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Abstract

For periodic Toda chains with a large number N of particles we con-
sider states which are N—2-close to the equilibrium and constructed
by discretizing arbitrary given C?—functions with mesh size N~!. Our
aim is to describe the spectrum of the Jacobi matrices Ly appearing
in the Lax pair formulation of the dynamics of these states as N — oo.
To this end we construct two Hill operators H. — such operators come
up in the Lax pair formulation of the Korteweg-de Vries equation —
and prove by methods of semiclassical analysis that the asymptotics
as N — oo of the eigenvalues at the edges of the spectrum of Ly are
of the form £(2 — (2N)72)\E +...) where (A\),>0 are the eigenvalues
of H.. In the bulk of the spectrum, the eigenvalues are o( N ~2)-close
to the ones of the equilibrium matrix. As an application we obtain
asymptotics of a similar type of the discriminant, associated to L.

1 Introduction

It is well known that the (periodic) Toda lattice is an integrable system and by
classical heuristic arguments, its dynamics are expected to be well described by
solutions of the (periodic) KdV equation in the continuous limit (cf [31, 11, 30]).
However, only quite recently [29, 4], it has been rigorously proved that in an
appropriate asymptotic regime, small solutions of Toda lattices, or more generally,
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of chains of particles with nearest neighbors interaction, referred to as FPU chains,
can be described approximately in terms of solutions of the KdV equation. It is
important to note that in order to approximate one solution of an FPU chain, two
solutions of the KdV equation are needed, one corresponding to a right moving
wave, and the other corresponding to a left moving wave. Furthermore we recall
that these results are proved by averaging type methods, allowing to control the
dynamical variables for long, but finite intervals of time.

Since the (periodic) Toda lattice is an integrable system, one expects that the above
approximation results can be improved in this case by computing the asymptotics
of quantities such as the frequencies. In addition, one would like to understand
how the integrable structure of Toda lattices is related to the corresponding one of
the KdV equation in the continuous limit. In particular, recall that both equations
admit a Lax pair formulation. The one for Toda lattices involves Jacobi matrices
and the one for the KdV equation Schrodinger operators. In the setup of lattices
on the entire line, Toda [30] showed by a formal computation that the continuous
limit of Jacobi matrices is given by one Schrodinger operator (cf [30], p. 93), leading
to one solution of the KAV equation. But in view of the rigorous results of [29, 4],
two solutions of KAV are needed to describe the asymptotics of solutions of Toda
lattices in the continuous limit. Hence even on a formal level, Toda’s result is
incomplete, at least for general initial data. These limitations of Toda’s result are
also shared by works in the periodic setup such as [17, 18] as well as by studies of
other lattices (cf e.g. [25]). Indeed, in [17], p. 587, the author points out that he
only considers very special initial data of the periodic Toda lattice.

The formal results of Toda et al. and the rigorous results of [29, 4] lead to the
problem of how to construct two Schrodinger operators yielding the two KdV
solutions needed to describe the asymptotics of Toda lattices in the continuous
limit without the restrictions on the initial data mentioned above. In the present
paper, we solve this problem in the periodic setup in which case these operators
are also referred to as Hill operators. It might come as a surprise that they are
constructed by some methods of semiclassical analysis. One of the main results we
show says that they can be used to approximately describe the limiting asymptotics
of the spectra of periodic Jacobi matrices.

We believe that our results and the methods developed for proving them will be
an essential tool for studying all kinds of properties of the asymptotics of Toda
lattices in the continuous limit. Results in this direction are obtained in [3] by
applying what is proved in the present paper: one of the results of [3] provides
the first two terms in the asympotics of the Toda frequencies in terms of the KdV
frequencies corresponding to the two Hill operators, mentioned above.

Finally we would like to discuss the connection of the present research with the
so called FPU problem, which actually is the main motivation for our research.



We recall that in their celebrated report [13], Fermi, Pasta, and Ulam studied the
dynamics of FPU chains. They wanted to confirm numerically that energy sharing
among the different degrees of freedom occurs. Very much to their surprise, they
observed recurrent dynamics instead. It led to the question, referred to as the
FPU problem, whether the observed recurrence phenomenon persists in the ther-
modynamic limit. In case it does, it would contradict the so called equipartition
principle leading to potentially serious problems for the foundations of classical
statistical mechanics. We emphasize that, notwithstanding the huge number of
computations and the enormous amount of theoretical work done up till now (see
e.g. [6], [8], [24], [27]), an answer to this problem is still not known. For status
reports on the research of FPU chains see [7], [10], [16].

In the context of the FPU problem, our interest in Toda lattices stems from the
facts that on the one side, Toda lattices are integrable and hence their continuous
limits might be easier to study and at a deeper level, due to the additional struc-
tures present, and that on the other side, near the equilibrium, FPU chains are
well approximated by Toda chains. Indeed, it was already pointed out in [12] that
close to the equilibrium, (periodic) FPU chains are typically better approximated
by (periodic) Toda chains than by the linear model. Subsequently, numerical ev-
idence was found that up to a long time, periodic solutions of FPU chains with
small initial data are very well approximated by Toda chains. See the quite recent
work in this direction [5] and references therein.

2 Statement of main results

The Toda lattice, in the setting of periodic boundary conditions with period N > 2,
is the Hamiltonian system with Hamiltonian

1 N N
— 2 dn—qn+1
H=5) ppt) e
n=1 n=1

Here ¢,, denotes the displacement from the equilibrium position of the n’th par-
ticle, p,, its momentum and (g,,py) is defined for any n in Z by requiring that
(¢ixN,Pi+N) = (¢i,p;) for any i € Z. When expressed in Flaschka coordinates,
b, = —pn and a, = e%(qnfq”“)([lll]), the Hamiltonian equations of motion associ-
ated to H take a Lax pair formalism description given by

i =B, 1 (2.1)



where the N x N matrices L = L(b,a) and B = B(a) are of the form

b1 al 0 0 anN 0 al 0 0 —anN
al b2 as ... 0 0 —ai 0 a9 0 0
0 a9 bg 0 0 0 —a9 0 0 0

. . and . .

0 bN_1 anN—1 0 0 anN—1
anN 0 anN—1 bN an 0 —aN-—-1 0

respectively, with a = (ap)1<n<n € ]Révo and b = (by)1<n<nN € RY. Notice that
the matrix L(Oy,1y) with b = Oy = (0,...,0) and a = 1y = (1,...,1) is an
equilibrium for (2.1). We are interested in the N — oo asymptotics of various
spectral quantities of L(b",a’") for bV, a” of the form

n n
by :eﬁ(ﬁ) and oY = 1+ea(ﬁ) (2.2)
where € is a coupling parameter and «, § are functions in CS(T, R), i.e. 1—periodic
C?—functions with [a] = [3] = 0 with [a] denoting the mean of «, [a] = fol ax)dx.
Alternatively, one can consider

piv = —sﬁ(%) and q,]lv = —2N€f(%)

where ¢ is the element in C3(T), satisfying ¢’ = a. Using that

@ — dni 0~ dpit N

exp(f) =1+ — +O(e/N) = a,) +O(e/N)
one can show that our results stated below hold for either of the two discretizations.
The limiting equations strongly depend on the choice of the coupling parameter e.
In [9] it is shown that with € ~ 1, one obtains in the limit as N — oo a nonlinear
system of equations of hyperbolic type, which contains as a special case the inviscid
Burgers equation. In contrast to [9], we choose ¢ = ey = (2N)~2. It turns out
that in this case, the asymptotics of the dynamics is described in terms of two
solutions of the KdV equation (cf [3]). Our aim is to compute the asymptotics of
the eigenvalues of L(bY,a”) and of the corresponding discriminant as N — oco.
Let us note that in view of the Lax pair representation, the spectrum of L(bN ,aN )
is conserved by the Toda flow. To obtain a set of independent integrals of motion
it turns out to be more convenient (see e.g. [19]) to double the size of L(b",a™)
and to consider

W= QN ,a™) = LN, 0V), (aV, ")), (2.3)
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namely

AT AR 0 aly
a]lv bév aév 0 0
0 a¥ oY & o ... oo o L 0
Q=10 ... 0 o, N o 0o ... ... 0
0 0 o Y & 0 0
9\[ P a%_g b%_l a%ﬁl
ay 0 ... 0 an_; by

The eigenvalues of Q?V’ﬁ when listed in increasing order and with multiplicities
satisfy
A <A <A << Advig < Avia < Aot

By Floquet theory (cf. e.g. [19]) one sees that in the case where N is even,
A0, A3, Ad, ooy AaN—5, AdaN—_4, Aon—1 are the N eigenvalues of L(bN,aN). For N
odd, they are given by A1, A2, A5, Ag, ..., Aan_5, Aan_4, Aony_1. To describe the
asymptotics of )\nN at the edges, n ~ 1 or n ~ 2N — 1, we need to introduce two
Hill operators Hy := —0? + g1 with potentials

g+(z) = —20(22) F B(22). (2.4)

The discovery of these two operators and of their role in the description of the
asymptotics as N — oo of the spectrum of Q?‘V’B is one of the main contributions
of this paper. The role played by the operators H_ and Hy in the description
of the asymptotics of the left respectively right edge of the spcetrum of Q?‘V’B
will be explained in detail in Section 7. Furthermore we point out that in our
subsequent paper [3] we prove that the limiting dynamics of the Toda lattices
(bY,a™) as N — oo can be described in terms of the solutions of the KdV equation
corresponding to ¢q_ and ¢4. Note that the two potentials ¢_ and ¢4 determine «
and 8 uniquely and that they are independent from each other. Loosely speaking,
in terms of the asymptotics described in [3], it means that the parts of the Toda
lattices corresponding to the spectrum at the two edges do not interact although
Toda lattices are nonlinear systems. The formulas (2.4) for ¢_ and ¢4 are an
outcome of semiclassical analysis, discussed in Section 4 — see also the explanations
below after Remark 2.2 .

