and k € K in (6x7)? stand for the column indices. The quantities (b;(y)),c ;» (—ak(y))ex and
((0;7))g<p< 1 are 1-column matrices.

Put ¥; = 0,0 for j € J and ¥y = Oy for k € K, a;(y) = b;(y) for j € J and ax(y) = —ax(y) for
k € K. From (3.2) we obtain the following Vandermonde system:

((195)0<p,<N1> ><( zGI Zag ( ;) )OSpSNfl)' (3.3)

el

In order to solve (3.3), we first solve, for each j € J, the partial Vandermonde system below:

Zaiﬂf =(0;7)P, 0<p<N-1 (3.4)
iel
The solution of (3.4) is given by
9j’Y — Vi .
al:H m, i€l (35)
i eI\{i}

Indeed, the polynomial A defined by

o P T — 791'/
n=20 11 5=
el i eI\{i}
is such that A(¢;) = 97, i € I and degree(A) < #I —1 = N — 1. The polynomial zP satisfies the
same conditions. Since these conditions uniquely determine the polynomial A (this is the so-called
Lagrange interpolating polynomial), we deduce that A(z) = a? for all . Thus, choosing «; as in (3.5),
A0;) = > e @iy = (0;)P which proves that (3.5) is the solution of (3.4).
Now the solution of the system (3.3) is obtained by taking the linear combination of the foregoing
solutions (3.5):

Ojy—0v .
a;(y) = Z aj (y) H ﬁ, i€l (3.6)
j’G.] i’GI\{’L} 2 2

Recalling that a;/ (y) = 6{\;,1 e~ %7 for j' € J, (3.6) yields the following expressions for b;(y), j € J,
J N~ J

and ax(y), ck(y), k € K.

e For j € J, we have

Oy =9 \ .
b;i(y) N 1 ZO < H 1]9_77191_—/ )e 001y

jred iren\{jy 7
where
H 9]-/’)/ — 191-/ H ijv — 9]'//5 H (Hj/ - Gk)'y
2 = 2L I x ~_ 27
vengy 10 gy O 00 g 00— Oy
_ y#E [Tex (05 —0k) % Hj”EJ\{j}(ej"y — 0;10)
§# It Hj“eJ\{j}(oj —0;) [Trex (056 — 0kv)
In view of (2.4) and (2.6), we see that

[rer (05 = 6)
Hj”eJ\{j}(ej —0;)

= ryNOA;Ajr.

Therefore

Ky 0 A rengy Oy —078)\ .
bi(y) = E 0 Ajr e W je
)= (79) #J ' jret < [leek (056 = 6x)



e For k € K, we have

Oy =00\ _g,
ar(y) = SN 129 ( H _ék_q% )e 0;vy

jied ire\{k}

where

H j Yy — 191/ H ] Y = 9 5 H Hj/ — Gk/
i eI\{k} Uk = Oky = 0 5 ke K\{k} O — Or
In view of (2.5) and (2.7), we see that

0p — O Oy — 0

H 9]/ — ek/ NAj/HkBk
k'e K\ {k}

Therefore

HkBk Y — 96 —0.1vy
a e ' ke K.
k(y) = AN= 1]€J9,9k<H Oy — 0;6

We finally obtain that
O

e Y keK.
Y

cr(y) = ax(y) —

As a byproduct we have obtained the form below for the function ¢, (z,y).
Proposition 3.1 Suppose y > 0. The function ¢, (x,y) admits the following representation:

for x € (—o0,0],

10y 05y — 050)
A A Lot J} 0;0z—0,vy.
@A,u(‘m’y) (75)#J 1 Z 0;A;0; erK(9j5 ~0) € ;

5.3'ed
for z €10,9],
1 HAQkBk 07— 056 —0;
_ 0 0;v(z—y) J ] VOse=b5v) |,
Sﬁxyu(zay) ,7]\/'_1 NZ € + Z k H <9k7_93’6 ¢ ’
L™ jes JEJKEK Jj'ed

for x € ly, +00),

1 1 Oy (m— 0; A;0x By 0;v — 0,6 P
Sﬁ)\,#(z,y) = ,YN—l - N Z Ore Ky (2=y) + Z ﬁ H m e'Y( k i) .
keK jerkek 3T Uk gy \Vk J

Remark 3.1 Ifwe take p = 01in ¢, (v,y), we retrieve the A-potential of the pseudo-process X : ¢, (v,y) =
0,(x,y). Explicitly, we have v = § = VA,

I (20) - 1 (=) o
jed (9’“7 =050/ ey \Ok =0y
and by (2.4) and (2.6)
ey 057 — 0579) _ gHI—#E-1 [Lengy (05 —05) 5 I #E -1 Ry
HkEK(9J6 - Hk’}/) erK(H_] - 91@) 7 NAJHJ/AJ/

As a result, the formulas of Proposition 3.1 supply (2.8). We can sum up the two expressions of o, (x,y)
for x € [0,y] and x € [y, +00) into the following one: for x € [0,400),

1 H'A'QkBk 9"}/79'/5 z—0;
N SN B S Ly | | <ﬁ Oka—0,0).
v jesrer 3 Uk gy \URY TV

Remark 3.2 Suppose that y = 0. By Proposition 3.1, we have on the one hand for x <0

eéjéz

0) 0;A; 00 Aji Oy —0ind .
‘pAu(m #] 12 Z H (]’Y J )]erK(Qj(S@k’Y)

jeJ Jj'ed Jj"eI\{5}




After several computations which are postponed to Appendixz A, we get, for x <0,

£ ,0) = / e M[ELeHTO, X (1) € dy)/dy)| i
0

:—Z@A

Y II < : @9]-)] AL (3.7)

j'ed

It is then easy to retrieve Formula (24) of [11]. Choosing now x =0, o, (z,0) yields

164

j'ed

©,.,(0,0) = ZHA

jeJ

We can see (cf. again Appendiz A) that

(3.8)

#,,,(0,0) = /OmeAt[E()(e“T“’, ()edy)/dy] (Z(%)V“ mh 23

jeJ

This is Formula (26) of [11] which leads to the famous uniform distribution of the sojourn time in
[0, 4+00) for the pseudo-bridge process (X (s)| X (t) = 0)o<s<t (See Theorem 13 of [11]):

B {T(1) € ds| X (1) = 0} ds = 5 T (s).

