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A survey on the pseudo-process driven by the high-order heat-type equation ∂/∂t = ±∂ N /∂x N concerning the hitting and sojourn times
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Fix an integer N > 2 and let X = (X(t)) t≥0 be the pseudo-process driven by the high-order heat-type equation ∂/∂t = ±∂ N /∂x N . The denomination "pseudo-process" means that X is related to a signed measure (which is not a probability measure) with total mass equal to 1.

In this survey, we present several explicit results and discuss some problems concerning the pseudodistributions of various functionals of the pseudo-process X: the first or last overshooting times of a single barrier {a} or a double barrier {a, b} by X; the sojourn times of X in the intervals [a, +∞) and [a, b] up to a fixed time; the maximum or minimum of X up to a fixed time.

Introduction

Consider the heat-type equation ∂/∂t = κ N ∂ N /∂x N of order N > 2 where κ N = (-1) 1+N/2 if N is even and κ N = ±1 if N is odd. Let us introduce the corresponding kernel p(t; x) which is characterized by +∞ -∞ e iux p(t; x) dx = e -tu N if N is even, e κ N t(-iu) N if N is odd. This kernel defines a pseudo-process (X(t)) t≥0 driven by a signed measure with total mass equal to 1 (which is not a probability measure) according as the usual Markov rules: we set for t > 0, 0 = t 0 < t 1 < • • • < t m and x = x 0 , x 1 , . . . , x m , y ∈ R, P x {X(t) ∈ dy} = p(t; xy) dy and

P x {X(t 1 ) ∈ dx 1 , . . . , X(t m ) ∈ dx m } = m i=1 p(t i -t i-1 ; x i-1 -x i ) dx i .
Since we are dealing with a signed measure, it seems impossible to extend the definition of the pseudo-process over all the positive times. We can find in the literature two possible ad-hoc constructions: one over the set of times of the form kt/n, k, n ∈ N (depending on a fixed time t, see [START_REF] Hochberg | A signed measure on path space related to Wiener measure[END_REF] and [START_REF] Krylov | Some properties of the distribution corresponding to the equation ∂u ∂t = (-1) q+1 ∂ 2q u ∂ 2q x[END_REF] for pioneering works related to this construction), the other one over the set of dyadic times k/2 n , k, n ∈ N. (which do not depend on any particular time, see [START_REF] Nishioka | The first hitting time and place of a half-line by a biharmonic pseudo process[END_REF] for this last construction). For N = 2, this is the most well-known Brownian motion and for N = 4, (X(t)) t≥0 is the so-called biharmonic pseudo-process.

For the pseudo-process (X(t)) t≥0 started at a point x, we introduce:

• the first overshooting times of a one-sided barrier {a} (or, equivalently, the first hitting time of the half-line [a, +∞)) or a two-sided barrier {a, b} (with the convention inf(∅) = +∞): • the last overshooting times of such barriers before a fixed time t (with the convention sup(∅) = 0): σ a (t) = sup{s ∈ [0, t] : X(s) ≥ a}, σ ab (t) = sup{s ∈ [0, t] : X(t) / ∈ (a, b)};

τ a = inf{t
• the sojourn times in the intervals [a, +∞) and [a, b] up to a fixed time t:

T a (t) = measure{s ∈ [0, t] : X(s) ≥ a}, T ab (t) = measure{s ∈ [0, t] : X(s) ∈ [a, b]};

• the maximum up to time t: M (t) = max 0≤s≤t X(s).

In the foregoing rough definitions, the pseudo-distribution of the quantity T a (t) for instance is to be understood as the limit of

P x { 1 n n-1 k=0 1l [a,+∞) (X(kt/n)) ∈ ds} when n → ∞.
We could introduce the alternative first hitting time of (-∞, a], the alternative sojourn time in (-∞, a] and the up-to-date minimum m(t) = min 0≤s≤t X(s). Actually, the pseudodistributions of these three quantities are obviously related to the pseudo-distributions of the foregoing ones.

We shall also consider the pseudo-process with a drift (X b (t)) t≥0 defined by X b (t) = X(t)+bt where b is a fixed real number. For this latter, we introduce:

• the first overshooting time of the threshold a:

τ b a = inf{t ≥ 0 : X b (t) ≥ a} for x ≤ a
if the set {t ≥ 0 : X b (t) ≥ a} is not empty, else we set τ b a = +∞; • the maximum functional up to time t:

M b (t) = max 0≤s≤t X b (s).
The aim of this survey is to provide a list of explicit results concerning the pseudo-distributions of (X(t), T a (t)), (X(t), M (t)), (τ a , X(τ a )) and σ a (t), as well as those related to the pseudoprocess with a drift. In particular, remarkable results hold for the pseudo-distributions of T 0 (t) and X(τ a ). We also provide some methods for deriving those of T ab (t), σ ab (t) and (τ ab , X(τ ab )).

A way consists in using the Feynman-Kac functional

φ(t; x) = E x e -t 0 f (X(s)) ds g(X(t)) def = lim n→∞ E x e -t n n-1 k=0 f (X( kt n )) g(X(t))
which is a solution to the partial differential equation ∂φ ∂t

(t; x) = κ N ∂ N φ ∂x N (t; x) -f (x)φ(t; x) with φ(0; x) = g(x). Its Laplace transform Φ(x) = +∞ 0 e -λt φ(t; x) dt is a solution to the ordinary differential equation κ N d N Φ dx N (x) = (f (x) + λ)Φ(x) -g(x)
. Another way consists in using Spitzer's identities which work actually when the starting point is 0 and N is even. Indeed, their validity holds thanks to the fact that the integral +∞ -∞ |p(t; x)| dx is finite, which is true only when N is even. Additionally, Spitzer's identities hinge on a symmetry property which is fulfilled only when the starting point of the pseudo-process is 0. In the case N = 4, see [START_REF] Nishioka | Boundary conditions for one-dimensional biharmonic pseudo process[END_REF] for many connections with fourth-order partial differential equations with various boundary value conditions.

