
HAL Id: hal-00864384
https://hal.science/hal-00864384

Submitted on 23 Sep 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Joint distribution of the process and its sojourn time in
a half-line [a,+∞) for pseudo-processes governed by

higher-order heat-type equations
Valentina Cammarota, Aimé Lachal

To cite this version:
Valentina Cammarota, Aimé Lachal. Joint distribution of the process and its sojourn time in a half-
line [a,+∞) for pseudo-processes governed by higher-order heat-type equations. Stochastic Processes
and their Applications, 2012, 122 (1), pp. 217-249. �10.1016/j.spa.2011.08.004�. �hal-00864384�

https://hal.science/hal-00864384
https://hal.archives-ouvertes.fr


Joint distribution of the process and its sojourn time

in a half-line [a,+∞) for pseudo-processes driven by a

high-order heat-type equation

Valentina Cammarota∗
and Aimé Lachal†

Abstract

Let (X(t))t≥0 be the pseudo-process driven by the high-order heat-type equation ∂u
∂t

= ±
∂Nu

∂xN ,
where N is an integer greater than 2. We consider the sojourn time spent by (X(t))t≥0 in [a,+∞)
(a ∈ R), up to a fixed time t > 0: Ta(t) =

∫ t

0
1l[a,+∞)(X(s)) ds. The purpose of this paper is to

explicit the joint pseudo-distribution of the vector (Ta(t), X(t)) when the pseudo-process starts at a
point x ∈ R at time 0. The method consists in solving a boundary value problem satisfied by the
Laplace transform of the aforementioned distribution.
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1 Introduction

Let N be an integer greater than 2 and let κ
N

= (−1)1+N/2 if N is even, κ
N

= ±1 if N is odd. Let us
introduce the pseudo-process X = (X(t))t≥0 related to the high-order heat-type equation

∂u

∂t
= κN

∂Nu

∂xN
. (1.1)

This pseudo-process is driven by a family of signed measures (Px)x∈R, which are not probability measures,
such that for any positive integer n, any t > 0, 0 = t0 < t1 < · · · < tn and x = x0, x1, . . . , xn, y ∈ R,

Px{X(t) ∈ dy} = p(t;x− y) dy

and

Px{X(t1) ∈ dx1, . . . , X(tn) ∈ dxn} =
n
∏

i=1

p(ti − ti−1;xi−1 − xi) dxi.

In the above definition, the function p stands for the “heat-kernel” associated with the equation (1.1).
It solves (1.1) together with the initial condition p(0;x) = δ(x) and it is characterized by its Fourier
transform as

∫ +∞

−∞
eiuxp(t;x) dx =

{

e−tuN

if N is even,

eκN t(−iu)N if N is odd.

Pseudo-processes have been introduced and studied by many authors in the early 60’s: some pioneering
works are [6], [15], [16]. In these works, the efforts were made in providing accurate and proper definitions
of pseudo-processes driven by signed, complex or vectorial measures. The heat-type equations of order 3
and 4 are of special interest since they arise, for instance, in various problems of linear elasticity.

Subsequently, more specific aspects of the pseudo-process X introduced here have been considered.
In [1], [2], [4], [5], [8] to [14], [17] to [22], the authors paid attention to several classical functionals: first
or last overshooting time above or below a fixed level, up-to-date maximum and minimum functionals,
sojourn times in a half-line... Many explicit results are known about the pseudo-distribution of the various
aforementioned functionals. In this paper, we focus on the sojourn time of X in a half-line [a,+∞) up
to a fixed time t. Set

Ta(t) =

∫ t

0

1l[a,+∞)(X(s)) ds.

Actually, this continuous-time functional is not well-defined since the pseudo-process X can be simulta-
neously defined only at a finite number of instants. Nevertheless, some ad-hoc definitions can be given,
especially for computing certain expectations related to Ta(t) (see definitions (1.2) and (1.3)).

The functional Ta(t) has often been of interest: in [10], Krylov explicitly computed the distribution
of T0(t) in the case where N is even and the starting point is exactly 0; he obtained the famous Lévy’s
arcsine law. In [9] and [18], Hochberg, Nikitin and Orsingher treated the case where N is equal to 3, 5
or 7 with a possible conditioning on an event depending on X(t). In [11], Lachal explicitly determined
the distribution of T0(t) in the general case (for any positive integer N) which is a Beta law. In a recent
work [5], we have obtained a representation for the joint pseudo-distribution of the vector (T0(t), X(t))
when the starting point is exactly x = 0. For this, we introduced a construction of the pseudo-process
based on observations of X on dyadic times and we used Spitzer’s identity which works especially in the
case where x = 0.

The aim of this paper is to compute the joint pseudo-distribution of the vector (Ta(t), X(t)) for any
starting point x ∈ R, that is the pseudo-probability distribution function (ppdf in short)

Px{Ta(t) ∈ ds,X(t) ∈ dy}/(ds dy).

Since the pseudo-process X is invariant by translation, we have

Px{Ta(t) ∈ ds,X(t) ∈ dy}/(ds dy) = Px−a{T0(t) ∈ ds,X(t) ∈ dy − a}/(ds dy)

and we only need to compute the ppdf Px{T (t) ∈ ds,X(t) ∈ dy}/(ds dy), s ∈ [0, t], y ∈ R, where
T (t) = T0(t). The approach we used in [5] is not efficient in the present situation since Spitzer’s identity
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does not allow us to treat the general case of any starting point x different from 0. So, we follow here
the Feynman-Kac approach which leads to solving partial differential equations. Set

χ(s, t;x, y) = Px{T (t) ∈ ds,X(t) ∈ dy}/(ds dy),

µ̟
(t;x, y) = Ex(e

−µT (t), X(t) ∈ dy)/dy =

∫ t

0

e−µsχ(s, t;x, y) ds,

ψ
λ
(s;x, y) =

∫ ∞

s

e−λt χ(s, t;x, y) dt,

ϕ
λ,µ

(x, y) =

∫ ∞

0

e−λt
µ̟(t;x, y) dt,

̺
λ
(x, y) =

∫ ∞

0

e−λt p(t;x− y) dt.

Because of the lack of complete definition of the pseudo-process X over all continuous times, ad-hoc
definitions for defining properly general functionals of X have been proposed. In this paper, it is enough
to give only those concerning the functions χ, µ̟ and ϕ

λ,µ
; we refer the reader to [20] for more general

functionals. The following definitions can be found in the literature: either

χ(s, t;x, y)
def1
= lim

n→∞
Px{T 1

n(t) ∈ ds,X(t) ∈ dy}/(ds dy),

µ̟
(t;x, y)

def1
= lim

n→∞
Ex

(

e−µT 1
n(t), X(t) ∈ dy

)

/dy, (1.2)

ϕ
λ,µ

(x, y)
def1
= lim

n→∞

∫ ∞

0

e−λt
[

Ex

(

e−µT 1
n(t), X(t) ∈ dy

)

/dy
]

dt,

or

χ(s, t;x, y)
def2
= lim

n→∞
Px{T 2

n(t) ∈ ds,X([2nt]/2n) ∈ dy}/(ds dy),

µ̟
(t;x, y)

def2
= lim

n→∞
Ex

(

e−µT 2
n(t), X([2nt]/2n) ∈ dy

)

/dy, (1.3)

ϕ
λ,µ

(x, y)
def2
= lim

n→∞

∫ ∞

0

e−λt
[

Ex

(

e−µT 2
n(t), X([2nt]/2n) ∈ dy

)

/dy
]

dt,

where

T 1
n(t) =

t

n

n−1
∑

k=0

1l[0,+∞)(X(kt/n)), T 2
n(t) =

1

2n

[2nt]
∑

k=0

1l[0,+∞)(X(k/2n)).

These definitions supply an appropriate support for computing the pseudo-distribution of T (t). The first
is particularly suitable for the Feynman-Kac approach (it is based on a subdivision of the interval [0, t])
while the second is convenient for the Spitzer approach (it is related to a subdivision of the time axis
independent of t).

As in [10] for instance, the function
µ̟
is a solution of

κ
N

∂N
µ̟

∂xN
(t;x, y) =

∂
µ̟

∂t
(t;x, y) + µ1l[0,+∞)(x) µ̟

(t;x, y) (1.4)

with initial condition
µ̟
(0;x, y) = δy(x) and the function ϕ

λ,µ
is a Feynman-Kac functional which solves

the differential equation

κ
N

∂Nϕ
λ,µ

∂xN
(x, y) =

{

(λ+ µ)ϕ
λ,µ

(x, y)− δy(x) if x > 0,

λ ϕ
λ,µ

(x, y)− δy(x) if x < 0.
(1.5)

Together with (1.5), the function ϕ
λ,µ

fulfills the conditions










ϕ
λ,µ

is (N − 1) times differentiable at 0 and (N − 2) times differentiable at y,

∂N−1ϕ
λ,µ

∂xN−1
(y+, y)− ∂N−1ϕ

λ,µ

∂xN−1
(y−, y) = −κ

N
.

(1.6)

An explanation of (1.4), (1.5) and (1.6), relies on an underlying integral equation which can be stated as
follows. The function

µ̟
satisfies the following integral equation:

µ̟
(t;x, y) = p(t;x− y)− µ

∫ t

0

∫ +∞

0

p(s;x− z)
µ̟
(t− s; z, y) ds dz, (1.7)
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and then, by taking the Laplace transform with respect to t, the function ϕ
λ,µ

satisfies the integral
equation below:

ϕ
λ,µ

(x, y) = ̺
λ
(x, y)− µ

∫ ∞

0

̺
λ
(x, z)ϕ

λ,µ
(z, y) dz. (1.8)

On one hand, since the heat-kernel p satisfies κ
N

∂Np
∂xN (t;x− y) = ∂p

∂t (t;x− y) with p(0;x− y) = δy(x), we
can see by differentiating with respect to t and x, that (1.7) yields the differential equation (1.4). On the

other hand, since the function ̺
λ
satisfies κ

N

∂N̺
λ

∂xN (x, y) = λ̺
λ
(x, y) − δy(x) as well as conditions (1.6)

(see [11]), we can see in the same manner that (1.8) yields the differential equation (1.5) together with
conditions (1.6). An heuristic derivation of (1.7) consists in writing

1− e−µT (t) = µ

∫ t

0

1l[0,+∞)(X(s)) exp

(

−µ
∫ t

s

1l[0,+∞)(X(u)) du

)

ds

= µ

∫ t

0

1l[0,+∞)(X(s)) e−µ[T (t)−T (s)] ds = µ

∫ t

0

1l[0,+∞)(X(s)) e−µ[T (t−s)◦θs] ds,

where (θs)s≥0 is the usual shift operator defined by X(t) ◦ θs = X(s + t) for all s, t ≥ 0, and next in
applying the Markov property of the pseudo-process X :

p(t;x− y)−
µ̟
(t;x, y) = Ex(1 − e−µT (t), X(t) ∈ dy)/dy

= µ

∫ t

0

[

Ex

(

1l[0,+∞)(X(s)) e−µ[T (t−s)◦θs], X(t− s) ◦ θs ∈ dy
)

/dy
]

ds

= µ

∫ t

0

∫ +∞

0

Px{X(s) ∈ dz}
[

Ez

(

e−µT (t−s), X(t− s) ∈ dy
)

/dy
]

ds

= µ

∫ t

0

∫ +∞

0

p(s;x− z)
µ̟
(t− s; z, y) ds dz.