On the other hand, we have for x >0

Pud@,0) = 577 D OBy e,

keK

0,7 — 06 1
Ze H (9279;/5)_NB;€

jed jred

As previously, after several computations which are postponed to Appendix A, we get, for x >0,

A
0, — O Y ———
0 ( . A+M>e

k'eK

\/>\+ ZekBk

oV Fie (3.9)
n

o, (2,0) =

keK

It is easy to retrieve Formula (24) of [11] in this case.

Remark 3.3 Suppose that x =0 and y > 0. Proposition 3.1 yields in this case

GkBk va — 9j/5 1 —0.
o, (0,9) 0;A; < + e I,
s = | 8 s T (e=ays) v
In Appendiz B, we show that ¢, (0,y) can be rewritten as
= Or Bk 07y
oaul0oy) = = 15#K — T > 0iA; (Z T 9k6> : (3.10)
jeJ keK

We retrieve Formula (4.1) of [5].

The expressions lying in Proposition 3.1 are not tractable for inverting the Laplace transform ¢, (x,y).
So we transform them in order to derive a more appropriate form. For this we introduce the rational
fractions defined, for 5,5’ € J and k € K, as

H”EJ\{ (9 /1'79‘7'//) Q.0 —0;
F.o — J J} . — e 73 .
o (@) [iex Orz —0;) G = 11 <9j'$ - 9k)

j'ed

Let us expand them into partial fractions.

e We first observe that



g1

5/

A5k
Y [lcx Or { ’ kGZK Orx — 0,

with

0,60, ~
li H 3"eJ\{j} ( == ej”) 9;?&[( #J Hj”GJ\{j} (9]‘9]‘/ — errek)
Qjjk = lm (ka 0; )FJJ (ZC) 0,0, = H#K—1 0., — 60
x—6; /0% Mer ( L. ) 07 [ err gy (O = Or)

By (2.6) we extract
K OF B C
K
075 (0 — 01)

ajje = (1)

and then 4 SK—#T41
_1) K 0 - Bkc "k
Fip(x) = (=) #0851, ( . AT
ji (x) = (=1) i Mgo=pr+1y + oK 00 — 0r)(Orz — 6;)

e

e Analogously we observe that

Gie(z) =1+ 9&%
jreg it T Ok
with
0,116
B lim (6 01)G i () Hj"EJ( o 79]) 1 s (0500, — 0;05)
T 1m ' — Uk jk\T) = = — '
7 zﬂ&k/Gj/ ! ! Hj”e.]\{j’} (—Gjé;,ek — ek) ejlol:fﬁ.] ! HJIIG-]\{j/}(Qj,, - oj/)
y (2.5) we extract
#JA ij’k

ﬂ]ﬂ'k - ( ) 9;5] 1

and then ;
(-=D* Ajr Cijri

#I—1 o — 0,
9k ey Hj xT 914:

ij(x) =1+

Therefore we can rewrite the fractions lying in Proposition 3.1 as

Hj“eJ\{_j} (9]'”}/ - oj”é)
[Teer (050 — Okv)

= (—1)#K#IH#EE i (v/0)

SHI—#EK 07 B Cln
_ 97%‘]_11[ . n k JJ 3.11
] {#I=#K+1} o#K by (057 — Or)(Orxy — 0;0) (3.11)
and #J !
0,7 — 6,6 A C” =
s _, + 3.12
1;[] Ory — 0,0 (/) #J ! ; Oy = o

With (3.11) and (3.12) at hands, we derive the new expression below for ¢, (x,y). Recall that v = /X + 1
and 6 = V.

Proposition 3.2 Suppose y > 0. The function ¢, (v,y) can be written as follows:

for x € (—o0,0],

[N ey N
oy (,y) = ~HEEE] lZ%‘AJ‘ee]ﬁ

#K | #K
JjeJ

S 0F A et VN
A+ p)m N5 /

JjeJ

N Ky 3 A0, Ap O IR0y VA0, VATRY
#J 1 #K—-1
A+ )" NN e 0F (0, — or) 0N+ 1 f

for x € [0, +00),

10



;1 0;A;0% Bk e VAL (Or—0;y)
A+ p)t=w jeJ, keK 0 — Ok

4k z\\l/m z;‘ ejAjAj/Bijj/k ej\v/m(‘%z—ejy)
N - .
jrieerc 07720, — 00) OAF - 0,

o, (T y) = o, (@, y) +

3.2 Casey<0

Assume now that y < 0. In this case Eq. (1.5) can be written as

aNsﬁ )\wkyu(z’y) lf:L' € (7OO,y),
Ky alﬂj)\},“ (:C’ y) = A tpk,u(‘r’ y) if x S (ya O)a

A+ e, (z,y) iz e (0,+00).

As in the foregoing case, the solution of this equation has the form

Sy eV ifr e (—oo,y),
jeJ
N x .
SOX u(z5 y) = Z a"L(y) eel\/x lf T e (y7 0),
' icl
> erly) VAT if g e (0, +00),
ke K

where the unknowns (a;(y))ier, (b;(y))jes and (ck(y))rek satisty, due to (1.6),

A+ p)¥ ch(y)(?i:)\% Zai(y)ef if0<p<N-1,
keK iel
0 ifO<p<N-2,
Zai(y)@geei%y - ij(y)%’eej%y i D PSR
iel jeJ N-/N BPE AT

With calculations analogous to those performed in the case y > 0 we obtain the result below.
Proposition 3.3 Suppose y < 0. The function ¢, (v,y) admits the following representation:

for x € (—o0,0],
- 1 QjAijBk 010 — Opry 3(02—0ry).
gp)\,“(w, y) - Q)\(wa y) 5N71 ) Z 9k - oj 9]5 - ekﬂy ‘ 7
jeJ, keK k'eK
for x € [0, +00),
—Fy e gy (Or 0 — Orr)

0T Y) = —=zrT O0x BrOx B
ul ©:8) (yo)#i—t k,;K [T;cs (Oky = 050)

eGk'ym—@kzéy.