Note that g are periodic functions of period 1/2. The periodic eigenvalues
()\ff)nzo of Hy on [0,1], when listed in increasing order and with multiplicities,
are known to satisfy )\f)t < )\{E < )\ét < ---. It turns out that the asymptotics of
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the eigenvalues of Q?‘V’B exhibit three different regions: the bulk and the two edges,
which shrink to {—2} and {+2}, respectively, as N — oo. Each of these three
parts of the spectrum has its proper asymptotics: in the bulk, the spectrum is
close to the one of the equilibrium matrix by a distance smaller than the distance
between the given Jacobi matrices and the equilibrium matrix, whereas in each of
the two edges, the first correction is of the same order as this distance and involves
the spectrum of one of the two Hill operators H.

To define the two edges of the spectrum consider a function ' : N — R>; satisfying

F lim F(N) = oc; increasing; F(N) < NT"with 0 <n < 1/2.
n

N—oo

Theorem 2.1 Let F satisfy (F) and let o, € CZ(T,R). Then the asymptotics
of A\ are as follows:
at the left edge: for 0 < n < 2[F(N)]

)\N

I

|
\]
+
=
+
S
3
2
=
=

at the right edge: for 0 < n < 2[F(N)]

1 _
AN on = 2 = m)‘:f +O(F(N)*N~?)

in the bulk: for n = 20,20 — 1 with [F(N)] < £ < N — [F(N)],

1
AV = 2(:OSN7T +O(NT2F(N)™h).

n —

These estimates hold uniformly in 0 < n < 2N — 1 and uniformly on bounded
subsets of functions a, 3 in CZ(T,R).

Remark 2.2 In the case where F(N) = N",0 < n < 1/2, the asymptotics of
Theorem 2.1 read as follows:

1
A =2+ e FONT), V0 <n < I[N

1
Myo1on = 2= oA + OV TH21), w0 < n < 2N

¢
AN AN = —2cos N” +ON"2™), YN <n<N - [N



To prove Theorem 2.1 we use singular perturbation methods, more specifically
methods from semiclassical approximation. Indeed it has been proved in [9]
that Jacobi matrices such as Q?‘V’B can be viewed as matrix representations of
certain semiclassical Toeplitz operators T in the framework of the geometric
quantization of the 2d torus. Note that the Jacobi matrices Q%ﬁ — and hence
the associated Toeplitz operators — are perturbations of size ﬁ of the equi-
librium matrix Q(O,1y) whose spectrum is {—2cosZ, I = 0,...,N}. Since
cos %—COS % = O(N~2)forl ~ 1orl~ N, thesize of the perturbation is of the
same order as the spacing between the unperturbed eigenvalues so that regular per-
turbation methods fail. Using semiclassical methods, we compute the asymptotics
of the eigenvalues at the two edges of the spectrum by constructing semiclassical
(Lagrangian) quasimodes for Ty, for which the two Hill operators appear in the
transport equation associated to the construction. As customary for the quantiza-
tion of compact symplectic manifolds, the Toeplitz operators T act on a Hilbert
space of dimension 2N with N playing the role of t he inverse of an effective Planck
constant. In the bulk, i.e. for 1 < [ < N, one has | cos le —cos %\ > N2 and
thus regular perturbation methods apply. Finally let us mention that our method
allows to obtain the full asymptotic expansion in % of the entire spectrum — see
the discussion at the end of Section 8.

As an application of Theorem 2.1 we derive asymptotics for the characteristic
polynomial yn(u) of Q%ﬁ as N — oo. Note that yn(u) gives rise to the spectral
curve {(u,z) € C?|22 = xn(n)} which plays an important role in the theory of
periodic Toda lattices. These asymptotics will be of great use in the subsequent
work [3]. By Floquet theory, xn(p) can be expressed in terms of the discriminant
associated to the difference equation (k € Z)

ap_yy(k — 1) + 0y y(k) + aiy(k + 1) = py (k). (2.5)

Indeed denote by 31V and y2¥ the fundamental solutions of (2.5) determined by

i (0p) =1, g1’ (1,u) =0 and 33 (0,p) =0, 33’ (1,) = 1.
The discriminant of (2.5) is then defined as the trace of the Floquet matrix asso-
ciated to (2.5) and given by

An(p) =y (N, ) + 92 (N + 1, p).

In view of the Wronskian identity, y is an eigenvalue of L(b",a") [Q?V’ﬁ Jiff An(p)—
2 = 0 [A%(p) —4 = 0}]. Hence up to a multiplicative constant, A% — 4 and
xn coincide. From the recursive formula for 3 (k, i) one then sees ([19]) that

N
AX(p) —4= q;;QXN(M) where gy = ]I[(l + ﬁa(%))_



Analogously, denote by Ay (A) = A(\, ¢+) the discriminant of
=" (2, A) + g (2)y(z, A) = Ay(=, A) (2:6)
defined as the trace of the Floquet operator associated to (2.6),
Ar(N) =i (1/2,0) + () (1/2,)
where yT (2, \) and (y5)'(z,\) are the fundamental solutions of (2.6) defined by
p1(0.0) =1, (57(0,0) =0 and 5(0,2) =0, (570, 1)) =1,

Similarly as in the case of the Toda lattice, A is a periodic eigenvalue of HL on the
interval [0, 1] iff A% ((A\)—4 = 0. Note that A% ((\)—4 is an entire function and can
be viewed as a regularized determinant of H, referred to as characteristic function
of (2.6). It leads to the spectral curves {(), z) € C?| 22 = A3 ()\) — 4} which play
an important role in the theory of the KdV equation. We will state our result on
the asymptotics of yn in terms of the discriminant Ay. With M = [F(N)] and

F as before, let ATM = A;t’M be the box
+M . £ + .
and choose Ny € Z>1 so that
Moks1 — A 26V k> F(F(Ny)) (2.7)

By the Counting Lemma for periodic eigenvalues (cf e.g. [22]), Ny can be chosen
uniformly for bounded subsets of function «, 8 in C3(T,R).

Theorem 2.3 Let F satisfy (F), M = [F(N)] with N > Ny, and «, 3 € CZ(T,R).
Then uniformly for X in A=M

2
AN(—2+4—]1VQA) _ (VA ()40 <%> (2.8)
Similarly, uniformly for X in AHM
1 F(M 2
AN@2 = 3mN) =8+ (A +0 (%) : (2.9)

These estimates hold uniformly on bounded subsets of functions o and 8 in C3(T, R).



Remark 2.4 In the case where F(N) = N",0 < n < 1/2, the asymptotics of
Theorem 2.3 read as follows:

1
An(=2+ 3N = (CDVA- () +0 (N—"<1—">> . Yae A
1
An(2= 5N = B4(N) +0 <N"7(1_’7)) . YAeARNT

We remark that we did not aim at getting the maximal range of the \’s for which
(2.8) and (2.9) hold. Moreover, although we didn’t state such a result here, our
method allows to compute the asymptotics of the discriminant for A in the bulk
region as well. In the companion paper [3], the results of Theorems 2.1 and 2.3
are used as an important ingredient for computing the asymptotics of frequencies
and actions of Toda lattices in terms of the corresponding quantities of the KdV
equation.

Organisation of paper: The proof of Theorem 2.1 relies on the construction of
quasimodes for the Jacobi matrices Q%ﬁ . This construction is done in the frame-
work of the geometric quantization of the torus (Section 3). The matrices Q?‘V’B
are shown to be the matrix representation of Toeplitz operators (Section 4), whose
action on a certain type of Lagrangian states is described in detail in Theorem
4.4. Proposition 5.1 in Section 5 states an abstract result on the construction of
quasimodes that we couldn’t find in the literature and which is crucial for the proof
of Theorem 2.1. The two cases corresponding to the bulk and the edges of the
spectrum are treated in Section 6 and Section 7 respectively. The proof of Theo-
rem 2.1 is summarized in Section 8. In Section 9 we first compute the asymptotics
of the Casimir functionals of the Toda lattice (Proposition 9.1) and then, using
Theorem 2.1, obtain the asymptotics of the discriminant of Q?V’ﬁ in terms of the
discriminants of H, stated in Theorem 2.3. In addition, we apply Theorem 2.3 to
prove similar asymptotics for the derivatives of Ay (p) and to derive aymptotics
of the zeroes of 9, An (1) at the two edges.