All this should be made rigorous (in the case where N is even at least) by introducing the step process
obtained by sampling X on the dyadic times k/2n, k, n ∈ N, as, e.g., in [13] and [20]. We shall not go
further in this direction. In this work instead, our aim is to solve the boundary value problem (1.5)-(1.6)
and next to exhibit an explicit representation of the joint ppdf of the vector (T0(t), X(t)) under Px.

The paper is organized as follows. Section 2 contains some settings. In Section 3 we completely
solve the system (1.5)-(1.6) and derive explicitly ϕ

λ,µ
(x, y). Section 4 and 5 are devoted to inverting

the two-parameters Laplace transform ϕ
λ,µ
(x, y). Our main result is displayed in Theorems 5.1 and 5.2.

In each section, we shall split our analysis into two parts corresponding to the case where y ≥ 0 and
y ≤ 0. Because of the asymmetry of the problem, we shall write out all the results associated with the
aforementioned cases even if they look like similar. We shall provide all the details when y ≥ 0 and omit
the analogous computations related to the case where y ≤ 0.

2 Settings

In order to solve Eq. (1.5) it is useful to introduce the N th roots (θi)i∈I of κ
N
: θNi = κ

N
for all i ∈ I

(I contains N successive integers). We also introduce the sets of indices J = {i ∈ I : Re(θi) > 0} and
K = {i ∈ I : Re(θi) < 0}. We have J ∪ K = I, #J + #K = N , #J = #K = N/2 if N is even,
|#J −#K| = 1 if N is odd, κ

N
= (−1)#J−1 and

∏

i∈I

(x− θi) = xN − κ
N
. (2.1)

Set, for j, j′ ∈ J and k, k′ ∈ K,

Aj =
∏

j′∈J\{j}

θj′

θj′ − θj
, Bk =

∏

k′∈K\{k}

θk′

θk′ − θk
,

and
Cjj′k =

∏

j′′∈J

(θjθj′ − θj′′θk), Djkk′ =
∏

k′′∈K

(θkθk′ − θk′′θj).
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For x = 0, formula (2.1) gives
∏

i∈I θi = (−1)N−1κN = (−1)#K . On the other hand, since the non-real
roots labeled by J (respectively by K) are conjugate two by two, we have

∏

j∈J

θj = 1 and
∏

k∈K

θk = (−1)#K . (2.2)

For a fixed index i ∈ I, we have

∏

i′∈I\{i}
(x− θi′) =

xN − κ
N

x− θi
=
xN − θNi
x− θi

=
N−1
∑

p=0

θN−1−p
i xp = κ

N

N−1
∑

p=0

xp

θp+1
i

,

which yields for x = θi
∏

i′∈I\{i}
(θi − θi′) =

κ
N
N

θi
. (2.3)

By (2.2), we have for j ∈ J

∏

j′∈J\{j}
(θj − θj′ ) = (−1)#J−1

(

∏

j′∈J\{j}
θj′

)(

∏

j′∈J\{j}

θj′ − θj
θj′

)

=
κ
N

θjAj
(2.4)

and for k ∈ K

∏

k′∈K\{k}
(θk − θk′) = (−1)#K−1

(

∏

k′∈K\{k}
θk′

)(

∏

k′∈K\{k}

θk′ − θk
θk′

)

= − 1

θkBk
. (2.5)

In view of (2.3) and (2.4), we get for j′ ∈ J and k ∈ K

∏

k′∈K

(θj′ − θk′ ) =

∏

i∈I\{j′}(θj′ − θi)
∏

j′′∈J\{j′}(θj′ − θj′′ )
= NAj′ (2.6)

and next
∏

k′∈K\{k}
(θj′ − θk′ ) =

∏

k′∈K(θj′ − θk′)

θj′ − θk
=

NAj′

θj′ − θk
. (2.7)

We also recall the expression of the λ-potential ̺
λ
(see [11]):

̺
λ
(x, y) =



















1

Nλ1−
1
N

∑

j∈J

θje
θj

N√
λ (x−y) for x ∈ (−∞, y],

− 1

Nλ1−
1
N

∑

k∈K

θke
θk

N√
λ (x−y) for x ∈ [y,+∞).

(2.8)

3 Solving the system (1.5)-(1.6)

In this part, we explicitly solve the boundary problem (1.5)-(1.6). We divide our analysis into two cases:
the case where y ≥ 0 and the case where y ≤ 0.

3.1 Case y ≥ 0

Assume that y ≥ 0. Eq. (1.5) can be written as

κ
N

∂Nϕ
λ,µ

∂xN
(x, y) =











λϕ
λ,µ

(x, y) if x ∈ (−∞, 0),

(λ + µ)ϕ
λ,µ

(x, y) if x ∈ (0, y),

(λ + µ)ϕ
λ,µ

(x, y) if x ∈ (y,+∞).

In the particular case where y = 0, the interval (0, y) is empty. The solution of this equation has the form

ϕ
λ,µ
(x, y) =



































∑

i∈I

bi(y) e
θi

N√
λ x if x ∈ (−∞, 0),

∑

i∈I

ai(y) e
θi

N
√
λ+µx if x ∈ (0, y),

∑

i∈I

ci(y) e
θi

N
√
λ+µx if x ∈ (y,+∞),
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where the unknowns (ai(y))i∈I , (bi(y))i∈I and (ci(y))i∈I are to be determined.
First, by combining (1.8) and (2.8), we see that, for large enough negative x, ϕ

λ,µ
(x, y) is a linear

combination of eθj
N√
λx, j ∈ J . Then bi = 0 for all i ∈ K. Second, by (1.8), we see that the integral

∫∞
0 ̺

λ
(x, z)ϕ

λ,µ
(z, y) dz must be convergent. Due to (2.8), this implies that for large enough positive x,

ϕ
λ,µ
(x, y) is only a linear combination of eθk

N
√
λ+µx, k ∈ K. Thus, ci = 0 for any i ∈ J . As a byproduct,

we have to search ϕ
λ,µ

in the form

ϕ
λ,µ

(x, y) =



































∑

j∈J

bj(y) e
θj

N√λ x if x ∈ (−∞, 0),

∑

i∈I

ai(y) e
θi

N
√
λ+µx if x ∈ (0, y),

∑

k∈K

ck(y) e
θk

N
√
λ+µx if x ∈ (y,+∞).

By the conditions (1.6), the unknowns (ai(y))i∈I , (bj(y))j∈J and (ck(y))k∈K verify























λ
p
N

∑

j∈J

bj(y)θ
p
j = (λ+ µ)

p
N

∑

i∈I

ai(y)θ
p
i if 0 ≤ p ≤ N − 1,

∑

i∈I

ai(y)θ
p
i e

θi
N
√
λ+µ y −

∑

k∈K

ck(y)θ
p
ke

θk
N
√
λ+µ y =







0 if 0 ≤ p ≤ N − 2,
κ
N

(λ+ µ)1−1/N
if p = N − 1.

In order to simplify the notations we set γ = N
√
λ+ µ and δ = N

√
λ. The system writes























δp
∑

j∈J

bj(y)θ
p
j = γp

∑

i∈I

ai(y)θ
p
i if 0 ≤ p ≤ N − 1,

∑

j∈J

aj(y)θ
p
j e

θjγy +
∑

k∈K

(ak(y)− ck(y))θ
p
ke

θkγy =







0 if 0 ≤ p ≤ N − 2,
κ
N

γN−1
if p = N − 1.

(3.1)

Put

ãi(y) =

{

ai(y) e
θiγy if i ∈ J,

(ai(y)− ci(y)) e
θiγy if i ∈ K.

The second equation of (3.1) yields the following system of N equations with the N unknowns ãi(y),
i ∈ I:

∑

i∈I

ãi(y)θ
p
i =







0 if 0 ≤ p ≤ N − 2,
κN
γN−1

if p = N − 1.

This is a classical Vandermonde system the solution of which is

ãi(y) =
κ
N

γN−1
∏

i′∈I\{i}(θi − θi′)
, i ∈ I.

In view of (2.3) we have

ãi(y) =
θi

NγN−1
, i ∈ I.

We notice that ãi(y) does not depend on y. We deduce that



















aj(y) =
θj

NγN−1
e−θjγy if j ∈ J,

ak(y) =
θk

NγN−1
e−θkγy + ck(y) if k ∈ K.

Now, we need to compute the ck(y), k ∈ K. The first equation of (3.1) yields

∑

j∈J

bj(y)(θjδ)
p +

∑

k∈K

(−ak(y))(θkγ)p =
∑

j∈J

aj(y)(θjγ)
p for 0 ≤ p ≤ N − 1.
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This can be rewritten into a matrix form as
(

((θjδ)
p)

0≤p≤N−1
j∈J

... ((θkγ)
p)

0≤p≤N−1
k∈K

)

×
(

(bj(y))j∈J

(−ak(y))k∈K

)

=
∑

j∈J

aj(y)
(

((θjγ)
p)0≤p≤N−1

)

(3.2)

where the index p ∈ {0, . . . , N − 1} in (θjδ)
p and (θkγ)

p stands for the row index and the indices j ∈ J
in (θjδ)

p and k ∈ K in (θkγ)
p stand for the column indices. The quantities (bj(y))j∈J , (−ak(y))k∈K and

((θjγ)
p)0≤p≤N−1 are 1-column matrices.