Remark 3.4 Letting p tend to +oo (and then v — +00), we have that % — 1 and e7* — 0 for

x>0 and k € K, and then

1 HjAjOkBk 5(0:2—0 .
0,(z,y) — SN-1 . Z W %052 —0ky) if x € (—00,0],
QDNM(ZL',y) — jEJ, kEK J

0 if © € [0, 400).

On the other hand we formally have that

lim o (t;2,y) = lim E, (e T® X (t) € dy)/dy = Pz{ On<1ai(tX(s) <0,X(t) € dy}/dy

p——+o00 p——+o00

from which we deduce that

lim o, (z,y)= /OOO e M {PZ{ max X (s) <0,X(t) € dy}/dy} dt.

oo 0<s<t

Then, for x,y < 0, we retrieve the pseudo-distribution of (maxo<s<t X(s), X (t)) (through its Laplace
transform with respect to t) displayed in [13].

11



As in the previous case, we need to expand the fractions lying in Proposition 3.3. Since the compu-
tations are quite similar to the previous case, we omit them and we only produce the second form for
gpkyu(:c,y) below.

Proposition 3.4 Suppose y < 0. The function ¢, (v,y) can be written as follows:

for x € (—o0,0],
1
-3

Z eJAjokBk e%(ejzfeky)

(,OA’”(SC,y) = Qx(xvy) 0p — 0;
J

jeJ keK

{V/X AijBkBk/Djkk, e%(ejmfeky) .

_ Z 9#K729 —0.) 0 N)\+ _G‘W,
jed kker Y5 (Or —0;) O+ p—0;

for xz € ]0,+00),

D —g7413 Z IRVA) K —0.N
x, = 0. Bre"k +uz 9# B.e 0V Ay
(Px,u( y) ()\ ,LL) #;1)\#]&\}1 kDPEk E k k

keK keK
i Z efJ_#K+1AjBk9k/Bk/Djkk/ e%’\v/mw—@k/%y
A+ )N i en 67771 (0; — bw) VAT = VA

4 Inverting with respect to u

In this section we invert the Laplace transform ¢, (z,y) with respect to p. Let us recall that

%,u(fﬁ,y)=/ e 4 (s;x,y)ds
0

with
U (s;2,y) = /0 e_/\t[Pz{T(t) € ds, X(t) € dy}/(dsdy)] dt.

As previously, we distinguish the two cases y > 0 and y < 0.

4.1 Casey >0

We need to invert the Laplace transform of the expressions of ¢, (z,y) lying in Proposition 3.2 with
respect to p. For this we shall make use of the identities

1 1 /°° e oy 1 /°° et

— = e Vs tds for a >0, = e s Ega(Bs™)]ds  for v* > |8

Ve T(a) Jo v — 3 o [ ( ) 18]
where E, 4(€) = S.°°  =—~— is the Mittag-Leffler function (see [7], p. 210). We also introduce, for any

n=0 TI'(an+b)
integer m such that m < N — 1, the function I,,,(s; ) characterized by its Laplace transform:

_ —EV"
/ e—usIm(s;é') ds = —N for Re(é-) > 0.
0 v/

—m/N

That is, I, (s;€) is the inverse Laplace transform of the function v — v e~¢V%_ An expression for

I, (s;€) can be found in [13] and is

Ni —i%r > N—-—m-—1 —suN—ei%gu i > N—-m-—1 —st/N—efi%fu
I (s;€) = eV v e dv —e'V v e dv |.
0 0

T or
With this at hands, we extract
=0V ATy

—_— = e M e M Luk (s;0;y)] ds
A+ )= / ’

12



and
e VAT 1 (6rz—65y)
A+ ¥ XN+ p—p)

= /0 ef()‘ﬂ‘)sfa(s;@jy — Opz) ds x /0 e~ (Atw)s [s%flE%% (ﬁ%)} ds
— /0 o= (A+u)s {/0 g%*lE%,% (ﬁ\N/E)Ia(s — 0305y — ka)da] ds.

In particular, the latter formula provides for « = N —2 and 5 = %’W:

e VAtu (Brz—65y)
A+ )= % (/N F 1 — 0,473

1 [ g
_ e~ hs |:e—ks/ O'W_IE
Ok Jo 0

andfora:#J—landB:g—i{V/X:

<Zj/ v )\J> In_o(s —o0;0;y — Oxx) da} ds

k

2|
2=

e_ej’]\\]/my
A+ 1) =5 (0N T 12— 0,90

1 e S
=— e ke [e)‘s/ ovlEL
O Jo 0 N

2z~

(%\/N )\0) Iyj_1(s —0;0,y) da] ds.
k

.. . VnFa (0pz—0;u) 0, V3 TFr (z—v) .. .
Similar representations hold for < 1 77 and &£ ——1—. Combining all these results, we obtain
M+p) — N Ap) ™ N

the proposition below.