Methods: The methodology used in this paper, based on the geometric quantization
of the torus, is strongly inspired by [9]. In that paper, the authors consider the
large N asymptotics of Toda lattices, both for Dirichlet and periodic boundary
conditions, in the case where the a,’s and b,’s are given by the discretization
of regular functions, i.e. the coupling parameter € equals 1, and they derive the
limiting PDE.

Finally we mention that this work has been announced in [2].

Acknowledgments: The authors would like to thank the University of Milan, the
Swiss National Science Foundation, the University of Ziirich, the CNRS and the
Ecole polytechnique for financial support during the elaboration of this work.



3 Geometric quantization of T?

The geometric quantization of the two dimensional torus (resp. sphere) and the
underlying so-called Toeplitz operators theory has been shown in [9] to be a natural
set-up for studying the large N limit of the Toda lattice with periodic (resp.
Dirichlet) boundary conditions. Although most of the computations in the present
papers are going to be carried out from scratch, we recall in this section the basic
facts concerning Toeplitz operators.

Consider the standard 2-dimensional torus T? = R?/Z?, identified with C/(Z+iZ),
with canonical symplectic form w = dz A dy and Planck constant (47 N)~!. Let
E — T? be a holomorphic line bundle with connection V = d — 27mizdy and
denote by  the curvature form, x = d(—2mizdy). Then %FL = w. In particular,
the Chern class of E, given by the cohomology class [#/{], satisfies [ﬁ/@] = [w].
Denote by (H5y, (-, -)~) the Hilbert space whose elements are holomorphic sections
T2 — E®2V | viewed as entire functions f : C — C satisfying

f(z+m+in) = e2N”[z(m*i”)+%(m2+"2)]f(z) Y(m,n) € Z*, z € C.

The inner product is given by (f, g)~ f[o 12 f(2)g(z)e 2Nz |2dxdy We identify
H5n (isometrically) with the space Han of theta functlons of order 2N, i.e. entire
functions f : C — C, satisfying

z+m+in :62N”("2*2mz)fz Y(m,n) € Z?, z € C
I )

with inner product (f, g) f[o 12 F(2)g9(2)e 4N dady. For 0 < j < 2N — 1, let
QJN(Z) _ (4N)1/4e—7rj2/2N Z e—7r(2Nn2+2jn)627riz(j+2Nn). (3.1)
nez

One verifies that (va Jo<j<2n—1 is an orthonormal basis of Hay. Observe that
in contrast to the ’standard’ case of the quantization of a cotangent bundle, the
Hilbert space Hsy is finite dimensional. From a point of view of physics, this fact
is justified by the Heisenberg uncertainty principle. The Toeplitz quantization
of a function F : T? — R is given by the sequence of operators Tfpv : Hony —
Hon, f — Py(fF) where Py : (L2([0,1]2, e *N™* dzdy) — Han denotes the
orthogonal projector,

(Pnf)(z) = Y (f,07)0) (2).
j=0

More generally, a Toeplitz operator is a sequence of operators (TN )n>1 where for
N > 1,TN : Hony — Hon is an operator of the form TV ~ Z;io N_JTé\j. The
function Sp : T? — R is referred to as principal symbol.
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4 Jacobi matrices as Toeplitz operators

In this section we study Jacobi matrices with entries defined in terms of discretiza-
tions of functions of a certain regularity, from a *Toeplitz operator’ perspective. In
particular we show how their action on certain families of elements in the Hilbert
spaces Hap, referred to as Lagrangian states, can be explicitly described in terms
of differential operators — see Theorem 4.4 below. This theorem is key for our
construction of quasimodes.

For o, B in Cg(’]l‘, R) and N > 3, denote by T]‘\X,’ﬁ the linear operator on Hon whose
representation with respect to the basis [0 ,...,00] is Q%B . As an example,

consider the operator T]%’O. To study its properties let us begin by recording the
following elementary result.

Lemma 4.1 ((:Fl)”) s an eirgenvector on?\’,O corresponding to the eigen-

0<n<2N—1 '
value F2, and, for any 1 < £ < N — 1, the vectors (e”r(N*Z)"/N)OSnSQN_1 and
(e“r(]\”rz)”/]\f)0<n<2N_1 are eigenvectors of Q?\}O corresponding to the eigenvalue

—2cos %. They form an orthogonal basis in C*N.

From Lemma 4.1 it follows that ¥""*(2), 0 < k < 2N — 1, is an orthonormal basis
of Han of eigenfunctions of TO’O, T]?,’O?,Z)N’]€ = 2cos %wva, where

2N 2N —1
WV = @N)TY2N T RO, L (2) = 2N) V2 N e R ON (). (41)
n=1 n=0

Alternatively, ¥V* can be expressed with the help of the kernel

2N—-1
pn(zw) = 3 0V ()N (w), (4.2)
=0

Lemma 4.2 For any 0 <k <2N —1,

1
PNF(2) = (4N)1/4/ pn (2, k/2N +is)e*2N”52ds.
0

Proof:  In view of (3.1) and (4.2), the claimed identity follows easily from the
identity 37,7 [ e T NOFtaN) ds = [ e~ (VIIND gy = (2N)71/2, O

It is useful to introduce for an arbitrary real or complex valued function f € L?(T)
and 0 < k < 2N —1,
1
¢}V’k(z) = (4N)~1/4 / f(s)pn (2, k/2N + is)e_ZN”Sst. (4.3)
0

11



It is an element in Han. For f € L3(T), denote by fn the n’th Fourier coef-
ficient of f, f, = fol f(x)e"?™dg and by ||f||¢ the ¢-th Sobolev norm || f|, =

. 1/2
<ZnEZ | fn?(1 + |n|)2£> . Further denote by || f|lc¢ the following norm of f €
CHT): | flloe = sup 35 |0%f ()],
0<z<1

Lemma 4.3 For f,g € L*(T) and 0 <k, <2N — 1
(1) w}V,k( ) \/_ ZQN 1 GN( ) —imkj/N ZmeZ fmefﬂm2/2Nefi7rmj/N.
Alternatively, with A = —d?/dz?,

2N—

7=0

(ii) <1}Z;jfv’k,qpévvf> = ez Frlmenge ™ /2N g=m(nth—0)2 2N
i) [ 0" = (f.9)] < 2wl f o lg'lle ¥ f.g € HY(T).

(iv) The linear maps L*(T) — Hon, f = w;mk’ are bounded, Hl/chVkH < flo-

Proof: (i) By the definitions of ¢;V’k and py

2N-1
U (z) = (AN)TVE N T 0N (2) /f ) 0N (k/2N + is) e 2N ds.
7=0

Using the definition (3.1) of Hj»v one gets

4N 1/4/ f ——|—’LS) —2N7s? dr — 7Z7TN Z/ —27N( n+s+2N) f( )d )

neL
(4.5)

As znez e—2mN(n+s+j/2N)? e2mn(s+j/2N) g—mn? /2N (

Poisson summa-

1
- V2N ZnEZ

tion formula) it then follows that

1 1 w2
(4N)~H/ / f(s)Hj»V(k:/QN + is)e_zN”Sst = — Z T iy f-n,
0

12



yielding the claimed formula. To verify the alternative formula, note that by (4.5)
and the fact that f is periodic, one has

w}\ﬁk(z) _ Z Mrk]/NZ/ —2wN(n+s+j/2N)? f( )d
Jj=0 ne”L
2N—1 o . -
= Z gjv(z)e—mkj/N/ e~ 27N (y+3/2N) f(y)dy.
j=0 oo
Evaluating the heat flow for the initial data f at x = —ﬁ and time ¢t = i% we

obtain the claimed identity (4.4).

(ii) By the definition of py and the fact that (va)ogjggN,l is an orthonormal basis
of Hopn, we have that

1
/ PN (ac + iy, k/2N + is)pN (w + iy, ¢/2N + it) 674”Ny2dxdy
0

IN-]————
- . k l
- jzn:egv(k/zzv +is)0n (£/2N +it) (), 0)) = ;O 0 (5 + is) 0 (5 +it):
Hence <1/)jfv’k, z/)év ’£> is equal to
2N—1 1 , 1 L .
;0 \/T O/ (k/2N +is) f(s)e "™ ds 0/ 0) (k/2N + it)g(t)e >N dt.

By (i) and the fact that Zfﬁgl eim(t—n—k+m)j/N — 2N6p—p k—m We get that

N,k p o _am?2 _r(— _p2
<11Z)f ) ,wé\f7£> — Z ffmg—m—l—k—ﬁe wm /2N€ w(—m~+k—2L) /2N‘
meZ

(iii) From item (ii) it follows that for k = ¢,

WP D) = 3 Faline™ N = (£,9) = Y Faln(1 = eT™N).

neZ ne’l

As0<1—e ™ /N < 7p2 /N one has by the Cauchy-Schwarz inequality

N _ 2 N 1 ~ N 2 1
[ D Fagn( =™ M) | < =S U fallgnl@mn)® < 1F lollg'lo

neZ ne”
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and the claimed estimate follows.