Put ϑj = θjδ for j ∈ J and ϑk = θkγ for k ∈ K, αj(y) = bj(y) for j ∈ J and αk(y) = −ak(y) for
k ∈ K. From (3.2) we obtain the following Vandermonde system:

(

(ϑpi )0≤p≤N−1
i∈I

)

×
(

(αi(y))i∈I

)

=
∑

j∈J

aj(y)
(

((θjγ)
p)0≤p≤N−1

)

. (3.3)

In order to solve (3.3), we first solve, for each j ∈ J , the partial Vandermonde system below:
∑

i∈I

αiϑ
p
i = (θjγ)

p, 0 ≤ p ≤ N − 1. (3.4)

The solution of (3.4) is given by

αi =
∏

i′∈I\{i}

θjγ − ϑi′

ϑi − ϑi′
, i ∈ I. (3.5)

Indeed, the polynomial A defined by

A(x) =
∑

i∈I

ϑpi
∏

i′∈I\{i}

x− ϑi′

ϑi − ϑi′

is such that A(ϑi) = ϑpi , i ∈ I and degree(A) ≤ #I − 1 = N − 1. The polynomial xp satisfies the
same conditions. Since these conditions uniquely determine the polynomial A (this is the so-called
Lagrange interpolating polynomial), we deduce that A(x) = xp for all x. Thus, choosing αi as in (3.5),
A(θjγ) =

∑

i∈I αiϑ
p
i = (θjγ)

p which proves that (3.5) is the solution of (3.4).
Now the solution of the system (3.3) is obtained by taking the linear combination of the foregoing

solutions (3.5):

αi(y) =
∑

j′∈J

aj′(y)
∏

i′∈I\{i}

θj′γ − ϑi′

ϑi − ϑi′
, i ∈ I. (3.6)

Recalling that aj′(y) =
θj′

NγN−1 e
−θj′γy for j′ ∈ J , (3.6) yields the following expressions for bj(y), j ∈ J ,

and ak(y), ck(y), k ∈ K.

• For j ∈ J , we have

bj(y) =
1

NγN−1

∑

j′∈J

θj′

(

∏

i′∈I\{j}

θj′γ − ϑi′

ϑj − ϑi′

)

e−θj′γy

where

∏

i′∈I\{j}

θj′γ − ϑi′

ϑj − ϑi′
=

∏

j′′∈J\{j}

θj′γ − θj′′δ

(θj − θj′′ )δ
×
∏

k∈K

(θj′ − θk)γ

θjδ − θkγ

=
γ#K

δ#J−1

∏

k∈K(θj′ − θk)
∏

j′′∈J\{j}(θj − θj′′ )
×
∏

j′′∈J\{j}(θj′γ − θj′′δ)
∏

k∈K(θjδ − θkγ)
.

In view of (2.4) and (2.6), we see that
∏

k∈K(θj′ − θk)
∏

j′′∈J\{j}(θj − θj′′)
= κ

N
NθjAjAj′ .

Therefore

bj(y) =
κ
N
θjAj

(γδ)#J−1

∑

j′∈J

θj′Aj′

(
∏

j′′∈J\{j}(θj′γ − θj′′δ)
∏

k∈K(θjδ − θkγ)

)

e−θj′γy, j ∈ J.
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• For k ∈ K, we have

ak(y) = − 1

NγN−1

∑

j′∈J

θj′

(

∏

i′∈I\{k}

θj′γ − ϑi′

ϑk − ϑi′

)

e−θj′γy

where
∏

i′∈I\{k}

θj′γ − ϑi′

ϑk − ϑi′
=
∏

j∈J

θj′γ − θjδ

θkγ − θjδ
×

∏

k′∈K\{k}

θj′ − θk′

θk − θk′
.

In view of (2.5) and (2.7), we see that

∏

k′∈K\{k}

θj′ − θk′

θk − θk′
= −NAj′θkBk

θj′ − θk
.

Therefore

ak(y) =
θkBk

γN−1

∑

j′∈J

θj′Aj′

θj′ − θk

(

∏

j∈J

θj′γ − θjδ

θkγ − θjδ

)

e−θj′γy, k ∈ K.

We finally obtain that

ck(y) = ak(y)−
θk

NγN−1
e−θkγy, k ∈ K.

As a byproduct we have obtained the form below for the function ϕ
λ,µ

(x, y).

Proposition 3.1 Suppose y ≥ 0. The function ϕ
λ,µ

(x, y) admits the following representation:

for x ∈ (−∞, 0],

ϕ
λ,µ

(x, y) =
κ
N

(γδ)#J−1

∑

j,j′∈J

θjAjθj′Aj′

∏

j′′∈J\{j}(θj′γ − θj′′δ)
∏

k∈K(θjδ − θkγ)
eθjδx−θj′γy;

for x ∈ [0, y],

ϕ
λ,µ

(x, y) =
1

γN−1

[

1

N

∑

j∈J

θje
θjγ(x−y) +

∑

j∈J,k∈K

θjAjθkBk

θj − θk

∏

j′∈J

(

θjγ − θj′δ

θkγ − θj′δ

)

eγ(θkx−θjy)

]

;

for x ∈ [y,+∞),

ϕ
λ,µ

(x, y) =
1

γN−1

[

− 1

N

∑

k∈K

θke
θkγ(x−y) +

∑

j∈J,k∈K

θjAjθkBk

θj − θk

∏

j′∈J

(

θjγ − θj′δ

θkγ − θj′δ

)

eγ(θkx−θjy)

]

.

Remark 3.1 If we take µ = 0 in ϕ
λ,µ
(x, y), we retrieve the λ-potential of the pseudo-process X: ϕ

λ,µ
(x, y) =

̺
λ
(x, y). Explicitly, we have γ = δ = N

√
λ,

∏

j′∈J

(

θjγ − θj′δ

θkγ − θj′δ

)

=
∏

j′∈J

(

θj − θj′

θk − θj′

)

= 0,

and by (2.4) and (2.6)

∏

j′′∈J\{j}(θj′γ − θj′′δ)
∏

k∈K(θjδ − θkγ)
= δ#J−#K−1

∏

j′′∈J\{j}(θj′ − θj′′ )
∏

k∈K(θj − θk)
= δjj′δ

#J−#K−1 κ
N

NAjθj′Aj′
.

As a result, the formulas of Proposition 3.1 supply (2.8). We can sum up the two expressions of ϕ
λ,µ

(x, y)
for x ∈ [0, y] and x ∈ [y,+∞) into the following one: for x ∈ [0,+∞),

ϕ
λ,µ
(x, y) = ̺

λ+µ
(x, y) +

1

γN−1

∑

j∈J,k∈K

θjAjθkBk

θj − θk

∏

j′∈J

(

θjγ − θj′δ

θkγ − θj′δ

)

eγ(θkx−θjy).

Remark 3.2 Suppose that y = 0. By Proposition 3.1, we have on the one hand for x ≤ 0

ϕ
λ,µ
(x, 0) =

κ
N

(γδ)#J−1

∑

j∈J

θjAj

[

∑

j′∈J

θj′Aj′

∏

j′′∈J\{j}
(θj′γ − θj′′δ)

]

eθjδx
∏

k∈K(θjδ − θkγ)
.
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After several computations which are postponed to Appendix A, we get, for x ≤ 0,

ϕ
λ,µ

(x, 0) =

∫ ∞

0

e−λt[Ex(e
−µT (t), X(t) ∈ dy)/dy]

∣

∣

∣

y=0
dt

=
N
√
λ

µ

∑

j∈J

θjAj

[

∏

j′∈J

(

θj′
N

√

λ+ µ

λ
− θj

)

]

eθj
N√λx. (3.7)

It is then easy to retrieve Formula (24) of [11]. Choosing now x = 0, ϕ
λ,µ

(x, 0) yields

ϕ
λ,µ
(0, 0) =

N
√
λ

µ

∑

j∈J

θjAj

[

∏

j′∈J

(

θj′
N

√

λ+ µ

λ
− θj

)

]

.

We can see (cf. again Appendix A) that

ϕ
λ,µ

(0, 0) =

∫ ∞

0

e−λt[E0(e
−µT (t), X(t) ∈ dy)/dy]

∣

∣

∣

y=0
dt =

(

∑

j∈J

θj

)

N
√
λ+ µ− N

√
λ

µ
. (3.8)

This is Formula (26) of [11] which leads to the famous uniform distribution of the sojourn time in
[0,+∞) for the pseudo-bridge process (X(s)|X(t) = 0)0≤s≤t (see Theorem 13 of [11]):

P0{T (t) ∈ ds|X(t) = 0}/ds = 1

t
1l[0,t](s).

On the other hand, we have for x ≥ 0

ϕ
λ,µ

(x, 0) =
1

γN−1

∑

k∈K

θkBk

[

∑

j∈J

θjAj

θj − θk

∏

j′∈J

(

θjγ − θj′δ

θkγ − θj′δ

)

− 1

NBk

]

eθkγx.

As previously, after several computations which are postponed to Appendix A, we get, for x ≥ 0,

ϕ
λ,µ
(x, 0) =

N
√
λ+ µ

µ

∑

k∈K

θkBk

[

∏

k′∈K

(

θk − θk′
N

√

λ

λ+ µ

)]

eθk
N
√
λ+µx. (3.9)

It is easy to retrieve Formula (24) of [11] in this case.

Remark 3.3 Suppose that x = 0 and y ≥ 0. Proposition 3.1 yields in this case

ϕ
λ,µ

(0, y) =
1

γN−1

∑

j∈J

θjAj

[

∑

k∈K

θkBk

θj − θk

∏

j′∈J

(

θjγ − θj′δ

θkγ − θj′δ

)

+
1

NAj

]

e−θjγy.

In Appendix B, we show that ϕ
λ,µ

(0, y) can be rewritten as

ϕ
λ,µ

(0, y) = − 1

γ#J−1δ#K−1

∑

j∈J

θjAj

(

∑

k∈K

θkBk

θjγ − θkδ

)

e−θjγy. (3.10)

We retrieve Formula (4.1) of [5].

The expressions lying in Proposition 3.1 are not tractable for inverting the Laplace transform ϕ
λ,µ

(x, y).
So we transform them in order to derive a more appropriate form. For this we introduce the rational
fractions defined, for j, j′ ∈ J and k ∈ K, as

Fjj′ (x) =

∏

j′′∈J\{j}(θj′x− θj′′ )
∏

k∈K(θkx− θj)
, Gjk(x) =

∏

j′∈J

(

θj′x− θj
θj′x− θk

)

.

Let us expand them into partial fractions.

• We first observe that
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Fjj′ (x) =
θ#J−1
j′

∏

k∈K θk
1l{#J=#K+1} +

∑

k∈K

αjj′k

θkx− θj

with

αjj′k = lim
x→θj/θk

(θkx− θj)Fjj′ (x) =

∏

j′′∈J\{j}

(

θjθj′

θk
− θj′′

)

∏

k′∈K\{k}

(

θjθk′

θk
− θj

) =
θ#K−#J
k

θ#K−1
j

∏

j′′∈J\{j}(θjθj′ − θj′′θk)
∏

k′∈K\{k}(θk′ − θk)
.

By (2.6) we extract

αjj′k = (−1)#K θ
#K−#J+1
k BkCjj′k

θ#K
j (θj′ − θk)

and then

Fjj′ (x) = (−1)#Kθ#K
j′ 1l{#J=#K+1} +

(−1)#K

θ#K
j

∑

k∈K

θ#K−#J+1
k BkCjj′k

(θj′ − θk)(θkx− θj)
.