Proposition 4.1 Suppose y > 0. The function ,(s;x,y) admits the following representation:

for x € (—o0,0],

s | Ypi=#kK RS
(57, y) = Kye [M<Z9ﬁlj€9]ﬁ )(ZG?JAjI#K(S;é’jy))

ﬂ
AN jeJ jeJ
1 A0 ApOF " T B Gk g s,
= 2 oK=L, — 0 ¢
N jged ke J (05— k)

2z~

,L(%\/N )\U) Iyj—1(s—o;05y)do ];
M\ Ok

S
1
X/O’N 'E
0

for x € [0, +00),

. 0;A,0,B
Y(simy)=e M plsio—y)+ Y. LLEE Iy (s0;y — Opa)
jEJ, kEK 0 = O

0;A;A; BpCjjr 54 0 n/—
o Z W/ Uﬁ_lE#ﬁv(@J N)\U) IN—2(5_U;9jy_9k-T)dU‘|.
jierwer On (05— 0k) Jo N

Remark 4.1 The foregoing representation of 1,(s;z,y) related to the case x > 0 involves the heat-kernel
p(s;x —y). We can write this latter by means of the function In_1. Indeed, using the definition of the
function o, , we see that for £ > 0,

N 1 0.VNE _ * L .
06:0) = — =3 D 0"V = — e ¥ O Oeln-1(t;—04€) | dt

keK keK

which entails that 1
p(t;€) = N Z Ok In—1(t; —05E). (4.1)

keK
Similarly, for £ <0,

p(t;€) = %29;'11\771(15; —0;€).

Jj€J
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4.2 Case y <0

Since the computations are quite similar, we only produce the result corresponding to the case where
y <0.

Proposition 4.2 Suppose y < 0. The function ¥,(s; x,y) admits the following representation:

for x € (—o0,0],

50(8)

1 G‘A*(ngk N ir—
w}\(s; x, y) = lg)\ (,CC, y) + )\1? Z ﬁ e\/X(GJ Ory)

jeJ, keK

o1 i Z Ag]‘(ofkak/Djkk/ e Ngn—1E, L<9_] N/_)\S) e%(ejxieky);
AT jeJ, kkeK 9;% O (0 — 0;) NN\ O
for xz € [0,+00),
Tyspgo—sny ey
V(s 2, y) = W [ Z Ok B Ly (s; —Hk.r)‘H Z Q#KBke A Gkﬁy]
AN keK fy®
+ # Z H?J_#K""lAjBkek/Bk/Djkk/ e—)\s—ek/%y
#E—1 i
AN jesmhex 077 (0; — 0r)
S 9
X / a}le%’%<ém)\a> Iy 1(s — 0; —0x) do.
0

5 Inverting with respect to A

This part is devoted to inverting the Laplace transform ,(s; =, y) with respect to A. We recall that

o0 oo
(s 2,y) = / e (s, iz, y) dt = / e Mx(s, iz, y) d
0 s

where x(s,t;2,y) = P{T(t) € ds, X(t) € dy}/(dsdy) x 1jg4(s) is the quantity of main interest of this
work. For this, we have to write E#%(z—i V )\o) as a Laplace transform with respect to \. We note that,
for any complex number § such that |3 < V%,

o) e} o) 00 P
TAAYTIE, 4 (BYA) A = i SN L) = 1 <£> = 1 .
Jo TN BB =D gy ], ¢ wis\w) ~vs

p=0

Then, by Bromwich’s inversion formula, we have for any ¢ > ||

E

B =5 [

217T —ico t% — /8

2z~

1
N

Suppose now that 3 = z—i {/o with j € J and k € K. The possible singularities of the function ¢ m
satisfy t = BN = o. Thus the only possible singularity is o. But o'/N — g = 0%_;0]'% 2 0 which implies
that the function ¢ — m has no singularity. So, we can shift the integration line Re ¢t = ¢ to the
line Ret = 0 and next refold this latter to a loop enclosing the half-line Im ¢t = 0, Ret < 0. Roughly

speaking, this loop is defined as the union of the two half-lines Im ¢ =07, Re t < 0 (from —oo to 0) and
Imt=0%, Ret <0 (from 0 to —00). As a byproduct, we get

A% 0 et 0 et
B =22 [ - [ 2l
N'N 2im e WY1 NS 3
1
v

A= [ 1
= " al / e_)\t T — i :| dt
2t Jo e~ B ev{t—p
sin( Z)A- ¥ /°° e MYt
0

™ t¥ — 28 cos(%)t% + B2




We find it interesting to mention that when § is a negative number (obtained when 0; = —0y), for-
mula (5.1) is a particular case of a general representation of the Mittag-Leffler function which can be
found in [3]. By integrating (5.1) by parts, we obtain

o0 e*)\t% 0 % e~ M
o %)
/0 % — 23 cos( )N + (2 0 ¥ —2Bcos(Z)tN + B2 A

L en i
NX Jo (% — 26005(%)1?% + 3%)2

Finally, we derive the following representation for g = Z—i{V/E:

By (0V%) = g [ mar
Wlth 1 2
sin(F) ty 1B — tY)

F&8) = —y (F 25 cos(TE 1 )

51 Casey>0

Assume that y > 0. Regarding the expressions of ,(s;x,y) in Proposition 4.1, we see that we have to
perform the following inversions with respect to A:

e_”\s:/ e Mo (1) dt,

ﬂ
0 AN
e As+0; VX 0. oo t—s 0,
——F <9—]W> :/ e M [/ I#K(T;ij)f(tST;e—j\N/E)dT] dt,
s 0 k

1 1
HK—1 e
)\—N NN k

e—ks+9j%z [e’e)
—— = / e My (t —s;—0;2)dt,
s

0 o0 1 t=s . 6.
AT SRR VY :/ At —/ t—s—r)v 1 L Na ) dr| dt.
e N’N<9k o) e @ (t—s—1) f(T, A \/5) T

N
By using all these identities, we can extract the ppdf x(s,t; z,y).

Theorem 5.1 The pseudo-distribution of (T'(t), X (t)) is given by the following formulas: for s € [0,t]
andy >0,

Zfl' € (70050];

X(s,t2,y) = Ky Ly r—p i1y

D 0 ATk (t — s; —93‘30)“2 077 Aj Ly (s; 9jy)]

JjeJ jeJ
Ry Y Aoy Ay O BiCyion
N K—
010, — 0)

S
1
/ oN My 1(s—0;0;y)do
J.d'€J, kEK 0

t—s .
x/ I#K(T;fﬁjx)f(t—s—T;z—j%)dT;
0 k

if x € [0,400),
0,A:0,.B
i) = s+ 3 LB 1wty om0
jeJ, kek Y k
QAA/B . S
T Ky Z j#j—1j—k0”k/ O—%illeQ(S*U;ojy*le')dU
iirerrerx 07 (05— 0k) Jo
t—s 1_q
(tiS*T)N _Hj/N
X/O F(%) f(Taek\/E)dT.