Let us introduce the N th roots of κ N : (θ ℓ ) 1≤ℓ≤N and J = {j ∈ {1, . . . , N } : ℜe(θ j ) > 0}, K = {k ∈ {1, . . . , N } : ℜe(θ k ) < 0} that will be used for solving the above differential equation. The notations #J and #K stand for the cardinalities of the sets J and K. We have θ ℓ /θ m = e i(ℓ-m)2π/N for any 1 ≤ ℓ, m ≤ N .

Set, for j, j ′ ∈ J and k, k ′ ∈ K,

A j = ℓ∈J\{j} θ ℓ θ ℓ -θ j and B k = ℓ∈K\{k} θ ℓ θ ℓ -θ k , C jj ′ k = j ′′ ∈J (θ j θ j ′ -θ j ′′ θ k ) and D jkk ′ = k ′′ ∈K (θ k θ k ′ -θ k ′′ θ j ).
Let us also introduce the (N -1) th roots of the complex number i: ( θl ) 1≤l≤N -1 and J = {j ∈ {1, . . . , N -1} : ℑ( θj ) > 0}. We shall need to introduce the roots (ω b ℓ (λ)) 1≤ℓ≤N of the polynomial u N + ibu + λ (where ℜ(λ) > 0). These last settings will be used for the pseudo-process with a drift. Finally, set for any integer ℓ such that ℓ ≤ N -1

I ℓ (t; ξ) = N i 2π e -i ℓ N π +∞ 0 λ N -ℓ-1 e -tλ N +e iπ N ξλ dλ -e i ℓ N π +∞ 0 λ N -ℓ-1 e -tλ N +e -iπ N ξλ dλ .
The functions

I ℓ satisfy +∞ 0 e -λt I ℓ (t; ξ) dt = λ -ℓ/N e N √
λ ξ for λ > 0 and ℜ(ξ) ≤ 0. They will be useful for expressing several distributions.

The results are presented by topic and in certain topics we have chosen to exhibit them from the most particular to the most general thus following the chronology. Moreover, it is not easy sometimes to deduce the particular cases from the most general ones.

Distributions related to T a (t)

See [START_REF] Beghin | Conditional maximal distributions of processes related to higher-order heat-type equations[END_REF][START_REF] Beghin | Joint distributions of the maximum and the process for higher-order diffusions[END_REF][START_REF] Cammarota | Joint distribution of the process and its sojourn time in the positive half-line for pseudo-processes governed by high-order heat equation[END_REF][START_REF] Cammarota | Joint distribution of the process and its sojourn time in a half-line for pseudo-processes governed by higher-order heat-type equations[END_REF][START_REF] Hochberg | The arc-sine law and its analogs for processes governed by signed and complex measures[END_REF][START_REF] Krylov | Some properties of the distribution corresponding to the equation ∂u ∂t = (-1) q+1 ∂ 2q u ∂ 2q x[END_REF][START_REF] Lachal | Distribution of sojourn time, maximum and minimum for pseudo-processes governed by higer-order heat-typer equations[END_REF][START_REF] Lachal | Joint law of the process and its maximum, first hitting time and place of a half-line for the pseudo-process driven by the equation ∂ ∂t = ± ∂ N ∂x N[END_REF][START_REF] Nikitin | On sojourn distributions of processes related to some higher-order heat-type equations[END_REF][START_REF] Orsingher | Processes governed by signed measures connected with third-order "heattype[END_REF] for the chronology of the results concerning the distributions related to T a (t) as well as for the connections with the maximum and minimum functionals of (X(t)) t≥0 .

Distribution of T a (t)

Set Φ(x) = +∞ 0 e -λt E x e -µTa(t) dt for λ, µ > 0 and x ∈ R. The quantity Φ(x) should be understood as

Φ(x) def = lim n→∞ +∞ 0 e -λt E x e -µ t n n-1 k=0 1l [a,+∞) (X( kt n )) dt.
Using the Feynman-Kac approach, it can be seen that the function Φ satisfies the system

κ N d N Φ dx N (x) = (λ + µ) Φ(x) -1 for x ∈ (a, +∞), λ Φ(x) -1 for x ∈ (-∞, a), and 
∀k ∈ {0, 1, . . . , N -1}, d k Φ dx k (a + ) = d k Φ dx k (a -
). This system can be explicitly solved by computing Vandermonde determinants. In particular, for x = a, the following formula holds:

Φ(a) = 1 N λ #K (λ + µ) #J
and this two-parameters Laplace transform can be inverted ( [START_REF] Lachal | Distribution of sojourn time, maximum and minimum for pseudo-processes governed by higer-order heat-typer equations[END_REF]). The distribution of T a (t) under P a is the same as that of T 0 (t) under P 0 .

Theorem 1 [START_REF] Lachal | Distribution of sojourn time, maximum and minimum for pseudo-processes governed by higer-order heat-typer equations[END_REF]. The pseudo-distribution of T 0 (t) is a Beta law:

P 0 {T 0 (t) ∈ ds}/ds = 1 π sin #K N π 1 N s #K (t -s) #J for s ∈ (0, t).
Example 1. If N is even, T 0 (t) obeys the famous Paul Lévy's Arcsine law:

P 0 {T 0 (t) ∈ ds}/ds = 1 π s(t -s) .
In the history of pseudo-processes, this result was discovered by Krylov ([8]) when N is even.