• Analogously we observe that

Gjk(x) = 1 +
∑

j′∈J

βjj′k
θj′x− θk

with

βjj′k = lim
x→θk/θj′

(θj′x− θk)Gjk(x) =

∏

j′′∈J

(

θj′′ θk
θj′

− θj

)

∏

j′′∈J\{j′}

(

θj′′θk
θj′

− θk

) =
1

θj′θ
#J−1
k

∏

j′′∈J(θj′′θk − θjθj′ )
∏

j′′∈J\{j′}(θj′′ − θj′)
.

By (2.5) we extract

βjj′k = (−1)#JAj′Cjj′k

θ#J−1
k

and then

Gjk(x) = 1 +
(−1)#J

θ#J−1
k

∑

j′∈J

Aj′Cjj′k

θj′x− θk
.

Therefore we can rewrite the fractions lying in Proposition 3.1 as

∏

j′′∈J\{j}(θj′γ − θj′′δ)
∏

k∈K(θjδ − θkγ)
= (−1)#Kδ#J−#K−1Fjj′ (γ/δ)

= θ#J−1
j′ 1l{#J=#K+1} +

δ#J−#K

θ#K
j

∑

k∈K

θ#K−#J+1
k BkCjj′k

(θj′ − θk)(θkγ − θjδ)
(3.11)

and
∏

j′∈J

θjγ − θj′δ

θkγ − θj′δ
= Gjk(δ/γ) = 1 +

(−1)#J−1

θ#J−1
k

γ
∑

j′∈J

Aj′Cjj′k

θkγ − θj′δ
. (3.12)

With (3.11) and (3.12) at hands, we derive the new expression below for ϕ
λ,µ
(x, y). Recall that γ = N

√
λ+ µ

and δ = N
√
λ.

Proposition 3.2 Suppose y ≥ 0. The function ϕ
λ,µ

(x, y) can be written as follows:

for x ∈ (−∞, 0],

ϕ
λ,µ

(x, y) =
κ
N
1l{#J=#K+1}

(λ+ µ)
#K
N λ

#K
N

[

∑

j∈J

θjAje
θj

N√
λ x

][

∑

j∈J

θ#J
j Aje

−θj
N
√
λ+µ y

]

+
κ
N

(λ+ µ)
#J−1

N λ
#K−1

N

∑

j,j′∈J, k∈K

Ajθj′Aj′θ
#K−#J+1
k BkCjj′k

θ#K−1
j (θj′ − θk)

eθj
N√λx−θj′

N
√
λ+µ y

θk
N
√
λ+ µ− θj

N
√
λ
;

for x ∈ [0,+∞),
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ϕ
λ,µ

(x, y) = ̺
λ+µ

(x, y) +
1

(λ+ µ)1−
1
N

[

∑

j∈J, k∈K

θjAjθkBk

θj − θk
e

N
√
λ+µ (θkx−θjy).

+κ
N

N
√

λ+ µ
∑

j,j′∈J, k∈K

θjAjAj′BkCjj′k

θ#J−2
k (θj − θk)

e
N
√
λ+µ (θkx−θjy)

θk
N
√
λ+ µ− θj′

N
√
λ

]

.

3.2 Case y ≤ 0

Assume now that y ≤ 0. In this case Eq. (1.5) can be written as

κ
N

∂Nϕ
λ,µ

∂xN
(x, y) =











λϕ
λ,µ

(x, y) if x ∈ (−∞, y),

λ ϕ
λ,µ

(x, y) if x ∈ (y, 0),

(λ + µ)ϕ
λ,µ

(x, y) if x ∈ (0,+∞).

As in the foregoing case, the solution of this equation has the form

ϕ
λ,µ

(x, y) =



































∑

j∈J

bj(y) e
θj

N√
λ x if x ∈ (−∞, y),

∑

i∈I

ai(y) e
θi

N√λ x if x ∈ (y, 0),

∑

k∈K

ck(y) e
θk

N
√
λ+µx if x ∈ (0,+∞),

where the unknowns (ai(y))i∈I , (bj(y))j∈J and (ck(y))k∈K satisfy, due to (1.6),






















(λ + µ)
p
N

∑

k∈K

ck(y)θ
p
k = λ

p
N

∑

i∈I

ai(y)θ
p
i if 0 ≤ p ≤ N − 1,

∑

i∈I

ai(y)θ
p
i e

θi
N√λ y −

∑

j∈J

bj(y)θ
p
j e

θj
N√λ y =







0 if 0 ≤ p ≤ N − 2,
−κ

N

λ1−1/N
if p = N − 1.

With calculations analogous to those performed in the case y ≥ 0 we obtain the result below.

Proposition 3.3 Suppose y ≤ 0. The function ϕ
λ,µ

(x, y) admits the following representation:

for x ∈ (−∞, 0],

ϕ
λ,µ

(x, y) = ̺
λ
(x, y)− 1

δN−1

∑

j∈J, k∈K

θjAjθkBk

θk − θj

∏

k′∈K

(

θkδ − θk′γ

θjδ − θk′γ

)

eδ(θjx−θky);

for x ∈ [0,+∞),

ϕ
λ,µ

(x, y) =
−κ

N

(γδ)#K−1

∑

k,k′∈K

θkBkθk′Bk′

∏

k′′∈K\{k}(θk′δ − θk′′γ)
∏

j∈J (θkγ − θjδ)
eθkγx−θk′δy.

Remark 3.4 Letting µ tend to +∞ (and then γ → +∞), we have that θkδ−θk′γ
θjδ−θk′γ

→ 1 and eθkγx → 0 for

x > 0 and k ∈ K, and then

ϕ
λ,µ

(x, y) −→











̺
λ
(x, y)− 1

δN−1

∑

j∈J, k∈K

θjAjθkBk

θk − θj
eδ(θjx−θky) if x ∈ (−∞, 0],

0 if x ∈ [0,+∞).

On the other hand we formally have that

lim
µ→+∞ µ̟

(t;x, y) = lim
µ→+∞

Ex(e
−µT (t), X(t) ∈ dy)/dy = Px

{

max
0≤s≤t

X(s) < 0, X(t) ∈ dy
}

/dy

from which we deduce that

lim
µ→+∞

ϕ
λ,µ
(x, y) =

∫ ∞

0

e−λt
[

Px

{

max
0≤s≤t

X(s) < 0, X(t) ∈ dy
}

/dy
]

dt.

Then, for x, y ≤ 0, we retrieve the pseudo-distribution of (max0≤s≤tX(s), X(t)) (through its Laplace
transform with respect to t) displayed in [13].
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As in the previous case, we need to expand the fractions lying in Proposition 3.3. Since the compu-
tations are quite similar to the previous case, we omit them and we only produce the second form for
ϕ

λ,µ
(x, y) below.

Proposition 3.4 Suppose y ≤ 0. The function ϕ
λ,µ

(x, y) can be written as follows:

for x ∈ (−∞, 0],

ϕ
λ,µ

(x, y) = ̺
λ
(x, y)− 1

λ1−
1
N

[

∑

j∈J, k∈K

θjAjθkBk

θk − θj
e

N√
λ (θjx−θky)

− N
√
λ

∑

j∈J, k,k′∈K

AjθkBkBk′Djkk′

θ#K−2
j (θk − θj)

e
N√
λ (θjx−θky)

θk′
N
√
λ+ µ− θj

N
√
λ

]

;

for x ∈ [0,+∞),

ϕ
λ,µ

(x, y) =
1l{#K=#J+1}

(λ+ µ)
#J
N λ

#J
N

[

∑

k∈K

θkBke
θk

N
√
λ+µx

][

∑

k∈K

θ#K
k Bke

−θk
N√λy

]

+
1

(λ+ µ)
#J−1

N λ
#K−1

N

∑

j∈J, k,k′∈K

θ#J−#K+1
j AjBkθk′Bk′Djkk′

θ#J−1
k (θj − θk′)

eθk
N
√
λ+µx−θk′

N√
λ y

θk
N
√
λ+ µ− θj

N
√
λ
.

4 Inverting with respect to µ

In this section we invert the Laplace transform ϕ
λ,µ

(x, y) with respect to µ. Let us recall that

ϕ
λ,µ

(x, y) =

∫ ∞

0

e−µsψ
λ
(s;x, y) ds

with

ψ
λ
(s;x, y) =

∫ ∞

0

e−λt[Px{T (t) ∈ ds,X(t) ∈ dy}/(ds dy)] dt.

As previously, we distinguish the two cases y ≥ 0 and y ≤ 0.

4.1 Case y ≥ 0

We need to invert the Laplace transform of the expressions of ϕ
λ,µ

(x, y) lying in Proposition 3.2 with
respect to µ. For this we shall make use of the identities

1

να
=

1

Γ(α)

∫ ∞

0

e−νssα−1 ds for α > 0,
1

να − β
=

∫ ∞

0

e−νs[sα−1Eα,α(βs
α)] ds for να > |β|

where Ea,b(ξ) =
∑∞

n=0
ξn

Γ(an+b) is the Mittag-Leffler function (see [7], p. 210). We also introduce, for any

integer m such that m ≤ N − 1, the function Im(s; ξ) characterized by its Laplace transform:

∫ ∞

0

e−νsIm(s; ξ) ds =
e−ξN

√
ν

νm/N
for Re(ξ) ≥ 0.

That is, Im(s; ξ) is the inverse Laplace transform of the function ν 7→ ν−m/N e−ξN
√
ν . An expression for

Im(s; ξ) can be found in [13] and is

Im(s; ξ) =
N i

2π

(

e−imN π

∫ ∞

0

νN−m−1e−sνN−ei
π
N ξν dν − ei

m
N π

∫ ∞

0

νN−m−1e−sνN−e−i π
N ξν dν

)

.

With this at hands, we extract

e−θj
N
√
λ+µ y

(λ+ µ)
#K
N

=

∫ ∞

0

e−µs[e−λsI#K(s; θjy)] ds

12



and

e
N
√
λ+µ (θkx−θjy)

(λ+ µ)
α
N (N
√
λ+ µ− β)

=

∫ ∞

0

e−(λ+µ)sIα(s; θjy − θkx) ds×
∫ ∞

0

e−(λ+µ)s
[

s
1
N −1E 1

N , 1
N

(

β N
√
s
)

]

ds

=

∫ ∞

0

e−(λ+µ)s

[
∫ s

0

σ
1
N −1E 1

N , 1
N

(

β N
√
σ
)

Iα(s− σ; θjy − θkx) dσ

]

ds.

In particular, the latter formula provides for α = N − 2 and β =
θj′

θk

N
√
λ:

e
N
√
λ+µ (θkx−θjy)

(λ+ µ)1−
2
N (θk

N
√
λ+ µ− θj′

N
√
λ)

=
1

θk

∫ ∞

0

e−µs

[

e−λs

∫ s

0

σ
1
N −1E 1

N , 1
N

(

θj′

θk

N
√
λσ

)

IN−2(s− σ; θjy − θkx) dσ

]

ds

and for α = #J − 1 and β =
θj
θk

N
√
λ:

e−θj′
N
√
λ+µ y

(λ+ µ)
#J−1

N (θk
N
√
λ+ µ− θj

N
√
λ)

=
1

θk

∫ ∞

0

e−µs

[

e−λs

∫ s

0

σ
1
N −1E 1

N , 1
N

(

θj
θk

N
√
λσ

)

I#J−1(s− σ; θj′y) dσ

]

ds.

