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Abstract

Generalizing the work of [5, 41], we give a general solution to the following prob-
lem: describe the triplets (€2, g, 1) where g = (g% (x)) is the (co)metric associated
to the symmetric second order differential operator L(f) = %Zij 9i(9¥ pd; f), de-
fined on a domain Q of R? and such that L is expandable on a basis of orthogonal
polynomials on £?(u1), and dp = p(z)dz is some admissible measure. Up to affine
transformations, we find 11 compact domains 2 in dimension d = 2. We also give

some aspects of the non-compact cases in this dimension.
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1 Introduction

In this paper, we investigate the following question: for a given set Q C R%, can we
describe a probability measure p(dz) on ), absolutely continuous with respect to
the Lebesgue measure, and an elliptic diffusion operator

L(f) = 39" @05 + 3 b (@)dif,

defined on € such that there exists orthonormal basis for £2(u), formed by orthogo-
nal polynomials ordered according to the total degree, which are eigenvectors of the
operator L.

In dimension 1, given the measure u, there is a unique family of associated
orthogonal polynomials, up a choice of sign. Some of them share extra properties,
and as such are widely used in many areas. This is in particular the case of Hermite,
Laguerre and Jacobi polynomials, which correspond respectively to the measures
with density Ce=*"/2 on R, Coz® e, a > 0, on [0,00) and Cy (1 — 2)27 (1 +
7)1, a,b > 0, on [~1,1] (where C, C,, C, 5 are normalizing constants which play
no role here). In those 3 cases, and only in those ones, the associated polynomials
are eigenvectors of some second order differential operator L: see the classification
of [5, 41]. Those families have been extensively studied, since they play a central
role in probability, analysis, partial differential equations, geometry... (see e.g. [17,
55, 20, 18, 19, 52, 53], see also [21],[45] and references therein ).

The differential operator L may be replaced by some other generator of Markov
semigroup (finite difference, or g¢-difference operators) and the orthogonal polyno-
mials eigenfunctions are Hahn, Kravtchouk, Charlier, Meixner (see [42]). But even
in dimension 1, no classification had ben done for such families, beyond the case of
diffusions (see [5]).

The aim of this paper is to generalize the dimension 1 classification for differential
operators to higher dimensions, and in particular in dimension 2, to give a precise
description of the differential operators, the measures and the domains concerned.

For bounded sets Q € R? with piecewise smooth boundary, one may reduce the
problem to some algebraic question about the boundary. Only in dimension 2, this
problem may be solved entirely, and we provide the complete list of 11 different
bounded sets Q@ C R? which, up to affine transformations, are the only ones on



which this problem have a solution. We also provide a description of the associated
measures and operators. Under stronger requirements on the sets, we also provide
a list of the 7 non compact models which solve the problem in dimension 2.

Further extension to higher dimensional models are provided, although a classi-
fication seems out of reach with the techniques provided here.

Orthogonal polynomials are a long standing subject of investigation in mathe-
matics. They describe natural Hilbert bases in £2 (1) spaces, where y is a probability
measure on some measurable set  in R¢ for which polynomials are dense. As a
way to describe functions f : Q +— R, they are widely used in analysis to describe
many problems in partial differential equations, especially when they present some
quadratic non linearities: since products are in general easy to compute in such
polynomial bases, approximation schemes which consist in restricting the approx-
imation of functions to a finite number of components in those bases are easy to
implement in practice.

In higher dimension, there are several choices for a base of orthogonal polynomi-
als. As such, they are far less simple to describe. However, many families have been
described in various settings. In particular, extension of the previous families (in
the sense that they are eigenvectors of differential operators) have been described
by many authors ( see Koornwinder [30, 31, 32, 33, 6, 36, 35], Krall-Scheffer [37],
Heckman [27], Rosler [46]; see also [2] for a generalization of the Rodrigues formula).
For a general overview on orthogonal polynomials of several variables, we refer to
Koornwinder [34] , Suetin [51] and to the book of Dunkl and Xu [16].

In general, in dimension d > 2, one orders polynomials by their total degree:
if P¢ denotes the set of polynomials in d variables with degree less than n, we are
looking for an Hilbert basis of £2(u) such that for each n, we get a finite-dimensional
basis of PZ. This basis is not unique in general. This is what we call an orthogonal
polynomial basis, and is the object of our study. Observe that other partial ordering
of the set of polynomials would lead to a different classification.

On the other hand, these polynomial bases are not always the best choice to
develop functions or to obtain good approximation schemes. This is in particular the
case in probability theory, when one is concerned with symmetric diffusion processes
as they naturally appear as solutions of stochastic differential equations. Indeed, a
Markov diffusion process (X;)¢>0, with continuous trajectories on an open set of
R? or a manifold, has a law entirely characterized by the family of Markov kernels
(Pr)>0:

Pi(f)(x) = E(f(X:)/Xo = 2),&x x€R?,

where f is in a suitable class of functions. The infinitesimal generator L associated
to (P)e>o is defined by
Pf_
Lf = lim M,
t—o0 t

whenever this limit exists.

This operator governs the semigroup in the sense that if F'(z,t) = P;(f)(z), then
F' is the solution of the heat equation

O F =LF, F(z,0) = f(x).

It is quite difficult in general to obtain a complete description of P; in terms of
the operator L, which is in general the only datum that one has at hand from the
description of (X;), for example as the solution of a stochastic differential equation.



This operator L is a second order differential operator with no zero order component,
moreover semi-elliptic, of the form

L(f) = 3" @05 + Y b (@)ois (1)

Although not easy to compute explicitly, the operator P;, which describes the
law of the random variable X, has a nice expression at least when L is self-adjoint
with respect to some measure p, and when the spectrum is discrete (u is then said
to be the reversible measure for (X;)). When p has a density p which is C! with
respect to the Lebesgue measure, and the coefficients g% are also assumed to be at
least C!, then this latter case amounts to look for operators L of the form

L(f) = - Yo" p0, ). (12

In this paper, we shall restrict our attention to operators which are elliptic in the
interior of the support of u. Such an operator described in (1.2) will be called a
symmetric diffusion operator.

In the case under study, the spectral decomposition leads to some more or less
explicit representation. Namely, if there is an orthonormal basis (e,) of £2(u)
composed of eigenvectors of L,

Len = _)\n €n,

then one has

P(f)(x) = / F@)pele, v)duy).

where

pt(x’ y) = Z e_Anten(x)en(y)'

For fixed z, the function p;(z,y) represents the density with respect to u(dy) of
the law of X; when Xy = z. Of course, this representation is a bit formal, since
that one has to insure first that this series converges, which requires P; to be trace
class, or Hilbert-Schmidt. However, even if it is quite rare that the eigenvalues A,
and the eigenvectors e, are explicitly known, it can be of great help to know that
such a decomposition exists: it provides a good approximation of P, when t goes to
infinity, and as such allows to control convergence to equilibrium. But even when
one explicitly knows the eigenvectors and eigenvalues, it is not always easy to extract
many useful informations from the previous description. It is even not immediate
to check in general that the previous expansion leads to non negative functions.

Even when L is elliptic and symmetric,it’s knowledge, given on say smooth func-
tion compactly supported in €2, is not enough to describe the associated semigroup
P; or any self-adjoint extension of L. One requires in general some boundary con-
ditions. This requirement will be useless in our context, since we shall impose the
eigenvectors to be polynomials. As a counterpart, this will impose some boundary
condition on the operator itself.

As mentioned earlier, we are interested in the description of the situation when
the previous eigenvector expansion coincides with a family of orthogonal polynomials
associated with the reversible measure. Although the situation is well known and



described in dimension 1, such description is not known in higher dimension, apart
from some generic families. At least when the set ) is relatively compact with
C' piecewise boundary, and when the reversible measure p has a C! density with
respect to the Lebesgue measure, we may turn the complete description of this
situation into some problem of algebraic nature: the operators and the measures are
entirely described by the boundary of 2, which is some algebraic surface with degree
at most 2d in dimension d. Then, we completely solve this problem in dimension
2, leading, up to affine transformations, to the 11 different possible boundaries: the
square, the circle, the triangle, the coaxial parabolas, the parabola with one tangent
and one secant, the parabola with two tangents, the nodal cubic,the cuspidal cubic
with one secant line, the cuspidal cubic with one tangent, the swallow tail and the
deltoid.

Once the boundary is known, the possible measures are completely described
from some parameters (as many parameters than irreducible components in the
minimal equation of the boundary of Q). It turns out that in many situations, for
some half integer values of these parameters, the associated operator has a natural
geoemetric interpretation in terms of Lie group action on symmetric spaces. We
then provide explicitly many of these interpretations whenever they are at hand.

We also show that when = R? (that is when the density p of u is everywhere
positive), the only possible measures are Gaussian. Under some extra hypothesis,
we also provide some classification of the non compact models. Further extensions
to higher dimension are also provided.

The paper is organized as follows. In Section 2, after some rapid overview of the
dimension 1 case, we describe the general setting in any dimension, and, when the
set () is relatively compact with piecewise smooth boundary, show how to reduce the
description to the classification of some algebraic surfaces in RY. We also describe
the various associated measures from the description of the boundary of 2.

Then, Section 3 is devoted to the classification of the compact dimension 2
models, which leads to 11 different cases up to affine transformations. Section 4
provides a more detailed description of the 11 models, with some insight on their
geometric content for various values of the parameters. Section 5 describes the case
where no boundary is present, and the main result of this section is that the only
possible measures are Gaussian ones. Section 6 describes the non compact cases
under some extra assumption which extends the natural condition of the compact
case. Finally, Section 7 provides some way of constructing 3-dimensional models
from 2-dimensional ones.

2 Diffusions associated with orthogonal polynomi-
als

2.1 Dimension 1

As mentioned previously, the one dimension case has been totally described for a
long time (see e.g. [5, 41]). We recall here briefly the framework and results.

Let p be a finite measure absolutely continuous with respect to the Lebesgue
measure on an open interval I of R with C! density p (we may assume p is a
probability measure), for which polynomials are dense in £2(u) (this is automatic
when [ is bounded, but it is enough for that in general that p has some exponential



moment). Let (Qp)n>0 be the family of orthogonal polynomials obtained from the
sequence (z™),>o by orthonormalization, e.g. by the Gram—Schmidt process (the
normalization of @, plays no role in what follows). Assume furthermore that some
elliptic diffusion operator L of type (1.2) exists on I (and therefore p(z)dx is its
reversible measure), such that for some sequence (A, ) of real numbers,

Then up to affine transformations, I, u and L may be reduced to one of the three
following cases:

1. The Ornstein—Uhlenbeck operator on I =R

d? d
= —_-— =T —
dx? dx’
a2
the measure p is Gaussian centered: u(dx) = % dz. The family (Q), are
the Hermite polynomials, \,, = n.

2. The Laguerre operator (or squared radial generalized Ornstein—Uhlenbeck op-
erator) on I = R%

d? d
La:l‘w‘f‘(a—l')%, a > 0,
the measure p,(dz) = C,2* te~* dx. The family (Q,,), are the Laguerre poly-
nomials, A\, = n.

3. The Jacobi operator on I = (—1,1)

d? d
_ 2
Jap=1—-2x )@— (a—b—i—(a—&-b)x)%, a,b>0
the measure pi,5(dz) = Cop(1 — 2)*~1(1 + 2)°~! dx, the family (Q,), are the
Jacobi polynomials, A, = n(n+a+b—1).

The first two families appear as limits of the Jacobi case. For example, when we
chose a = b =n/2 and let then n go to oo, and scale the space variable z into z/+/n,
the measure (i, , converges to the Gauss measure, the Jacobi polynomials converge
to the Hermite ones, and %Ja,a converges to H.

In the same way, the Laguerre setting is obtained from the Jacobi one fixing b,
changing = into %‘” — 1, and letting a go to infinity. Then p, converges to pp, and
%Ja,b converges to Ly.

Also, when « is a half-integer, the Laguerre operator may be seen as the image
of the Ornstein—Uhlenbeck operator in dimension d. Indeed, as the product of
one dimensional Ornstein—Uhlenbeck operators, the latter has generator Hy = A —
2.V. It’s reversible measure is e~ 17I°/2dz /(27)%/2, it’s eigenvectors are the products
Qk, (z1) -+ Qi,(z4), and it’s associated process X; = (X}, -+, X{), is formed of
independent one dimensional Ornstein-Uhlenbeck processes. Then, if one considers
R(z) = |z|?, then one may observe that, for any smooth function F : Ry — R,

Hd(F(R)) = 2La(F)(R)7



where a = d/2. In the probabilist interpretation, this amounts to observe that if X;
is a d-dimensional Ornstein—Uhlenbeck process, then | X; /2|2 is a Laguerre process
with parameter a = d/2.

In the same way, when a = b = d/2, J, , may be seen as the Laplace operator
Agn on the unit sphere S¢ in R?*! acting on functions depending only on the
first coordinate (or equivalently on functions invariant under the rotations leaving
(1,0,---,0) invariant), which may be interpreted as the fact that the first coordinate
of a Brownian motion on the unit sphere is a diffusion process with generator J;/2 4/2-
A similar interpretation is valid for J,/; /2 for some integers p and q. Namely,
when one looks at the unit sphere SP¥9~1 € RP*9 and consider functions on SP+4-1
depending only on X = 22+ - xg. Then, setting Y = 2X —1: SPH4=1  [-1,1], for
any smooth function f : [-1,1] = R, Agp+e-1 f(Y) = 4J, 4(f)(Y). Once again, the
associated Jacobi process may be seen as the image of a Brownian motion on the
(p+q—1)-dimensional sphere through the function ¥ = 2X — 1. This interpretation
comes from Zernike and Brinkman [8] and Braaksma and Meulenbeld [7] (see also
Koornwinder [29]). We shall come back to such interpretations in Section 4. Jacobi
polynomials also play a central role in the analysis on compact Lie groups. Indeed,
for (a,b) taking the various values of (¢/2,¢/2), ((¢—1)/2,1), (¢—1,2), (2(¢—1),4)
and (4, 8) the Jacobi operator J, ;, appears as the radial part of the Laplace-Beltrami
(or Casimir) operator on the compact rank 1 symmetric spaces, that is spheres, real,
complex and quaternionic projective spaces, and the special case of the projective
Cayley plane (see Sherman [48]).

2.2 General setting

We now state our problem in full generality, and describe the framework we are
looking for. In this section, we describe the general problem (DOP, Definition 2.1) as
stated above, and we further consider a more constrained one (SDOP, Definition 2.5).
It turns out that they are equivalent whenever the domain €2 is bounded, and that
the latter is much more easy to handle.

Let Q be some open set in R?, with piecewise C' boundary. Let L be a diffu-
sion operator with smooth coefficients on €2, i.e. L, acting on smooth compactly
supported function in 2, writes

L(f) = 36" @05 + 3 b (@)aif, (23)

where g% and b® are smooth functions on 2, and the matrix (¢*/) is symmetric,
positive definite for any = € ). This last assumption of ellipticity could be relaxed
to the weaker one of hypoellipticity, but many of the examples studied below rely
in an essential way on it. Moreover, diffusion operators (operators such that the
associated semigroups are Markov operators) require at least that L are semi elliptic,
therefore that the matrices (g/) are non negative. In the sequel, we shall use the
square field operator, in constant use throughout (see [4]).

T(f.9) = 32 970:5050 = 5 (L(f9) — FL(g) - gL(1))), (2.4)

and observe that for any smooth function ® : R¥ — R and any k-uple of smooth



functions f = (f1,--+, fx) fi : @ = R, one has

L(®(f1,-+ o fo)) = D O5RE(fis £3) + D i ®(E)L(f). (25)

We also consider some probability measure p(dz) = p(z)dz with smooth density
p on Q for which polynomials are dense in £2(u1). This last assumption is automatic
as soon as () is relatively compact (in which case polynomials are even dense in any
LP(n), 1 < p < 00). It would require some extra-assumption on p in the general case.
For example, it is enough for this to hold to require that p has some exponential
moments: fQ eem”du(x) < oo for some € > 0, in which case polynomials are as
before dense in every £P(p), 1 < p < oo.