For N = 3, Orsingher obtained ( [START_REF] Orsingher | Processes governed by signed measures connected with third-order "heattype[END_REF])

P 0 {T 0 (t) ∈ ds}/ds =          √ 3 2π 3 s 2 (t -s) when κ N = +1, √ 3 2π 3 s(t -s) 2 when κ N = -1.
Using a similar method, the following simple results can be obtained ( [START_REF] Lachal | Distribution of sojourn time, maximum and minimum for pseudo-processes governed by higer-order heat-typer equations[END_REF]).

Theorem 2 [START_REF] Lachal | Distribution of sojourn time, maximum and minimum for pseudo-processes governed by higer-order heat-typer equations[END_REF]. The pseudo-distribution of T 0 (t) conditioned on X(t) = 0 is the uniform law on (0, t): for s ∈ (0, t),

P 0 {T 0 (t) ∈ ds|X(t) = 0}/ds = 1 t .
The pseudo-distributions of T 0 (t) conditioned on X(t) > 0 and X(t) < 0 are Beta laws: for s ∈ (0, t),

P 0 {T 0 (t) ∈ ds|X(t) > 0}/ds = N sin( #K N π) (#Kπ)t s t -s #J N , P 0 {T 0 (t) ∈ ds|X(t) < 0}/ds = N sin( #J N π) (#Jπ)t t -s s #K N . Example 2. If N is even, for s ∈ (0, t), P 0 {T 0 (t) ∈ ds|X(t) > 0}/ds = 2 πt s t -s , P 0 {T 0 (t) ∈ ds|X(t) < 0}/ds = 2 πt t -s s .
The results of Theorems 1 and 2 were found by Hochberg, Nikitin and Orsingher ([7,15,19]) in the cases N = 3, 4, 5, 7 and conjectured in the general case.

Distribution of (X(t), T a (t))

Case x = a. Set Φ = ∞ 0 e -λt E 0 (e iµX(t)-νT0(t) ) dt for λ, ν > 0 and µ ∈ R. The quantity Φ can be understood as

Φ def = lim n→∞ ∞ k=0 (k+1)/2 n k/2 n e -λt E 0 e iµX(k/2 n )-ν 2 n k j=1 1l [0,+∞) (X(j/2 n )) dt = lim n→∞ 1 -e -λ/2 n λ ∞ k=0 e -λk/2 n E 0 e iµX(k/2 n )-ν 2 n k j=1 1l [0,+∞) (X(j/2 n )) .
A Spitzer's identity yields the following relationship which holds for |z|, |ζ| < 1:

∞ k=0 E 0 e iµX(k/2 n ) ζ k j=1 1l [0,+∞) (X(j/2 n )) z k = 1 1 -z exp ∞ k=1 1 k E 0 e iµX(k/2 n ) ζ k1l [0,+∞) (X(k/2 n )) -1 z k .
With this identity at hand, it can be seen that

Φ = 1 j∈J ( N √ λ + ν -iµθ j ) k∈K ( N √ λ -iµθ k ) .
This three-parameters Laplace-Fourier transform can be inverted ([4]).

Theorem 3 (Cammarota & Lachal, 2010). The pseudo-distribution of the vector (X(t), T 0 (t)) is given, for s ∈ (0, t) and y ≤ 0, by

P 0 {X(t) ∈ dy, T 0 (t) ∈ ds}/dy ds = - N i 2π #K m=0 α -m s m-#K N ∞ 0 ξ m+#J e -(t-s)ξ N K m (yξ) E 1, m+#J N (-sξ N ) dξ
and, for s ∈ (0, t) and y ≥ 0, by

P 0 {X(t) ∈ dy, T 0 (t) ∈ ds}/dy ds = N i 2π #J m=0 β -m (t -s) m-#J N ∞ 0 ξ m+#K e -sξ N J m (yξ) E 1, m+#K N -(t -s)ξ N dξ where α m = j∈J A j θ m j , β m = k∈K B k θ m k for any integer m (in particular α 0 = β 0 = 1, α -#K = 1, β -#J = (-1) #J ), J m (z) = e -i #J-m-1 N π j∈J A j θ m+1 j e -θj e i π N z -e i #J-m-1 N π j∈J A j θ m+1 j e -θj e -i π N z , K m (z) = e -i #K-m-1 N π k∈K B k θ m+1 k e -θ k e i π N z -e i #K-m-1 N π k∈K B k θ m+1 k e -θ k e -i π N z , and E a,b is the Mittag-Leffler function E a,b (z) = ∞ n=0 z n Γ (an+b) .
Remark 1. By choosing y = 0 in the pseudo-distribution of (X(t), T 0 (t)) in the foregoing theorem and next dividing the result by P x {X(t) = 0}, we could retrieve the pseudo-distribution of the corresponding sojourn time of the "pseudo-bridge" (X(s)|X(0) = X(t) = 0) 0≤s≤t displayed in Theorem 2.

Case x = a. Set Φ(x, y) =

+∞ 0 e -λt E x e -µTa(t) , X(t) ∈ dy /dy dt for λ, µ > 0 and x, y ∈ R. It can be seen that Φ solves the differential equation

κ N ∂ N Φ ∂x N (x, y) = (λ + µ) Φ(x, y) -δ y (x) for x ∈ (a, +∞), λ Φ(x, y) -δ y (x) for x ∈ (-∞, a),
with regularity conditions

       ∀k ∈ {0, 1, . . . , N -1}, ∂ k Φ ∂x k (a + , y) = ∂ k Φ ∂x k (a -, y), ∀k ∈ {0, 1, . . . , N -2}, ∂ k Φ ∂x k (y + , y) = ∂ k Φ ∂x k (y -, y) and ∂ N -1 Φ ∂x N -1 (y + , y) - ∂ N -1 Φ ∂x N -1 (y -, y) = κ N .
This system can be explicitly solved by computing Vandermonde determinants and the inversion of the two-parameters Laplace transform can be performed ( [START_REF] Cammarota | Joint distribution of the process and its sojourn time in a half-line for pseudo-processes governed by higher-order heat-type equations[END_REF]).