Similar representations hold for e
N√λ+µ (θkx−θjy)

(λ+µ)1−
1
N

and eθk
N√λ+µ (x−y)

(λ+µ)1−
1
N

. Combining all these results, we obtain

the proposition below.

Proposition 4.1 Suppose y ≥ 0. The function ψ
λ
(s;x, y) admits the following representation:

for x ∈ (−∞, 0],

ψ
λ
(s;x, y) = κ

N
e−λs

[

1l{#J=#K+1}

λ
#K
N

(

∑

j∈J

θjAje
θj

N√
λ x

)(

∑

j∈J

θ#J
j AjI#K(s; θjy)

)

+
1

λ
#K−1

N

∑

j,j′∈J, k∈K

Ajθj′Aj′θ
#K−#J
k BkCjj′k

θ#K−1
j (θj′ − θk)

eθj
N√
λ x

×
∫ s

0

σ
1
N −1E 1

N , 1
N

(

θj
θk

N
√
λσ

)

I#J−1(s− σ; θj′y) dσ

]

;

for x ∈ [0,+∞),

ψ
λ
(s;x, y) = e−λs

[

p(s;x− y) +
∑

j∈J, k∈K

θjAjθkBk

θj − θk
IN−1(s; θjy − θkx)

+ κ
N

∑

j,j′∈J, k∈K

θjAjAj′BkCjj′k

θ#J−1
k (θj − θk)

∫ s

0

σ
1
N −1E 1

N , 1
N

(

θj′

θk

N
√
λσ

)

IN−2(s− σ; θjy − θkx) dσ

]

.

Remark 4.1 The foregoing representation of ψ
λ
(s;x, y) related to the case x ≥ 0 involves the heat-kernel

p(s;x − y). We can write this latter by means of the function IN−1. Indeed, using the definition of the
function ̺

λ
, we see that for ξ ≥ 0,

̺
λ
(ξ, 0) = − 1

Nλ1−
1
N

∑

k∈K

θke
θk

N√λ ξ = −
∫ ∞

0

e−λt

(

1

N

∑

k∈K

θkIN−1(t;−θkξ)
)

dt

which entails that

p(t; ξ) = − 1

N

∑

k∈K

θkIN−1(t;−θkξ). (4.1)

Similarly, for ξ ≤ 0,

p(t; ξ) =
1

N

∑

j∈J

θjIN−1(t;−θjξ).

13



4.2 Case y ≤ 0

Since the computations are quite similar, we only produce the result corresponding to the case where
y ≤ 0.

Proposition 4.2 Suppose y ≤ 0. The function ψ
λ
(s;x, y) admits the following representation:

for x ∈ (−∞, 0],

ψ
λ
(s;x, y) =

[

̺
λ
(x, y) +

1

λ1−
1
N

∑

j∈J, k∈K

θjAjθkBk

θj − θk
e

N√
λ (θjx−θky)

]

δ0(s)

− 1

λ1−
2
N

∑

j∈J, k,k′∈K

AjθkBkBk′Djkk′

θ#K−2
j θk′ (θk − θj)

e−λss
1
N −1E 1

N , 1
N

(

θj
θk′

N
√
λs

)

e
N√
λ (θjx−θky);

for x ∈ [0,+∞),

ψ
λ
(s;x, y) =

1l{#K=#J+1}

λ
#J
N

[

∑

k∈K

θkBkI#J (s;−θkx)
][

∑

k∈K

θ#K
k Bke

−λs−θk
N√λ y

]

+
1

λ
#K−1

N

∑

j∈J, k,k′∈K

θ#J−#K+1
j AjBkθk′Bk′Djkk′

θ#J
k (θj − θk′)

e−λs−θk′
N√
λ y

×
∫ s

0

σ
1
N −1E 1

N , 1
N

(

θj
θk

N
√
λσ

)

I#J−1(s− σ;−θkx) dσ.

5 Inverting with respect to λ

This part is devoted to inverting the Laplace transform ψ
λ
(s;x, y) with respect to λ. We recall that

ψ
λ
(s;x, y) =

∫ ∞

0

e−λtχ(s, t;x, y) dt =

∫ ∞

s

e−λtχ(s, t;x, y) dt

where χ(s, t;x, y) = Px{T (t) ∈ ds,X(t) ∈ dy}/(ds dy)× 1l[0,t](s) is the quantity of main interest of this

work. For this, we have to write E 1
N , 1

N

(

θj
θk

N
√
λσ
)

as a Laplace transform with respect to λ. We note that,

for any complex number β such that |β| < N
√
t,

∫ ∞

0

e−tλ λ
1
N −1E 1

N , 1
N

(

β
N
√
λ
)

dλ =

∞
∑

p=0

βp

Γ
(

p+1
N

)

∫ ∞

0

e−tλ λ
p+1
N −1 dλ =

1
N
√
t

∞
∑

p=0

(

β
N
√
t

)p

=
1

N
√
t− β

.

Then, by Bromwich’s inversion formula, we have for any c > |β|N

E 1
N , 1

N

(

β
N
√
λ
)

=
1

2iπ

∫ c+i∞

c−i∞

eλt

t
1
N − β

dt.

Suppose now that β =
θj
θk

N
√
σ with j ∈ J and k ∈ K. The possible singularities of the function t 7→ 1

t1/N−β

satisfy t = βN = σ. Thus the only possible singularity is σ. But σ1/N − β =
θk−θj
θk

N
√
σ 6= 0 which implies

that the function t 7→ 1
t1/N−β

has no singularity. So, we can shift the integration line Re t = c to the

line Re t = 0 and next refold this latter to a loop enclosing the half-line Im t = 0, Re t ≤ 0. Roughly
speaking, this loop is defined as the union of the two half-lines Im t = 0−, Re t ≤ 0 (from −∞ to 0) and
Im t = 0+, Re t ≤ 0 (from 0 to −∞). As a byproduct, we get

E 1
N , 1

N

(

β
N
√
λ
)

=
λ1−

1
N

2iπ

[
∫ 0

−∞

eλt

e−
iπ
N

N
√
−t− β

dt−
∫ 0

−∞

eλt

e
iπ
N

N
√
−t− β

dt

]

=
λ1−

1
N

2iπ

∫ ∞

0

e−λt

[

1

e−
iπ
N

N
√
t− β

− 1

e
iπ
N

N
√
t− β

]

dt

=
sin( π

N )λ1−
1
N

π

∫ ∞

0

e−λt N
√
t

t
2
N − 2β cos( π

N )t
1
N + β2

dt. (5.1)
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We find it interesting to mention that when β is a negative number (obtained when θj = −θk), for-
mula (5.1) is a particular case of a general representation of the Mittag-Leffler function which can be
found in [3]. By integrating (5.1) by parts, we obtain

∫ ∞

0

e−λt N
√
t

t
2
N − 2β cos( π

N )t
1
N + β2

dt =

∫ ∞

0

N
√
t

t
2
N − 2β cos( π

N )t
1
N + β2

d

(

−e−λt

λ

)

=
1

Nλ

∫ ∞

0

e−λt t
1
N −1(β2 − t

2
N )

(t
2
N − 2β cos( π

N )t
1
N + β2)2

dt.

Finally, we derive the following representation for β =
θj
θk

N
√
σ:

E 1
N , 1

N

(

β
N
√
λ
)

=
1

N
√
λ

∫ ∞

0

e−λtf(t;β) dt

with

f(t;β) =
sin( π

N )

πN

t
1
N −1(β2 − t

2
N )

(t
2
N − 2β cos( π

N )t
1
N + β2)2

.

5.1 Case y ≥ 0

Assume that y ≥ 0. Regarding the expressions of ψ
λ
(s;x, y) in Proposition 4.1, we see that we have to

perform the following inversions with respect to λ:

e−λs =

∫ ∞

0

e−λtδs(t) dt,
e−λs+θj

N√
λx

λ
#K
N

=

∫ ∞

s

e−λtI#K(t− s;−θjx) dt,

e−λs+θj
N√
λ x

λ
#K−1

N

E 1
N , 1

N

(

θj
θk

N
√
λσ

)

=

∫ ∞

s

e−λt

[
∫ t−s

0

I#K(τ ;−θjx) f
(

t− s− τ ;
θj
θk

N
√
σ
)

dτ

]

dt,

e−λsE 1
N , 1

N

(

θj′

θk

N
√
λσ

)

=

∫ ∞

s

e−λt

[

1

Γ
(

1
N

)

∫ t−s

0

(t− s− τ)
1
N −1f

(

τ,
θj′

θk
N
√
σ
)

dτ

]

dt.

By using all these identities, we can extract the ppdf χ(s, t;x, y).

Theorem 5.1 The pseudo-distribution of (T (t), X(t)) is given by the following formulas: for s ∈ [0, t]
and y ≥ 0,

if x ∈ (−∞, 0],

χ(s, t;x, y) = κ
N
1l{#J=#K+1}

[

∑

j∈J

θjAjI#K(t− s;−θjx)
][

∑

j∈J

θ#J
j AjI#K(s; θjy)

]

+ κN
∑

j,j′∈J, k∈K

Ajθj′Aj′θ
#K−#J
k BkCjj′k

θ#K−1
j (θj′ − θk)

∫ s

0

σ
1
N −1I#J−1(s− σ; θj′y) dσ

×
∫ t−s

0

I#K(τ ;−θjx) f
(

t− s− τ ;
θj
θk

N
√
σ
)

dτ ;

if x ∈ [0,+∞),

χ(s, t;x, y) =

[

p(t;x− y) +
∑

j∈J, k∈K

θjAjθkBk

θj − θk
IN−1(t; θjy − θkx)

]

δs(t)

+ κ
N

∑

j,j′∈J, k∈K

θjAjAj′BkCjj′k

θ#J−1
k (θj − θk)

∫ s

0

σ
1
N −1IN−2(s− σ; θjy − θkx) dσ

×
∫ t−s

0

(t− s− τ)
1
N −1

Γ
(

1
N

) f
(

τ ;
θj′

θk
N
√
σ
)

dτ.