Remark 5.1 For x = 0, Theorem 5.1 yields a representation of the pseudo-distribution of (T'(t), X (t))
under By which apparently differs from that we obtained in [5] (formula (6.1)) by using Spitzer’s identity.
It seems difficult to prove directly the equality of both representations without comparing their Laplace
transforms. We made this last comparison in Remark 3.3.
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Remark 5.2 The term multiplied by the atom 05(t) in the last case (i.e. when x > 0) of Theorem 5.1
yields for x,y > 0:

P{T(t) = t, X(¢) € dy}/dy = Rﬁ{ min X(s) > 0.X() € dy} /dy

0;A;0,B
=pltiz—y)+ Z e

R—m In_1(t; 0y — Opz). (5.2)
jeJ kek J

The quantity above is nothing but the distribution of the pseudo-process (X (t))i>o killed when overshooting
level 0 from below, that is P,{X(t) € dy, 7y > t}/dy where 7, = inf{t > 0 : ( ) < 0}. Moreover, by
integrating (5.2) with respect to y on (0,400), we obtain

x . —+o0
pATW =ty = [ pmode+ S PR i moac (53)

- JeJ, kEK

In the last integral above, the integration path is a half-line in the complexr plane going from —0ix to
infinity in the direction of the positive real axis. Using the definition of the function I, we see that

0o 400 1 oo -Vxe¢ e
/ e M (/ Ip(t; ¢) dC) dt = — e va¢ d¢ = 2 prl / ei)\tIPJrl (t;€) dt
0 ¢ AN 3 AN 0

from which we extract

+oo
/g_ 1,(6:€) dC = Ly (156). (5.4)

Then, by (4.1) and (5.4), for x <0,

xT —+o0
| wegac=1- | (t&dgfl——z/ INa(tQAC =1 = 3 (k). (55)

—o0 kek Y —Ok kEK

As a result, using (5.3), (5.4) and (5.5),

PAT(t) =t} =1— % S Int )+ > ‘;1 i9:Bs p (t; —0,)

keK jed kek I Ok
=14+ Z <9kBk Z 6, — 9 — N)IN( —0x). (5.6)
keK jer k

Finally, thanks to (2.10) of [13], we have

9’“29 — 01 Z(ej—ek AJ) " NB,

jed jed

and, plugging this into (5.6), we get the pseudo-distribution of 7y : for x > 0,

P{ry <t} =Y Bily(t;—0x).
keK

In order to retrieve the ppdf of T, (see [18]), we need to differentiate the function In with respect to time.
We have

< 0, > e A
/Oe_)‘t g &) dt = /O M) dt = 1,(0:6) = <% 1=/0 e ML n(t:8) dt

N

and then ol
(t 5) ;D N(t 5)

The ppdf of 7, 1is thus given, for x > 0, by

P{ry €dt}/dt =Y Bilo(t; —0yx).
keK
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5.2 Casey<0

We now assume that y < 0. Regarding the expression of ¢,(s;z,y) in Proposition 4.2, we see that we
need the following inversions with respect to A:

e%(ejm_eky) 0 —kt e—/\s—Gk%y 00 e
N N s

7/\5 Gk/\fy oo v t—s 9
)\#val %%< > e |:/0 I#K(T79k/y)f<t_s_7- %\/_)dT:| dta

—As-l—\f(ejz—@ky) . o) t—s )
¢ E (HJ W) :/ e M [/ IN_l(T;Hky—Hjx)f(t—s—T; 09] %)dT:| dt.
s 0

2z~

A-F g K k!
As a result, we derive the ppdf x(s,t; x,y).

Theorem 5.2 The pseudo-distribution of (T'(t), X (t)) is given by the following formulas; for s € [0,t]
and y <0,

if v € (—00,0],
0;A;0,.B
X(s, t;2,y) = [p(t;w —y) D S It by — 93‘%)1 Jo(s)
‘ i — Ok
jeJ keEK
. 7 tis .
_ Z i}kaBkBk/Djkk g1 / In_1(T;0ry — 0;2) f(t —5—T; 99] %) dr,
JEJ, kK EK 9] O (O — 0;) 0 %
if x € [0,400),

X8t 2,y) = Lug—snii1y l Z 0k Brlyy(s; 9k50)“ Z 9?51(31@]#.](15 =S 914/)]

keK keK
>

9?J7#K+1AjBk9k/Bk/Djkk/
JjEJ kK EK

077 (0, — )

t—s 9
x/ I#K(T;Hk/y)f(t—sz 9—\/_)d7'

0 k

/ U%_ll#J_l(s —o;—0rx)do
0

Remark 5.3 The term multiplied by the atom 0o(s) in the first case (i.e. when x < 0) of Theorem 5.2
yields for x,y <0:

P {T(t) = 0, X(t) € dy} /dy = Pz{ max X(s) < 0, X(t) € dy}/dy
0<s<t
0;A,0, By

=pltr—y)+ > R—
J

jeJ keEK

In_1(t; 0y — 0;2).