Theorem 4 (Cammarota & Lachal, 2010). Set

f (t; θ) = sin( π N ) πN t 1 N -1 (θ 2 -t 2 N ) (t 2 N -2θ cos( π N )t 1 N + θ 2 ) 2 . 1. Assume that y ≥ 0. For s ∈ (0, t), if x ∈ (-∞, 0], P x {X(t) ∈ dy, T 0 (t) ∈ ds}/dy ds = κ N 1l {#J=#K+1} j∈J θ j A j I #K (t -s; -θ j x) j∈J θ #J j A j I #K (s; θ j y) + κ N j,j ′ ∈J, k∈K A j θ j ′ A j ′ θ #K-#J k B k C jj ′ k θ #K-1 j (θ j ′ -θ k ) s 0 σ 1 N -1 I #J-1 (s -σ; θ j ′ y) dσ × t-s 0 I #K (τ ; -θ j x)f t -s -τ ; θ j θ k N √ σ dτ and if x ∈ [0, ∞), P x {X(t) ∈ dy, T 0 (t) ∈ ds}/dy ds = κ N j,j ′ ∈J, k∈K θ j A j A j ′ B k C jj ′ k θ #J-1 k (θ j -θ k ) s 0 σ 1 N -1 I N -2 (s -σ; θ j y -θ k x) dσ × t-s 0 (t -s -τ ) 1 N -1 Γ ( 1 N ) f τ ; θ j ′ θ k N √ σ dτ.
For s = t, if x ∈ (-∞, 0], P x {X(t) ∈ dy, T 0 (t) = t}/dy = 0 and if x ∈ [0, +∞), there is an atom given by

P x {X(t) ∈ dy, T 0 (t) = t}/dy = p(t; x -y) + j∈J, k∈K θ j A j θ k B k θ j -θ k I N -1 (t; θ j y -θ k x).
2. Assume that y ≤ 0. For s ∈ (0, t), if x ∈ (-∞, 0],

P x {X(t) ∈ dy, T 0 (t) ∈ ds}/dy ds = - j∈J, k,k ′ ∈K A j θ k B k B k ′ D jkk ′ θ #K-2 j θ k ′ (θ k -θ j ) s 1 N -1 t-s 0 I N -1 (τ ; θ k y -θ j x)f t -s -τ ; θ j θ k ′ N √ s dτ and if x ∈ [0, ∞), P x {X(t) ∈ dy, T 0 (t) ∈ ds}/dy ds = 1l {#K=#J+1} k∈K θ k B k I #J (s; -θ k x) k∈K θ #K k B k I #J (t -s; θ k y) + j∈J, k,k ′ ∈K θ #J-#K+1 j A j B k θ k ′ B k ′ D jkk ′ θ #J k (θ j -θ k ′ ) s 0 σ 1 N -1 I #J-1 (s -σ; -θ k x) dσ × t-s 0 I #K (τ ; θ k ′ y)f t -s -τ ; θ j θ k N √ σ dτ.
For s = 0, if x ∈ [0, ∞), P x {X(t) ∈ dy, T 0 (t) = 0}/dy = 0 and if x ∈ (-∞, 0], there is an atom given by

P x {X(t) ∈ dy, T 0 (t) = 0}/dy = p(t; x -y) + j∈J, k∈K θ j A j θ k B k θ j -θ k I N -1 (t; θ k y -θ j x).
The following relationship between T 0 (t), M (t) and τ 0 holds: for x, y ≤ 0, P x {X(t) ∈ dy, T 0 (t) = 0}/dy = P x {X(t) ∈ dy, M (t) < 0}/dy = P x {X(t) ∈ dy, τ 0 > t}/dy.

Remark 2. By integrating the joint pseudo-distribution of (X(t), T 0 (t)) with respect to y in the foregoing theorem, we could derive the pseudo-distribution of T 0 (t). Actually, the result does not simplify so much.

3 Distribution related to M (t)

See [START_REF] Beghin | Conditional maximal distributions of processes related to higher-order heat-type equations[END_REF][START_REF] Beghin | Joint distributions of the maximum and the process for higher-order diffusions[END_REF][START_REF] Hochberg | A signed measure on path space related to Wiener measure[END_REF][START_REF] Lachal | Distribution of sojourn time, maximum and minimum for pseudo-processes governed by higer-order heat-typer equations[END_REF][START_REF] Lachal | Joint law of the process and its maximum, first hitting time and place of a half-line for the pseudo-process driven by the equation ∂ ∂t = ± ∂ N ∂x N[END_REF][START_REF] Lachal | First hitting time and place, monopoles and multipoles for pseudo-procsses driven by the equation ∂ ∂t = ± ∂ N ∂x N[END_REF][START_REF] Lachal | First hitting time and place for the pseudo-process driven by the equation ∂ ∂t = ± ∂ n ∂x n subject to a linear drift[END_REF][START_REF] Nishioka | The first hitting time and place of a half-line by a biharmonic pseudo process[END_REF] for references related to the various distributions related to M (t).

Distribution of M (t)

The variables T a (t) and M (t) are related together according to

P x {M (t) ≤ a} = P x {T a (t) = 0} = lim µ→+∞ E x e -µTa(t) .
The quantity P x {M (t) ≤ a} should be understood as

P x {M (t) ≤ a} def = lim n→∞ P x max 0≤k≤n X kt n ≤ a .
Thanks to this connection, it is possible to deduce that, for x ≤ a and λ > 0,

+∞ 0 e -λt P x {M (t) ≤ a} dt = 1 λ 1 - j∈J A j e θ k N √ λ (x-a) .
The foregoing Laplace transform can be inverted ( [START_REF] Lachal | Distribution of sojourn time, maximum and minimum for pseudo-processes governed by higer-order heat-typer equations[END_REF]).