(iv) By (ii) (for f =g and k = 0) [|p}""|2 = 3, cp [ Ful?e™™ /N < || £]13. O

7ﬁ

Next we describe how T3” acts on wjfv’k. This result will be an important in-

gredient to obtain the asymptotics of the eigenvalues of Q?V’ﬁ at the edges. For
f € L3T) and 0 < ¢ < 2N — 1, introduce, with as(z) := a(22),

b i
N 2N

D?’B(f) :=2cos (6—7T - L@ )+

N 2N (ﬁ2( ) + 2aa(x) cos (

0:)) /.
(4.6)

4]\/2

This expression is to be understood in the sense of functional calculus. More

recisely, cos (& — 519, is viewed as a multiplier operator in Fourier space
p Y, N T 2N p P p

cos (br /N —i/2N8,) f = an cos (¢m/N + 2mn /2N )e™™*,
nez

Theorem 4.4 For any f € C? and 0 < ¢ < 2N — 1

R Nl N,
TPt — o | <

e () Kaplfllcz with Ko = llafc2 +[|Bllc2 + 1.

N3

To prove Theorem 4.4 we ﬁrst need to establish some auxiliary results. First note

that Q%" = Q% + (Q%* — Q%)) QL + Q5 (A% — Q%°) where
0 1 0
00
Qv=1.
: 1
10 0

and @ is the transpose of Qj\r]. Denote by Tﬁ the operator on Hany whose matrix
representation with respect to the basis [HéVN_l, e ’9(])\/ | are Qi Notice that Tﬁ
are isometries as Qﬁ are the matrix representations of permutations. Further
T]%’O = T;—i—T& as Q?\}O = QE—}—Q&. For any f € L*(T) and 0 < ¢ < 2N — 1,

define
27l —i0/0x

D (f) = exp (+ i=——gzt—) f and D}’ = D + Dy

Lemma 4.5 For any f € L*(T) and 0 < ¢ < 2N — 1,

N/ N/
T]:\lfquf = ¢Di

0,0 | Nl
=(f) and TN ¢f —¢D00

)
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Proof: Since 1/1}” is linear in f it suffices to verify the claimed identities for
f(x) = e(x) == ™7 By Lemma 4.3 (i) and the fact that (e!™/N)ojcon_1 is
an eigenvector of Qﬁ with eigenvalue e*™/N one has

+ N __ :I:z7r k+0)/N _ s
TN,l/}ek ( )/ wek - weiiﬂ'(k:-l»f)/Nek

18/8:0

Ag etim(k+0)/N i2nkz +inl/N &

=e ( ’Q’T’“) = DEE (eizwm) the claimed identi-
ties follow. O

The key result used in the proof of Theorem 4.4 is the following one.

Lemma 4.6 Let f,g € C*(T). Then with fa(x) := f(2x), one has

0, 0,0 1 Nk
(TN = TN — st (Iaf2)"lleo + [I£llcollg”llco)-

<55
— 327N3
Proof: Note that Q?\}f - Q?\}O is a diagonal matrix with entries (2N)~2f(j/N),
1 < j <2N. By the definition of T]?,’f , it then follows that
(Ty! = T3")0) = @N) 2 F(2N = j)/N)6} = (2N) 7 f(—j/N)6)
Hence by Lemma 4.3 (i)
2N—

4N2(T](3[f TO 0),¢Nk; Z ; Z)e_ﬁrk;j/N(e_gﬂ.ANg)(_%)‘
7=0

Furthermore, one has Q,Z)évf’f( ) = \/7 Z2N ! HN( )e imkI/N o= A/STN (g £)) (=j/2N).
As (0j)o<j<an—1 is an orthonormal basis of Hay, it then follows

2N—-1

: ‘

2 /0, 0,0\, ) N,k 2 —A/8TN J 2

[ofy = AN (T = Ty 1P < o D7 (15 ™, Mplg( - 57) |
j=1

where My, denotes the operator on L*(T) of multiplication by fo and [-,-] is the
commutator of operators. Hence

Iy —ANHIY =T < s [l Mplga) |
x

We estimate the latter expression using et = Id — A fg e B5ds,

(87N)~
fa(@)(e 25N g)(z) = falx)g(x) = fo(x) </0 e~ 2ds Ag) ().
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Using the formula of the heat kernel on R and the identity f_oooo e~ (@=)?/ sdy =

V4ms one gets

(87N)~1
K /0 e~2%ds Ag)(x) | < [lg"llco(®7N)! and

(87 N)~1
[ e @)] < len) e (57V)
Combining these estimates yields the claimed estimate. O

Finally, for the proof of Theorem 4.4 we will also need the following lemma.

Lemma 4.7 For f € CY(T), denote by My, the multiplication operator on L*(T)
by fo(x) == f(2x). Then the operator [Df, My,] on L*(T) satisfies

1 1
[Di, Mp,] = (f(22) — f(22 + N))D;f and ([[Di, M)l 122 < ~ 1 lleo-

Moreover

1
TN = T8 Tl a0y < 715 o

Proof: Recalling that DZE = eii%kgva /81, it is straightforward to verify that the
values of the two operators coincide for any g = ™. The claimed identity
then follows by linearity. The claimed bound of the operator norm of [DZE, My,]
then follows from the unitarity of Dki. The second estimate is proved using

the matrix representation of the operators involved. Recall that Q?\}f — ?\}O =

diag((2N) "2 f(j/N)1<j<an). Thus [( ?\}f — ?\}0),62}] is the 2N x 2N matrix

0 Y1 0
0 0 : . i i+1
with 5= f(3) ~ (57
: : Y2N-1
yn O 0
Hence
0, 0,0 1 7+ 1 1
H[( Nf — Wy )aQMHRM_ﬂRw = 1;‘;2]\[ |f(N) - f( N ) | < NHJHHCO

As Q;[g f?\}f —0 0?\}0) is the transpose of ( ?\}f — ?\}O)Q}, the same estimate holds
for [(@n" — QN ), @yl O
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Proof of Theorem 4.4: We write T K‘[’B as a sum of operators
TR = TR 4 (18 T+ (19 - T + T (1 - 1)
= TR0+ (1R = T°) + TRO(TR" = TR°) + [(13 = 1°). 73]

Nt

oo (f) and

By Lemma 4.5 and Lemma 4.6 we get, respectively, T]%’qujev’é =)

|37 = T80 ] < g lBllcelfler  amd

0,0 /0, 0,0\ , N,¢ Nt 40,0 /0, 0,0\ , N,¢ Nt
TN (TNG_TN )wf 4N21/} 00a2f) —TN ((TNOC_TN )wf 4N2wa2f)
AsT ]%’O = T]J\? + T and Tﬁ are isometries it follows from Lemma 4.6 that
0,0 /0,0 0,0\, N& Nt
o Y AN [ e 1
By Lemma 4.7 and Lemma 4.3 (iv) it follows that

o o
(e~ 780), 1) < 1o ey < Wl gy,

Nt _ Ve
D f "Dy (eaf)’
linear map g — wé\az is bounded by 1 on L?(T), it follows from Lemma 4.7 that

Finally, we need to estimate 1 As by Lemma 4.3 (iv), the

192 g0 = U0y | < leaDE f = Df (@2 f)llo + 2Dy f = Dy (@2 f)lo

2
< Z o' lloolflo
Taking into account the simple identity, D"’ (f) = Dg’o(f) s Bof+ s 2asDYY(f),
U

the obtained estimates imply the claimed one.

5 Spectral results by quasimodes

In this section we prove results on quasimodes used in the proof of Theorem 2.1.
Assume that # is a finite dimensional Hilbert space with inner product (4, ¢) and
induced norm ||¢|| = (¢, )2, Further assume that A : H — H is a selfadjoint
linear operator.
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Proposition 5.1 (i) Assume that there exist ¢ € H with ||¢| = 1,4 € R and
C >0 so that

(A = pyll < C. (5.1)
Then there exists an eigenvalue A of A so that |A\ — u| < C.

(ii) Assume that there exist two elements Yy € H,||[Y+| = 1,up € R,0 <0 < 1,
and C > 0 so that

(A=l <C  and | {dy, o )] <6.

Then for any D > 8C(1 — )7, there exist two eigenvalues A+ of A so that
AL — p| < D. If A\ = A_, then the multiplicity of A+ is at least two.