The fundamental question is to study whether there exists an orthonormal basis
(P,) of polynomials in £2?(u) which are eigenvectors for L, that is that there exist
some real numbers (A,) with LP, = —\,,P,,. Such eigenvalues (\,) turn out to be
necessarily non negative (this is a general property of symmetric diffusion operators,
as a direct consequence on the non-negativity of I').

Recall that P¢ denotes the vector space of polynomials in d variables and total
degree smaller than n, and denote by H? the space of polynomials with total degree
n, orthogonal to P2_; in P4, Then

dim P = (n—l—d), and dim H¢ = <n—|—d—1).
n

n

The choice of an orthonormal basis made of polynomials in £2(u) amounts to the
choice of a basis for HZ, for any n.

From expression (2.3) one sees that L maps P¢ into PZ and H? into He. More-
over, when P € P? and Q € P4, T'(P,Q) € PY,,,.
The restriction of L to P2 being symmetric for any n, one has, for any pair (P, Q)

of polynomials
| PLQdn = [ Quip)dn. (2.6)

Using (2.6) with @ = 1 leads to [, L(P)du = 0 for any polynomial. Applying
this to PQ together with the definition of the operator I', one gets, for any pair
(P, Q) of polynomials

| PL@dn= [ Quipydp =~ [ T(P.Q)dp. (2.7)

Applying with P = Q = P, since T'(P,,, P,) > 0, one sees that A\, > 0.

From equation (2.7), we see that the restriction of L to polynomials is entirely
determined by T' (hence by the matrices (g (x)),eq), and the measure p.

This leads us to state our problem in the following way

Definition 2.1 (DOP problem). Let 2 be an open set with piecewise smooth bound-
ary (which may be empty), p(dx) = p(x)dx a probability measure with smooth pos-
itive density on Q, such that polynomials are dense in L?(u), and let L an elliptic
diffusion operator with smooth coefficients on Q. We say that (Q,L, 1) is a solution
to the Diffusion-Orthogonal Polynomials problem (in short DOP problem) if there
exists a complete basis of L>(11) formed with orthogonal polynomials which are at the
same time eigenvectors for the operator L.



Let us start with few elementary remarks. The first basic but important obser-
vation is that our problem is invariant under affine transformations:

Proposition 2.2. If (Q,L,u) is a solution to the DOP problem, and if A =
(AL, ..., AY) is an affine invertible transformation of RY, so is (Q1,L1, 1), where
0 = A(Q), w1 is the image measure through A of p and

Li(f) =L(foA)o (AT).

Proof — Affine transformations map polynomials onto polynomials with the same
degree. It suffices then to see that the associated operator Li(f) = L(f o A) o
A~ is again a diffusion operator, which has a family of orthogonal polynomials as
eigenvectors. Moreover, orthogonality for the measure p is carried to orthogonality
for the measure ;.
|
Moreover, the following Proposition shows that solutions to the DOP problem
are stable under products

Proposition 2.3. If (1, L1, u1) and (22, Lo, pa) are solutions to the DOP problem
in R4 qnd R respectively, then (21 x Qa,Lq @ Lo, 1 ® pe) is also a solution.

Proof — Here L = L; @ Ly denotes the operator acting separately on x and y:
Lf(z,y) = Lyf + L, f. Similarly, ytq1 ® pe is the product measure. The proof

is then immediate: if (P,gl)) and (Pq(z)) are the associated families of orthogonal

polynomials, the polynomials associated to L are Py q(x,y) = P,gl)(x)Pq@)(y).

Next, we describe the general form of the coefficients of the operator L.

Proposition 2.4. IfL is a solution to the DOP problem, in the representation (2.3)
of L, for anyi=1,--- ,d, b’(z) € P{ and for any i,j =1,--- ,d, g" (z) € P{.

Proof — Since L maps P into P? for any n € N, this follows from the fact that
bi(z) = L(z;) and g¥z) = T'(x;, ;).
[ |
The integration by parts formula (2.7) is valid for polynomials only. It may be
interesting (and crucial) to extend it to any smooth compactly supported functions.
Tis leads us to the Strong Diffusion Orthogonal Polynomials problem.

Definition 2.5 (SDOP problem). The triple (2, L, 1) satisfies the Strong Diffusion
Orthogonal Polynomial problem (SDOP in short) if it satisfies the DOP problem
(Definition 2.1) and in addition, for any f and g smooth and compactly supported
in R%, one has

/QfL(g) duz/QgL(f)du- (2.8)

Observe that we do not restrict formula (2.8) to functions f and g compactly
supported in Q. However, restricting (2.8) to such functions, and writing p(dz) =
p(x) dx, for any f smooth and compactly supported in 2, L(f) may be defined by
formula

L) =, S (e misr) (29)



and therefore L is entirely determined from the (co)metric g = (¢*/) and the measure
density p(z). We therefore talk about the triple (£2, g, p) as a solution of the SDOP
problem.

Moreover, when (2.8) is valid, for any pair of smooth functions compactly sup-
ported in 2, we also have as before

[ fu@dn=- [ 1(.9)dn (2.10)
Q Q

Proposition 2.6. If (Q, g, 1) is a solution to the SDOP problem, then there exist d
polynomials L; € P, i =1,--- ,d (that is polynomials with degree at most 1) such
that, for any x € Q and anyi=1,--- ,d

3999, log(p()) = L' (@) (2.11)

Observe that given that g™/ (z) belong to P¢, Proposition 2.6 is equivalent to the
fact that the coefficients b?(z) belong to P{.

Indeed, the distinction between DOP and SDOP solution is only relevant in the
non compact case.

Proposition 2.7. Whenever Q is relatively compact, any solution of the DOP prob-
lem is a solution of the SDOP problem.

Proof — We just have to whow that for relatively compact sets €2, equation (2.10)
is satisfied for any pair (f,g) of smooth compactly supported functions. Since €2
is relatively compact, for any f smooth and compactly supported in R? (and not
necessarily in Q), we first choose some compact K which contains both the support
of f and Q. There exists a sequence (P,) of polynomials such that (P,) and (LP,)
converge uniformly on K to f and Lf respectively. Indeed, one first choses on K
a polynomial sequence (R,) converging uniformly on K to ¢ . f, such that each
appropriate integral of R,, converges uniformly in K to the corresponding derivative
of f. The functions ¢*/ and b* being polynomials, they are bounded on K. Therefore,
(P,) and (LP,) converge uniformly, and hence in £2(u), to f and L(f) respectively.

Choosing such approximations (P,) and (Q,) for f and g respectively, we also
see that T'(P,,®@,) converges uniformly on K to I'(f,g). Then, it is clear that
formula (2.7) extends immediately to the pair (f,g)). |

From now on, we shall call A the determinant of the matrix (¢%/). Since each
g € PY, we see that A € Pgd, and we decompose it into irreducible real factors.

A:A;’“A;np

Furthermore, for every irreducible real factor A; which may be factorized in
C[X,Y], we write this factorization as A; = (R; +4Z;)(R; — iZ;), where R; and
Z; are real. By convention, we shall write Z; = 0 when the factor A; is complex-
irreducible.

As a consequence of Proposition 2.6, we get

Corollary 2.8. For any solution of the SDOP problem, the density p is an analytic
function on Q. The only points where p may vanish or be infinite lie in the algebraic
set {A =0}.

10



(We shall see a complete description of the density measures p in Proposi-
tion 2.13.)
Proof — Let (g;;) be the inverse matrix of (g*/). Since for any (ij), g* € Pg, then for
any (i), gi; is a rational function, whose denominator may vanish only on {A = 0}.
From equation (2.11), one sees that 0; log p = Zj gi; L7, where L7 € P{. Therefore,
log p may only vanish or become infinite on {A = 0}. Every partial derivative of
log p is a rational function, and hence p is analytic.

[ |

We can now state the main result of this section. Recall that Aq,---, A, are the
real irreducible components of A = det(g%). Since no one of them may vanish in Q,
we always assume that they are positive in Q.

Theorem 2.9.

1. Suppose that (Q, g, p) is a solution to the SDOP problem. Then the boundary
0N lies in the algebraic hyper-surface {A = 0}. Moreover, if Ay --- A, denotes
the irreducible equation of O, then for any k =1,--- |r, and anyi=1,--- ,d,
there exists some polynomial Si € P& such that, for anyi=1,---,d

Z gijﬁjAk = S}iAk-

J

2. Conversely, assume that Q) is relatively compact and has a boundary 02 which
is an algebraic hyper-surface with irreducible equation A=A A =0
Suppose moreover that there exists a (co)metric (") (x) positive definite on
such that for any (i,7), g € P¢ and, for any k, for any i = 1,--- ,d, there
exists some Si € P¥ such that

ZgijajAk = Si;Ak' (212)

J

Then, for any real numbers ai,--- ,a, for which p(x) = A" - - Al is in-
tegrable on Q, (Q,g,Cp) is a solution to the DOP problem, where C is the
normalizing constant which turns Cp(x)dx into a probability measure on €.

3. Property of point 2 still holds if one replaces the family of equations (2.12) by

> g70;,A = SA, (2.13)

ij
for some S € P{ and where A is the irreducible equation of OS.

Remark 2.10. In theorem 2.9, saying that 02 has Ay--- A, = 0 as irreducible
equation means first that every real polynomial Ay, is complez-irreducible, that 092 C
{A1--- A, =0}, and moreover that 0SY is not included in any of the subsets { [, .; A;
0} for anyi=1,--- ,r. But it may (and will in general) be only a part of the set
{Ay--- A, =0}

Proof — Let us first prove the first point. From Corollary 2.8, one may consider
some regular point xy on the boundary 9Q where 0 < p(z9) < oo. Then p is
continuous in a neighborhood of zy, and we may assume that p(z) is smooth and
positive in some ball B(xzg,r). We may also assume that 2y does not belong to any
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of the sets A; = 0, where A; is one of the real irreducible components of A which
is not complex irreducible (such points belong to an algebraic set of codimension
at least 2). We may also assume that zy does not belong to any singular set of
{A; = 0} for any 1.

Then, we know that, for any function f smooth and compactly supported in
B(xg, ), one has, from Proposition 2.7,

/ fL(z1) p(x)dx + / L(f,z1) p(x)dx = 0.
Q Q
Consider then the 1-form wy given by

wf:Zgljfpdxl/\.../\Ea-c;/\.../\dxn.
J

One has dwy = p(z)(L(f,z1) + fL(x1))dz and therefore [, dwy = 0. From Stokes

formula, we deduce that
/ wf:/ gljnjfpdxzo,
o0 Fol9)

where 7n; is the normal vector on the boundary. This being valid for any f smooth
and compactly supported in B(xg,r), we deduce that gljnj =0 on 9Q N B(xg,r).
We may do the same operation for any coordinate z; replacing x1, and we deduce
that for any i,

Zgijnj =0 on 9Q N B(zo, ). (2.14)

J

From this we see that the normal vector to the boundary belongs to the kernel of
the matrix ¢/, and therefore that 79 € {A = 0}. Moreover, x¢ being a regular
point, 9Q N B(xzg,r) must belong to some regular component of some algebraic set
Ay =0 (where Ay, is indeed complex irreducible), and hence that the normal to the
boundary to 90 at zg is parallel to (0;Ay), since g is a regular point of {Ay = 0}.
We may therefore replace n; by 0;A) in the boundary equation (2.14). Then, the
polynomial 3, g 9;Aj which is of degree deg(Aj) + 1 vanishes on {A;, = 0} in
a neighborhood of z(, hence everywhere. From the Hilbert’s Nullstellensatz, and
since Ay is complex irreducible, this shows that there exists some polynomial Sy
with deg(Sy) < 1 such that >, ¢"9;A, = SiAy: the first assertion is proved.

For the converse assertion, assume that equation (2.12) is true for any ¢ and any
Ay € 052, Then, the metric ¢g¥/ has a non trivial vector in its kernel on any regular
point of the boundary 0f2. Therefore, its determinant A vanishes on those points,
and A divides A. (One sees then that the equations (2.12) may only be satisfied
when deg(A) < 2d.) Moreover, we have on any regular point of the boundary,
and for any ¢ = 1,--- ,d, gijnj = 0: this shows that for any pair (f,g) of smooth
functions compactly supported in R, and for the operator Lo(f) = Zij 0:(g"0;f),
one has

/QfLo(g)dJJZ/QgLo(f)da:.

This is the case in particular for any pair (P, @) of polynomials, since we may extend
them outside 2 into smooth compactly supported functions. But from the form of
Ly, it is clear that Ly maps ’P,‘j into 73,‘3: therefore, on 73,‘3, with the Euclidean
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structure inherited from the £2 norm associated with the Lebesgue measure, Lg is
a symmetric operator which may be diagonalized in some orthonormal basis. This
being done for any k provides an Hilbert basis of £2(€, dz) of orthogonal polynomials
which are eigenvectors for Ly.

Moreover, the boundary equations (2.12) show that for the measures with den-
sities p(z) = AJ* --- A%, the associated operator L, = % >0 (9%7pd;) also maps
Pd into P¢. It remains to show that it is symmetric on the set of polynomials. For
this, we first observe that if the measure p(x)dz has to be finite on €, then a; > —1
for any 4, and, considering the behavior of A near a regular point xy € 0f2, one sees
that g n;p goes to 0 when z goes to the boundary 99 (for this last point, replace
(n;) by the unit vector parallel to 9;A near the boundary). This is enough to assert
that for any pair (f, g) of smooth functions, one has

[ L0 pla)da = [ gLo() pla)d,
Q Q

Then, the associated operator L, is symmetric on 73,? for the Euclidean structure
inherited from L£2(pdz), and the same argument that we used for the Lebesgue
measure holds.

For the last point, first observe that (2.12) may be written as

Zgijaj log A = S},

J

and adding those equations on k leads to (2.13). Conversely, formula (2.13) reads
Zgijaj(ZIOgAk) =5
j k

and taking the limit of a regular point z € {A), = 0}, one sees that 3, g 0; Ay, = 0
on the set {A; = 0}, and by Hilbert’s Nullstellensatz, one gets that >, " 9;A), =
S,iAk for some S,i S Pf.

[ |

Remark 2.11. The equation A=0 of the boundary being given, the problem of
finding a symmetric matriz (gV)(x) formed with second degree polynomials and first
degree polynomial S* such that

g”@A == SZA

is a linear problem in the g and S* coefficients (there are d(d+1)?(d+2)/4+d(d+1)
such coefficients). In order to get a non trivial solution, the determinant of this
equation (which depends only on A) has to be 0.

Unfortunately, the number of variables involved is so high that in practise this
condition is useless, except in low dimension (d = 2,3, e.g.) for which it provides
an easy way to determine if a given set § is a good candidate for our problem. Clas-
sifying all these sets is a much more difficult question, due to the affine invariance
of the problem. But provided A is given and is an admissible solution, finding the
metric g is in general an easy problem.
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Remark 2.12. When the boundary equation has mazximal degree 2d, then it is
proportional to the determinant of the metric A. In this case, if A='/2 is integrable
on the domain , then the Laplace-Beltrami operator associated with the co-metric g
is a solution of the DOP problem on Q. It turns out that in any example where it is
the case, the associated curvature (in dimension 2 the scalar curvature) is constant,
and even either 0 either positive. We do not know for the moment how to prove it
directly from the equation of the metric, even if one restricts the attention to the
scalar curvature.

We turn now to the general description of the admissible measures.

Proposition 2.13 (General form of the measure).  Suppose that the determinant
A of (g7) writes A = A" - A", where A; are real irreducible. Then, there exist
real constants (a, B;), and some polynomial Q with deg(Q) < 2n — deg(A), such

that
v Q T

= A | exp ( — + B, arctan —J) 2.15
p H| AT AT Z 7 (2.15)

Proof —

Let us start with the first point. With h = log p, one has from equation (2.11)
on=Y gL 2.16)
J

where g is the inverse matrix of g and L* € P{. But g = A~1§, where g is matrix
of co-factors of g. Then, g;; is a polynomial which belongs to Pg, ,, and therefore
0;h = A71C;, where C; € P, .