This is the distribution of the pseudo -process (X (t))i>o0 killed when overshooting level 0 from above, that
is P{X(t) € dy, 7y > t}/dy where 7 =inf{t > 0: X (t) > 0}. As in Remark 5.2, it may be seen that

P{ry € dt}/dt = A;Io(t; —0;x).
jed
Remark 5.4 [t is possible to check the following identity: for xz,y >0,

QAA’B yal 8 1 t=s ti - L71 9"
Z L I v kC”k/ Uﬁ71]N72(870';9jy*9k$)d0'/ t=s—r)v f(T; 3 %)dT

J—1 T
j.j'€d ke K 0710, — o) Jo 0 r(L)

- _ Z 0;A4;4; Bkcjj/k) (t—s)%*l/ IN71(570;9jy*9k$)f(0; Zk N\/t*S) do.  (5.7)
0

#J 2 }
j]GJkGKe 0 (9]—9k J

This means that the sum involving the double integral (with respect to o and T) lying in the two last cases
of Theorem 5.1 can be reduced into a sum involving only a single integral. The foregoing equality can
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be proved directly by using Laplace transform and some algebra; see Appendiz C for the details. Using
similar algebra, we could check the following equality: if x <0 <y,

> A0y Ay O BiCyjrn
U )

s t—s .
></ a%_ll#J_l(s —0;0;y) do/ Ly (1;—0; ac)f( s—T; G—J{V/E) dr
0 0 Ok

j.g'€J, k€K

_ > A0y Ay 0F T B Cy
07 (0, — 01)

t—s s
X / 0'%71]#](,1(15 —s—o;—b6;x) do/ Iy g (T3 9j/y)f(s - Z—k {V/E) dr.
0 0 J
Nonetheless, in this last case, both sums involve double integrals without any simplification. An explana-
tion for these identities can be found in duality. In [11] the dual pseudo-process X* = —X of X s intro-
duced. In the case where N 1is even, the pseudo-processes X and X* have the same pseudo-distributions,
while, in the case where N is odd, if we denote by X (resp. X~ ) the pseudo-process associated with
~ = +1 (resp. —1), we have the identities in distribution (XT)* = X~ and (X™)* = X*+. Let us in-
troduce analogous notations for the settings J, K, 0;,0y, Aj, By, Cjjik, Djri : when N is even, the settings
J, K, 05,01, A5, By, Cjjri, Djrre are interchanged into K,J, =0y, —0;,By, Aj, Djgir, Cjjrr, while, when N
is odd, the settings J+,K+,9J+,9+ AJr BJr C’;;/k, ki are interchanged into K=, J7, 0,7, =0, B’ VAT
D Ciing (where the superscripts refer to k, = £1). Asin [11], we have x(s,t; x,y) x(t— s,t, x,—y)

J.j'€J, keK

when N is even and x*(s,t;x,y) = xT(t — s,t; —x, —y) when N is odd; this explains formula (5.7).

Remark 5.5 By integrating each formula of Theorem 5.1 and Theorem 5.2 with respect to y, we can write
out a representation for the marginal ppdf of T(t). In Remarks 5.2 and 5.3 we have already displayed the
parts associated with the atoms 0 and t. For s € (0,t), the continuous part is given by

Zfl' € (70050];
A By By Dy t=s 0,
PA{T(t) € ds}/ds = Z e Qk M Zkk sﬁfl/ IN(T;—ij)f(t—s—T; Gj {V/E)dT
JEJ, kk'EK 93 O (O — 0;) 0 k!
AjA OB Clyy 2 ov !
+ # Z #K 1 - ”k/ o7 e do
FT)]]EJkEK 9 (9 ok) 0 (SiO—)N
—S8 9
/ Lyg (T 9]':L')f(t7877';—]%)d7',
O

if x € [0, 400),

A:A:B.C:ir s 9
BAT() € ds}/ds ==y > e IR (¢ — S)%J/ In(o; —9k$)f(5 — 03 Qk Vit — S) do
j.j'€J, k€K 005 (0; — Ok) 0 57

Ny 1(s —0;—0px)do

9_?J7#K+1AjBkBk/Djkk/ /S
07701 (0; — Ox) 0

1
*WZ

N jEJ, kK EK

X/Ot_sTlf\#Jf(tST;z—i%)dT.

In the computations, we have made use of (5.4), (5.7), I,(t;0) = t%fl/F(%) as well as of the following

equalities:
“+oo
/o (Z O AL s 9jy)> dy = (Z efJ_lAj> Lk 41(s;0) =0,

jed jed
0
/ ( Z 07" BrLys(t — s; 9ky)> dy = — ( Z i Bk>I#J+1( 5;0) = 0.
T \keK keK

Forx =0, we obtain an a priori intricate expression of the pseudo-probability Po{T'(t) € ds}/ds. Actually,
it is known that this latter admits a very simple representation (a Beta law, see, e.g., [11]). Neverthe-
less, it seems difficult to check directly (without computing any Laplace transform) the equality of both
representations.
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Remark 5.6 Let us introduce the last time above level 0 before time t as well as the first time above level
0 after time t:

o(t) =sup{s € [0,¢] : X(s) >0}, «<(t)=inf{s>¢: X(s) > 0}.

We are dealing with an excursion under level O straddling time t for the pseudo-process (X (s))s>o0. Using
the pseudo-Markov property, we easily get the following relationship between the couple (o(t),s(t)) and
the family (T'(s))s>o0: for o <t <g,

P{o(t) <o,c(t) >} = Pz{ sup X(s) < 0} = E; (Px(o){T(s — o) = 0}{x(0)<0})

s€lo,s]

- / P03 — &) B{T(s — o) = 0} de

with
P{T(s—0) =0} =1-Y_ A;Io(s — o3 —0;¢).
jeJ

Appendix
A Proof of (3.7), (3.8) and (3.9)

Suppose that y = 0. By Proposition 3.1, we have for z <0

eszSac
o0 = #J Gayprmt 24| 2 br Ay I1 (657 —0500) e (050 — 01y)
jed Jed e} ke \Yj kY
Let us expand the product below:
#J—2
H (Hj/’y — Gjué) = (ej,,y)#.ffl + Z Cp(ej/,y)pé#.]flfp
J""eI\{j} =0

where the ¢,, 0 < p < #J — 2 are some coefficients depending on the 6;~, 7 € J\ {j}, but not on the
index j'. Recalling that the A;, j/ € J, solve a Vandermonde system, we have Y., 6% A; = 0 for

j'ed 7y’
1§p§#J—1,2JEJ9] A/—H and then

#J—2
> 0p4p TI 059-0;0) = < > eﬁJAj'>7#']l+ > Cp( > QfﬂAa‘)V%#‘”p = Ry
j'ed 3”7 €I\{j} Jj'ed p=0 Jj'ed