Proof: (i) Denote by (\j);er the eigenvalues of A listed with their multiplicities.
As A is selfadjoint H has an orthonormal basis of eigenvectors, (1j)jer, where
1; € H is an eigenvector corresponding to the eigenvalue \;. Assume that for any
J €I, [Aj — p| > C. Then the vector 1 = >,/ (¥,1;)1; satisfies

2
C? = CH* < 3 [, ) [Py = ) = (A = wpo* < €%,
Jel
a contradiction. Hence the assumption is not true and (i) follows.

(ii) By item (i), there exists an eigenvalue A;; with |u — A;;| < C. Let us assume
that A;; has multiplicity one and

lw— Al > D VA€ spec(A)\{\;, }. (5.2)

Then P := % fK(z — A)~!dz is the orthogonal projector of H onto the one di-
mensional eigenspace of the eigenvalue )\;, where K denotes the counterclockwise
oriented circle of radius D/2 centered at A;,. To estimate Pty note that ¢y =
(z—A) 1 z—=A)pyr = (2= A)"Hz— i)+ +(2— A)"Lry where ry = (A, — A)h.
Note that ||| < [|(s — A)a | + [ — Ay | < 2C and

(2= A)Mx = (2= X)) Hhe — (2= X)) TNz = A) T (5.3)

Write 74 as 74 = Pry + (Id — P)ry and use (z — A)"'Pry = (z — \;;) "' Pry to
see that 5= [;-(z — Ai;) 71 (2 = A) "' Prodz = 0. Hence
1 1
— [ (=) M= A radz = — | (2= X\y,) Nz — A7 (Id - P)rydz.
271 K 2mi K
By Cauchy’s theorem we then get

L o) e — A rade = (O, — A YId = Pyre. (5.4
21 Ji
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Hence integrating (5.3) along the contour K one concludes from (5.4) that
Pyps =1 + (N, — A)7'(Id — P)ra.

By (5.1) - (5.2) we then have ||(\;, — A)~'(Id — P)ry|| < D~'2C and thus, with
n:=20D"1 < 1, it follows that 0 <1 — ||PyL|?> < n?, ie.

[P+ > V1 =02 >1-n, (5.5)
and | (Pyy, Py ) — (y,9-) | <2n+n?, implying that
[(Pdoy, Py_) | <6+ 2+ 12, (5.6)

In order to assure that P, and Pi_ are linearly independent we request that
| (Pyy, PY_) | < ||PYg|||Py—]. In view of (5.5) and (5.6) this latter inequal-

ity is satisfied when 0 < n < 1%49. But by the definition of n and D, one has

20~ = D > %. Thus we proved that P, and Pi_ are linearly indepen-
dent, contradicting our assumption. Hence there are at least two (counted with

multiplicities) eigenvalues of A inside the circle of radius D and center \;,. O

6 Quasimodes for the bulk of spec(T")

We want to apply Proposition 5.1 (ii) to the bulk of the spectrum of Tﬁ,’ﬁ ,
AN AN | M << N-M}

where M = My = [F(N)]. For M < { < N — M and N > 3 arbitrary choose
= ,uév to be the £’th double eigenvalue of T]?,’O, ,uév = —2cos %r Our construction
of quasimodes follows the standard procedure of perturbation theory of double
eigenvalues: first we construct two approximate eigenvectors ¢g,i of the operator

76 070
Hzo(Tﬁ - Ty") |E[

eigenvalue —2 cos % of T]%’O and the operator is the composition of the restriction

of the perturbation Tﬁ}’ﬁ — T]?;O to Ey with the orthogonal projection [[, onto Ej.
The two quasimodes Q,Z)ft are then obtained by adding a first order correction to
¢g¢- To this aim introduce Q,Z)ﬁ = NN+ and ¢ = NV =f where we recall that
™% denotes the eigenvector of TJQ;O with eigenvalue 2 cos %r defined by (4.1). One
has

where FE;, denotes the two dimensional eigenspace of the

2N—-1
Gh = (@N)T2 Y R g
n=0

~ I ~ e o
T304 = ~2cos -k and (L. dt) =0
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Denote by dy, Bk, k € Z the Fourier coefficients of «, 8 and set
~ A I —ing ~ ~ poa ine PN
p := By — 2cos oo e =Ae/Ae| if 4% #0, and e :=1if4,=0.

For any M < ¢ < N — M, let ¢ := ¢g,i + ¢ where

W + einegpl ¢ . Z (YN, (Ty Ty’ - 070)¢€i>

and ¢y = — ZW — AL
V2 Nl 2cos {7 + 2cos §¢

wOi'

Lemma 6.1 The elements ., M << N — M, of Haon satisfy

- ¢ty —o(fas 4 Il =1+ O(Kag).
(i) Wyl) =0(55) and Uil =1+ O(55);
) NP +2c0s &)l || = ( aﬁN;M) where Ko = |laflcz+B8]lcz2 +1.

First we need to establish the following auxiliary result.

Lemma 6.2 (i) For any M <{ <N — M andn # N +¢

K,
N, (17~ T8 )] = ( Nf (mins s+ 7))
(ii) For any M < ¢ < N — M, (¢0+,( TOOQ/JO < ) and
—2m02 /N K,
<¢O +a( TO 0)7/)0 +> 627%7%_"0 < N3ﬁ> )
—QNKQ/N K,
W (T3 = TN W) = Q—éw +0 (Tf) .

wN N+€iemle N-—

Proof: By (4.1), 1/10 L= 7 . Recall that by (4.3), one has for f =1
the identity ka = ¢ * and by Proposition 4.4, for f arbitrary, Tﬁ’ﬁ@bjﬁv’k =
PN 4 O(— Ko, ) where D)’ @8 ig given by

D“Bf
2cos (kr/N — i(QN)_lam) +(2N)72 (Ba(x) + 2002(x) cos (km /N — i(QN)_lam)).

For f = 1 one has Dz"ﬁl = 2cos (kw/N) 4 g(x) where g(z) = (2N)"2(B2(z) +
2as(z) cos (km/N)) and

) ) 5 (o Nk (]{
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By Lemma 4.3(ii) we have

<7/){V " ¢N k> (2N)~ ((/B\g)k_n + 2 cos (kﬂ'/N) (Q/Q\)k_n) e m(n—k)?/2N

Choosing k = N + ¢, item (i) then follows as by assumption «, 8 € CZ(T,R). To
prove item (ii) note that for n = N 4+ ¢, one has N + /¢ — k € {0,£2¢}. It then
follows from the definition of ¢ that <1/)0 1 Q,Z)N NFE_ gime z/)év ’N_£> =0 and

. _ —2m? /N
<w57+7¢é\77N+£ + emzwé\f,N—£> ee ((ﬁz) — 2¢os (EW/N) (042)25> W
. — _ e—2ml?/N  —2ml?/N
e ((B2) _yp — 2eos (En/N) (@2) o) iz = 2R
From these and similar computations the claimed estimates follow. O

Proof of Lemma 6.1: () First note that for any M </ <N - M and 0 <n < N
with n # N £, |2 cos 2242 cos 2| > 2M7r . Indeed, in the case where M < ¢ < N/2
andogk::N—n<€onehas

J%is L
I km N N 2z
_ — = 1 > RS
|2 cos ~ 2 cos N‘ 2/1%r sin(z)dx > 2%% - dx

leading to the claimed lower bound. All other cases are treated in a similar way.
By Lemma 6.2 (i) one then concludes that
Il = O ). (6.1)
M

On the other hand, 1%7 4 and ¢0 are orthogonal to each other, and both are
orthogonal to ¢4 . Hence (¢4, 9%) = (¢, ¢" ). Combined with the above estimate

one gets (44, 4) = O
[YL) =1+ 0(= K, #). (i) We apply standard perturbation theory and write

2
“’25 ). Using in addition that [|¢§ [ = 1 one then has

Tovh = (TR + (T = TR°) (W6 + + o4) (6.2)

and split the right hand side of (6.2) into four parts

0,0 ;¢ 0,0 1 ; 0,0 14 ) 0,0 V4
TN Yo+, TN ¢, (Tﬁﬁ = TN )Y+ (Tﬁrﬁ —TN))px-

Note that T]%’Owg,i = —2cos %w&i and
a, 70,0
00 1 O (TR = TN L) v
Ty oy =— 2cos N P
NNl 2 cos &L +2c:osN
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2 cos &
o Z (1 2 cos & X ) <¢N7n’ (Tﬁfﬁ - TJOV’O)%,iWN’n-

ANl +2cos

In view of the definition of ¢, this yields the identity

b
TNk = —2cosﬁsoi — N @ - TR )b e
n# N+l

Combined with
) 0,0 ; 0,0 , 0,0
(TR =TROh = > @ (TP =TR0e6 v+ D7 Wb o (T =T )b )6
nAN+L se{+,—}
one gets
I
(TR = TN )6+ + TNk = —2cos o+ D (W (TN — TRV £ )0 -
SE{+,—}
By Lemma 6.2 (ii) it then follows that
B 00y, ¢ 00 ¢ _ tn Kop (1 1
(Tﬁ, Ty )Q,Z)O,i—}—TNgo ——QCosﬁgpi—{—O<]\(;{2 <M2+N .

Finally, the expression

: , 0,0 :
(T’ - TR")eh = (TP — TRO)p™n

0,0
Z <¢Nn( a T )¢Oi>
ANl 2(:os +2cos N

can be estimated by Lemma 6.2 (i) to get for some constant C' > 1,

N? K 1
0476 070 Z avﬁ 3 76 0 O N n
(TR -TR)ell < ¢ > VAR (mmim ) (TN =TN v ™"
n# N+l
Inspecting the proof of Lemma 6.2 (i) one sees that ||(T} b1l 00)pNom|| = (K]f;f )
K2
yielding H(T]‘\)‘,ﬁ - T]%’O)(pftﬂ = O(w537)- Combining all the above estimates, item
(ii) follows. O

Lemma 6.1 allows to apply Proposition 5.1 and leads to the following result.