Let us extend the differential form dh to an holomorphic one w in the complex
domain €%\ {A = 0}. By Alexander duality (see [1, 44, 38], if A, ¢ = 1,--- ,m,
denote the irreducible complex factors of A, then there exist complex numbers
(71, ,Ym) such that w — Zp vpdlog(Ap) = dF}, is exact. We chose a generic
coordinate system such that deg, A = deg A for any ¢ = 1,---,d. This remains
true for any small perturbation of the coordinate system. From the form of w, we
know that R .

C; 0;A C;
9iFy = ZZ - ZW})% = sz
P P
with deg C; < 2d — 1.

From elementary calculus, we know that, when fixing all variables x; for j # 7,
Q= Fy Hp AZL"_l is then a polynomial in x; with degree at most ng = 2d — deg A.
Therefore %Q = 0 as soon as maxk; > ng. Hence, we know that Q is a
polynomial,land dthat deg,. @ < ng, for any i = 1,--- ,d. Moreover, since the same
remains true for any small perturbation of the coordinate system, this shows that
deg @Q < ng.

We now deal with the real form of p. Whenever there is a real irreducible
factor A, of A which is C-reducible, its irreducible decomposition in C? writes
A, = (R, +1Z,)(R, —iZ,), and the corresponding factors in p must be of the form

Vo l0g(Ryp + iZp) + Yp log(Rp — iLp)
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which writes in real form

7
aplog A, + By arctan(R—p) .
P

3 The bounded solutions in dimension 2

In this Section, we concentrate on the DOP problem in dimension 2 for bounded
domains. The central result of this section is the following

Theorem 3.1. In R2, up to affine transformations, there are exactly 11 relatively
compact sets of which there exist a solution for the DOP problem: the triangle, the
square, the disk, and the areas bounded by two co-axial parabolas, by one parabola
and two tangent lines, by one parabola, a tangent line and the line parallel to the axis
of the parabola, by a nodal cubic, by a cuspidal cubic and one tangent, by a cuspidal
cubic and a line parallel to the axis of the cubic (that is a line passing through the
infinite point of the cubic), by a swallow tail, or by a deltoid curve (see Section 4
for more details).

Since we look at bounded domains, we may therefore reduce to the SDOP prob-
lem, and we solve the algebraic problem described in Section 2.2 in the particular
case of dimension 2. For basic references on algebraic curves, see Walker [54].

We thus are reduced to the following. Let

= )

be a symmetric matrix whose coefficients a, b, ¢ are polynomials of degree 2 in R[z, y].
Let A a square free polynomial in R[z,y] which is factor of A := ac — b? such that
for each irreducible factor Ay of A,

a01A1 + bOs A1 = L1 (317)
b81A1 + 082A1 = L2A1 (318)
where deg L; < 1,7 =1,2. We want to describe such a, b, c, A.

3.1 A preliminary study of Newton polygons of a,b,c and A

In this section, we assume deg A; > 3 and Ay, g are in C[z,y]. Indeed we shall
also use projective coordinates (X : Y : Z) such that x = %, y= % and denote Lo,
the line Z = 0. Let v be an analytic branch of the curve A; = 0 at some finite or
infinite point, i.e. +y is a germ at 0 of a non-constant meromorphic mapping C — C2,
t — (&(t),n(t)) such that Ay(&(t),n(t)) = 0. Let vy : Clz,y] — Z U {oo} be the
corresponding valuation, i.e. v,(f) = ordyf(£(t),n(t)) where

noifut) =3 s, ugt® and u,, # 0,

ordeu(t) = {oo if u(t) =0

In this section we suppose that ~ is a fixed branch of A;. In particular, it is
not a branch of a multiple component of A. We denote p = v,(x) = ord(£) and
g = vy(y) = ord¢(n) (we assume here that x and y are parametrized in Puiseux
series in £(t) and n(t)).
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Lemma 3.2.
(a) Suppose that none of &(t), n(t) is constant. Then

vy(a) — vy (b) = v, (b) — v,(c) = ords€ — ordyn). (3.19)

(b) Suppose that n(t) is constant. Then v (b) = vy(c) = oo, i.e., b and ¢ vanish
identically on .

Proof — (a) Differentiating the identity A;(&,n) = 0, we obtain
581A1 + 7:]62A1 =0

Hence, ]
U.y(alAl) + ordtf = ’U,Y(agAl) + Ordt?:]. (320)

By (3.17) and (3.18) we have

0y(01A1) +vy(a) = vy(02A1) +vy(b) and  vy(91A1) +v4(b) = v4(02A1) 4 v4(c).

(3.21)
Let us show that v,(9241) # oo. Indeed, otherwise both A; and 92A; vanish
identically along ~, hence Ay divides 0;A; which implies £ is constant. Similarly
we show that v, (01A) # co.

Suppose that one of a, b, or ¢ vanishes identically along . Then (3.21) implies
that all of them vanish identically along . Then A; divides a, b, and c. Hence,
A? divides A = ac — b? which is impossible because v is not a branch of a multiple
component of A.

Thus, each of v, (a), v4(b), vy(c) is finite, and (3.19) follows from (3.20), (3.21).

(b) Immediate from (3.20). |

As usually, for a polynomial u = > uz*y!, we define its Newton polygon N (u)
as the convex hull in R? of the set {(k,[) | ug # 0}.

We have v, (z*y') = L, (k,1) where L. is the linear form L. (r,s) = pr + gs and
p = vy(z), ¢ = vy(y).. Thus, for any polynomial u(z,y) we have v, (u) > miny(,) L
and if the minimum of L., is attained at a single vertex of N'(u), then then v, (u) =
mll’l/\/(u) L"/

The notation of the style p = [§80} (any combination of o and e) means that
p is a linear combination of monomials corresponding to the e’s. For example,
b= Ego} means that by; = b1g = byg = 0 (the coefficients of y, x, and z?) and the

other coefficients may or may not be zero.

In the following Lemma, we investigate the different values for (p, ¢) that will be
needed in our case: since A is of degree less than 4, 1 < p < ¢ < 4. The cases p or
q negative correspond to points at infinity and can be reduced to the positive case
by projective change of coordinates. For a listing of all the kind of singularities, see
Table 1 in Section 3.2.

Lemma 3.3.
(a) If (@) = (1,2), then b= [3g ] and c= |
| {

(b) If (p,q) = (1,3), then b=
mult(070)A Z 2.

(c) If (p,q) = (1,4), then a =

.—.
cee
oe
°

—_

S
I

1
L)
oe
o

—_

S
3
IS
)
I

1
00
00
o
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(d) If (p,q) = (—1,0), then b= {5:0} and ¢ = [Ezo],

(e) If (p,q) = (—1,1), then b= {580} and ¢ = [580}‘
(f). p=—1 and 2 < g < oo is impossible.

(9) If (0,0) € {(=2,-1), (=3,2), (~4,-3)}, then b= |33 | and c = [3g ].

(h) If (p,q) = (—2,1), then b= [580} and ¢ = [égo].

(i) (p,q) = (3,4) is impossible.

() (p,q) = (=3,—1) corresponds to a cusp Ay at infinity, with Lo, tangent to the
cusp. It leads to a non compact model, and will further be eliminated below (case
(i2) in further Corollary 3.8).

Proof — (a) If (p,q) = (1,2), then v,(£§) = 0 and v, (7)) = 1. Hence, by (3.19) we
have vy (b) = vy(a) +1 > 1 and v,(c) = vy(a) + 2 > 2 and the result follows from
the fact that v, (1) = 0, v, (z) = 1, and v, (z*y") > 1 when (k,1) & {(0,0), (0,1)}.

(b) If (p,q) = (1,3), then v,(§) = 0 and v, (1) = 2. Hence, by (3.19) we have
v4(b) = vy(a) +2 > 2 and vy(c) = v4(b) + 2 = vy(a) +4 > 4. The values of v, on
the monomials of degree < 2 are:

v,(1) =0, vy(z) =1, vv(xZ) =2, v,(y) =3, vy(zy) =4, U,Y(QQ) =6. (3.22)

Thus, v, (b) > 2 implies bog = b1 = 0 and v, (c) > 4 implies cog = c19 = 20 = co1 =
0. In particular, mult ¢yb > 1 and multg g)c > 2. Hence, mult(o’o)(b2 —ac) >2

(c) If (p, q) = (1,4), then vy (&) = 0 and v, (1) = 3. Hence, by (3.19) we have
0 (¢) = 0y () = v, (b) — v (a) = 3 (3.23)
The values of v, on the monomials of degree < 2 are:
U’Y(l) =0, ’U,Y(J)) =1, U7($2) =2, ’UW(y) =4, 'U’Y(xy) =5, U’Y(yQ) =8.

Hence, we have {v,(a),v,(b),vy(c)} C {0,1,2,4,5,8}. Under this condition, (3.23)
is possible only for v, (a) = 2, v,(b) = 5, vy(c) = 8 and the result follows.

(d) (p,q) = (—1,0). Similar to (a)—(c). If 7 = 0, we use Lemma 3.2(b).

(e) If (p,q) = (—1,1), then by (3.19) we have v, (c) — v, (b) = v4(b) — v, (a) = 2,
hence v, (a) = =2, vy(b) = 0, vy(c) = 2 and the result follows. Note that v, (1) =
vy (zy) = 0 but the condition v, (c) = 2 does not imply coo = ¢11 = 0 because it is
possible that that the initial term of ¢11£n cancels against —cqq.

(f) We have v, (c) — vy(b) = v(b) — vy(a) = ¢+ 1 and v, (22, 2,1, 2y, y,y?) =
(—2,-1,0,9 — 1,4,2¢q). Thus, vy(a,b,c) = (-2,9 — 1,2q), ie. b = [égo} and

c = [égo}, Therefore, A = y?f(z,y). This is impossible because v cannot be a
branch of a polynomial of degree < 2.

(g,h) The proof is similar to the previous cases.

(i) We have v,{a,b,c} C v, {1, 2,y,2% zy,y*} = {0,3,4,6,7,8}. Combining this
with v, (¢) — vy (b) = vy(b) —v,(a) = ordy) —ord;{ = 3—2 = 1, we obtain v,(a) = 6,
vy(b) =7, vy(c) = 8, 1le. a = {ég.], b= {égo}, c= [égo}. Thus, multg(A) = 4,
i.e., A =0 is a union of four lines. Contradiction. |
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Corollary 3.4.

(a). A cannot have a singularity of type Eg at a finite point.

(b). Suppose that v is a singular branch of Ay of type As at a point P € Lo and
Lo is not tangent to v at P. Then there is another branch of A at P.

Proof —

The point (a) follows from Lemma 3.3(i).

Point (b) corresponds to (p,q) = (—2,1) (whereas (—3,—2) corresponds to a
cusp on Lo tangent to Lo,). We are therefore in case Lemma 3.3(h). Hence
ac — b? has terms of type (1,y,y2,y3, y*, xy, 2y, 233, v%y?) hence with valuations
(0,1,2,3,4,—1,0, 1, —2) hence the only remaining terms are in (1, y, xy?, ry3), which
gives in (z,y) = (%, %) = (2%, 292, 23y, y?): we conclude observing that the lower
part of the Newton polygon has at least two edges. |

Lemma 3.5. Let v be a flex or planar branch of Ay at P. Then

(a) if P € Ly, then ~y is tangent to Loo.

(b) if P ¢ Lo, then multp(A) > multp(Ay), in particular, this is impossible when
A is irreducible.

(c¢) All possible planar points are in Lo.

Proof — (a) Follows from Lemma 3.3(f).

(b) Let us choose affine coordinates so that P is the origin and the axis y =
0 is tangent to 4. Thus, ordyy = (1,9), ¢ > 3. By Lemma 3.3(b,c), we have
multg,0)A > 2, i.e., there is another branch 3 of A passing through the origin.
Since deg, A(x,0) < 4 the multiplicities of the intersection of the axis y = 0 with ~
and S are 3 (i.e,, ¢ = 3) and 1 respectively.

It remains to prove that 8 cannot be a branch of A. Suppose it is. Let us choose
coordinates so that the axis = 0 is tangent to 3. Then Lemma 3.3(a,b) applied to
B implies

app = ap1 = 0. (324)

(we swap « <> y and a <> ¢ in Lemma 3.3). Hence, v,(a) > 1. By (3.19), we have

0(0) = 0, (8) = vy (b) — vy (a) = 2 (3.25)

(see the proof of Lemma 3.3(b)). Recall that the values of v, on monomials are
given by (3.22). Hence, {vy(a),vy(b)v,(c)} C {0,1,2,3,4,6}. Combining this with
(3.25) and vy(a) > 1, we obtain v,(a) = 2, vy(b) = 4, vy(c) = 6. By (3.24), this
implies mult g g)(a) = multg y(b) = mult(y g)(c) = 2, hence mult(gg)(A) = 4. This
means that A is a union of four lines passing through the origin. Contradiction. =

Lemma 3.6. Let~y be a branch of A1 at P € L,. Suppose that there exists a line L
passing through P which is tangent to a branch B of Ay at a finite point Q. Suppose
also that B,y ¢ L. Then

(a) B is smooth at Q.

(b) multp(A) > 2.
Proof — It is enough to treat the case when + is smooth and not a branch of L. Let

us choose coordinates so that L is the axis y = 0 and and [ is tangent to L at the
origin. Then all possibilities for v are covered by Lemma 3.3(d)—(g) and in all these

[ 4 .
cases we have b,c = {:30}’ ie., by = c20 = 0.
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(a) Let 8 = (&) and (p,q) = ord¢(&,n). Suppose that § is singular. Then
min(p,q) > 2. We have also ¢ > p (because L is tangent to ) and ¢ = (L.8) <
3 (because (L.8) + (L.y) < 4). Thus, (p,q) = (2,3) hence, by (3.19), we have
vg(c) —vg(b) = v3(b) — vg(a) = 1. Combining this fact with vg(1,z,y, 2%, zy,y?) =
(0,2,3,4,5,6) and by = cz0 = 0, we obtain vg(a,b,c) = (4,5,6), i.e, a = {8. }

ooe|’

= [80 }7 c= [égo}. Thus, A is homogeneous. Contradiction.

(b) Combining bog = cgp = 0 with Lemma 3.3(a) applied to 8, we obtain b =

Oeo [e]e)e)
L, this is already proven in Lemma 3.3(f,g). Otherwise we have v,(c) > v,(zy),

and the condition cgg = c¢19 = 0 implies that the value v, (zy) cannot be attained
on other monomials of c. |

[:o }, c= {:o } Thus, it is enough to show that ¢;; = 0. Indeed, if v is tangent to

3.2 The duals of quartic curves

Let C be an irreducible algebraic curve in P? of degree d > 2. Let C be the dual
curve in P? is the set of all lines in P? endowed with the natural structure of the
projective plane, and C is the set of all lines in P2 which are tangent to C.

If t — ~(t) is a local analytic branch of C, then we denote the dual branch of C
by 7. It is defined by ¢ — J(t) where (t) is the line which is tangent to C' at ().

Let v be a local branch of C. Let us choose affine coordinates (X,Y) so that v is
given by X = £(t), Y = n(t), £(0) = n(0) = 0. Then the equation of the line §(¢) is
(X =€) — (Y —n)é = 0. Thus, in the standard homogeneous coordinates on P? cor-
responding to the coordinate chart (X,Y’), the dual branch % has a parametrization
of the form o

Ees (5 =€ 5 én— &) (3.26)

and we obtain the following fact.