Theorem 5 [START_REF] Lachal | Distribution of sojourn time, maximum and minimum for pseudo-processes governed by higer-order heat-typer equations[END_REF]. The pseudo-distribution of M (t) is given by

P x {M (t) ≥ a} = #J-1 m=0 a m t 0 ∂ m p ∂x m (s; x -a) ds (t -s) 1-(m+1)/N = 2 P x {X(t) ≥ a} - #J-1 m=0 b m t 0 ∂ m p ∂x m (s; x -a) ds (t -s) 1-(m+1)/N where a m = (-1) m N Γ ( m+1 N ) j∈J A 2 j σ j,#J-1-m and b m = 2(-1) m Γ ( m+1 N ) j∈J A j σ j,#J-1-m -a m .
The coefficients σ j,p , j ∈ J, 0 ≤ p ≤ #J -1, are given by σ j,0 = 1 and for 1 ≤ p ≤ #J -1,

σ j,p = ℓ 1 ,...,ℓp ∈J\{j} ℓ 1 <•••<ℓp θ ℓ1 • • • θ ℓp .
Remark 3. From the second displayed expression of P x {M (t) ≥ a}, we can see that the famous reflection principle for Brownian motion does not hold any longer for pseudo-processes related to an order N > 2.

Example 3. For N = 3, Orsingher ( [START_REF] Orsingher | Processes governed by signed measures connected with third-order "heattype[END_REF]) derived the historical result

P x {M (t) ≥ a} =          3 Γ ( 1 3 ) t 0 p(s; x -a) ds (t -s) 2 3 when κ N = +1, 2 Γ ( 1 3 ) t 0 p(s; x -a) ds (t -s) 2 3 - 1 Γ ( 2 3 ) t 0 ∂p ∂x (s; x -a) ds (t -s) 1 3
when κ N = -1.

For N = 4, Hochberg ([6]) derived the historical result

+∞ 0 e -λt (P x {M (t) ∈ da}/da) dt = - √ 2 λ 3/4 e 4 √ λ (x-a)/ √ 2 sin 4 √ λ (x -a) √ 2 
which was subsequently completed by Beghin, Orsingher and Ragozina ([3]):

P x {M (t) ≥ a} = 2 √ 2 Γ ( 1 4 ) t 0 p(s; x -a) ds (t -s) 3 4 
.

Distribution of (X(t), M (t))

Set Φ(x) =

+∞ 0 e -λt E x e iµX(t)-νM(t) dt for λ, ν > 0, µ ∈ R and x ∈ R. The quantity Φ(x) can be understood as

Φ(x) def = lim n→∞ ∞ k=0 (k+1)/2 n k/2 n e -λt E x e iµX(k/2 n )-ν max 0≤j≤k X(j/2 n ) dt = lim n→∞ e (iµ-ν)x 1 -e -λ/2 n λ ∞ k=0 e -λk/2 n E 0 e iµX(k/2 n )-ν max 0≤j≤k X(j/2 n ) .
Another Spitzer's identity yields the following relationship which holds for |z| < 1:

∞ k=0 E 0 e iµX(k/2 n )-ν max 0≤j≤k X(j/2 n ) z k = 1 1 -z exp ∞ k=1 1 k E 0 e iµX(k/2 n )-νX(k/2 n ) + -1 z k .
The Laplace-Fourier transform of the vector (X(t), M (t)) ensues:

Φ(x) = e (iµ-ν)x j∈J ( N √ λ -(iµ -ν)θ j ) k∈K ( N √ λ -iµθ k ) .
This three-parameters transform can be progressively inverted ( [START_REF] Lachal | First hitting time and place, monopoles and multipoles for pseudo-procsses driven by the equation ∂ ∂t = ± ∂ N ∂x N[END_REF]). For z ≥ x ∨ y,

+∞ 0 e -λt [P x {X(t) ∈ dy, M (t) ∈ dz}/dy dz] dt = 1 λ χ J (λ; x -z) χ K (λ; z -y), with χ J (λ; ξ) = N √ λ j∈J θ j A j e θj N √ λ ξ , χ K (λ; ξ) = - N √ λ k∈K θ k B k e θ k N √ λ ξ .
This last Laplace transform can also be inverted ( [START_REF] Lachal | First hitting time and place, monopoles and multipoles for pseudo-procsses driven by the equation ∂ ∂t = ± ∂ N ∂x N[END_REF]).

Theorem 6 [START_REF] Lachal | Joint law of the process and its maximum, first hitting time and place of a half-line for the pseudo-process driven by the equation ∂ ∂t = ± ∂ N ∂x N[END_REF]. The joint pseudo-distribution of (X(t), M (t)) admits the representation below. For z ≥ x ∨ y,

P x {X(t) ≤ y ≤ z ≤ M (t)} = k∈K 0≤m≤#J-1 a km t 0 s 0 ∂ m p ∂x m (σ; x -z) I 0 (s -σ; θ k (z -y)) (t -s) 1-(m+1)/N ds dσ = j∈J 0≤m≤#K-1 b jm t 0 s 0 ∂ m p ∂x m (σ; z -y) I 0 (s -σ; θ j (x -z)) (t -s) 1-(m+1)/N ds dσ
where

a km = (-1) m N B k Γ ( m+1 N ) j∈J θ j A 2 j σ j,#J-1-m θ j -θ k and b jm = (-1) m N θ j A j Γ ( m+1 N ) k∈K B 2 k σ k,#K-1-m θ k -θ j .
Example 4. For N = 3, Beghin, Orsingher and Ragozina ( [START_REF] Beghin | Joint distributions of the maximum and the process for higher-order diffusions[END_REF]) derived the result