On the other hand, by (2.1) we have [],c;(0;6 — 0;7) = (0;0)" — kvN = =k, (v — ), and then

[Lics (650 — 6i7) u
I I 0,0 — Opy) = =< = )
keK( ’ L Hj'eJ(9j5 —0py)  o#7 Hj,eJ(Gj/% —0;)

As a byproduct, for x < 0,
( N))\+/'[/ 9])] eHjA\’/Xm

o, (2,0) = ZGA
1 (3 -]

JjeJ
The product lying in the last displayed equation can be expanded into

103 0) - (50 )3 o)™

j'ed j'ed

j'ed

which proves (3.7). Choosing now = = 0 yields

©,.,(0,0) = ZGA

j€]
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where the c’ 0 <p < #J — 2 are some coefficients depending on the 6;/, j* € J, but not on the index j.

As previously, with the additional aid of 3, ; H?UHA = Ky 2 jeq b, We get
J+1 J b gl
> 04 ] < s ojﬂ = (1)#Jl29f ;- (Zoj,><29f Aj>5 = <Zej>—
J€J i€ J€J i'ed = =
and then

o0 (0,0) = <29>\N/)\+ -

jeJ

This proves (3.8).
On the other hand, we have for x > 0

2 Oy

JjeJ

(2% u(l’ 0 N 1 Z GkBk
keK

0;v—0;0 1
135 v
9] — 9k Jrer Gk’y — 9j/5 NBk
The sum lying within the brackets in the above equality can be written as follows:

0; A, 0y — 0,8 |
ZG 0 H (‘Qi'y_ej’é) Hj/ej((gk’Y 9 6 ZG _ek H jvi@]/é)'

jer T Uk jigg j'ed

First, we observe that

1—[(91‘/y 0; 6) = Hzel(ek’Y 0:0) -k 1%
wer@r —000) ™ Toer @rr — 00)

Second, invoking Formula (2.9) of [13]:

0,A;P(6;) P(X)
= + Ky
= 0; — X [es(0; — X)

which is valid for any polynomial P of degree #J and coefficient of highest degree ¢, we obtain for
P(X)=[lc;(vX —0;:6) and X = Oy:

., 0.y — 0.0
H iy — 0;00) = yresOir = 979) + kyy?7
9] [1;e, (05 —6k)

j'ed

jeJ

which implies, in view of (2.1), and since [, ;(0; — 0x) = N By,

054 0y =06\ 1 A/

jer 1 TR gy KEK

As a result, for z > 0,

Ny
o
VAt S 0By

keK

wk,u(z50) =

This is exactly (3.9). W

B Proof of (3.10)

Suppose that x = 0 and y > 0. Proposition 3.1 yields

GkBk va — 9j/5 1
2 0; H (akyej/a A |©

keK j'ed

=07y

¢, ,(0,y) = NlZGA
JjEJ
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Since [[;c; (057 — 0:0) = [;c;(Ory — 0:0) = Ky, we observe that
j]/;[.] <9k’y — ej/6 g ek’}/ — 916 k];[K 9]’7 — 9]@/6 k];[K 9_]’}/ — 9k/6 ’

Therefore,

HkBk (Hﬂ 0 5) 1 0, By
= Ory — 0x:6).
Z H Opy — 050 Hk’eK(ej'Y*ok’é)]; 9. — 0 H (Oxy — O:9)

K

As previously, we invoke the formula

—C

3 OBeP () 01, By, P( 9k _ (K P(X)

= 0h-X Teer (6x — X)

which is valid for any polynomial P of degree #K and coefficient of highest degree c. We obtain for
P(X) =[lyex(¥X — 0d) and X = 0, by using (2.6),

dekBk H (Ory — Hk/é)_V#K NA H 0y — 01 6)

kek 7 keK I pek

Z kBk H (9j7—9j16)+ 1 _ ,Y#K
ke K 9 jred Qk’y - 9j/5 NAj erK(Gﬂ - 914:5)

and then

Now, expanding the rational fraction 1/(] ], (07 — 010)) into partial fractions yields

1 B Z 0r B,
erK(Gﬂ — 914:5 5#K 1 9 ’}/ Gk

and finally

Or B, iy
Pu000) = ~ s 30 (Z 07— ek(s)e -

JjeJ keK

We have checked (3.10). W

C Proof of (5.7)

Set, for any integer m such that m < N — 1 and any complex number (3,

Fm@¢¢4@tﬁﬁéshxsa@»ﬂmﬂsﬁnw

2

; = ) ~n-1 — 0, o t(t T
Gulsntié )= [ o (= g)do [ F%)f(ﬂfﬁ

Let us compute the Laplace transforms of Fy,(s,t;&,8) and G, (s,t;&, 8). For this, we need the result
below concerning the Laplace transform of the Mittag-Leffler function.

Lemma C.1 The following identity holds for A\, > 0 and 3 € C such that 5§ < arg(8) < 2w — 55

1

> Aty —1 N
e MN IR L (BYpE) dt = —————.
/O N1N( ) \/X*ﬂw

PROOF

Referring to the asymptotics 1 1 (z) ~ —=1/[I (— %)z ] when z tends to infinity such that |arg(—z)| <
(1— 55 )7 (see Formula (21), p. 210 of [7]), the condition % < arg(8) < 2m—
convergence of the integral lying in the statement of Lemma (C.1).

5 N makes sure the absolute
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First, suppose that A > 1 |38|Y. In this case we easily have

/Oooe”tfle%,%(BW)dtzz:%/o e MR 1t

n=0 N

(BYR)" 1
Z N -

n=0

Suppose now that A < p|3|". Recalling that

By 5Vt = viﬁ/oooe_”‘sf(s,ﬂ%)ds
with ( ) Lo
o sin % NH(BE - SN)
f(saﬂ) N ( N—QBCOS( )SN+ﬁ2)
we obtain

/ooo e MFTE L 1 (BVi) dt f/ -W——l(/ e‘”f(s;ﬂ%)ds)dt.