Lemma 3.7. Let vy be a local branch of C and 7 the dual branch of C. Let (X,Y)
be an affine chart such that v has the form X = £(t), Y = n(t) with 0 < p < q where
p = ordi§ and g = ordyn. Then, in suitable affine coordinates (X,Y) on P2, the
branch 7 has the form X = £(t), Y = i(t) with ord,€ = q — p and ord,n = q. O

For a point P € C, we denote the local genus of C' at P by dp or 6p(C). Tt is
defined as the number of double points appearing in a generic perturbation of all
local branches of C' at P. We have

25p:,u—|—7“—1:Zmi(mi—1)

where p is the Milnor number and 7 is the number of local branches of C' at P, and
mi,Mmsa, ... is the sequence of the multiplicities of all infinitely near points of P. If
P is a non-singular point of C, then dp = 0. It easily follows from the definition
that

op =0% + Zép(’yi) where 0% = Z (¥ - 5), (3.27)
i=1 1<i<j<r
1, ., % are local branches of C' at P, and (v; - v;) is the intersection number of v;
and y; at P. Let g be the genus of C'. By the genus formula, we have
29+2 ) 0p=(d—1)(d-2). (3.28)
PeC
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Combyning (3.27) and (3.28), we obtain

29+2n+2) 5(y) =(d—1)(d—2) (3.29)

where « runs over all local branches of C'and n =3} . 59,

For a local branch « of a curve C' at a point P, we denote the multiplicity of
at P by m(v). If v is parametrized by X = £(t), Y = n(t) in some local coordinates
X,Y, then m(y) = min(ord;, ord;n). We set also e(vy) = 28(v) +m(y) — 1. Let d
be the degree of C. In this notation, the first Pliicker formula (the class formula)
takes the form

d=d(d—1)—2n-) €() (3.30)

Y

and the second Pliicker formula (the Riemann-Hurwitz formula for a generic projec-
tion of C' onto a line) is

2-29=2d—d-> (m(¥)-1) (3.31)

(in the both formulas 7 runs over all local branches of C).

If d = 4, then > d(y) < 3 by (3.29), hence all singular branches are of the types
Ag, Ay, Ag and FEg (recall that Ay and Eg are given by v? = uF*1 and v® = u? is
suitable curvilinear local coordinates). In Table 1, we list all types of local branches
v(t) = (&(t), n(t)), ordi€ = p, ordyn = ¢, p < ¢, and their invariants contributing to
(3.29), (3.30), and (3.31) (we use Lemma 3.7 to compute p = ord;£ and ¢ = ord,).

Table 1
Pa) (349 5(7) €y)  m(y) -1
generic point (1,2) (1,2) 0 0 0
flex point (1,3) (2,3) 0 0 1
planar point (1,4) (3.4) 0 0 2
Ay (2,3) (1,3) 1 3 0
Ay (2,4) (2,4) 2 5 1
Ag (2,4) (2,4) 3 7 1
Es (3,4) (1,4) 3 8 0
Thus, denoting the number of branches of the respective types by f (flex), p
(planar), as, a4, ag, and eg, we rewrite (3.29) — (3.31) as
_g+n+ax+2a4 + a6 + 3eg = 3,
d =12 —2n — 3as — bay — Tag — 8eg,
2—29g=2d—4—f—2p—a4— ag.
Eliminating ¢ and d, we obtain
f+2p=24—8ay — 15a4 — 21ag — 22eg — 6n. (3.32)

Since all the ingredients (including g) are non-negative, we obtain the following fact.
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Lemma 3.8. Suppose that C is an irreducible quartic curve in P? which has at most
one smooth non-generic (i.e., flex or planar) local branch. Then C is rational (i.e.,
g = 0), all singularities of C are irreducible (i.e., n = 0), and one of the following
cases occur:

e (i) (tricuspidal quartic) C' has three singular points of type A2 and no smooth
non-generic branches (i.e., f = p =0). The dual curve C is a nodal cubic.

e (i7) (swallow tail) C has two singular points of type Az and one planar point
(i.e., f =0, p=1). The degree of C is 4, it has one singular point of type
FEg and two flex points. The equation of C' in suitable affine coordinates is

_ 4 2
y=x" +x°.

e (iii) Each of C' and C has two singular points of types Ay and Ay and one flex
point (i.e., f =1, p=0), the degree of C is 4,

e (iv) Each of C and C has one singular point of type E¢ and one planar point
(i.e., f =0, p=1). The degree of C is 4. The equation of C in suitable affine
coordinates is y = x*.

In each of the cases (i)—(iv) the formulated conditions uniquely determine the curve
C up to automorphism of CP2.

Proof —
Substituting each nonnegative solution of g + n + as + 2a4 + 3ag + 3eg = 3 into
(3.32), we see that the only cases when f 4+ p =1 are:

(i) d=3,ay=3; (iti) d=4, as=as=1, f=1,
(Zl) d:4,a2:27p:n:17 (Z’U) d:4766:p:1~

Let us show that these cases are uniquely realizable. In cases (ii) and (iv) this follows
from the fact that C has the singularity Eg, hence it has the equation y = f(z),
deg,, f = 4, in suitable coordinates. By affine changes of coordinates, this equation
reduces to y = z* or y = 2* + 22

In case (i), the dual curve is a nodal cubic. It is unique up to projective trans-
formation, thus C' is also unique.

In case (7i1), let us choose homogeneous coordinates (X : Y : Z) so that Ay and
Ay are at (0:0:1) and (0: 1:0) respectively and the lines Y = 0 and Z = 0 are
tangent to C at these points. Let F(X,Y, Z) = 0 be the equation of C, The choice of
the coordinates provides F = u30 X°>Z +G where G = ugo X *+u91 X2Y Z+upY2Z2.
Moreover, the fact that F' has a single branch at (0 : 1 : 0) implies that G is a
complete square. Hence, rescaling the coordinate, we can obtain ugg = ugg = uge =
]., U1 = 2.

|

Corollary 3.9. Suppose that C is an irreducible quartic curve in C? which satisfies
the restrictions provided by Lemmas 3.3(h,i), 3.5 and 3.6, i.e.:

e any smooth non-generic branch of C is tangent to the infinite line Lo,

o if C' meets Lo transversally at a point P, then there is no line through P
(except, maybe, Loo) which is tangent to C at a smooth point;

e if C has a cusp Az at a point P € Ly, and Ly is not the tangent to C at P,
then C has another branch through P;
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o (C does not have a singularity of type Eg at a finite point.

Then one of the cases (i) or (ii) of Lemma 3.8 occur and the position of C with
respect to the infinite line Lo, is one of:

e (i1) (deltoid or (1,3)-hypocycloid) Lo is the bitangent of C.
o (i2) Lo is the tangent at a cusp. This case is not possible.
e (i7) (swallow tail) Lo is the tangent at the planar point.

In each of the cases (i1) and (ii) the affine curve C is unique up to affine transfor-
mation of C2. In suitable affine coordinates, C is parametrized by

e (i1) X =2cosf+2sin20, Y = 2sinf — 2sin 20
o (ii) X =t(t>—3), Y =t3(t> - 2)

Figure 1: AA4 — .

The real quartic with A, and Ay
Proof — Since deg C' = 4, there is no room for more than one non-generic tangency
with L. Thus one of the cases (i)—(iv) of Lemma 3.8 occur. We consider them
separately.

(i) Let P be a smooth point of C. Riemann-Hurwitz for the projection from
P implies that there existe a unique line Lp through P tangent to C' at another
(smooth or singular) point.

Suppose that (iz) does not hold. Then, by Lemma 3.3(h), all infinite points of
C are smooth. Let P be one of them. Let @) be the point where Lp is tangent to C.
Lemma 3.6 implies Lp = L, i.e., @ € Lo. Then, again by Lemma 3.6, we have
Lg = Lo, thus (i1) takes place.

Suppose (iz) holds. Then let P be the cusp at infinity and @ a cusp at finite
distance. Then P does not belong to the tangent at ). Choosing coordinates we
can assume that there are two branches, one with (p,q) = (—3,—1), the other one
with (p,q) = (3,2). With Lemma 3.2, we conclude that A is not irreducible, which
is a contradiction since A is of degree 4.

(#i) No other choice for Lo.

(791) Let P be the flex point. Then Lo is tangent to C at P by Lemma 3.5.
Applying Riemann-Hurwitz formula to the projection from P, we see that there
exists a line L through P which is tangent to C' at a smooth point. Contradiction
with Lemma 3.6. Remark. The existence of such L can be also derived from the

unicity of C' up to projective transformations. Indeed, we can realize C as a real curve
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in R? obtained by a small perturbation of a double circle: (22 + y*)? = ey3(z + 1),
0 < e <« 1. Then L is clearly visible in Figure 1.

(tv) Impossible by Lemma 3.5 and Lemma 3.4(a). O ]

3.3 Cubic factor of A

In this section we suppose that A = A3A; where Aj is an irreducible cubic factor of
T'. Let C be the quartic curve defined by A = 0 and let C'5 and C; be the respective
irreducible components of C' (if deg A = 3, then C} = L).

Lemma 3.10. C5 is rational.

Proof — Othewise C3 has nine flex points. They cannot all be on C7 U Lo,. So, this
contradicts to Lemma 3.5. O |
By an isomorphism of CP2, any rational cubic can by identified either with the
nodal cubic y? = 2% — 22 or with the cuspidal cubic y? = 3.
The nodal cubic has three flex points lying on the same line. The cuspidal cubic

has a single flex point.

Lemma 3.11. Suppose that C3 is a nodal cubic. Then I' = Ag, the line Ly, is
tangent to C3 at a flex point, and Cy is the line passing through all the three flex
points of Cs.

Proof — Let Lg be the line passing through all the flex points of C's. Then Ly # Lo
by Lemma 3.5(a). Thus, at least two flex points are not on L, hence Lemma 3.5(b)
implies that a non-trivial component of A /T passes through them. Hence, Cy = L.
and I' = Ag.

Suppose that C5 has more than one point at the infinity. Then there is a point
P such that (C5.Lo)p = 1. Then P is not a flex point by Lemma 3.5. Hence,
Riemann-Hurwitz formula for the projection from P implies that there exists a line
L through P which is tangent to C' at some other point Q. If @ were finite, then
Lemma 3.6(b) would imply that C passes through P. This is impossible by Bezout’s
theorem because C; has already three intersections with C5 at the flex points. Thus,
Q@ € Ly. Applying the same arguments to @), we obtain a contradiction.

Thus, C3 has a single point P at the infinity. It remains to show that P is not
the node of C5. Suppose it is. Choose coordinates so that P = (1:0: 0), the axis
x = 0 is the tangent at a flex point, and the tangents at P are L., and the axis
y = 0. Then C3 admots a parametrization z = £(t) = (t — 1)3/t, y = n(t) = t.

Applying Lemma 3.3(a,g) to the branches of C3 at P, we obtain b = [sgo} and

c= [30 } Let v be the branch of I' at P tangent to the axis y = 0. By Lemma 3.2

[ Jele)
we have v, (c) — vy(b) = 2. The values of v, on the monomials involved in b and ¢
are v, (1, zy,y,y*) = (0,0,1,2). Hence cop = cp1 = 0, i.e., ¢ = coay?. It follows that
co2 # 0 (otherwise A would be equal to b?), so we can assume that coo = 1.
Thus, the identity b(&,n)n = c(&, 77)5 takes form

boo + boit + boat? + b1y (2 — 3t> + 3t — 1) =t3(2t — 3+t 2).

Equating the coefficients of t3,2,¢,1, we find by; = 2, bpa = 3, bgy = —6, by = 3,
ie, b=3(y—1)2+ 2zy. and hence b(§,7n) = 2t3 — 3t2 4+ 1. Substituting all these
into a(&,n)n = b(§,n)E, we obtain

ago(t* + - +t7%) = (263 =3P + 1) (2t =3+ t72) =4t + - 4172
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Contradiction. O ]

Lemma 3.12. Suppose that C3 is a cuspidal cubic. Then Lo, is tangent to Cs at
some point P. Let F be the flex point of Cs.

(a) If P is the cusp, then T' = Az and P € C;.

(b) If P = F, then C1 is any line. If, moreover, T' = A, then either F € Cy or C;
is tangent to Cs.

(¢) If P is not as above, then T' = Az and Cy is the line (PF).

Proof — Let us prove that L, is tangent to C's. Suppose, it is not. Then, C3N Ly, C
(4. Indeed, let Q € C3NLy. If Q is the cusp of Cs, then Q € C; by Corollary 3.4(b).
If @ is a smooth point og C3, then @) # F by Lemma 3.5(a) and Riemann-Hurwitz
formula for the projection from ) implies that there is a line through ) tangent to
(s, hence @ € C; by Lemma 3.6(b). Thus, C5 N Lo C C. Since C3 N Ly, contains
at least two points, this implies C; = L, which is impossible because F ¢ L., by
Lemma 3.5(a) and F' € Cy by Lemma 3.5(b)

So, let P be the point where Cj3 is tangent to L.

(a) Follows from Lemma 3.5(b).

(b) Suppose that I' = A and F' ¢ C;. Let Q = C1N L. Let L be a line through
Q tangent to C3 at a finite point. Then L = Cy by Lemma 3.6(b).

(c¢) By Lemma 3.5(b), we have F' € Cy and T # As. Moreover, Riemann-Hurwitz
formula for the projection from ) implies that there is a line through ) tangent to
Cs, hence @ € Cy by Lemma 3.6(b). O |

Remark 3.13. The cusp at infinity may be reduced to the case y®> = x with A =
x(y® — ). It leads to a non compact domain. Moreover, because of the form of the
measure, it is not possible even in the non compact case.

Proposition 3.14. Suppose that C3 is a nodal cubic. Then, in suitable affine
coordinates we have

a=4x(x+ 1), b=2y(3z +2), c=3z% +9y* + 4,
T'=Az =2 +2% -y Ay =43z +4).
Proof — By Lemma 3.11, we can choose coordinates so that C5 is parametrized by
r=£(t)=t>—1and y=n(t) =3 —t. ]
Remark 3.15. The case where the node is at infinity may be eliminated by direct
calculus.

3.4 Quadratic factor of A

In this section we suppose that A = AsAs where A, is an irreducible quadratic
factor of A and a component of the boundary. Then we look at all possibles values
of a,b, c such that (3.17) and (3.18) are fulfilled. We may reduce by affine transfor-
mation to the three cases:

Ay=1—a?—y? (3.33)
Ay=1—2ay (3.34)
Ay =y —2? (3.35)

By direct computation, it is easy to see that the matrix (g) are given by
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1. In case (3.33)
2. In case (3.34)

3. In case (3.35)

ngz(g 5>+r<2xy 4?y>+(/\+uy)(21x iZ)

We may easily eliminate (3.34) which leads to no compact solutions. In case (3.33),
by rotation we may reduce to the case 8 = 0. And in case (3.35), to have a compact
solution then (3.17) and (3.18) must be satisfied for Ay = A/A, and by affine
transformations, we are reduced to three cases: two coaxial parabolas (with the
limit case of a parabola and a line), a parabola with a tangent and a secant, and a
parabola with two tangents.

4 The bounded 2-dimensional models

4.1 Generalities

In this section, we will explore separately the various 2 dimensional compact models.
It turns out that for some values (in general half-integer) of the parameters appearing
in the measure, one may produce a geometric interpretation, coming in general from
Lie groups or symmetric spaces, as it is the case for the one dimensional Jacobi
operator (Section 2.1). We do not pretend to present all the possible origins of
the various models, but we provide some insight whenever they are at hand and
relatively easy to produce. Moreover, these geometric interpretation may lead to
natural higher dimensional models for the DOP problem.

Recall that the boundary of 2 is an algebraic curve of degree at most 4. When the
degree is 4, this boundary is {A = 0} where A is the determinant of the matrix (¢%).
Among the admissible measures, one may chose p(z) = A~/2, which corresponds
to the Laplace-Beltrami operator associated with the (co-)metric g. It turns out
that in every such example, this Laplace-Beltrami operator has constant curvature,
either 0 or positive. We did not succeed in proving this fact in the general setting
(and we do not even know if is is true in higher dimension). However, when the
boundary has degree less than 4, it is not always true that the curvature is constant
(see Section 4.8). But even in this latter case, when the measure has density Al_l/Q,
where A; is the irreducible equation of the boundary (while in this model A has
degree 4 and A; degree 3), there exists a natural interpretation coming from a 4
dimensional sphere.