P x {X(t) ≤ y ≤ z ≤ M (t)} =          1 Γ (1/3) t 0 s 0 p(σ; x -z) q(s -σ; z -y) ds dσ (t -s) 2/3 when κ N = +1, 1 Γ (1/3) t 0 s 0 p(σ; z -y) q(s -σ; x -z) ds dσ (t -s) 2/3 when κ N = -1, with p(t; ξ) = 1 π +∞ 0 cos(ξλ -tλ 3 ) dλ and q(t; ξ) =          ξ πt +∞ 0 e -tλ 3 + 1 2 ξλ sin √ 3 2 ξλ + π 3 dλ when κ N = +1, ξ πt √ 3 +∞ 0 e -tλ 3 +ξλ dλ + +∞ 0 e -tλ 3 -1 2 ξλ sin √ 3 2 ξλ + π 3 dλ when κ N = -1.
For N = 4, they derived

P x {X(t) ≤ y ≤ z ≤ M (t)} = t 0 s 0 p(σ; x -z) q 1 (s -σ; z -y) ds dσ (t -s) 3/4 + t 0 s 0 ∂p ∂x (σ; x -z) q 2 (s -σ; z -y) ds dσ √ t -s with q 1 (t; ξ) = ξ π √ 2 Γ (1/4) t +∞ 0 e -tλ 4 cos(ξλ) dλ, q 2 (t; ξ) = ξ 2π 2 t +∞ 0
e -tλ 4 cos(ξλ) + sin(ξλ)e -ξλ dλ.

Distribution of (X

b (t), M b (t))
The Laplace-Fourier transform of the vector (X b (t), M b (t)) is given, for λ, ν > 0 and µ ∈ R, by

E x +∞ 0 e -λt+iµX b (t)-νM b (t) dt = e (iµ-ν)x j∈J (ω b j (λ) + µ + iν) k∈K (ω b k (λ) + µ)
.

This three-parameters transform can be partially inverted for giving the following result ( [START_REF] Lachal | First hitting time and place for the pseudo-process driven by the equation ∂ ∂t = ± ∂ n ∂x n subject to a linear drift[END_REF]).

Theorem 7 [START_REF] Lachal | First hitting time and place for the pseudo-process driven by the equation ∂ ∂t = ± ∂ n ∂x n subject to a linear drift[END_REF]. The Laplace transform with respect to time t of the joint pseudodistribution of (X b (t), M b (t)) is given, for λ > 0 and z ≥ x ∨ y, by

+∞ 0 e -λt [P x {X b (t) ∈ dy, M b (t) ∈ dz}/dy dz] dt = χ b J (λ; x -z) χ b K (λ; z -y)
where

χ b J (λ; ξ) = j∈J e -iω b j (λ)ξ ℓ∈J\{j} (ω b ℓ (λ) -ω b j (λ))
and

χ b K (λ; ξ) = k∈K e -iω b k (λ)ξ l∈K\{k} (ω b ℓ (λ) -ω b k (λ))
.

Distribution of σ a (t)

The variables σ a (t) and M (t) are related together according as

P x {σ a (t) ≤ s} = P x max s≤u≤t X(u) ≤ a = a -∞ p(s; x -y) P y {M (t -s) ≤ a} dy
The pseudo-distribution of σ a (t) under P a is the same as that of σ 0 (t) under P 0 .

Theorem 8 [START_REF] Lachal | Distribution of sojourn time, maximum and minimum for pseudo-processes governed by higer-order heat-typer equations[END_REF]. The iterated Laplace transform of σ 0 (t) under P 0 is given, for λ, µ > 0, by

+∞ 0 e -λt E 0 e -µσ0(t) dt = 1 λ + µ 1 - 1 N j∈J j ′ ∈J 1 - θ j θ j ′ N λ + µ λ .
4 Distribution related to τ a

In this section, N is assumed to be an even integer. The reader is referred to [START_REF] Lachal | Joint law of the process and its maximum, first hitting time and place of a half-line for the pseudo-process driven by the equation ∂ ∂t = ± ∂ N ∂x N[END_REF][START_REF] Lachal | First hitting time and place, monopoles and multipoles for pseudo-procsses driven by the equation ∂ ∂t = ± ∂ N ∂x N[END_REF][START_REF] Lachal | First hitting time and place for the pseudo-process driven by the equation ∂ ∂t = ± ∂ n ∂x n subject to a linear drift[END_REF][START_REF] Nakajima | On the joint distribution of the first hitting time and the first hitting place to the space-time wedge domain of a biharmonic pseudo process[END_REF][START_REF] Nishioka | Monopole and dipole of a biharmonic pseudo process[END_REF][START_REF] Nishioka | The first hitting time and place of a half-line by a biharmonic pseudo process[END_REF][START_REF] Nishioka | Boundary conditions for one-dimensional biharmonic pseudo process[END_REF].