Proposition 6.3 For any N > 3and M < { < N — M, there exists a pair of
etgenvalues N < 7' of TV satisfyz’ng

140 1
|7'iv’g + 2 cos N | =0 <Ka75m> where Ko g = ||of|c2 + [|B]lc2 + 1.

For N sufficiently large these pairs are separated from each other,

- < 7' < Tivz < Tiv’“_l < Tf’“l < -
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Proof: According to Lemma 6.1, for any N >3 and any M </ < N — M

|’(Ta’6+2COS€—7T)¢N|’ -0 Ki,ﬁ
N N/TE N2M | °
By Proposition 5.1 (ii), there are two eigenvalues V< Tiv,e of Tﬁ}’ﬁ satisfying

Im K
|T:]|:V’é—|—2COSN| :O<N§]’\Z>.

In case 7'_]:[’z = Tiv’z, the eigenvalue has multiplicity at least two. To see that for NV
sufficiently large, one has TJ]FV’Z < Ve

, recall from the proof of Lemma 6.1 that

(41 2M
(J;V)ﬂz v M<i<N-M

|2COSN7T — 2cos

Hence by choosing Ny sufficiently large, the pairs of eigenvalues Tiv £ with N > Ny

. N,M+1 N,M+1 N,M+2 N,M+2 N,N—-1-M N,N—-1-M
satisfy 7°° + <7 T M <7 o< <7 .
O

7 Quasimodes for the edges of Spec(Tﬁ,’ﬁ)

In this section we want to apply Proposition 5.1 to the two edges of the spectrum
of T]‘\X,’ﬁ . They are treated in the same way, so we concentrate on the left edge only,

ANV <XV <AV < < M <Ay,

where again M = My = [F(N)]. For 0 < j < 2M, choose as approximate
eigenvalue

; 1
N7.7 p— -
where \; < A\] < 5 < ... are the periodic eigenvalues of H_ = —d?/dx® + q_,
considered on the interval [0,1]. Here
g— = B2 —2ay and ao(z) = a(22), Pfo(x) = B(2x).
Furthermore choose as quasimodes
1
j _ _ .
M) = 0NN @) = (N g e g sl s (1)
J 0
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where (g; );>0 is an orthonormal basis of eigenfunctions of H_. First we need to

establish bounds for g;* and its derivatives. By the counting lemma (cf e.g. [22]),
for any N with
My > 2(1+ [lg- o)l (7.3)

it follows that for 0 < j < 2M,
1
- 2 2 2 2
])\j | <4n*(M + 5) < 8m°F(N)*. (7.4)

Recall that K, 5 = ||ac2 + ||B]lc2 + 1 for any «, 8 € C*(T).

Lemma 7.1 For any N satisfying (7.3) and any a, 3 € C*(T),

©) (7)) llo < (2Kap+87°F(N)*)Y25 (ii) [I(97)"[lo < 2Ka,6 + 87°F(N)?;
(iii) [1(g)"llo < (2Ka,p +87°F(N)?)*2 + 2K o 55

(%) [1(67) o < 3(2Ka s+ 8T2F(NY) + 2K, 5 < A(2K 5 + ST2F(N)?)2.
Proof: (i) Taking the inner product of —(g;)”—}—q,g; = A g; with g;°, integrating

by parts and using (7.4) and ||g; [lo = 1 yields the bound (i) for ||(g; )'[[o- (ii) Using
again (g; )" = ¢-g; — A; g; one gets

1g; )" llo < lla—llollg; llo + A7 lllg; llo < 2Kag + 87°F(N)?.

(iii) is obtained by deriving (g;)"” = ¢-g; — Ajg; and using (i). (iv) is obtained
by arguing in the same way. ([l
We also need bounds for ||g; [|co and [|g; [[c2. It is convenient to formulate the

result in a general form. For a real valued potential ¢ € L?(T), denote by (f;)j>0
an orthonormal basis of periodic eigenfunctions of H = —d?/dx? + q on [0, 1].

Lemma 7.2 (i) The expression sup;>q || fjllco is bounded uniformly on bounded
sets of potentials in L?(T).
(ii) For any N with M = [F(N)] > 2(1 + ||q|lo)ello and any 0 < j < 2M

1 llco < (llgllo + 87*F(N)?)|Ifjllco and || £llco < 2(llallco + 872 F(N)?).

Proof: (i) It is well known that fo doesn’t vanish on [0,1]. As for any j > 1, f; is
orthogonal to fp, it has to vanish at least once. Hence there exists 0 < z; < 1 so
that f;(z;) = 0. As a consequence, the translate Ty, f; = f;(- + z;) is a Dirichlet
eigenfunction for the translated potential T3;q. Note that |1}, qllo = [lq|lo and
T, fillco = || fjllco. Therefore sup;~; || fjllco is bounded uniformly on bounded
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sets of potentials in L2(T) by the corresponding result for the Dirichlet problem
— see e.g. [28, p. 35]. It remains to bound || fo||co. As Ao(g) is never a Dirichlet
eigenvalue, one has

1 —y1(1, M)
y2(1’ )‘0)

! 1—y1(1, o)

_ _ A 1= A0)

and y1,ys are the fundamental solutions of —y” + qy = A\y. By [28, p. 7]

fo(z) = l(?/1(55,)\0) +

€o

y2(x, Ao)) where

ya(z, Ao))Qdm) 1/2

lyi(x, Xo(q),q)] < eldle v o<z <1landi=1,2.

Further, by [28, p 18], v:(z, A, ¢) is a compact function of ¢ € L?(T), uniformly on
bounded subsets of [0,1] x C. By [22, p 199], L?(T) — R, q ~ Ao(q) is a compact
function as well and so is ¢ — y2(1, Ao(q),q). As Ao(q) is never a Dirichlet eigen-
value y2(1, Mo(q),q) > 0 for any ¢ in L?(T). By the compactness, y2(1, A\o(q),q) is
uniformly bounded away from 0 on bounded sets of potentials in L?(T). Similarly,
one argues by compactness to conclude that cy(q) > 0 is uniformly bounded away
from 0 on bounded sets of potentials in L?(T).

(ii) Note that [|f/[lco < (llgllco + A1) 11 fillco. Hence the claimed estimate of
1] lco follows from item (i) and (7.3) - (7.4). Finally, for any 0 < z,y < 1,

f /( ) = fiy)+ f f7(s)ds. Integrate in y and apply the Cauchy-Schwarz inequality
to Conclude that

1/2
157l < 150 + 17 llo < (lgllco +87*F(N)2)* + (lgllco + 872 F(N)?)
where the latter inequality follows from the proof of Lemma 7.1 (i), (ii). O

Lemma 7.3 For (my N with M = [F(N)] > 2(1 + ||lg_]o)el?=lo and any 0 < j <
2M , the elements <p in Han satisfy the following estimates:

@) [, oMY — 64 < iy (2Kap + 8TF(N)?) Y0 < k < 2M.
.. R _ N,' F(N 2

(i) [(Ty” +2— A | < B8 (Ko s +1)2C

where C > 0 can be chosen uniformly on L?-bounded subsets of C*(T).

Proof: (i) By the definition (4.3) and Lemma 4.3 (iii), [(¢"7, o™ F) — (979, <

= ll(g7) loll (g )'llo- By Lemma 7.1 (i), we get [(g;) lloll(g; )0 < 2Kap +
872 F1(N)? and hence the claimed estimate. (ii) By the triangle inequality

) N7 Nv‘ ) ’ N? B
TR o9 — M| < TP o™ — Daﬁ(,uﬂwl)aﬁ A |
J
(7.5)
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Let us begin by estimating the latter term. By definition, cpiv’j = w]\EN and hence
pI NI = 1/JN/VJ,\J-7 _. By Lemma 4.3 (iv) we then conclude
H_ gj
Hwa( ) — MM < DY (97) — 1™ g5 llo. (7.6)

As Daﬁ — 9cos (WW Wa ) + 4]{[2 (52 + a2 (:os,(ngr ﬁam)) one gets for £ = N
D B 2cos( hd ) + = (52 — ap2cos(— 2N(9 )) Furthermore, ,uiv’jg; =
(—2- 3202)9; + 7= (B2

b - N7' -
D% (97)~(1™7)g5 llo < 12 cos (—

% 2a2)g Hence we get

an ey — 2+ —32)95\\0

:r))gj llo-

+ 20 (1 — cos(—
— — cos
4 042 CO 2N

The latter two terms are estimated individually.
. 1 - ™ - i
2 cos ( — ﬁam)gj = Z 2 cos (W) (gj )ne’ e,
neL