Then, one may interpret the associated model as some quotient of the Euclidean
or spherical Laplace operator through some discrete or continuous symmetry sub-
groups. When the curvature is 0 (Section 4.7 and Section 4.12), this shows some
relation with root systems and the associated Hall polynomials [39], with connection
with Hecke algebras. See also Araki [3] and Harish-Chandra [22, 23]. Many other
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natural geometric interpretations come from spherical functions on rank 2 symmet-
ric spaces (see Helgason [28], Heckman et al. [25, 24, 43, 26]). For references on
Dunkl operators, we also refer to Dunkl [15] or more recently to Rosler [47].

From a general point of view, there is a dictionary linking the angles of the
reflection associated to the symmetries and the type of singularities of the boundary
of ©: double points, cusps and double tangents correspond respectively to angles
w/2, /3, w/4.

It turns out that many of the models described above have some nice geometric
interpretation in terms of compact homogeneous spaces M = G/H: we try to
interpret the given operator as the Laplace-Beltrami operator Ag on G acting on
some specific functions (X,Y) : G — R2.

In this whole section, the identification will be made with the Laplace operator
acting on the d-dimensional sphere, on the d-dimensional Euclidean space or on
some classical Lie group such as SO(d) and SU(d). For the sake of clarity, we recall
here some well known formulas and facts on these operators. The general principle
is the following. When L is a Laplace-Beltrami operator (or more generally any
second order differential operator with no 0-order term) on some model space E,
recall that the associated carré du champ is defined by

Lu(f,0) = 5 (L(79) — FL(9) — gL(P))

and L satisfies the change of variable formula (2.5). Then, we we are looking for pairs
(X1, X?) of real functions E +— R such that L(X?) = L{(X!, X?), and T'(X*, X7) =
GY (X', X?), where L' are degree 1 polynomials and G% are degree 2 polynomials
in the two variables (X!, X2). Then, from the change of variable formula (2.5), for
any smooth function ® : R? — R, one has L(®(X*, X?)) = L;(®)(X*', X?), where

Li(f) = > G@I5f + ) L' (@)dif.

We shall say that such an operator L; is the image measure of L through (X1, X?).
Moreover, it is immediate that, if p is the reversible measure for L, then L; has
reversible measure the image of u through (X*, X?).

Indeed, what is immediate from the study of the various models is the knowledge
of T'(X% X7) = g and the density measure p. From (1.2), it is then immediate that

L'(x) =Y 9;9" + g 0;10g p. (4.36)
J

Through an affine change of coordinates, one is reduced to find two eigenvectors
X! and X? of L for which T'(X? X7) satisfy a quadratic relation T'(X* X7) =
GY(X* X7). In this respect, similar problems are studied (although mainly in
dimension 1) in the study of isoparametric surfaces (see Cartan [10, 9, 11, 12]).

It can be quite hard to find from which model space a given model comes from.
Spectral analysis can be useful: indeed, for any polynomial P(z,y) and whenever
P(X, X?) € £2(u), the spectrum of Ly is embedded in the discrete spectrum of L.
But, as it happens in Section 4.7 and Section 4.12, it could be that the reversible
measure p for L has infinite mass, and that X' and X? are eigenvectors for L which
are not in £2(u). However, whenever L; is the image of some geometric operator L
on some compact model space E, the spectrum of L; is imbedded in the spectrum of
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L. Nevertheless, this could be misleading in some specific situation. For example, on
the unit sphere S imbedded in R? with the induced Riemanian metric, the spectrum
of the associated Laplace-Beltrami operator Aga is {—k(k+d—1), k € N}. But then,
for any integer p, the spectrum of p?Aga is included into {k(k + p(d — 1),k € N},
which is the spectrum of a sphere with dimension p(d — 1) + 1, and therefore, since
in general we know L; only up to some scaling factor, we are not even able to
determine the dimension of the sphere it may come from (if ever). We already saw
this phenomenon in the case of Jacobi operators with parameter (p,p) for which
we have two distinct geometric interpretation, one coming from SP and another one
coming from S?~! (Section 2.1).

As mentioned above, for the purpose of the description of our 11 models, we shall
mainly use a few model spaces, namely Euclidean, spheres, SO(d) and SU(d). In
order to be able to carry the identification described above from these models, it is
worth to describe the Laplace-Beltrami (or Casimir) operators for those models, in
a simple way leading to the further interpretations. In some cases, it is also useful
to extend the operators L and T to complex valued functions, and we shall do that
without further notice.

If E; is an d-dimensional Euclidean space, and z’ the coordinates in some or-
thonormal basis, one has for the Euclidean Laplace operator Ag,:

AEd(xi) =0, I‘Ed(xi,xj) =6,

and the dimension does not appear in these relations, hence we can omit the sub-
script d. These descriptions of course do no depend of the chosen orthonormal basis
in Ed.

On the unit sphere S? imbedded into R%*!, and for the restriction to S¢ of the
same Euclidean coordinates z?, one has for the Laplace operator Aga

Aga(z?) = —da’, Tga(z',27) = 6 — 2’27, (4.37)

As previously, we can write I's since it does not depend on the dimension. When F' is
the restriction to the unit sphere in R4t! of some smooth function in the Euclidean
space , Aga(F) and T's(F) may be computed from the related quantities Ag and
T'r in the ambient Euclidean space, since they are the restriction to the sphere of
the quantities

Agp(F) = (r0,)*F — (d — D)ro,.F, T's(F) =Tg(S) — (ro,.F)? (4.38)

where 70, F =, 2'0;F.

As mentioned above the spectrum of —Ags is {k(k + d — 1),k € N}. The
eigenspace associated with —k(k 4+ d — 1) consists of the restriction to the sphere of
degree k harmonic homogeneous polynomials ( see Stein and Weiss [50]).

Beyond the case of spheres, we shall also use Casimir operators on the semi-simple
groups SU(d) and SO(d). Once again, in order to describe them, we consider the
entries 9 (SO(d) case) and 2% (SU(d) case) as functions on the group (complex
valued in the latter case) and describe the operators through the action of L and T
on them.

For SO(d), up to some constant, we have,

AS’O(d) (x”) = —(d - l)itij, FSO(d) (l‘kl, qu) = 5kp5lq - l‘qupl. (4.39)
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For SU(d) the formulas are similar.

d—=1)(d+1) ;.

ASUwﬁz”)::—24———7T———fz], (4.40)
and also
2 1
Disur (M, 279) = 22500 4 2obama, T (24 200) = (g5t — Lok,
(4.41)

In order not to get confused in the notations, we shall use upper case letters
(X,Y) instead of (X!, X?) for the coordinate system in the different 2-dimensional
models 2, and lower case letters (x?) for the coordinates on the geometric model it
comes from.

4.2 The square or rectangle

This is the simplest model. By affine transformation, we may chose the square
to be [—1,1] x [-1,1]. The metric is

1-X> 0
G‘( 0 1YO

and the density of the measure is
p(X,Y)=C(1 - X)*(1+X)"(1 - Y)(1+Y)<.

This corresponds to the products of dimension 1 Jacobi polynomials. We recall that
for any p,q € N, the one dimensional Jacobi operator L, , with reversible measure
(1 — X)P=2/2(1 + X)@=2)/2 can be realized on a p 4+ ¢ — 1 dimensional sphere
{(#*)? + ...+ (2PT9)? = 1} through the function X = 2((z')? + ... + (27)?) — 1.
Hence we have

Agpta—1 (h(X)) =4L, ,(h)(X).

Since the boundary is degree four, among the admissible density measures is det (g)_l/ 2,
and the metric is then the Euclidean metric, through the change of coordinates
X = cos(x!), Y = cos(x?). Then, the operator is nothing else than the Laplace
operator on R?, acting on functions which are invariant under the symmetries with

respect to the lines {z! = kr}, {2 = k'n}, which is the square lattice in R%. Of
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course, this is covered by the first case since when p = ¢ = 1, the sphere is nothing
else than the 1-dimensional torus.

Therefore, this square model for half integer values of the coefficients (a, b, ¢, d)
may be seen as images of products of spheres. We already mentioned also the various
interpretations coming from compact rank 1 symmetric spaces.

4.3 The circle

We may chose ) to be the unit disk in R2. In this case, the metric is not unique,
and, up to scaling, depends on 2 free parameters. Up to some rotation,

2
Gape=(1-X2-Y?) (g 2) +e (1_X)§ . _X;Q> :
Ellipticity imposes ¢ > 0, and whenever ¢ # 0, we may reduce by homogeneity to
¢ =1. We concentrate only on this case.

Ellipticity condition also imposes a > —1, b > —1. When a,b # 0, the determi-
nant A writes (1 — X2 —Y?)P(X,Y), where P, has degree 2 and is irreducible (and
is constant whenever ¢ = b = 0). Comparing Proposition 2.13 and formula (2.11)
with the value of the determinant, it is easily seen that the only admissible measures

have density
pp(X,Y)=C(1 - X?-Y?P.

This remains the case even when ab = 0, although in this case P, is real reducible.
In complex notations, with Z = X 4 ¢Y, the operator associated with ¢ = 1 and
measure with density C'(1 — X2 — Y?)? may be described from

Lpap1(Z)=—2p+3+(a+b)(p+1)Z—(a—b)(p+1)Z,

Tup1(2,2)=(a—b)(1-22) -2 Top1(Z,Z) = (a+b+2)—(a+b+1)ZZ,

with of course the conjugate values for Ly, , 5 1(Z) and Ty p1(Z, Z).

When a = b = 0, this model is well known. The metric has constant curvature,
and the operator corresponds for p = —1/2, to the Laplace operator on S? = {(z1)?+
(?)? + (23)? = 1}, acting on functions which are invariant under the symmetry
23 — —z3. If one consider the unit disk as a local chart for the upper half-sphere,
this is nothing else that the Laplace operator acting on functions of (z!,22). The
spectrum is then the spectrum of the sphere. The eigenvalues are A\, = —k(k + 1).
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When p=(d—3)/2,d € N,d >3, a =b =0, this still corresponds to a Laplace
operator on spheres S%. More precisely, if one considers the Laplace operator Aga on
the unit sphere S = {(21)2+... + (29+1)2 = 1}, and consider a function depending
only on (x!,2?) = (X,Y), one gets

Asa(f(z",2%)) = La—s)/2,001(f) (@', 2%).

It is therefore the image of Aga through the projection z — (x1,x2).

In this case, one may also get some other interpretation, from spheres
on the unit sphere S?¢~1 C R??, let Z; be the complex functions which are the
restrictions to the sphere of the linear forms Zy(z) = (ex,z) + i{eqir,x). Then,
consider the complex function U = Z? + --- + Z3. One may see that

SQdfl.

Agea—1(U) = —4dU, Agea—1(U) = —4dU,

and _ _
T(U,U) = —4U?,T(U,U) = 8 — 4UU.

Therefore, going to the real forms U = X + ¢Y, one has
(X, X)=4(1-X?),I'(Y,Y)=4(1 -Y?), I'(X,Y) = —4XY.

This corresponds to the operator 4L(q_3)/2,0,0,1-

One may also obtain similar forms using U = >, Z;Z], where Z; and Z| are
defined in a similar way but on the product of two spheres S?¢~1 with the product
metric, which leads to 2Lg—2,0,0,1-

For the other metrics, the situation is more complicated. Still restricting to
¢ = 1, the condition for the metric to be non negative on the disk is a > —1 and
b > —1. Even in the case a = b, the Laplace operator associated to the metric is
no longer a solution to our problem, and one may check that the metric has not
constant curvature.

If we restrict our attention to the diagonal case a = b, then the equation simpli-
fies. Up to some scaling, the operator may be considered as the sum of the previous
operator with a = b = 0 and a(xayfyaz)z, which corresponds to a circular Brownian
motion in the plane. But we may construct this in a more geometric way as follows.
For —1 < a < 0, and density measure (1 — X2 — Y2)(?=1/2_ one may consider a
sphere with radius r, where a = —r2/(1 4 r?) and dimension d = 2p + 3. Then, we
chose e; and ey two vectors in R4+ which are orthogonal and norm 1, and consider
the complex linear forms Z(x) = (e1,x) + i(eq, z), that we restrict on the sphere
S9. Tt satisfies, for the Laplace operator on the sphere

d 1 _ 1 _
Asi(Zy) = fﬁzl, Tsi(Z1,21) = ﬁzf,rgd(zl,zl) = ,72(2 AVAS)

Consider now the product S' x S?, with the product structure and Laplacian L.
With the function on z = € on S', we look at the function Z = 2Z;. We have, for
the product structure

d 1., ) 1. -
L(Z)= f(ﬁ +1)Z, T(Z,Z)=—(1+ r—2)Z ,(Z,2) = o} +(1— T—2)ZZ.
r2
Then, the image of mL through Z is Ly 4 4,1. However, the case a # b remains
r

mysterious.
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This model has an immediate d-dimensional extension. On the unit disk in R?,
one may consider the operator

(1— |2[*)D(as, . ..an) + (g (z)), (4.42)
where |z| denotes the Euclidean norm, (g5) = (6% — ziz7) corresponds to the
projection of the spherical metric of S onto an hyperplane, and D(ay, ..., a,) is any

diagonal matrix. In fact, it is quite easy to check with this co-metric the boundary
condition ¢”9; P = 2(a; — 1)z; P, where P = 1 — |z|? is the boundary equation. The
condition for the metric to be non negative on the unit ball is again that a; > —1
for any i. Again, when D(ay,...,a,) = 0, the choice of the measure (1 —|z|?)@~1)/2
corresponds to a Laplace operator on the ¢ + d sphere. Indeed, adding squares
of infinitesimal rotations in various directions, with different coefficients, provide a
larger class of matrices (¢*) solutions of the problem for the boundary |z|? = 1.

4.4 The triangle

By affine transformation, one may reduce to the case where the triangle is de-
limited by the lines X = 0, X +Y = 1, Y = 0, such that the domain €2 is the
2-dimensional simplex {X > 0,Y > 0,X +Y < 1}. Then,the metric depends again
on three parameters

a . cX1-X)+aX(1-X-Y) —cXY
abe = —eXY Y(1-Y)+Y(1-X-Y))"

The density of the measure depends on 3 parameters
Ppgr(X,Y)=CXPYI(1-X -Y)",
Lpgrape(X) ==X((a+1)(r+2)+(1+a)p+qg+1) —a(l+p)Y +(a+1)(p+1),

and a similar form for Y exchanging X and Y, p and ¢, a and b. This model is
closely related to the circle one. We first observe that if we take the circle model,
and let the operator act on functions on z? = X, y?> = Y, we find the operator
on the triangle acting on the variable (X,Y) (the simplex is clearly the image of
the disk under this transformation). We obtain in this way the complete family of
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metrics, but only the measures pg o, which are the image measures of the measures
on the unit disk with density (1 — X2 —Y?)",

For other values of the measure p, 4., provided p, g are half integers integers,
one may use the d-dimensional model on the unit ball. As for the circle case, we
restrict our study to ¢ = 1. Setting p= & —1, ¢ =% —2 and d = p; + q1, consider
the operator given on the unit ball in R? by the metric described in formula (4.42),
together with the measure (1— |z|?)" witha; = ... =a,, =a, ap,4+1=...=aq = b.
Now, for this operator L3,7,7a7b, we consider X = Y 7' 2?, Y = Z?:er x?: then the
image of Lgna’b through (X,Y") is 4Ly, ¢ r.a.5,1, as easily checked comparing for both
cases L(X), L(Y), I'(X, X), I'(X,Y) and T'(Y,Y).

Therefore, we see that the triangle case may be interpreted, at least for half
integers values of the measure parameters, as images of the unit ball operators, in
exactly the same way that one dimensional non symmetric Jacobi operators may be
obtained from spheres.