Remark 5.1 For x = 0, Theorem 5.1 yields a representation of the pseudo-distribution of (T (t), X(t))
under P0 which apparently differs from that we obtained in [5] (formula (6.1)) by using Spitzer’s identity.
It seems difficult to prove directly the equality of both representations without comparing their Laplace
transforms. We made this last comparison in Remark 3.3.
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Remark 5.2 The term multiplied by the atom δs(t) in the last case (i.e. when x ≥ 0) of Theorem 5.1
yields for x, y ≥ 0:

Px{T (t) = t,X(t) ∈ dy}/dy = Px

{

min
0≤s≤t

X(s) ≥ 0, X(t) ∈ dy
}

/dy

= p(t;x− y) +
∑

j∈J, k∈K

θjAjθkBk

θj − θk
IN−1(t; θjy − θkx). (5.2)

The quantity above is nothing but the distribution of the pseudo-process (X(t))t≥0 killed when overshooting
level 0 from below, that is Px{X(t) ∈ dy, τ−0 ≥ t}/dy where τ−0 = inf{t ≥ 0 : X(t) < 0}. Moreover, by
integrating (5.2) with respect to y on (0,+∞), we obtain

Px{T (t) = t} =

∫ x

−∞
p(t; ξ) dξ +

∑

j∈J, k∈K

AjθkBk

θj − θk

∫ +∞

−θkx

IN−1(t; ζ) dζ. (5.3)

In the last integral above, the integration path is a half-line in the complex plane going from −θkx to
infinity in the direction of the positive real axis. Using the definition of the function Ip, we see that

∫ ∞

0

e−λt

(
∫ +∞

ξ

Ip(t; ζ) dζ

)

dt =
1

λ
p
N

∫ +∞

ξ

e−
N√
λ ζ dζ =

e−
N√
λ ξ

λ
p+1
N

=

∫ ∞

0

e−λtIp+1(t; ξ) dt

from which we extract
∫ +∞

ξ

Ip(t; ζ) dζ = Ip+1(t; ξ). (5.4)

Then, by (4.1) and (5.4), for x ≤ 0,

∫ x

−∞
p(t; ξ) dξ = 1−

∫ +∞

x

p(t; ξ) dξ = 1− 1

N

∑

k∈K

∫ +∞

−θkx

IN−1(t; ζ) dζ = 1− 1

N

∑

k∈K

IN (t;−θkx). (5.5)

As a result, using (5.3), (5.4) and (5.5),

Px{T (t) = t} = 1− 1

N

∑

k∈K

IN (t;−θkx) +
∑

j∈J, k∈K

AjθkBk

θj − θk
IN (t;−θkx)

= 1 +
∑

k∈K

(

θkBk

∑

j∈J

Aj

θj − θk
− 1

N

)

IN (t;−θkx). (5.6)

Finally, thanks to (2.10) of [13], we have

θk
∑

j∈J

Aj

θj − θk
=
∑

j∈J

(

θjAj

θj − θk
−Aj

)

=
1

NBk
− 1

and, plugging this into (5.6), we get the pseudo-distribution of τ−0 : for x ≥ 0,

Px{τ−0 ≤ t} =
∑

k∈K

BkIN (t;−θkx).

In order to retrieve the ppdf of τ−0 (see [13]), we need to differentiate the function IN with respect to time.
We have

∫ ∞

0

e−λt ∂Ip
∂t

(t; ξ) dt = λ

∫ ∞

0

e−λtIp(t; ξ) dt− Ip(0; ξ) =
e−

N√
λ ξ

λ
p
N −1

=

∫ ∞

0

e−λtIp−N (t; ξ) dt

and then
∂Ip
∂t

(t; ξ) = Ip−N (t; ξ).

The ppdf of τ−0 is thus given, for x ≥ 0, by

Px{τ−0 ∈ dt}/dt =
∑

k∈K

BkI0(t;−θkx).
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5.2 Case y ≤ 0

We now assume that y ≤ 0. Regarding the expression of ψ
λ
(s;x, y) in Proposition 4.2, we see that we

need the following inversions with respect to λ:

e
N√
λ (θjx−θky)

λ1−
1
N

=

∫ ∞

0

e−λtIN−1(t; θky − θjx) dt,
e−λs−θk

N√
λ y

λ
#J
N

=

∫ ∞

s

e−λtI#J(t− s; θky) dt,

e−λs−θk′
N√λ y

λ
#K−1

N

E 1
N , 1

N

(

θj
θk

N
√
λσ

)

=

∫ ∞

s

e−λt

[
∫ t−s

0

I#K(τ ; θk′y) f
(

t− s− τ ;
θj
θk

N
√
σ
)

dτ

]

dt,

e−λs+
N√
λ (θjx−θky)

λ1−
2
N

E 1
N , 1

N

(

θj
θk′

N
√
λs

)

=

∫ ∞

s

e−λt

[
∫ t−s

0

IN−1(τ ; θky − θjx) f
(

t− s− τ ;
θj
θk′

N
√
s
)

dτ

]

dt.

As a result, we derive the ppdf χ(s, t;x, y).

Theorem 5.2 The pseudo-distribution of (T (t), X(t)) is given by the following formulas; for s ∈ [0, t]
and y ≤ 0,

if x ∈ (−∞, 0],

χ(s, t;x, y) =

[

p(t;x− y) +
∑

j∈J, k∈K

θjAjθkBk

θj − θk
IN−1(t; θky − θjx)

]

δ0(s)

−
∑

j∈J, k,k′∈K

AjθkBkBk′Djkk′

θ#K−2
j θk′(θk − θj)

s
1
N −1

∫ t−s

0

IN−1(τ ; θky − θjx) f
(

t− s− τ ;
θj
θk′

N
√
s
)

dτ,

if x ∈ [0,+∞),

χ(s, t;x, y) = 1l{#K=#J+1}

[

∑

k∈K

θkBkI#J(s;−θkx)
][

∑

k∈K

θ#K
k BkI#J (t− s; θky)

]

+
∑

j∈J, k,k′∈K

θ#J−#K+1
j AjBkθk′Bk′Djkk′

θ#J
k (θj − θk′ )

∫ s

0

σ
1
N −1I#J−1(s− σ;−θkx) dσ

×
∫ t−s

0

I#K(τ ; θk′y)f
(

t− s− τ ;
θj
θk

N
√
σ
)

dτ.

Remark 5.3 The term multiplied by the atom δ0(s) in the first case (i.e. when x ≤ 0) of Theorem 5.2
yields for x, y ≤ 0:

Px{T (t) = 0, X(t) ∈ dy}/dy = Px

{

max
0≤s≤t

X(s) ≤ 0, X(t) ∈ dy
}

/dy

= p(t;x− y) +
∑

j∈J, k∈K

θjAjθkBk

θj − θk
IN−1(t; θky − θjx).

This is the distribution of the pseudo-process (X(t))t≥0 killed when overshooting level 0 from above, that
is Px{X(t) ∈ dy, τ+0 ≥ t}/dy where τ+0 = inf{t ≥ 0 : X(t) > 0}. As in Remark 5.2, it may be seen that

Px{τ+0 ∈ dt}/dt =
∑

j∈J

AjI0(t;−θjx).

Remark 5.4 It is possible to check the following identity: for x, y ≥ 0,

∑

j,j′∈J, k∈K

θjAjAj′BkCjj′k

θ#J−1
k (θj − θk)

∫ s

0

σ
1
N −1IN−2(s− σ; θjy − θkx) dσ

∫ t−s

0

(t− s− τ)
1
N −1

Γ
(

1
N

) f
(

τ ;
θj′

θk
N
√
σ
)

dτ

= −
∑

j,j′∈J, k∈K

θjAjAj′BkCjj′k

θj′θ
#J−2
k (θj − θk)

(t− s)
1
N −1

∫ s

0

IN−1(s− σ; θjy − θkx) f
(

σ;
θk
θj′

N
√
t− s

)

dσ. (5.7)

This means that the sum involving the double integral (with respect to σ and τ) lying in the two last cases
of Theorem 5.1 can be reduced into a sum involving only a single integral. The foregoing equality can
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be proved directly by using Laplace transform and some algebra; see Appendix C for the details. Using
similar algebra, we could check the following equality: if x ≤ 0 ≤ y,

∑

j,j′∈J, k∈K

Ajθj′Aj′θ
#K−#J
k BkCjj′k

θ#K−1
j (θj′ − θk)

×
∫ s

0

σ
1
N −1I#J−1(s− σ; θj′y) dσ

∫ t−s

0

I#K(τ ;−θjx) f
(

t− s− τ ;
θj
θk

N
√
σ
)

dτ

= −
∑

j,j′∈J, k∈K

Ajθj′Aj′θ
#K−#J+1
k BkCjj′k

θ#K
j (θj′ − θk)

×
∫ t−s

0

σ
1
N −1I#K−1(t− s− σ;−θjx) dσ

∫ s

0

I#J(τ ; θj′y)f
(

s− τ ;
θk
θj

N
√
σ
)

dτ.

Nonetheless, in this last case, both sums involve double integrals without any simplification. An explana-
tion for these identities can be found in duality. In [11] the dual pseudo-process X∗ = −X of X is intro-
duced. In the case where N is even, the pseudo-processes X and X∗ have the same pseudo-distributions,
while, in the case where N is odd, if we denote by X+ (resp. X−) the pseudo-process associated with
κ
N

= +1 (resp. −1), we have the identities in distribution (X+)∗ = X− and (X−)∗ = X+. Let us in-
troduce analogous notations for the settings J,K, θj, θk, Aj , Bk, Cjj′k, Djkk′ : when N is even, the settings
J,K, θj, θk, Aj , Bk, Cjj′k, Djkk′ are interchanged into K, J,−θk,−θj , Bk, Aj , Djkk′ , Cjj′k, while, when N
is odd, the settings J+,K+, θ+j , θ

+
k , A

+
j , B

+
k , C

+
jj′k, D

+
jkk′ are interchanged intoK−, J−,−θ−k ,−θ−j , B−

k , A
−
j ,

D−
jkk′ , C

−
jj′k (where the superscripts refer to κ

N
= ±1). As in [11], we have χ(s, t;x, y) = χ(t−s, t;−x,−y)

when N is even and χ±(s, t;x, y) = χ∓(t− s, t;−x,−y) when N is odd; this explains formula (5.7).

Remark 5.5 By integrating each formula of Theorem 5.1 and Theorem 5.2 with respect to y, we can write
out a representation for the marginal ppdf of T (t). In Remarks 5.2 and 5.3 we have already displayed the
parts associated with the atoms 0 and t. For s ∈ (0, t), the continuous part is given by

if x ∈ (−∞, 0],

Px{T (t) ∈ ds}/ds =
∑

j∈J, k,k′∈K

AjBkBk′Djkk′

θ#K−2
j θk′(θk − θj)

s
1
N −1

∫ t−s

0

IN (τ ;−θjx) f
(

t− s− τ ;
θj
θk′

N
√
s
)

dτ

+
κ
N

Γ
(

#J
N

)

∑

j,j′∈J, k∈K

AjAj′θ
#K−#J
k BkCjj′k

θ#K−1
j (θj′ − θk)

∫ s

0

σ
1
N −1

(s− σ)
#K
N

dσ

×
∫ t−s

0

I#K(τ ;−θjx) f
(

t− s− τ ;
θj
θk

N
√
σ
)

dτ,

if x ∈ [0,+∞),

Px{T (t) ∈ ds}/ds = −κN
∑

j,j′∈J, k∈K

AjAj′BkCjj′k

θj′θ
#J−2
k (θj − θk)

(t− s)
1
N −1

∫ s

0

IN (σ;−θkx) f
(

s− σ;
θk
θj′

N
√
t− s

)

dσ

− 1

Γ
(

#K+1
N

)

∑

j∈J, k,k′∈K

θ#J−#K+1
j AjBkBk′Djkk′

θ#J
k θk′(θj − θk′)

∫ s

0

σ
1
N −1I#J−1(s− σ;−θkx) dσ

×
∫ t−s

0

τ
1−#J

N f
(

t− s− τ ;
θj
θk

N
√
σ
)

dτ.