It may be easily seen that the double integral [ e’/\t’“stﬁflf(s; BYt) dsdt is not absolutely con-
vergent (because of its behavior near (0,0)). So, we can not interchange the integrals and we must excise
one integral near zero as follows:

OO—)\——I Oo—s . AN _ 1 OO—A——I EN—S . AN
/O tw (/O e H f(s,ﬁx/i)ds)dt_agr& {/O tn (/O e H f(s,ﬁﬁ)ds)dt

+/OOO _Mt__1</8je_“sf(s;ﬂ%)ds)dt]. (C.1)

We begin by evaluating the first term lying on the right-hand side of (C.1):

oo N

lim e“t%1</8 e“Sf(S;ﬂ%)ds)dt
0

e—=0t Jo
o] 1
= N2eN+L im ety (/ e*“ENSNstlf(ENsN;ﬂEt) ds) dt
0 0

e—0t

oo 1 242
lim/ emretY /e%’“” Fe — s ds |dt
e—0+ Jo 0 (82 — 2B cos( 7 )st + (B2t2)?

o) 1 242 2
_%Sm(%)/o </0 2 _25505( DVt + )2 ds)dt'

The integral with respect to the variable s is elementary:

I
3 |

@0,
]
/N
=
N———

1 3242 5 s=1
/0 (s2 — 2 cos(% )st + B2t2)2 ds = [52 — 23 cos( 7 )st + ﬂQtQL_O
1 1

T1- 2B cos(& )t + B2 [Bt — cos(Z)]2 + sin(£)

and next

oo 1 B2t2 — §2 1 cos(L) — ft t=o0 - s
/o </ (8 _ 2B cos(Z)st 1 B2)2 ds)‘“ Foin(%) {t< Y )] T NG

Consequently,

lim 000 e Myn—t (/05 ef‘”f(s;ﬂ\N/Z) ds> dt = —%. (C.2)

e—0+t

Concerning the second term lying on the right-hand side of (C.1), since
N 1 /s\~—1 1
f(S;ﬂ\/f):f@ (2) f t;g% ,
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we have (in this case, interchanging the two integrals is valid)

o0 o0 1
: —)\t ——1 —us AN —)\t g ——1 N,
EE%L ; I (/&N e M f(s,ﬂ\ﬁ)ds)dt f@gli%h/ / # f(t Bﬁ)dsdt

RN ¢ s
Vi3 VA |

In the last step, we have used the result corresponding to the first case. Finally, adding (C.2) to (C.3)
yields the statement in the case where A\ < u|3|V. B

We can compute, with the help of Lemma C.1, the Laplace transforms of Fy,, (s, ¢; €, 8) and G, (s, t; €, 5).
On the one hand,

A%Awé*FWFﬁ@¢i¢DMthw ”%_4[Am€Wﬂm®£ﬁbAmeﬂ@ﬂ$ﬂWﬂdsdt

—&Vu

e

— — / e—)\ttﬁ—lE
~ Jo

1 (BVpt) dt

On the other hand,

/ / NG (5,15 €, ) ds dlt
0 0

00 0o oo %_1 oo
:/ e_“slm(s;f)ds/ e HsgN 1 [/ e‘“t ds/ e_)‘tf(t;ﬁ%) dt|ds
0 0 0 (%) 0

1
N
otV oo -
= — = e MsNTE
0

ﬂﬁ
o=V
S E (Vo pA)
Introducing back the settings v = YA+ and § = ¥\, the Laplace transforms of each member

of (5.7) can be evaluated as follows We choose 3 = 0/ /0 or 6i/0; with j' € J, k € K; in both cases
we have 7%= < arg(ff) < 2m — 5% . Thus we can use the above results and we obtain

e 0:A; A B.Cii
—At—pus R EE S A I
/O/S DY g1

'€ kEK Uk (oj —bk)

5o =St —s—7)nt 0
W_lj _ — 501 — / (— . 2J N
X[/o o N-2(s — 030y — Opx) do ; F(%) f(T, 0, \/E)dT dsdt

0;A;A; BiCiy s 0,
Z H#J 1 k ]]k/ / At—p GN 2(8 t— s; 0. iy — ek.fC 9 )det
j.j' €T keK
OAABC/ . 0,
Z H#J 1 k ij// M=(Atw)s G 2(s,t 0;y — O, o )dsdt
j.j' €T k€K
__1 Z ejAjAj’Bijj’k eV (0er—0;y) )
N— J—2 — . s .
YN S e 0T TR0, — Ok) Ok — 0500

Similarly,

/OO/OO e Nmms 3 GjAjA_j’Bijj’k
0 s

#J—2
g ed keK ojlek (oj - ok)
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x{(ts)%l/sIN 1(s—o;0;y — 9kz)f(0' gk \N/ts)do]dsdt
0 ’

0;A;A; BkC ke B . 0
Z 9 Q#J 2 Jj // At—p Fyn_ 1(51? 5,0y — O, )dsdt

J,J

0,A;A;) Bkcﬂ,k / / . 0
B Z " Fn_1(s,t; 05y — O, dsdt
#J 2 , y
greawer 0077 (05 — Or) ( 01 )
1 0;A;Aj BLC,jiy, ¥ Okr=05y)
- T oN—2 Z j#J]—QJ LA z 05 (C.5)
VTR her 01T (05— 61) kv — O
We see that the quantities (C.4) and (C.5) are opposite which completes the proof of (5.7). W
Addendum. In [5], some constants in Formulas (2.8) and (2.9) can be simplified: since x, = (—1)#7/1,

HJ€]9 =1land [[cxOr = (— 1)#X | we have a_ 2k = —Bprx =1and a1_4x = Bpr+1 = zje]ej.
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