Once again, those operator have an immediate d dimensional extension on the
d-dimensional simplex {z* > 0,i = 1,...,d, Y ,2* < 1}, with the (co)-metric G*

given by
G = xi(&j(l +oy(1 — ij)) — mj),
J

where «; are constants.

Remark 4.1. In the same way that we have some other interpretation on the circle
coming from complex representations, one may have some other interpretations on
the triangle in some particular case. For example, on S®, consider the complex linear
forms Zy = x' +ix?, Zo = 23 +ix*, Z3 = 1% +ix8 restricted to the sphere, and the
function

Z = leg + ZQZS + Zng.

One may check that, for the Laplace Ags operator on the sphere, one has
Ass(Z) = =122, Vs5(Z,2) = 4Z — 4Z° Vs (Z,2) = 4 — 4Z 7,

which corresponds, through the change of variables Z =1—3(X +Y) +i§(Y - X)),
then the image of 3 Ags under (X,Y) is Lo,0,0,0,0,1-

In the same spirit, one may consider the unit sphere in R?2P1H7+1 where a point
in R2PHT s represented as (X1, X2, X3) € RP x RP x R”, the pair (X,Y) = (|| X1]]? +
| X2)|%, X1 - X2) satisfy the relations

Agzpr(X) = =22p+ 71+ 1)X +2p, Ager+(Y) = =2(2p+r +1)Y,
and
Tspir (X) =4X (1 — X), Tgopir(X,Y) =4Y (1 — X), Tgopir (V) = X —4Y2
Let us then chose X1 = 2(X +2Y), Y1 = (X —2Y). We get
Agep+- X1 = =22p1 + 74+ 1) X1 + p1, Ageo+rY1 = —2(2p1 +r + 1)Y1 + pa,
and
Tazpyir(X1) = 4X1 (1 — X1 ), Tazpy 40 (Y1) = 4Y1 (1 — V1), T (X1, V1) = —4X1 V7.

Then, we see that the image 0f%AS2p+r through (X1, Y1) is Lip—_1)/2,(p—1)/2,(r—1)/2,0,0,1-
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4.5 The coaxial parabolas.

Up to affine transforms, the domain may be bounded by the two parabolas
Y =X2-1etY =1-—aX?2 Here a > —1 is the condition for the domain to be
compact. Indeed, this forms a one parameter family up to affine transformations,
but may be reduced to a single model up to some non-linear transform.

The (co)-metric is

G :( 1—%(1—&—@))(2 X(1—a)—(1+a)Y) )
s \X((1—a)— (1+a)Y) 21+a)(l—Y?) —4aX?)"

When a # 0, the boundary has a equation of degree 4, and therefore the Laplace
operator associated with the metric is an admissible solution, corresponding to the
measure det(G,)~'/2. It turns out that the associated metric has scalar curvature
1 + a, and therefore the operator is locally a spherical Laplacian.

In fact, the (non-affine) change of coordinates Y1 = Y + aX?, X; = /1 +aX
allows us to reduce, up to a scaling parameter, to the case a = 0, and then the
domain is bounded by the parabola Y = X2 — 1 and Y = 1. In this case, one gets

2-X2  2X((1-Y)
Go = <2X(1 —Y) 4(1-Y?) )

Even though the boundary has no longer degree 4 in this case, the Laplace
operator is still an admissible solution. In fact, the determinant of the metric is still
equal to the irreducible equation of the boundary even in this case. This particular
model is known in the literature as the parabolic biangle (see Koornwinder and
Schwartz [36]).

For symmetry reasons, we prefer to consider the case a = 1, in which case

- (1-X° —2XY
P —2Xy 40 -Xx2-Y?))"

When the density of the measure is det(G;)~'/2, the operator may be directly
seen as the image of the Laplace operator on §? = {(x!)? + (22)?2 + (2®)2 = 1} C R3
through (X,Y), where X = 2% and Y = 2x'2%. Then, the associated operator
is nothing else than the spherical Laplace operator acting on functions which are
invariant under the symmetries through the hyperplanes {z* = 2%} and {z! = —2?}
(their angle is 7/2, which corresponds to the double points of the boundary of the
domain).
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For the other measures densities with a = 1, if we set p = (Y +X2—1)P=1/2(1—
Y — X2)(@=1)/2 with p and ¢ integers, we obtain an operator L, 4, for which we have
we have

Lyo(X)==-2+p+ X, Ly (Y)=—(6+2(p+q)Y —2(p—q),

and this operator is an image of a sphere SPT9t2 C RP+9+3 through the following
functions: with = (2!,--- ,29) with d = p + ¢+ 3, choose X = x4, Y = (z')? +
s (P2 — (2PF2)2 — .. — (2PF9F2)2) Using formulae (4.37), it is easily checked
that they satisfy the required values for L, ,(X),L, ,L(Y), I'/(X, X), T'1(X,Y),
and I'1 (Y,Y).

Although the general case may be reduced to a = 0, this latter case offers a more
general admissible family of (co)-metrics, namely

o _ (2~ X +a(l+Y —X?) 2X(1-Y)
a‘( 2X(1-Y) 4(1Y2)>’

with a > —1, and the special case a = —1 where

Ga=(01-Y) (2; 4(12fy)> :

In those cases, the associated metric does not have constant curvature.

4.6 The parabola with one tangent and one secant.

Remember that in this case the secant lines cut the line at infinity at the same
point than the parabola. Then, up to affine transformation, we may chose the
domain 2 with boundaries delimited by the equations

Y=X>Y=0 X=1
Up to scaling, there is just one (co)-metric which is a solution of the problem, which

° 4X(1-X) 8Y(1-X)
G= <8Y(1 —X) 16Y(X — Y)> '

Once again, the boundary has degree 4, and the Laplace operator corresponding
to the associated metric is a solution, which corresponds to a metric with constant
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scalar curvature equal to 2 (that is why we chosed this normalization of the metric),
and therefore it may be realized on a unit sphere S? C R3. For the general case with
measure density (X2 — Y)PY?(1 — X)", providing a family L, ,, of operators, for
which

L, .- (X) = 4(2p+2¢+3)—4(4+2p+2g+7r) X, Ly .- (Y) = 16(g+1) X —8(5+2p+2g+r)Y.

The Laplace operator corresponds to L_j/5 /2 _1/2, and is the image of Ag> =
{(x1)? + (22)? + (23)?} = 1 through (X,Y) where X = 22 + 23 and Y = 42323,
corresponding to functions on the sphere which are invariant under the symmetries
with respect to the hyperplanes {23 = 0}, {z! = 0}, {2? = 0} and {z! = +2?}.
The fundamental domain on the sphere for this group action is a triangle with two
/2 angles, and one 7/4 angle, which corresponds to the two double points and the
bi-tangent point.

For other values of the parameters (p,q,r) we shall set p = (p1 — 1)/2,q =
(g1 —1)/2,r=(r1 —1)/2.

In the case p; = 0, one may get a geometric interpretation for this model: we
look at a unit sphere in R, with d = 2¢; + r1 + 3, and consider the functions Ty, T,
which are the restrictions to the sphere of the functions (x')? + ...+ (2971)? and
(2912)2 4 ...+ (22(¢t1D)2. Then we choose

X=Ti+T, Y =4T'Ts.

Then, L_; /3 4, is the image of Aga-1 through (X,Y).

For ¢ > 1 and p; = 2™",n = 1,2,3, we may construct the operator as an
image of a sphere in some appropriate dimension. Namely, consider the unit sphere
in R#Z1aitr+1 - For those values of p;, we may construct (when p; > 2) p; — 1
orthogonal transformations ¢; on RP!, such that, for any X € RP, with || X| =
1, {X,6(X), - £y,—1(X)} forms a orthonormal basis. This is done through the
complex, quaternionic or octionionic multiplications (say from the left) by the basis
elements of the algebra, which provides orthonormal transformations of the space
which satisfy the required conditions (although in the octonionic case it is not just
a simple application of the algebra rule due to the non-associativity of the product),
see Conway and Smith [13]. Indeed, this property fails for higher order Cayley-
Dickson algebras.

We consider then a point in R291P1 as a pair (X1, Y7) of vectors in R%* @ RP1. The
operators ¢; lift to this RP* ® R? into orthogonal transformations which produce
mutually orthogonal vectors. Then we consider X = | X1]|?> + ||V1]]? and Y =
4(|| X1 ]]2|IY1]|* = | X1 - Y1]?). The norm || X||? denotes the usual quadratic norm of X

in RP1%1 and
p1—1

X1 Vi = (X1 Va2 4 Y (X 4(V)%
i=1
(This notation is reminiscent of the case p; = 2 this corresponds to complex length
of the vector, but is in general not exactly the product in the algebra).

Then, it may be checked that the restriction of the functions X and Y to the
unit sphere in R2P1@+7+1 gatisfy the relations required for I'(X, X), I'(X,Y) and
T'(Y,Y). Indeed, once we have remarked that X and Y are homogeneous with degree
respectively 2 and 4 in R?P1a1+7+1 and for this value of X, everything boils down
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to verify that, for the Euclidean operator 'y in R?P191 one has T'g(Y,Y) = 16 XY,
which is quite easy to check. Then, one also checks that

Apsa(X) =4dpiq1 —2(d +1)X, Aga(Y) =8p1(q1 — 1)X —4(d + 3)Y,

wich corresponds to L, 4 » with p = (p1—1)/2, ¢ = (p1¢1—3)/2, r = d+8—2p1 (g1 +1).

4.7 The parabola with two tangents

Here, the domain 2 is delimited by the equations
Y =X2 YV=2X-1,Y=-2X—1.
With this boundary, up to scaling, the (co)-metric is unique and is

Y +1-2X2) 2X(1-Y)
G= ( 2X(1-Y) 4(2X?2 YY2)> :

Once again, the boundary has degree 4, the Laplace operator corresponding to this
(co)-metric is a solution, and has constant curvature 0. For the general density
measure (X2 —Y)P1 (Y —2X +1)P2(Y 42X +1)P3, we get an operator Ly, ,, », with

Lpipops(X) = 2(p3s —p2) —2X(3+ 2p1 + p2 + p3),
Lpipeps(Y) = —2(1+42p1) +4X(ps — p2) — 2Y (5 + 2p1 + 2p2 + 2ps).
Wen p; = ps = ps = —1/2, this corresponds to the image of a 2-dimensional

Euclidean Laplacian, constructed from the root system By as follows. Consider in
R2, with canonic basis (er,es), the 4 roots Aj = ++v/2¢;, and the 4 roots i =
+v/2¢; + \/iej (the factor v/2 is there to fit with the final values of X and Y).
Then, let X (z,y) = 1Y, exp(i);.(z,y)) = (cos(v2x) + cos(v2y))/2, Y (z,y) =
iZj’:l exp(ip;.(r,y)) = cos(v/2x)cos(v2y). Then, it is directly checked that
Ire(X, X), Tre(X,Y), Tr2(Y,Y), Ag2(X), Ag2(Y) satisfy the relations required
for L_y /5 _1/2,—1/2- This is just one example of the family of Jack polynomials asso-
ciated with root systems (see MacDonald [40]). Following Koornwinder [30, 31], one
may find other representations for symmetric rank 2 spaces with restricted root sys-
tems Bo (which include for example SO(5) and SO(d+2)/SO(d)). For a reference on
this model, see also Sprinkhuizen-Kuyper [49]. For the sake of completeness, we give
below some naive representations of those models coming from the Laplace-Beltrami
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operator on SO(d) described in (4.39). One may find more complete descriptions of
those models in Doumerc’s thesis [14]. Moreover, this allows us to show how to deal
in a convenient way with matrix operators.

For a given operator on square matrices in dimension d, such as the one de-
scribed in (4.39) or (4.40) and (4.41), one may consider the image of the operator
on the spectrum, determined by the coefficients ag, - ,aq_1 of the characteristic
polynomial P(A\) = det(M — AId ). Of course, for small values of d, one may perform
computations by hand, but it is perhaps worth to describe general methods.

The first task is to compute the various derivatives with respect to the entries
M;; of M of the various coefficients of P(\). One may start from the comatrix M =
M;; for which M* = det(M)M (Where M is the transposed of M) and satisfies
O, M” = 0. Together with Ouy,. Mkl = —-M,, 1M]l , we get Ong,; logdet(M) =

M ]; (which are valid on the dense domain where det(M) # 0).

Now, for an operator on matrices satisfying L(M;;) = —uM;; and T'(M;;, My) =
0i0;1 — My My, denoting M (X) the matrix M — AId, the previous formulae together
with the change of variable formula (2.5) leads to

L(log P(\)) = —ptrace (M(O)M()\)_l) — trace (M_l()\)Mt()\)_l)

+ (trace (M(O)M()\)_l))Q,

I‘(log (P(A1)),log (P(/\g))) = trace (Mt(/\l)_lM()\g)_l)
~trace (M()\l)_lM(O)M()\g)_lM(O)).

For the special case of SO(d) where p=d — 1 and M* = M~ one gets

d\? P 1+ )2 P
ASO(d)(IOgP()‘)):*l_)\sz)‘ }) (1_/\27d) ()\%) ’
together with

b
[REDYPW
1

O\P
2 2
v (A P () — A2

Fso(d)(logP(/\l),log P()\Q)) = (d)\l)\g /\1 (/\1) /\2 (/\2))

o\P ()\2))

which lead to the very simple formula
Aso (P(V) = —(d = DAP'(A) + \2P" ().
For d = 4, writing P(A) = A* + X\% + Y A2 + 1, one gets
Aso)(X) = =3X,Asou)(Y) = —4Y
and
Tso(X) =4—X?+2Y, Tsow)(X,Y) = —-X(Y —6), Tgo)(Y) =4—X>+2V.
%, 12)

From this, we see that Ly o _1/5 12 is the image of 2A g4 through ( 1
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For SO(5), setting P(\) = A> + XA+ Y A3+ Y A2+ XA+ 1, and X =4X; +1,
Y = 4X; +4Y1 + 2, one sees with the same method that the image of 2Ag50s)
thI‘OUgh (Xla }/1) is L1/2’,1/2’1/2.

One may also project Agp(g) on any p x g sub matrix M (it is obvious from
formulae (4.39) that the operator projects). It is less obvious that it also projects
on the square ¢ x ¢ matrices N = M'M, and produces on the entries N;; of those
matrices the operator defined by Ago(ay(Nij) = —2dN;; + 2pd;; and

Tso(a)(Nij,s Ner) = Nirdji + Nudjr + Njpdi + Njidip — 2(NaNji + NigNjr).

Again, this projects on the spectrum of such matrices. In particular, when ¢ = 2,
one may chose as variables trace (N) = X + 1 and 4det(N) =Y +2X + 1, and, for
p>2and d > p+ 2, the image of %Aso(d) through (X,Y) is Lo (a—3-p)/2,(p—3)/2-
For p = 1, the image is obviously degenerate, and concentrated on the boundary
{Y +2X + 1 = 0}, while for d = p + 1, it concentrates on {Y — 2X + 1 = 0}, as
would do the image measure setting p=1+¢c¢ or p=d— 1+ € and letting ¢ — 0. In
more complicated setting, one may follow this remark to detect algebraic relations
between various components of the system under study.

4.8 The nodal cubic

In this situation, we may choose the equation of the boundary to be Y2 =
X?2(1 — X). There is a unique metric up to scaling

G_(4X(1X) 2Y (2 - 3X) )

T \2Y(2-3X) 4X -3X%2-9Y?)"

The boundary is degree 3, and in this situation the measure density p(z) = det(G)~1/2
is not an admissible measure (it does not satisfy equatiom (2.11), as one may check
directly). Also, the metric has a non constant curvature. The general form of the
density measure is p,(X,Y) = (X2(1 — X) — Y?)”, for which we have

L(X)=2(4(p+1) - (T+6p))X, L(Y)=—6(4+3p)Y.