In the computations, we have made use of (5.4), (5.7), Ip(t; 0) = t
p
N −1/Γ

(

p
N

)

as well as of the following
equalities:

∫ +∞

0

(

∑

j∈J

θ#J
j AjI#K(s; θjy)

)

dy =

(

∑

j∈J

θ#J−1
j Aj

)

I#K+1(s; 0) = 0,

∫ 0

−∞

(

∑

k∈K

θ#K
k BkI#J(t− s; θky)

)

dy = −
(

∑

k∈K

θ#K−1
k Bk

)

I#J+1(t− s; 0) = 0.

For x = 0, we obtain an a priori intricate expression of the pseudo-probability P0{T (t) ∈ ds}/ds. Actually,
it is known that this latter admits a very simple representation (a Beta law, see, e.g., [11]). Neverthe-
less, it seems difficult to check directly (without computing any Laplace transform) the equality of both
representations.
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Remark 5.6 Let us introduce the last time above level 0 before time t as well as the first time above level
0 after time t:

σ(t) = sup{s ∈ [0, t] : X(s) ≥ 0}, ς(t) = inf{s ≥ t : X(s) ≥ 0}.

We are dealing with an excursion under level 0 straddling time t for the pseudo-process (X(s))s≥0. Using
the pseudo-Markov property, we easily get the following relationship between the couple (σ(t), ς(t)) and
the family (T (s))s≥0: for σ ≤ t ≤ ς,

Px{σ(t) ≤ σ, ς(t) ≥ ς} = Px

{

sup
s∈[σ,ς]

X(s) ≤ 0

}

= Ex

(

PX(σ){T (ς − σ) = 0}1l{X(σ)≤0}
)

=

∫ 0

−∞
p(σ;x − ξ)Pξ{T (ς − σ) = 0} dξ

with
Pξ{T (ς − σ) = 0} = 1−

∑

j∈J

AjI0(ς − σ;−θjξ).

Appendix

A Proof of (3.7), (3.8) and (3.9)

Suppose that y = 0. By Proposition 3.1, we have for x ≤ 0

ϕ
λ,µ

(x, 0) =
κ
N

(γδ)#J−1

∑

j∈J

θjAj

[

∑

j′∈J

θj′Aj′

∏

j′′∈J\{j}
(θj′γ − θj′′δ)

]

eθjδx
∏

k∈K(θjδ − θkγ)
.

Let us expand the product below:

∏

j′′∈J\{j}
(θj′γ − θj′′δ) = (θj′γ)

#J−1 +

#J−2
∑

p=0

cp(θj′γ)
pδ#J−1−p

where the cp, 0 ≤ p ≤ #J − 2 are some coefficients depending on the θj′′ , j
′′ ∈ J \ {j}, but not on the

index j′. Recalling that the Aj′ , j
′ ∈ J , solve a Vandermonde system, we have

∑

j′∈J θ
p
j′Aj′ = 0 for

1 ≤ p ≤ #J − 1,
∑

j′∈J θ
#J
j′ Aj′ = κN and then

∑

j′∈J

θj′Aj′

∏

j′′∈J\{j}
(θj′γ−θj′′δ) =

(

∑

j′∈J

θ#J
j′ Aj′

)

γ#J−1+

#J−2
∑

p=0

cp

(

∑

j′∈J

θp+1
j′ Aj′

)

γpδ#J−1−p = κ
N
γ#J−1

On the other hand, by (2.1) we have
∏

i∈I(θjδ − θiγ) = (θjδ)
N − κ

N
γN = −κ

N
(γN − δN ), and then

∏

k∈K

(θjδ − θkγ) =

∏

i∈I(θjδ − θiγ)
∏

j′∈J(θjδ − θj′γ)
=

µ

δ#J
∏

j′∈J(θj′
γ
δ − θj)

.

As a byproduct, for x ≤ 0,

ϕ
λ,µ

(x, 0) =
N
√
λ

µ

∑

j∈J

θjAj

[

∏

j′∈J

(

θj′
N

√

λ+ µ

λ
− θj

)

]

eθj
N√
λ x

which proves (3.7). Choosing now x = 0 yields

ϕ
λ,µ

(0, 0) =
δ

µ

∑

j∈J

θjAj

[

∏

j′∈J

(

θj′
γ

δ
− θj

)

]

.

The product lying in the last displayed equation can be expanded into

∏

j′∈J

(

θj′
γ

δ
− θj

)

= (−1)#J

[

θ#J
j −

(

∑

j′∈J

θj′

)

θ#J−1
j

γ

δ
+

#J−2
∑

p=0

c′pθ
p
j

(γ

δ

)#J−p
]
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where the c′p, 0 ≤ p ≤ #J − 2 are some coefficients depending on the θj′ , j
′ ∈ J , but not on the index j.

As previously, with the additional aid of
∑

j∈J θ
#J+1
j Aj = κ

N

∑

j∈J θj , we get

∑

j∈J

θjAj

[

∏

j′∈J

(

θj′
γ

δ
− θj

)

]

= (−1)#J

[

∑

j∈J

θ#J+1
j Aj −

(

∑

j′∈J

θj′

)(

∑

j∈J

θ#J
j Aj

)

γ

δ

]

=

(

∑

j∈J

θj

)

γ − δ

δ

and then

ϕ
λ,µ

(0, 0) =

(

∑

j∈J

θj

)

N
√
λ+ µ− N

√
λ

µ
.

This proves (3.8).
On the other hand, we have for x ≥ 0

ϕ
λ,µ

(x, 0) =
1

γN−1

∑

k∈K

θkBk

[

∑

j∈J

θjAj

θj − θk

∏

j′∈J

(

θjγ − θj′δ

θkγ − θj′δ

)

− 1

NBk

]

eθkγx.

The sum lying within the brackets in the above equality can be written as follows:

∑

j∈J

θjAj

θj − θk

∏

j′∈J

(

θjγ − θj′δ

θkγ − θj′δ

)

=
1

∏

j′∈J(θkγ − θj′δ)

∑

j∈J

θjAj

θj − θk

∏

j′∈J

(θjγ − θj′δ).

First, we observe that

∏

j′∈J

(θkγ − θj′δ) =

∏

i∈I(θkγ − θiδ)
∏

k′∈K(θkγ − θk′δ)
= κN

µ
∏

k′∈K(θkγ − θk′δ)
.

Second, invoking Formula (2.9) of [13]:

∑

j∈J

θjAjP (θj)

θj −X
=

P (X)
∏

j∈J (θj −X)
+ κN c

which is valid for any polynomial P of degree #J and coefficient of highest degree c, we obtain for
P (X) =

∏

j′∈J(γX − θj′δ) and X = θk:

∑

j∈J

θjAj

θj − θk

∏

j′∈J

(θjγ − θj′δ) =

∏

j′∈J(θkγ − θj′δ)
∏

j∈J (θj − θk)
+ κ

N
γ#J

which implies, in view of (2.1), and since
∏

j∈J (θj − θk) = NBk,

∑

j∈J

θjAj

θj − θk

∏

j′∈J

(

θjγ − θj′δ

θkγ − θj′δ

)

=
1

NBk
+
γ#J

µ

∏

k′∈K

(θkγ − θk′δ)

As a result, for x ≥ 0,

ϕ
λ,µ

(x, 0) =
N
√
λ+ µ

µ

∑

k∈K

θkBk

[

∏

k′∈K

(

θk − θk′
N

√

λ

λ+ µ

)

]

eθk
N
√
λ+µx.

This is exactly (3.9). �

B Proof of (3.10)

Suppose that x = 0 and y ≥ 0. Proposition 3.1 yields

ϕ
λ,µ

(0, y) =
1

γN−1

∑

j∈J

θjAj

[

∑

k∈K

θkBk

θj − θk

∏

j′∈J

(

θjγ − θj′δ

θkγ − θj′δ

)

+
1

NAj

]

e−θjγy.
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Since
∏

i∈I(θjγ − θiδ) =
∏

i∈I(θkγ − θiδ) = κNµ, we observe that

∏

j′∈J

(

θjγ − θj′δ

θkγ − θj′δ

)

=
∏

i∈I

(

θjγ − θiδ

θkγ − θiδ

)

∏

k′∈K

(

θkγ − θk′δ

θjγ − θk′δ

)

=
∏

k′∈K

(

θkγ − θk′δ

θjγ − θk′δ

)

.

Therefore,

∑

k∈K

θkBk

θj − θk

∏

j′∈J

(

θjγ − θj′δ

θkγ − θj′δ

)

=
1

∏

k′∈K(θjγ − θk′δ)

∑

k∈K

θkBk

θj − θk

∏

k′∈K

(θkγ − θk′δ).

As previously, we invoke the formula

∑

k∈K

θkBkP (θk)

θk −X
= (−1)#K P (X)

∏

k∈K(θk −X)
− c

which is valid for any polynomial P of degree #K and coefficient of highest degree c. We obtain for
P (X) =

∏

k′∈K(γX − θk′δ) and X = θj , by using (2.6),

∑

k∈K

θkBk

θj − θk

∏

k′∈K

(θkγ − θk′δ) = γ#K − 1

NAj

∏

k′∈K

(θjγ − θk′δ)

and then
∑

k∈K

θkBk

θj − θk

∏

j′∈J

(

θjγ − θj′δ

θkγ − θj′δ

)

+
1

NAj
=

γ#K

∏

k∈K(θjγ − θkδ)
.

Now, expanding the rational fraction 1/(
∏

k∈K(θjγ − θkδ)) into partial fractions yields

1
∏

k∈K(θjγ − θkδ)
= − 1

δ#K−1

∑

k∈K

θkBk

θjγ − θkδ

and finally

ϕ
λ,µ

(0, y) = − 1

γ#J−1δ#K−1

∑

j∈J

θjAj

(

∑

k∈K

θkBk

θjγ − θkδ

)

e−θjγy.