4.1 Distribution of (τ a , X(τ a ))

Using the definition

E x e -λτa+iµX(τa) = lim n→+∞ E x e -λ k 2 n +iµX( k 2 n ) 1l {X( k-1 2 n )<a≤X( k 2 
n )} , It can be seen that the Laplace-Fourier transform of the vector (τ a , X(τ a )) is related to the pseudo-distribution of the vector (X(t), M (t)) according as, for λ > 0, µ ∈ R and x ≤ a:

E x e -λτa+iµX(τa) = λ + µ N +∞ 0 e -λt E x e iµX(t) 1l {M(t)>a} dt.
From this, it can be deduced that, for x ≤ a,

E x e -λτa+iµX(τa) = j∈J A j ℓ∈J\{j} (1 - iµ N √ λ θℓ ) e θj N √ λ (x-a) e iµa .
In particular,

E x e -λτa = λ +∞ 0 e -λt P x {M (t) > a} dt = j∈J A j e θj N √ λ (x-a) .
The variables τ a and M (t) are related together according to P x {τ a ≤ t} = P x {M (t) ≥ a}. The two-parameters Laplace-Fourier transform can be inverted ( [START_REF] Lachal | First hitting time and place, monopoles and multipoles for pseudo-procsses driven by the equation ∂ ∂t = ± ∂ N ∂x N[END_REF]).

Theorem 9 [START_REF] Lachal | Joint law of the process and its maximum, first hitting time and place of a half-line for the pseudo-process driven by the equation ∂ ∂t = ± ∂ N ∂x N[END_REF]. The joint pseudo-distribution of (τ a , X(τ a )) is given, for x < a, by

P x {τ a ∈ dt, X(τ a ) ∈ dz}/dt dz = N/2-1 p=0 J p (t; x -a) δ (p) a (z)
with J p (t; ξ) = j∈J σ j,p A j I p (t; θ j ξ). In particular,

P x {τ a ∈ dt}/dt = J 0 (t; x -a), P x {X(τ a ) ∈ dz}/dz = N/2-1 p=0 (-1) p (x -a) p p! δ (p) a (z).
The δ (p) a are the successive derivatives of the Schwartz distribution δ a , that is, for any test function φ, < δ (p) a , φ >= (-1) p φ (p) (a). The pseudo-distribution of X(τ a ) is remarkable since it means that the pseudo-process (X(t)) t≥0 is formally concentrated at the site a at time τ a in a "distributional" sense.

Example 5. In the case N = 4, Nishioka ([16,17]) obtained the remarkable result Example 6. In the case N = 4, Nakajima and Sato ( [START_REF] Nakajima | On the joint distribution of the first hitting time and the first hitting place to the space-time wedge domain of a biharmonic pseudo process[END_REF]) derived the following result:

P x {X(τ a ) ∈ dz}/dz = δ a (z) -(x -a)δ ′ a (z). Moreover, P x {τ a ∈ dt, X(τ a ) ∈ dz}/dt dz = J 0 (t; x -a) δ a (z) + J 1 (t; x -a) δ ′ a (z) with J 0 (t; ξ) = ξ 2πt
E x e -λτ b a +iµX b (τ b a ) 1l {τ b a <∞} = e iµa µ + ω 1 ω 2 -ω 1 e -iω1(x-a) + µ + ω 2 ω 1 -ω 2 e -iω2(x-a)
where ω 1 and ω 2 are the two roots of the polynomial X 4 + ibX + λ having positive imaginary part.

We can deduce the pseudo-distribution of the overshooting place X b (τ b a ) on the set {τ b a < ∞} and the pseudo-probability of eventually hitting the interval [a, +∞) ( [START_REF] Lachal | First hitting time and place for the pseudo-process driven by the equation ∂ ∂t = ± ∂ n ∂x n subject to a linear drift[END_REF]). The pseudo-probability of eventually overshooting the level a is given by

P x {τ b a < ∞} =          1 if b > 0, j∈ J e -i θj|b| 1 N -1 (x-a) ℓ∈ J\{j} 1 -e i 2(j-ℓ) N -1 π if b < 0.
Example 7. For N = 4, the above results yield for x ≤ a, in the case where b > 0,

P x {τ b a < ∞} = 1, P x {X b (τ b a ) ∈ dz, τ b a < ∞}/dz = δ a (z) + 1 3 √ b 1 -e 3 √ b (x-a) δ ′ a (z),
and, in the case where b < 0,

P x {τ b a < ∞} = p b 0 (x -a), P x {X b (τ b a ) ∈ dz, τ b a < ∞}/dz = p b 0 (x -a)δ a (z) + p b 1 (x -a)δ ′ a (z) with p b 0 (ξ) = 2 √ 3 e 1 2 3 √ |b| ξ cos √ 3 2 3 |b| ξ + π 6 , p b 1 (ξ) = - 2 √ 3 3 |b| e 1 2 3 √ |b| ξ sin √ 3 2 3 |b| ξ .

Works in progress

The problem of the two-sided barrier {a, b} is much more difficult to tackle than the single one. The variables T ab (t), τ ab and the maximum/minimum functionals are related together according as, for x ∈ (a, b),

P x {τ ab ≥ t} = P x {a ≤ m(t) ≤ M (t) ≤ b} = P x {T ab (t) = t} = lim µ→+∞ E x e -µ(T ab (t)-t) .

Distributions related to T ab (t)

The variable T ab (t) is introduced in [START_REF] Beghin | The distribution of the local time for "pseudoprocesses" and its connection with fractional diffusion equations[END_REF] for defining a local time for the pseudo-process (X(t)) t≥0 . Set Φ(x) =

+∞ 0 e -λt E x e -µT ab (t) dt for λ, µ > 0 and x ∈ R. The function Φ satisfies the system

κ N d N Φ dx N (x) = (λ + µ) Φ(x) -1 for x ∈ (a, b), λ Φ(x) -1 for x / ∈ (a, b), and 
∀k ∈ {0, 1, . . . , N -1}, d k Φ dx k (a + ) = d k Φ dx k (a -) and d k Φ dx k (b + ) = d k Φ dx k (b -).
It seems to be difficult to solve explicitly this system. In the same way, the problem of the joint pseudo-distribution of (X(t), T ab (t)) should be more complicated. 

, α = 1 if N is odd, 2 if N is even.