It turns out that for p = —1/2, the operator may be interpreted from a 3-
dimensional sphere, through a projection which is very close to the Hopf fibration.
Indeed, on the unit sphere S* = {(2')% + (2%)? + (23)? + (2*)? = 1}, consider the
functionsX = (z')? + (2?)? and Y = ((2')? — (2%)?)2® + 2z'222*, we may check
directly that they satisfy the required equations on Ags(X), Ag:(Y), I'ss (X, X),
Tg:(X,Y) and Tg: (Y, Y).
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To understand which functions on the sphere are of the form f(X,Y’), one may
represent the sphere in complex notations as {|z1|? +|z2|? = 1}, where (21, 22) € C?,
that we write in polar coordinates as z; = p; exp(i6,). We then see that

(X,Y) = (pi, pip2 cos(261 — 65)).

Then, (X,Y) is invariant under

210

(21, 22) = (€921,€%25).

Moreover, the quotient of the sphere under this action is parametrized by (|21 |2, 27 22)
(t,re'?) =T € Ry x C, with the relation 72 = t?(1 —t), and therefore this image is
homeomorphic to by the product 09 x S' ~ S§2. This set ; is naturally imbedded
into R? with a symmetry x5 — —x3. The domain Q is then the projection of T
onto the hyperplane {x3 = 0}, and the function on S* which are of the form g(X,Y")
are the functions on this quotient set 2; which are moreover invariant under the
symmetry xz — —x3.

For other values of the measure parameter, writing p = (¢ — 1)/2, and for ¢ =
2" — 1, n = 1,2,3, we shall use similar interpretations than the one described in
Section 4.6. Let us write a point in R3@TD+ a5 U, V, W, with U,V € R and
W = (wo, w1, -+ ,wgt1) € R72. Consider then X = |U||? 4 ||V||?>. For the values
g+ 1 = 2", as seen above, there exist (for n > 1) ¢ orthogonal transformations
¢; in R such that, for any unit vector V€ R {V 0;1(V), lo(V), -, £,(V)}
is an orthonormal basis. Then, on R2(¢+1) one considers the bilinear applications
B(U,V) =2U - V,B(U, V) = 2U - £1(V), -+, Bgy1 = 2U - £4(V), for which it
is immediate that Zgii B = 4[|U|]?||[V[]?>. Let also Bo(U,V) = [U|* - [[V]]?,
such that Zfi& B? = X2, Also, for the Euclidean Laplacian on R*@+1)  one has
AgB, = 0, Te(By, B) = 40, (|U|2 + IV[[2), ,j = 0, - ,q+ L.

We then consider the function ¥ = ?;ré w; B;. For the Euclidean Laplace
operator in R3(4T1) one easily checks that T'g(X,Y) = 4Y and that Tg(Y,Y) =
X2 +4X||W|? The comparison (4.38) of spherical Laplace operator and Euclidean
one shows that the restrictions of X and Y of the Laplace operator on R3(4+1) satisfy
the required relations for Ly, with p = (¢ — 1)/2.

It is perhaps worth to observe that in the above construction, the bilinear ap-
plications By, By, -, Bg+1, considered as functions on R2(@+D) are harmonic and
satisfy Tg(B;, B)) = 43, (|U]? + [V||?), and 3, B2 = (U2 + [V|2)? . Their
restriction S?97! satisfy then the same relations (up to some factor 4) than the co-
ordinates on a unit sphere S9t1. Any construction performed on those spheres may
be then carried to S?9+1, just replacing X; by B;.

4.9 The cuspidal cubic with one secant line

We may choose the boundary equation to be (Y2 — X3)(X — 1) = 0. Up to scaling,
the associated metric is unique and we have

C4X(1=X), 6Y(1—X)
G_(6Y(1—X) 9(X2—Y2)>'

Since the boundary has degree 4, the Laplace operator associated with this metric
belongs to the admissible solutions and we may check that the associated metric has
constant scalar curvature 2 and therefore may be realized from the unit sphere S2.
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The general density measure is pp, ,, = (1—X)P1 (X3 —Y?)P2 for which we have
for the associated operator Ly, »,

LPLPQ (X) = *2(7 + 2])1 + GpZ)X +10 + 12])2, LphPQ (Y) = *3(8 + 2p1 + 6p2)Y'
For the Laplacian case, Li_1/3 1/ is the image of Agz through
X =(2')+ (2% Y =2'((2")* - 3(2%)?).

The functions F(X,Y) are the functions on the unit sphere which are invariant
under 2 — —z% and such that the projection z = ' +i2z? = pe’? on the hyperplane
{x® = 0} depend only on p and cos(36). These are the functions which are invariant
under symmetries through the hyperplanes H = {22 = 0} and the two hyperplanes
having an angle +7/3 with H. The fundamental domain for these symmetries on
the sphere is a triangle with angles (7/3,7/2,7/2), which correspond to one cusp
and two double points.

For the other density measures, we may set ¢ = 2p; +1, ¢ = 2ps+1, and consider
the unit sphere in R?T3P x R9*L. For a point (U, V) € R#F3P xRITL we set X = ||U||?
and we chose for Y some homogeneous degree 3 harmonic polynomial P(U). Then,
the various formulae for L,, ,,(X), Ly, 5, (Y), T'(X), I'(X,Y) and I'(Y) are satis-
fied as soon as Tg(Y) = 9||U||*, where I'g denotes the Euclidean operator I'. This
problem has been studied by Cartan [10] where he proved that such polynomials
exist only for p = 0,1,2,4,8. Beyond the case p = 0 (the above example), this
corresponds respectively to real, complex, quaternionic and octonionic structures.
Such a function (for p = 1,2,4 ) may be for example represented as follows: consider
a symmetric 3 matrix with trace 0 and respectively real, complex and quaternionic
entries. On this space of matrices, one may consider the Euclidean structure given
by ||M||?> = trace (M*M), and, for this structure, the function Y : M ~ det(M),
satisfies Tg(M) = ||[M||?, as one may check by direct computation (care has to be
taken however when computing the determinant of the quaternionic matrix, respect-
ing the order of multiplication). The case p = 0 corresponds to diagonal matrices,
and the Cayley case is slightly more complex.

4.10 The cuspidal cubic with one tangent

We may choose the boundary equation to be

(Y2 - X%H2(Y -1)-3(X —1)) =0.
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Then, up to scaling, there is a unique solution

G_( 8(X +Y —2X2) 12(Y—2XY+X2)>
T 2(Y —2XY + X?) 18(X —Y)(X +2Y) )

The boundary being degree 4, the density measure det(G)_l/ 2 belongs to the
admissible solutions. Therefore, the Laplace operator associated with this (co)-
metric is an admissible solution. The scalar curvature is 2, and therefore we may
realize this Laplace operator as an image of the spherical Laplacian Age.

For the general density measure p = (Y2 — X3)P=1/2(3X — 2y — 1)(a-1)/2

Ly (X) = —4[2X (746p+3q)— (5+6p)], Ly (Y) = —6[2Y (84+6p+3q) — X (7+6p)].

For the case p = ¢ = —1/2, which corresponds to the Laplace operator, one may
see that the operator is the image of a two-dimensional sphere, where X is a degree
4 polynomial and Y has degree 6. Indeed, it is worth to represent X and Y as
X = —L(tata +tots +tsty) and Y = Liytats with ¢y +t5 + 3 = 0, which reflects the
fact that Y2 — X3 is the discriminant of the polynomial 7% — 3XT + 2V,

A solution is given by t; = 3(z%)? — 1, and one may check that all the relations
concerning L_y /9 12X, L_1/2,_1,2Y, T'(X, X), I'(X,Y) and T'(Y,Y) are satisfied
for this choice.

From this representation, it is clear that X and Y are invariant under the sym-
metries through the hyperplanes {z; = 0} and {«; = x;}. The fundamental domain
for those reflexions is a triangle on the sphere, defined by the hyperplane coordi-
nates, cut along it’s three medians, with angles 7/2,7/3,7/4. This corresponds to
one double point, one cusp and one double tangent.

For the general case, setting p = (p1 — 1)/2,q9 = (¢1 — 1)/2, one may look for a
sphere in R?, with d = 6p; + 3¢1 + 3. In the particular case p; = 0, we may take a
unit sphere in R3?, with d = ¢; + 1, and consider

d 2d 3d

= (@)2—1/3, ta= Y (@)P-1/3, ts3= > (a')2-1/3,

i=1 i=d+1 i=2d+1

and let o7
X = —3(t1t2 + totg + t3t1), Y = ?tltgt;g,
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then, for the spherical Laplace operator I'(X, X ), I'(X,Y) and I'(Y,Y'), L, ,(X) and
L, ,(Y) satisty the required equations. It is certainly worth to mention that this
model may also be seen as the image of the triangle model {s; +s2+s3 =1, s; > 0}
through the transformation X = s1s5 + s253 + 351, Y = s15283.

For p; = 1, one may consider the following model: we consider (X7, X2, X3) in
R34 where d = g1 +5, and the 3 x 3 symmetric Gram matrix M;; = (X;-X;)—1/3Id.
Then, the restriction of this matrix to the unit sphere in R3¢ has trace 0, and
one considers it’s characteristic polynomial P(A) = det(M — AId). Write P(\) =
A% — AX/3 — 2Y/3%. Then, the image of the operator Agsa—1 is L, ;. Note that the
same construction carries immediately to p x p trace 0 symmetric matrices in RP?,
using the technique described in Section 4.7. Then, the associated operator on P(\)
is defined through

L,a(P)=  2p(2—2p—pd)P +2P'((pd+ %(p —-2)(2p+ 1)z + %(p -1(p+2)
AP (& + Z(p+2) 4 0+ 1)

and

D(P@).P) = ——((+ )P W)P) - (o + P @PW))

—A(pP(z) — (z + 2§>P'<ac>><pp<y> . %)P%y)).

It is likely (but we did not check), that the same construction on complex or
quaternionic matrices provides models for the cases p; = 2, 4.

4.11 The swallow tail

This is a degree 4 algebraic curve, whose, up to affine transfromations, we may
chose the equation to be

4X%2 27X +16Y —128Y2 — 144 XY + 256 Y3 = 0.

This is the discriminant in T" of the polynomial 7% — T2 + XT +Y. Once again,
the metric is unique up to scaling, and we have

2 -8Y —9X? -X(12Y +1)
G - - 3 2 2 .
X(12Y +1) 5X° - 16Y° +4Y
The boundary being degree 4, the measure density det(G)*l/ 2 is an admissible
solution, and for this measure, the corresponding Laplace operator has constant
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scalar curvature 2, and therefore the operator may be represented on the unit sphere
S2.
For the general density measure p = det(G)P, we have

L,(X)=-6(5+6p)X, L,(Y)=—4(114+12p)Y + 3 + 4p.
For the Laplace Beltrami case
L_l/Q(X) = —].2)(7 L_1/2Y =1- 20}/7

which corresponds for X to be an eigenvector of degree 3 and Y — 1 to be an
eigenvector of degree 4.
Taking in account that the boundary is a discriminant, we should look for

—X = titotg + tataty + t3laty + tatita, Y = titatsty,

with
t1+la+t3+1ts=0, Ztitj =-1,
i<j
which is the intersection of a sphere S? with radius v/2 with the hyperplane Doiti=
0}, which is again a sphere with radius V2.

From his, we may see that if we chose X = 2v/2(z! + 22)(2? + 23)(2® + ') and
Y = —4x'a?23(z! + 22 + 2%), on the 2-dimensional sphere ¥ = {(2!)? + (2%)% +
(23)% + (2%)? =1, 2 + 2% + 2° + 2% = 0}. For the Laplace operator Ay, then the
required relations on A(X), A(Y), T'(X, X), I'(X,Y) and I'(Y,Y') are satisfied and
we may see therefore L as an image of this Laplace operator through (X,Y’). One
has to be careful here, since the linear forms z* are not orthogonal on the Euclidean
space Y.+, ' = 0. Indeed, one has for the dual Euclidean structure, |z'[> = 3/4
and 2 - 27 = —1/4 when i # j

Once again, this is the spherical Laplace operator acting on functions which are
invariant under the Weil group of symmetries exchanging (2!, 2%, 2%, 2%).

For other values of p, the discriminant form of the boundary suggests that one
looks at symmetric 4 x 4 matrices M with vanishing trace, restricted on the sphere
M*M = 1d, embedded with the induced spherical structure, in the real, complex and
quaternionic cases, and look at the induced operator on the characteristic polynomial
P()\) = M —=)2/2+ XX +Y, to obtain an operator with parameter (p—1)/2 = 2+6¢q,
with ¢ = 1,2,4 corresponding to the real, complex and quaternionic case. This is
left to the reader as an exercise.

4.12 The deltoid

In this case, up to affine transformation, we may choose the boundary equation to
be
(X2 4+ Y2 +18(X?+Y?) —8X3 +24XY? — 27 = 0.

There is a unique metric g up to scaling, which is

G 9+6X +Y?—3X? —2Y(2X +3)
- —2Y (2X +3) 9—-6X+X2-3Y2%)"

For the density measure p = det(G)?, we have

L,(X) = —2(5+6p)X, Ly(Y) = —2(5 + 6p)Y.
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The operator looks simpler in complex variables: setting Z = X + Y, one gets
[(Z,2) =122 —AZ*T(Z,2) =18 =227, T(Z,Z) = 127 — 472,

and

L,(Z)=-2(5+6p)Z,L,(Z) = —2(5 + 6p)Z.
Under this form, it is easier to check the eigenvalues for Ly, since the actions of the
operator on the highest degree term of a polynomial is diagonal, and we se that,
for any degree p, the highest degree part of any eigenvector is a monomial, say
Z9Z7, for which the eigenvalue is -and the same use of complex variables gives that
the eigenvalue corresponding to a polynomial whose highest degree term is ZPZ9 is
=3(g+7r)(g+r+4p+2)—(¢g—7)

Once again, as it is the case whenever the boundary is degree 4, the density
measure det(G)_l/ 2 is an admissible solution, and this corresponds to a Laplace
operator for a metric which has 0 scalar curvature. We may represent this operator
from a Euclidean Laplacian in dimension 2. For this choice of the measure, one
has L_y/3(Z) = —4Z, and if we identify R? with the complex plane C, one may

represent this using B
7 — eZi(Lz) +e2i(j-z) + 621'(332),

where z = x + iy € C, 1,4, j are the three third unit roots (solution of 23 = 1) and
21 - 22 is the euclidean scalar product R(z122). One may directly check the L_y)is
the image of Age through Z. (The interior of the deltoid is indeed the image of R?
through Z.)

Moreover, the function Z is invariant under the symmetries with respect to the
lines

Dy = {S(z) =0}, Do = {te"™/3,t € R}, D3 = {ae™/" + t*™/3},

with @ = 7/4/3. Those three lines determine a equilateral triangle (ABC) in the
plane , and any function which have those symmetries is also invariant under all the
symmetries with respect to the lines of the triangular network generated by A, B, C
(that is all the lines parallel to Dy, D2, D3 which are distant from ka, k € N). (This
group of symmetries is the Weyl group associated with the root system As.

The deltoid is then the image of the boundary of the triangle (ABC') through Z,
and it is not hard to see that the restriction of Z to (ABC) is injective. Then, the
functions of the form F(Z) are nothing else than the functions which are invariant
under the symmetries of the triangular network, and L_, /5 is just A_; /5 acting on
functions invariant under the Weyl group associated with A,.
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As usual, this model extends to rank 2 symmetric spaces with restricted root
system As. For a study of this case, see also Koornwinder [32, 33]. Indeed, it
is perhaps worth to notice that the boundary equation is the discriminant of the
polynomial 7% — ZT? + ZT + 1, putting forward the interest of representing Z as
A1+ A2 + Az where |A;| = 1 and A\ A2A3 = 1. In particular, one may consider the
Casimir operator on SU(3). Indeed, if Z denotes the trace of a SU(3) matrix, due
to the fact that eigenvalues (A1, A2, Ag) satisfy |A;| = 1, A1 AaA3 = 1, one sees that
the characteristic polynomial P()\) writes P(\) = =A%+ Z\? — AZ + 1. Then, using
formulae (4.40) and (4.41), one sees that

16 5
AsvZ =-52,AsuZ =-572,

and
= 72 22
Lsu)(2,2) =4Z = 5), Tsuw (2, 2) =42 - =),

Csu)(Z,2)) = Q(ZTZ —3),

which shows that L/, is the image of 3Agy(3) through Z.

