Dynamics of periodic Toda chains with a large number of particles - Archive ouverte HAL
Article Dans Une Revue Journal of Differential Equations Année : 2015

Dynamics of periodic Toda chains with a large number of particles

Dario Bambusi
  • Fonction : Auteur
  • PersonId : 857760
Thomas Kappeler
  • Fonction : Auteur
  • PersonId : 945701
Thierry Paul
  • Fonction : Auteur
  • PersonId : 878449
  • IdRef : 158973372

Résumé

For periodic Toda chains with a large number $N$ of particles we consider states which are $N^{-2}-$close to the equilibrium and constructed by discretizing any given $C^2-$functions with mesh size $N^{-1}$. For such states we derive asymptotic expansions of the Toda frequencies $(\omega^N_n)_{0 < n < N}$ and the actions $(I^N_n)_{0 < n < N},$ both listed in the standard way, in powers of $N^{-1}$ as $N \to \infty$. %listed in accordance with the ordering of the frequencies at the equilibrium, %$(2 \sin \frac{n\pi } {N})_{0 < n < N}$. At the two edges $n \sim 1$ and $N -n \sim 1$, the expansions of the frequencies are computed up to order $N^{-3}$ with an error term of higher order. Specifically, the coefficients of the expansions of $\omega^N_n$ and $\omega^N_{N-n}$ at order $N^{-3}$ are given by a constant multiple of the n'th KdV frequencies $\omega^-_n$ and $\omega^+_n$ of two periodic potentials, $q_{-}$ respectively $q_+$, constructed in terms of the states considered. The frequencies $\omega^N_n$ for $n$ away from the edges are shown to be asymptotically close to the frequencies of the equilibrium. For the actions $(I^N_n)_{0 < n < N},$ asymptotics of a similar nature are derived.
Fichier principal
Vignette du fichier
todaseptember.pdf (477.97 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00864330 , version 1 (20-09-2013)

Identifiants

Citer

Dario Bambusi, Thomas Kappeler, Thierry Paul. Dynamics of periodic Toda chains with a large number of particles. Journal of Differential Equations, 2015, 258 (12), pp.4103-4490. ⟨hal-00864330⟩
191 Consultations
87 Téléchargements

Altmetric

Partager

More