Using the Taylor expansion of 2 cos 7, one concludes that

|2 cos ( — #@C) g (2 4N2 x)gj llo

! 2 o 1 v
Q(QN) gzlg] | "@mn)*) " < 5 )4H<gj> lo

By Lemma 7.1, it then follows that

; 11
|2cos (= 53-0:)g; - (2+ Wa?)gj lo < 35 77 (Kas +8T°F(N))”. (78)
In a similar way one estimates

oo TNN4 | T2 124y1/2
2N gj)HO— AN2 (;Z(W) |(gj)n| )

1
WHQQQ (1 — cos(—

2

< lledieo Ko
(g5 )" llo <

= Ny o (2K +87°F(N)?) <

1
ot (Ko + ST (N)?)

where for the latter inequality we again used Lemma 7.1. Combining (7.6) - (7.8)
yields

F(N
o3y = ST < O o 1 2 (79)
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It remains to estimate the first term on the right hand side of (7.5). By Theo-
rem 4.4 (with £ = N),

j 1
aMB N7.] J— N7N - 7
75762 — o | < gy Fesllgg e (7.10)

By Lemma 7.2, for any 0 < j < 2My
g5 ez < (2Ka5 + 87°F(N)?)C (7.11)

where C' > 1 can be chosen uniformly on bounded subsets of L?(T). Combin-

ing (7.5), (7.9), (7.10), and (7.11) yields [|[TSPGN7 — NI pNd|| < ENE (872

2Ka )% + F%)Q Ko 52K, p + 87%)C where C > 1 can be chosen uniformly on
bounded subsets of L?(T). O

Proposition 7.4 For any N > 3 and any 0 < j < 2M there exists an eigenvalue
N?j 0476 y y
77 of T\" satisfying

F(N)?

|7'iv’j — ,u],V’j | < N3

(Kop+1)%C

where C > 0 can be chosen uniformly on L?-bounded subsets of C*(T). For N
sufficiently large, the eigenvalues ™9 can be listed in increasing order

2 N2M-1
T_

Tiv,o<7_iv,1§7_£v, <...<

N,2M
< Ty .

Proof: According to Lemma 7.3, for any N >3 and 0 < j, k < 2M,

F(N)?

I(Ty? = i) < On = —5

(Ko +1)°C

where C' can be chosen uniformly on L2-bounded subsets of C?(T). Further-
more, for Ny sufficiently large, |<<p]_v’j,ap]_v’k> — k| < 1 VN > N;. We now
apply Proposition 5.1 (i) or (ii) depending on whether p™N is sufficiently iso-
lated or not. Note the the pair MJ_V,2£,MJ_\/,2Z—1 is separated from {,u]f’j | 0<;5<
oMW {pN2 Y21 by at least O(IN2), uniformly on L2-bounded sets of a’s

and f’s. If MJ_V’M — ,uj_v’%_l < 2C, then

H(T](\X/ﬂ _ MJ_\T,QZ)SD]_\f,%—lH < CN + |MN,2€ _ MJ_V,QZ—l | HSDJ_V,QZ—lH

< Cn+2CN(14+O(F(N)*N1)
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Applying Proposition 5.1 (ii) to u]j’%,w]j’%,apjjﬂ_l and Dy = 2-8-3Cy we
conclude that there are two eigenvalues 2L o N2 op Tﬁ,’ﬁ so that

Nj _

|T MN,2€|<D _F(N)2

— N = N3 (K075 + 1)20

for j € {2¢,2¢ — 1}, where C can be chosen uniformly on L?-bounded subsets of
C?(T). If ,uiv’%—,u]j’ﬂfl > 2Cy, then apply Proposition 5.1 (i) to conclude that for
j € {20,20— 1}, there exists an eigenvalue 77 of T so that |77 — 7| < Cy.

In particular, we then conclude that L o N2

Recall that the pairs MJ,V’M, ui\f’ﬂ_l are separated from each other by O(N~2). As
F(N) < N"with 0 < n < 1/2 it then follows from the definition of Cx that for N
sufficiently large N0 N < N2 o AN o N2M O

8 Asymptotics of the periodic eigenvalues

The aim of this section is to prove Theorem 2.1 stated in the introduction.

Proof of Theorem 2.1 In view of Proposition 6.3, Proposition 7.4, and the result
corresponding to Proposition 7.4 for the right edge of the spectrum we have ob-
tained three groups of eigenvalues. At the left and right edge of spec(Tﬁ,’ﬁ ) there
are according to Proposition 7.4, 2M + 1 eigenvalues, which for N sufficiently
large are different from each other when counted with multiplicities. In the bulk
of spec(T' ﬁ/ﬁ ), we found according to Proposition 6.3, N — M — 1 pairs of eigen-
values of Tﬁ,’ﬁ which for N sufficiently large are again different from each other.
It remains to show that

FN2M _  N2M+1 g o N2N—2M—2 _  N2N—-2M—1

To see it, note that by the Taylor expansion of cos and (7.4), we have

(M +1/2)°

N2M

1
1 —2+WA2_M§—2+7T

Hence —2 COSW - MJXQM > %@2 + O(ﬁ) Moreover, by Proposition 7.4,

’TN’QM _ MJX,QM — O(MQ) and TN,2M+1 + 2COSW e O(%) by Proposi_

N
tion 6.3. Therefore, for N sufficiently large, 7V2M < 7N:2M+1 Qimilarly one
shows that 7N:2N—2M=2  pN2N=2M-1_Hence the eigenvalues (TN’")OSnSQN,l

of Tﬁ,’ﬁ are listed in increasing order (and with multiplicities) and thus coincide
with (A))o<n<an—1. The claimed estimates now follow from Proposition 6.3 and
Proposition 7.4. U
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To finish this section, let us mention that for smooth potentials and with some
effort, our method allows to compute the full asymptotic expansion in % of all

the eigenvalues of Tﬁ,’ﬁ . For eigenvalues in the bulk, such an asymptotic expansion
is obtained by regular perturbation theory at any order. As the eigenvalues come
in separated pairs and the eigenvalues forming such a pair might coincide, their
asymptotics are obtained via a 2 x 2—block diagonalization and a subsequent
straightforward diagonalization of the (symmetric) 2 x2—blocks. For eigenvalues in
one of the edges of the spectrum, the asymptotics is obtained by adding corrections
to the ’densities’ ng in (7.2), obtained by improving Theorem 4.4 so that the
remainder term can be chosen to be of arbitrary order in N~2. These corrections
can be explicitly computed by solving homological equations, obtained from the
asymptotic expansion of the operator D?’B in (4.6) and solved by inverting certain
Hill operators. As the eigenvalues of a Hill operator come in separated pairs and
two eigenvalues forming such a pair might coincide, one obtains their asymptotics
also via a 2 x 2—block diagonalization.

9 Asymptotics of the discriminant

The principal goal of this section is to prove Theorem 2.3 concerning the asymp-
totics of the discriminant Ay (). Recall (cf. [19], Section 2) that A% (u) — 4 is
related to the characteristic polynomial of Q%ﬁ as follows

2N—-1

Av(p)?—4=qy [T OF —w). (9.1)
=0

First we derive asymptotics of gy = H{V(l + ﬁa(%)). For later reference we

derive at the same time also asymptotics for py = %tr( %ﬁ) = %Zngl PR

e SV B(i/N). Tt turns out that the asymptotics of py is better than one could
expect from the asymptotics of the eigenvalues in Theorem 2.1.
Proposition 9.1 Uniformly on bounded subsets of functions o, 3 in CZ(T),

gNn=1+O0O(N"3) and py=O(N3). (9.2)

Proof: As fol B(x)dx = 0 it follows from (A.2) that

N .
Py = 5r(QY) = @N) 3o 8(5) =0 ),
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Similarly, one has zg\;l(QN)”a(%) = O(N~3) and thus

N 1
gN = €xp (Zlog <1 + mﬂﬁ))) = exp(O(N™%))
i=1

leading to the claimed estimate gy = 1+ O(N~3). O

In the introduction we have also introduced the discriminants A4. For g = 0
one gets A(\) = 2cos(vA/2) (cf end of Appendix A) and hence, with 7, = 7n for
n>1,
(4n2m? — \)?
AN —4=—4 2 A .
(N)? sin? \/_ A/2) nl;[l 1671

Similarly (see [22]), for g+ arbitrary, one gets the following product representation

AN -4=05-M]] (5 Al)éﬁ"—l - (9.3)

n>1

Finally recall from the introduction that A" denote the boxes

+,M _ AL, M + .
AEM = ADM = D\F — 2, Npamy T 2] +i[—2,2]

where M = [F(N)] and N > Ny. We chose Ny € Z> so that

)\:I:

Skl — Aoy =6 YV k= F(F(Np)). (9.4)

The estimates (2.8) and (2.9) of Theorem 2.3 are obtained in a similar fashion
so we concentrate on the proof of (2.8) only. We first need to establish several
auxiliary results. We cover A~ by open neighborhoods, each containing one
spectral band and its adjacent gaps,

AM= ) A,

n<[F(M)]
where Ay, :=[A\g — 3, Ay +2p] +i[-3,3] and for 2 <n < [F(M)] - 1,
A, = g3 = 2p, Ay, + 2p] +i[—3, 3] and
Apony,e =1
with p > 0 chosen so that

A=

A +20< X —20 YE>0. (9.5)
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We will study the asymptotics of A% ( -2+ ﬁ)\) in each domain A, , separately.
For this purpose introduce

PV () = e PTG_g(A) —p) and By (u) := e T2y, 3(A) —p) V2<n <M
where e = 1/4N~2. Furthermore define for 1 <n < M, QN (n)
AR () — 4= "B (1)@ ().