5 The full R? case

In this Section, we consider the case where = R?, and concentrate on the SDOP
problem. From the one dimensional models and the tensorization procedure, we
already know that Gaussian measures provide such orthogonal polynomials, with
the two-dimensional Ornstein-Uhlenbeck operator as associated diffusion operator.
We shall prove in this section that in any case that the only admissible measure
are Gaussian measures, although there may be other diffusion operators having as
eigenvectors orthogonal polynomials for these measures.

In this situation, we do not have boundary equation to restrict the analysis of
the (co-)metric (G%). We therefore look for 3 polynomials G*!, G12, G*2 of degree
at most 2 in the variables (X,Y) with A = G*G?2 — (G'?)? > 0 on R? and for a
function h such that for the measure dp = e"dXdY’, the polynomials of (X,Y) are
dense in £2(p,R?). From (2.16), there exists Lx and Ly affine forms in R? s.t.

G*Lx — GY2Ly —GV2Lx +GYLy

Oxh = A , Oyh = A

(5.43)

Let us first show that A has degree at most 2: we denote by R? = X2 + Y2 If A
is of degree 4, and since A > 0 on R?, there is at least a cone in which, for some
constant ¢, A > cR* at infinity and dp cannot integrate any polynomial. Hence A
is of degree less than 3 and since it is positive on R?, A is of degree 2 or zero.

5.1 A irreducible, with degree 2

From (2.13) we know that h writes

7
h=logp= P+Zaplog|Ap| + B arctan(=>), (5.44)
P Ry
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where A, are the real irreducible factors of A and each A, writes A, = (R, +
iZ,)(Rp—iZ,). In this section, the degree of A is 2 hence the degree of the polynomial
P is at most 4 — deg(A) = 2. The terms of higher degrees has to be a negative
non—degenerated quadratic form in (X,Y). Let us write xP = Px + px and
Oy P = Py + py the partial derivatives of P in both variables where Py and Py are
homogeneous of degree 1 and px and py are constant. In particular, Px and Py
are linearly independent. We also denote by

GM=Ay+ A1+ 4y, G?=By+Bi+Byand G2 =Cy +C, +Cy  (5.45)

where the terms A;, B;, C; are homogeneous of degree i. Now combining (5.43)
and (5.44), one gets

G2 G2\ (AOxP +adxA\  [ALx (5.46)
G2 G*? Ady P +adyA ) \ ALy ’

Since A = GMG?2 — (G'?)? is of degree 2 and positive on R?, then A,Cy = B3. If
B, is non zero and irreducible, it divides Ay and Cy. This leads to Bs = AAs and
Co = N\2Ay (A # 0) and then to Px = —APy, which is excluded. The conclusion is
the same if By = b2 where By = M,, Cy = A\2A,, and also if B, = 0. It remains
only the case where By = AC, where A and C are linearly independent (hence non
zero) and Ay = Az, Cy = C2. In the general case, we may reduce to B; = 0, hence
A; =C1 =0 and ap, = 8, =0 for every p. Therefore OxP = MC', Oy P = —,ufl, and
OxA =08y C. The general solution is then as follows

G = (aX +AY)2 4+ 45, G = —(X +AY)(Y +9X) + By, G* = (oY +7X)?+Cp ,

where Ag > 0 and AgCp > BZ. This corresponds to a Gaussian measure. By affine
transformation, we may reduce to the standard Gaussian measure. Therefore the
only generic example (up to affine transformations) is

GUl=Y?4+ 4),G"? = —XY 4+ By,G** = X% + ()
with Ag > 0 and A¢oCo > B2, and
h=—-X?/2—-Y?/2+cste

( Y24+ 4, XY+ Bo> (—X) B (—AOX — B0Y>
-XY +By X240y -Y ) \-ByX - CyY
with A = AgX? + CoyY? + 2By XY + AgCy — B2. The generator is then
L(f)= (Y2 +A)0%f —2(XY — Bo)sxy f + (X* + Co)d5 f
~((o + DX + BoY)) o = ((Co+1)Y + BoX)) 0y f,

and

and its degenerated limit (classical Ornstein-Uhlenbeck)

La.5y.00(f) = a00% f+2Bo0%y [+Codi f~ (A X+BoY ) Ox [~ (CoY +BoX )0y f.
so that the generic operator is
Lay,Bo,c0 + (YaX - XaY)za

which is the sum of an Ornstein-Uhlenbeck operator and the square of a planar
rotation.
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52 A =1L%and L is a non constant affine form.

In this case, the operator is not elliptic. It appears as an example in the previous
case with Ag = 1, Cy = By = 0 but such cases are excluded, although interesting
per se.

5.3 A is constant (non zero)

We can boil down to A = 1. Then G''G* = (G2 —i)(G'2 +i). If G or G* is
irreducible, then G = X\(G'?41), which is not possible since G! is real. Therefore,
G'!' = l1ly, where [; are affine forms. Since G'' > 0 on R2?, the only solution is
G = 1l, where [ is an affine (complex) form non zero on R2. Therefore, up to
a constant, [ = [, + «, where [, is real linear form, and « in a non real complex.
Similarly, G*? = (I. + v)(l. + ¥), where [. is real linear form, and ~ is a non real
complex. Hence

G2 4i=(lg+a)lc+7), G2 —i=(lo+a)l.+7).

If one of [, or I. is non zero, then by identification, we get

1
le =V, vy=vao+ —,

(@)

Hence G' = (I, + a)(ly + @), G*? = (Il + &)l +7) — i, G* = (lc +7)(l. +7) et
le=vil, (v#0),y=va+1/3a).

Up to a change of variables, and still whenever [, # 0, one may reduce to the case
where G'! = X2 4 1. Then, it is easily seen from equation (5.43) that there cannot
exist any measure which is a solution and for which all polynomials are integrable.

We are then reduced to the case of constant G/, which correspond to Ornstein-
Uhlenbeck operators.

%

6 Non compact cases with boundaries.

In this section, we again consider the SDOP problem, which is perhaps not enough
to describe all the possible solutions of the general DOP problem (although we have
no example of solution of the latter beyond the cases described here).

We describe all the possible models, but we do not give any geometric interpreta-
tion, and do not detail for which values of the parameters appearing in the measure
the polynomials are dense in £2(u). However, in all the cases described below, it is
indeed the case for at least some values of these parameters. Moreover, one could
give a geometric construction for many models as images of Ornstein-Uhlenbeck
operators in some Euclidean space, associated to Gaussian measures.

Following the results of Section 2, we reduce to the cases where every factor
A, appearing in the boundary satisfies the fundamental equations (2.12). We also
need, for the measure dy = e*dx, that £2(u) contains any polynomial. Hence in
any case, we have to look for the existence of such a measure, which will turn out
to be the main restriction. We indeed require more, namely that polynomials are
dense in £2(u). We know from Proposition 2.13 the general form of the measure. In
addition to the boundary terms, there appear in h a polynomial term P which will be
crucial when integrating the polynomials on the domain (see previous section) . This
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constraint will help us to restrict the number of cases for the metric (G). Moreover,
if the determinant A of (G) has no multiple factors and the domain contains an
open cone, the degree of A is at most 3. When there are multiple factors, the same
kind of analysis can be undergone.

The algebraic analysis undergone in Section 3 still holds, and produces the fol-
lowing list of possible boundaries.

(1) 92 = {Y? — X3 = 0}. In this case, the general metric is given by

oo (. BaXT X oY ng)@ +2aXY + 28Y
T\ 3yX? +20XY + 30Y 9BX2 + $9XY +3a¥?)

Here, the determinant A is 2(Y?2 — X?))((3v? — 4aB)X + 4ayY — 353%). Since
deg A < 3, then a = v = 0, and by homogeneity we may restrict to 8 =
1. Since A > 0 in the interior of the domain, ), one sees that the domain
must be X2 > Y2, This leads to measures of the form Aigp = C’mb(Y2 -
X3)%exp(—bX)dXdY, a > —1,b> 0, on the domain X3 > Y2,

(2) 0Q ={Y — X2 =0}. Then A = (Y — X?)A; with either A; proportional to
(Y — X?) or deg Ay < 1.

(21)

(2ii)

(2iii)

A = ¢(Y — X?)2. In this case, the general metric has form

aX?+ X + v BX? +2aXY + 29X + BY
BX2 +20XY +29X +BY  4yX? +4BXY + 4aY?

In this case, we may show that there is no measure solution for the prob-

lem.

deg A = 3. The metric for which there exist a measure solution for the
problem may be written as

g Y-X’+u  ANY - X*) X
TAANY - X)) 2uX MY - X% 4uy )

By a change of coordinates X ~— c¢X,Y + c?Y, we may reduce to p = %1
or £ =0 and A = 1. The latter case is excluded since then A = 0. In the
first case, the existence of a finite measure solution imposes u = 1, ) =
{Y > X?} and measures to be du = (Y — X?)%exp (—b(Y —A\X))dXdY,
a>-1,b>0.

A has degree 2. The only solutions are, up to a constant,

1 2X
2X (Y — X2)+4Y )"

This is a limit case of the previous one (after multiplication by a constant).

(3) 92 = {X = 0}. In this case, G and G'? are multiple of X. If A has no
multiple factors, then degA = 2, and A has form aX (X ++). If A has multiple
factors, it has form A = X2l where I; and I, are two linear forms. Since it
is an elliptic operator, [ and Iy are of type rX + d. Then for he measure to
be finite when integrating the polynomials on R for the Y variable, we need to
have degA = 2. Since G is positive on {X > 0}, it has form X or X (aX +f3)
with & > 0 or 8 > 0 ( by homothety or dilatation, we could reduce to G'! = X,
G = X(X +1) or G = X?). We denote by G'2 = X1}, where I is a linear

form.
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(3i) Case A = X2. There are two cases:
(a) GM = aX? G2 =zl,, G** = (IZ + 1)/a, a # 0. To have measure
solutions, we must have I, = X or [ = X + §Y + Bo.
(b) G =aX, G = BX, G?? = yX, ay = 2 +1: there are no measure
solutions in this case.
(3i)) A = X(X +1). With G11 = Xl,, G*2 = Xl and G?? = X2 + 9, X +
co, and [, depending only on X. The general metric admitting measure
solutions is, up to a constant and up to dilatation on Y,

AX(X +1) MPX(X+1)+1
The curvature is zero. The change of coordinate Y = Y; + X reduces to
(X (X+1) 0
0 G22
(3iii)) A = X. Once more, G'' = Xl,, G2 = X, and G?* depends only
on X, and we can reduce to G = aX(X + 1), or G = aX. Then

G*2 = Xl + 1/a, and we have 2 subcases:

(a) G = aX, G2 = BX, G*# = (82X + 1)/a. We can reduce by a
change of variable on Y to 8 = 0 which is the classical case of a
product of Laguerre and Hermite polynomials.

(b) a = aX (X + 1), then either I, = 1,l. = 0 or l, = —1,I. = 0, or
Iy = —14+au(X+1),l. = p(—2+apu(X+1)) or l, = 1+apu(X+1),l. =
#(2+apu(X +1)). In any of these cases, there is no measure solution.

(4) 09 = {XY = 0}. Then A is of degree at most 3. The boundary equations
imply G'' and G'? are multiple of X while G2 and G?? are multiple of Y.
Hence the general form of the metric is

. (Xla 6XY> .

(X(X+1) AX(X +1) )

), and in this case three is no measure solution.

BXY Y,

By homothety, symmetry in (X,Y") and dilatation on X and Y, we may reduce
to one of the following cases:
(41) G — X(OélX+Oéo) 0416XY
o OllﬂXY Y(Otlﬂ2Y+Co)
have therefore

) From the ellipticity condition, we

(a) ajapBey # 0: no integrable measure solution.

(b) a3 = 0: then ag and ¢y are non zero.It is a product of Laguerre
polynomials. The only mesure that are solutions are product of ex-
ponential terms with the boundary terms.

(¢) ap =0 and «a;cy # 0: no measure solution.

(d) B =0 and ajapcy # 0: no measure solution.

(e) ¢o =0 and ajapf # 0: no measure solution.
)

(f) agp =B =0 and ajcy # 0: no measure solution.
.. o X(OQY + ao) ﬁOszY

(4if) & = < BaaXY  Y(02B2X + co)

as = 1. Up to symmetry on X and Y, we have the following subcases:

(a) apBcg # 0. There is a measure solution exp(—uX — AY) if § < 0.

), with g # 0. We can chose
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(5)

7

(b) ap =0, Bcy # 0. There is an exponential measure solution if 5 < 0
(a limit case of the previous one). Then A = XY?2. In this generic
case, the curvature is non constant. By dilatation, we can boil down
to ap = 1, but not simultaneously to ¢y = 1.

(¢) B8=0, apcy # 0: no measure solution.

(d) ap=p8=0, co # 0: no measure solution.
00 = {X(1 - X) = 0}. The (co)-metric solution is (up to homothety and
affine change)

X(1-X) BX(1-X)
G= (BX(I -X) P(X,)Y) )

and P is any polynomial of degree 2, positive on the domain. Hence A is at
most of degree 2 and therefore P(X,Y) = v+ 32X (1 — X) and the admissible

metrics are finally
1 0 0
G-X(l—X)(B 52)4—(() 7).

Up to a dilatation on Y we can assume = 0 or § = 1. In this case, the
curvature is zero and measures have form:

X"(1 - X)*exp(AX + pY +8(Y?2 + 32X?) — XY (M + 266).
We can reduce to a simpler form with an affine change of variable on Y —
Y 4+ dX + e, and it is a standard form of r8 = 0. For g # 0, the form is
more complicated. Moreover, on the case 8 = 0, there are non trivial terms
depending on x in the polynomial part, which were not expected.

XY (1 - X) =0. The metric solution is (up to homothety and affine change)

¢= (X(lo_X) Y(aX +05Y+7)>'

Except in the case a = 0, the curvature is non constant, and the additional
factor in A: aX 4+ BY + v does not satisfy the boundary equation. The only
case when there is a measure solution on the domain is @ = # = 0, which is a
product of Jacobi and Laguerre polynomials.

Two folds covers

For many examples in dimension 2, with domain  described by the equation
P(X,Y) > 0, one may look at models in dimension 3 given by the equation Z2 <
P(X,Y). It turns out that, in every case where no cusp or double tangent appears
in 012, this provides a new domain in dimension 3 which is again a solution of the
problem. This is therefore the case for the circle, the triangle, the double parabola
and the double point cubic.

Those new three dimensional models present the same pathology than the circle
and triangle models in dimension 2: the metric is not in general unique up to scaling,
the curvature is not constant (except for specific values of the parameters). In fact,
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in those models, the boundary of the domain has degree at most 4, whereas the
maximal degree of the boundary in general is 6. The Laplace operator associated
with the metric does not in general belong the admissible operators.

For example, if one starts with the double point cubic described in section 4.8,
one gets for the metric, up to scaling,

4X(1 - X) 2Y (2 — 3X) 27(2 — 3X)
G=|2Y(2-3X) 4X —3X2%2-9Y2 (94 A)Z? AY Z
27(2 - 3X) AY Z 4X —3X%— (9+ A)Y? — 92>

For the double cover of the triangle, however, one gets a unique metric up to
scaling, which is

AX(1-X)  —4YX 27(1 - 3X)
G=| -4avx av(1-v) 2Z(1—3Y) ,
2Z(1-3X) 2Z(1-3Y) X+Y - X2 - XY —Y?-922

which has no constant curvature. We did not try to push the analysis of these models
any further, but this shows that one may construct in higher dimension some models
which are not direct extensions of the 2 dimensional models, and that the higher
dimension analysis of the problem seems much more complex.
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