We have checked (3.10). �

C Proof of (5.7)

Set, for any integer m such that m ≤ N − 1 and any complex number β,

Fm(s, t; ξ, β) = t
1
N −1

∫ s

0

Im(s− σ; ξ) f(σ;β
N
√
t ) dσ,

Gm(s, t; ξ, β) =

∫ s

0

σ
1
N −1Im(s− σ; ξ) dσ

∫ t

0

(t− τ)
1
N −1

Γ
(

1
N

) f(τ ;β N
√
σ ) dτ.

Let us compute the Laplace transforms of Fm(s, t; ξ, β) and Gm(s, t; ξ, β). For this, we need the result
below concerning the Laplace transform of the Mittag-Leffler function.

Lemma C.1 The following identity holds for λ, µ > 0 and β ∈ C such that π
2N < arg(β) < 2π − π

2N :

∫ ∞

0

e−λtt
1
N −1E 1

N , 1
N

(

β N
√
µt
)

dt =
1

N
√
λ− β N

√
µ
.

Proof

Referring to the asymptotics E 1
N , 1

N
(z) ∼ −1/[Γ

(

− 1
N

)

z2] when z tends to infinity such that | arg(−z)| <
(1− 1

2N )π (see Formula (21), p. 210 of [7]), the condition π
2N < arg(β) < 2π− π

2N makes sure the absolute
convergence of the integral lying in the statement of Lemma (C.1).
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First, suppose that λ > µ |β|N . In this case we easily have

∫ ∞

0

e−λtt
1
N −1E 1

N , 1
N

(

β N
√
µt
)

dt =

∞
∑

n=0

(

β N
√
µ
)n

Γ
(

n+1
N

)

∫ ∞

0

e−λtt
n+1
N −1 dt

=

∞
∑

n=0

(

β N
√
µ
)n

λ
n+1
N

=
1

N
√
λ− β N

√
µ
.

Suppose now that λ < µ |β|N . Recalling that

E 1
N , 1

N

(

β N
√
µt
)

=
1

N
√
µ

∫ ∞

0

e−µsf
(

s;β
N
√
t
)

ds

with

f(s;β) =
sin( π

N )

πN

s
1
N −1(β2 − s

2
N )

(s
2
N − 2β cos( π

N )s
1
N + β2)2

,

we obtain
∫ ∞

0

e−λtt
1
N −1E 1

N , 1
N

(

β N
√
µt
)

dt =
1

N
√
µ

∫ ∞

0

e−λtt
1
N −1

(
∫ ∞

0

e−µsf
(

s;β
N
√
t
)

ds

)

dt.

It may be easily seen that the double integral
∫∞
0

∫∞
0 e−λt−µst

1
N −1f

(

s;β N
√
t
)

ds dt is not absolutely con-
vergent (because of its behavior near (0, 0)). So, we can not interchange the integrals and we must excise
one integral near zero as follows:

∫ ∞

0

e−λtt
1
N −1

(
∫ ∞

0

e−µsf
(

s;β
N
√
t
)

ds

)

dt = lim
ε→0+

[
∫ ∞

0

e−λtt
1
N −1

(
∫ εN

0

e−µsf
(

s;β
N
√
t
)

ds

)

dt

+

∫ ∞

0

e−λtt
1
N

−1

(
∫ ∞

εN
e−µsf

(

s;β
N
√
t
)

ds

)

dt

]

. (C.1)

We begin by evaluating the first term lying on the right-hand side of (C.1):

lim
ε→0+

∫ ∞

0

e−λtt
1
N −1

(
∫ εN

0

e−µsf
(

s;β
N
√
t
)

ds

)

dt

= N2εN+1 lim
ε→0+

∫ ∞

0

e−λεN tN
(
∫ 1

0

e−µεNsN sN−1f
(

εNsN ;βεt
)

ds

)

dt

=
N

π
sin
( π

N

)

lim
ε→0+

∫ ∞

0

e−λεN tN
(
∫ 1

0

e−µεNsN β2t2 − s2

(s2 − 2β cos( π
N )st+ β2t2)2

ds

)

dt

=
N

π
sin
( π

N

)

∫ ∞

0

(
∫ 1

0

β2t2 − s2

(s2 − 2β cos( π
N )st+ β2t2)2

ds

)

dt.

The integral with respect to the variable s is elementary:

∫ 1

0

β2t2 − s2

(s2 − 2β cos( π
N )st+ β2t2)2

ds =

[

s

s2 − 2β cos( π
N )st+ β2t2

]s=1

s=0

=
1

1− 2β cos( π
N )t+ β2t2

=
1

[βt− cos( π
N )]2 + sin2( π

N )

and next
∫ ∞

0

(
∫ 1

0

β2t2 − s2

(s2 − 2β cos( π
N )st+ β2t2)2

ds

)

dt =
1

β sin( π
N )

[

arccot

(

cos( π
N )− βt

sin( π
N )

)]t=∞

t=0

= − π

Nβ sin( π
N )

.

Consequently,

lim
ε→0+

∫ ∞

0

e−λtt
1
N −1

(
∫ εN

0

e−µsf
(

s;β
N
√
t
)

ds

)

dt = − 1

β
. (C.2)

Concerning the second term lying on the right-hand side of (C.1), since

f
(

s;β
N
√
t
)

= − 1

β2

(s

t

)
1
N −1

f

(

t;
1

β
N
√
s

)

,
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we have (in this case, interchanging the two integrals is valid)

lim
ε→0+

∫ ∞

0

e−λtt
1
N −1

(
∫ ∞

εN
e−µsf

(

s;β
N
√
t
)

ds

)

dt = − 1

β2
lim

ε→0+

∫ ∞

εN

∫ ∞

0

e−λt−µss
1
N −1f

(

t;
1

β
N
√
s

)

ds dt

= −
N
√
λ

β2
lim

ε→0+

∫ ∞

εN
e−µss

1
N −1E 1

N , 1
N

(

1

β
N
√
λs

)

ds

= −
N
√
λ

β2

∫ ∞

0

e−µss
1
N −1E 1

N , 1
N

(

1

β
N
√
λs

)

ds

= −
N
√
λ

β2

1
N
√
µ− 1

β
N
√
λ
=

1

β

N
√
λ

N
√
λ− β N

√
µ
. (C.3)

In the last step, we have used the result corresponding to the first case. Finally, adding (C.2) to (C.3)
yields the statement in the case where λ < µ|β|N . �

We can compute, with the help of Lemma C.1, the Laplace transforms of Fm(s, t; ξ, β) andGm(s, t; ξ, β).
On the one hand,
∫ ∞

0

∫ ∞

0

e−λt−µsFm(s, t; ξ, β) ds dt =

∫ ∞

0

e−λtt
1
N −1

[
∫ ∞

0

e−µsIm(s; ξ) ds

∫ ∞

0

e−µsf
(

s;β
N
√
t
)

ds

]

dt

=
e−ξN

√
µ

µ
m−1
N

∫ ∞

0

e−λtt
1
N −1E 1

N , 1
N

(

β N
√
µt
)

dt

=
e−ξN

√
µ

µ
m−1
N

(

N
√
λ− β N

√
µ
)
.

On the other hand,
∫ ∞

0

∫ ∞

0

e−λt−µsGm(s, t; ξ, β) ds dt

=

∫ ∞

0

e−µsIm(s; ξ) ds

∫ ∞

0

e−µss
1
N −1

[
∫ ∞

0

e−λt t
1
N −1

Γ
(

1
N

) ds

∫ ∞

0

e−λtf
(

t;β N
√
s
)

dt

]

ds

=
e−ξN

√
µ

µ
m
N

∫ ∞

0

e−µss
1
N −1E 1

N , 1
N

(

β
N
√
λs
)

ds

=
e−ξN

√
µ

µ
m
N

(

N
√
µ− β N

√
λ
) .

Introducing back the settings γ = N
√
λ+ µ and δ = N

√
λ, the Laplace transforms of each member

of (5.7) can be evaluated as follows. We choose β = θj′/θk or θk/θj′ with j
′ ∈ J , k ∈ K; in both cases,

we have π
2N < arg(β) < 2π − π

2N . Thus we can use the above results and we obtain
∫ ∞

0

∫ ∞

s

e−λt−µs
∑

j,j′∈J, k∈K

θjAjAj′BkCjj′k

θ#J−1
k (θj − θk)

×
[
∫ s

0

σ
1
N −1IN−2(s− σ; θjy − θkx) dσ

∫ t−s

0

(t− s− τ)
1
N −1

Γ
(

1
N

) f
(

τ ;
θj′

θk
N
√
σ
)

dτ

]

ds dt

=
∑

j,j′∈J, k∈K

θjAjAj′BkCjj′k

θ#J−1
k (θj − θk)

∫ ∞

0

∫ ∞

s

e−λt−µsGN−2

(

s, t− s; θjy − θkx,
θj′

θk

)

ds dt

=
∑

j,j′∈J, k∈K

θjAjAj′BkCjj′k

θ#J−1
k (θj − θk)

∫ ∞

0

∫ ∞

0

e−λt−(λ+µ)sGN−2

(

s, t; θjy − θkx,
θj′

θk

)

ds dt

=
1

γN−2

∑

j,j′∈J, k∈K

θjAjAj′BkCjj′k

θ#J−2
k (θj − θk)

eγ(θkx−θjy)

θkγ − θj′δ
. (C.4)

Similarly,
∫ ∞

0

∫ ∞

s

e−λt−µs
∑

j,j′∈J, k∈K

θjAjAj′BkCjj′k

θj′θ
#J−2
k (θj − θk)
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×
[

(t− s)
1
N −1

∫ s

0

IN−1(s− σ; θjy − θkx) f
(

σ;
θk
θj′

N
√
t− s

)

dσ

]

ds dt

=
∑

j,j′∈J, k∈K

θjAjAj′BkCjj′k

θj′θ
#J−2
k (θj − θk)

∫ ∞

0

∫ ∞

s

e−λt−µs FN−1

(

s, t− s; θjy − θkx,
θk
θj′

)

ds dt

=
∑

j,j′∈J, k∈K

θjAjAj′BkCjj′k

θj′θ
#J−2
k (θj − θk)

∫ ∞

0

∫ ∞

0

e−λt−(λ+µ)s FN−1

(

s, t; θjy − θkx,
θk
θj′

)

ds dt

= − 1

γN−2

∑

j,j′∈J, k∈K

θjAjAj′BkCjj′k

θ#J−2
k (θj − θk)

eγ(θkx−θjy)

θkγ − θj′δ
. (C.5)

We see that the quantities (C.4) and (C.5) are opposite which completes the proof of (5.7). �

Addendum. In [5], some constants in Formulas (2.8) and (2.9) can be simplified: since κ
N

= (−1)#J−1,
∏

j∈J θj = 1 and
∏

k∈K θk = (−1)#K , we have α−#K = −β#K = 1 and α1−#K = β#K+1 =
∑

j∈J θj .
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