Distributions related to τ ab

By introducing a pseudo-random walk as in [START_REF] Sato | An approach to the Biharmonic pseudo process by a random walk[END_REF] and studying the similar functional to τ ab (first exit time from a finite interval), we can derive the pseudo-distribution of (τ ab , X(τ ab )) in the case where N is even. We have obtained the following result ( [START_REF] Lachal | From pseudo-random walk to pseudo-Brownian motion[END_REF]).

Theorem 11 [START_REF] Lachal | From pseudo-random walk to pseudo-Brownian motion[END_REF]. The pseudo-distribution of X(τ ab ) has the form where the functions H - p and H + p , 0 ≤ p ≤ N/2 -1, are the interpolation Hermite polynomials such that d q H - p dx q (a) = δ pq , d q H - p dx q (b) = 0, d q H + p dx q (a) = 0, d q H + p dx q (b) = δ pq for 0 ≤ q ≤ N/2 -1.

In particular, the "ruin pseudo-probabilities" are given by P x {τ - a < τ + b } = H - 0 (x) and P x {τ + b < τ - a } = H + 0 (x). 

Distributions related to σ ab (t)

By applying the pseudo-Markov property, it can be easily seen that the distributions of σ ab (t) and τ ab are related together according as, for x ∈ R and σ ∈ [0, t], This equality may be extended to an "excursion" between the thresholds a and b. Indeed, by introducing ς ab (t) = inf{s ≥ t : X(t) / ∈ (a, b)}, we have, for x ∈ R and 0 ≤ σ ≤ t ≤ ς, Acknowledgements. This survey is the text associated with the talk I gave at the fifth IWAP held in Madrid in July 2010 at the session "special stochastic processes" chaired by K.J. Hochberg. It has been a great honor for me to give this talk in the presence of K.J. Hochberg and E. Orsingher who were pioneers in the domain of pseudo-processes.

  ≥ 0 : X(t) ≥ a} for x ≤ a, τ ab = inf{t ≥ 0 : X(t) / ∈ [a, b]} for x ∈ [a, b];

+∞ 0 e

 0 ξλ cos(ξλ) + sin(ξλ) e -tλ 4 dλ,J 1 (t; ξ) = 2 π+∞ 0 cos(ξλ) + sin(ξλ)e ξλ λ 2 e -tλ 4 dλ.

4. 2

 2 Distribution of (τ b a , X(τ b a )) The pseudo-distributions of the vectors (τ b a , X b (τ b a )) and (X b (t), M b (t)) are related together according as, for λ > 0, µ ∈ R and x ≤ a, E x e -λτ b a +iµX b (τ b a ) 1l {τ b a <∞} = λibµ + µ N +∞ 0 e -λt E x e iµX b (t) 1l {M b (t)>a} dt from which it comes that the Laplace-Fourier transform of the vector (τ b a , X b (τ b a )) is given, for λ > 0, µ ∈ R and x ≤ a, by E x e -λτ b a +iµX b (τ b a ) 1l {τ b a <∞} = iµa-iω b j (λ)(x-a) .

Theorem 10 (-i θj |b| 1 N - 1

 1011 [START_REF] Lachal | Joint law of the process and its maximum, first hitting time and place of a half-line for the pseudo-process driven by the equation ∂ ∂t = ± ∂ N ∂x N[END_REF]. The pseudo-distribution of the overshooting place X b (τ b a ) × 1l {τ b a <∞} is given, for x ≤ a, byP x {X b (τ b a ) ∈ dz, τ b a < ∞}/dz = (x-a) δ (p) a (z)where the σj,p 's are given by σj,0 = 1 and for1 ≤ p ≤ N/2 -1, σj,p = ℓ 1 <•••<ℓp ℓ 1 ,...,ℓp ∈ J\{j} θℓ1 . . . θℓp .

  The sojourn time within a strip is used by Beghin & Orsingher ([2]) for defining a local time at 0 for (X(t)) t≥0 : L(t) = lim ε→0 + 1 ε t 0 1l {X(s)∈[-ε,ε]} ds. They obtained the very simple formula +∞ 0 e -λt E 0 (e -µL(t)

P

  x {τ ab ∈ dt, X(τ ab ) ∈ dz}/dt dz = where J p and K p are some functions. The pseudo-distribution of X(τ ab ) is given byP x {X(τ ab ) ∈ dz}/dz = N/2-1 p=0 H - p (x) δ (p) a (z) + N/2-1 p=0 H + p (x) δ (p) b (z)

Example 8 .

 8 In the case N = 4, the above results supplyP x {X(τ ab ) ∈ dz}/dz = H - 0 (x) δ a (z) + H - 1 (x) δ ′ a (z) + H + 0 (x) δ b (z) + H + 1 (x) δ ′ b (z)whereH - 0 (x) = (xb) 2 (2x + b -3a) (ba) 3 , H - 1 (x) = -(xa)(xb) 2 (ba) 2 , H + 0 (x) = -(xa) 2 (2x + a -3b) (ba) 3 , H + 1 (x) = -(xa) 2 (xb) (ba) 2 .

P

  x {σ ab (t) ≤ σ} = P x {∀s ∈ [σ, t], X(s) ∈ [a, b]} = E x P X(σ) {τ ab ≥ t -σ}1l {X(σ)∈[a,b]} .

P

  x {σ ab (t) ≤ σ, ς ab (t) ≥ ς, X(ς ab (t))∈ dy} = P x {∀s ∈ [σ, ς], X(s) ∈ [a, b], X(ς ab (t)) ∈ dy} = E x P X(σ) {τ ab ≥ ςσ, X(τ ab ) ∈ dy}1l {X(σ)∈[a,b]} . = b a p(σ; xz) P z {τ ab ≥ ςσ, X(τ ab ) ∈ dy} dz.