Defining 71, = km for k # 0 and my = 1, we write similarly A% ()\) — 4 =
e Py (A)Q7 (A) with

(Agp =N Agp 1 = A)
167

Pf()\) == HOSJ‘SQ()\; - )\) and QI(}\) == szg
whereas for 2 < n < M, we define A% (\) —4 = —L— L P~ (\)Q; (\) with

By (A) = (g = N1 = N0 = Nz = A)

n

e (hg~ M )
_ 1, Agr =My — A
Qn ()\) - —2()‘0 - )‘) H 4
Az hotnm—1 167
By Theorem 2.1, for A in A, , with 2 <n < M,
2n N —
1 AN = (=24¢€X))
N _ J J —
Pn(—2+m>\)—AH ( - +(A7 =)
j=2n—-3
2n
B M2 B 3M2
— j];[_g (A =2+ O(W)) =P, (A\)+0(n W) (9.6)

where we used that A, — A = O(n) for A € A, and 2n — 3 < j < 2n. Similarly ,
for n = 1, one has

N =P+ oL

PN(—2+ )

4N?

In order to prove (2.8) we show that, for 2 <n < M,

2 2
AR (—2+eN) —4= m%ﬁlé(])"w + O(n?’MW))Q;(A) + O(MW) + 0(%)
(9.7)
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uniformly for A in A, , and, for n =1,

1 M? M? 1

M2+ - 4= (B o @r ) + o) +0(5) (08)

uniformly for A in Ay ,. The estimates (9.7) and (9.8) are proven in two steps.

Lemma 9.2 Uniformly for any pp = —2 +eX where A€ A, , and 1 <n < F(M)

2N—-2M -2 N NAM+2 n2
‘21;4[“ O = 1) = a1+ O(5p))-

Proof: Set ééVN—l =4 and, for 1 </ < N —1,

¢
fé\é = fé\é_l = 2(1 — cos Nﬂ) (9.9)

Note that £]N is an increasing sequence satisfying for 2M +1 < j < 2N —2M — 2

M M?7? w2 M?

N N N

&' > e > o = 2(1 — cos N ) > 7 (1- E—NQ)'

For j € {2¢,2¢ — 1} and p = —2 4 e\ with A € A, in view of Theorem 2.1,

n7g’

b 1
AV —p=-2 — 40
I cosN+ (F

5 W>+2_€)\

2

1
:fjl‘v—g/\JrO(W) :§§V+O(%)

where we used that A = O(n?) for \ € A, ,- Hence

2N—2M —2 IN—2M —2 9

1 n
I &W-w= 11 g0+ @O(m))
j=2M+1 j=2M+1 j
2N—2M -2 2N—2M—2 1 n2
= II & II (+x0(p) (9.10)
j=2M+1 j=2M+1 j

The latter two products are estimated separately. As by (9.9), 5%\, = O(AA/;—QQ) for
J

2M < j <2N —2M —1 and hence gLNO(]’\‘,—QQ) = O(F%)Q) for 1 <n < F(M) one
i

can estimate

TS sl o) =0 Y
log (1+ —0(22)) = 0(2 S —
j=2M+1 %V N? N? ¢=arp1 L o8 ZN
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M= 7). Hence

is a monotonically decreasing function on [Z§

Note that ;——
Mmn
o M
N—M-1 N
™ Z dCE
N _ - 1—cosz’
Pyt 1 cos N pA
N

in? £ and making the change of variable of

Taking into account that 1 — cosxz = 2sin

integration t := 5 we get
o M= o M= l(ﬂ,m)
N N 2 N
dr / dr dt _cost | L(m— M) E
1—cosz 281I12% N sin“t sint M'
Mr M Mn
N N 2N
Thus nggﬁ]\fl %log (1+ gNO(”—QQ)) = O("M) leading to
2N—2M—2 9 n2
1 n n?
1 (+g0(5) = i) =140(3).
j=2M+1 J
It then follows that
IN—2M—2 2 IN—2M—2
I oY -w=(+oy. I &
Jj=2M+1 j=2M+1
N—M-1 2
= 92(N—2M-1) H 1—cos ) (1+O(M))
0=M+1
N-1 J4is 2
— (1 — COoSs ) 9 n
1 N — Z)w)) (1 +O(M))'

2(N-2M-1)( _
[T%; (1 —cos4E) I, (1 — cos

By Lemma A.1, Lemma A.3, and Lemma A.4 this latter expression can be esti-

mated by

92N—4M 2 (2N2 V)2 (1+0(5)) (1+ O(n_Q))
(3) ™" (1)1 (1 - O(§2))22M (1~ O () M

2

2

1 N4M+2 n2
= 24—M7'r4M(M!)4 (1 + O(M))

which is the claimed estimate
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Lemma 9.3 Uniformly for p = —2+eX with X in A, , and 1 <n < M,

2N -1 3

[T O -w=2"20+0(5y).
j=2N—2M—1

Proof: In view of Theorem 2.1 (right edge), for any 0 < 7 <2M, A € A,

n7g’

M? M?2
Mn_ioj—m=2—e\ + O(ﬁ) —(—24+e)) =4+ O(W)

as )\;r = O(M?) for any 0 < j < 2M. Thus

IN—1 2M 2M 2
H A —p) = H(AéVN—l—j — p) = 42V H (1+ O(W))
j=2N—2M—1 j=0 320
2M 2
= 24M+Qexp(jzolog (1 + O(W)))
Using the bound foo log (1 + O(%I—j)) = O(%—;) we get
2N—1
M3 M3
I O = =2 e (0(5)) = 2 (14 0(FR))
j=2N—2M—1
which is the claimed estimate. ([l

Lemma 9.4 Uniformly for p = —2+eX with X € A, , the product H?fo()\jv — 1)

n7g;

satisfies the following estimates: (i) for 2 <n < F(M)

oM (M n3 M2 2 )
1 z(v%w')w 167341#(3? (A) +0( ]34 ) Qu(N) - (1+0(5;))- <1+0<MW>>;
(ii) for n =1
M 14 2 5
1 ]%\Zz 1617T4 (Pr (V) + O(MW)) QT (V) - (1 + O(%)) 1+ O(MW))_

Proof: In view of the asymptotics of Theorem 2.1, with & = (2N)~2,

_ M? _ M?
)\?f—,u:—Q—i-E)\j +2_€)‘+O(ﬁ):€()‘j _)\+O(W))'
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Hence HZM ()\N p) = g2M+1 H?i/[o()\]_ -+ O(MTQ)) The items (i) and (i7) are
proved in a very similar way - in fact (i7) is a little simpler. Hence we concentrate
on (i), i.e. the case where 2 <n < F(M). Given X in A, ,, the latter product is
split up into three parts,

n,07

2n—4 2M

2 2 2
H(A‘—AJrO(M N 11 ()\j‘—)\JrO(MW))- 11 ()\_—)\+O(M ).
=0 j=2n-3 j=2n+1

Note that )
n 2 n3 2
IT 05 —r+0%) =Py +0("55)
Jj=2n-3

uniformly for A € A, , with 2 <n < M, cf. equation (9.6). Next consider

2n— M2 2n—4 2n— 1 M2
H ;Ao =TT 07 H 1+ =05
=0 =0 =0
We claim that -
o 1 M? M?
1 O(—)) =1+ 0(—
Jl;lo(Jr)\j—A(N)) +0(7)

uniformly for A in A; ). Indeed, by the choice of g, the factors (A — )\;)*1, 20 —

1 < j < 2/, can be estimated by O((n? — ¢%)~!) uniformly for A € A, , and
2n—4

1 </¢<n-—2. Hence z )\, is a bounded analytic function of A € A, ) with a
7=0 J

bound depending on p. Similarly one treats

2M M2 2M 2M 1 M2
H ()\;—A+O(W)):‘H ()\;—)\)"H A+ =005
Jj=2n+1 j=2n-+1 j=2n+1 J

Again, by the choice of ¢ and the asymptotics of )\j , Zj 21 )\,1 3 is a bounded
analytic function of A € A, . Thus

2M
1 M? M?
j:12—n[+1 (1+ o AO(T)) =14+ 0(— N ).
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Combining the estimates obtained we have

2M M n—>2 _ _
B A = AN —A) 1
[T —m = ]2 0 -0 [ = 15
Jj=0 k=1 k=1 k n—1
1 _ n3M? l (A = NAg =N M?

Finally we note that, with A\, = 4k27? + aj for j € {2k, 2k — 1}, where aj = O(1),

o Ao =N —A) = Ao, — A Agp—1 — A
H 247Té = exp Z log (227) + log (W)

k=M4+1 k=M+1 k

2

= - A D)
= exp { E log (1—|—062j;7T2 ) + log (14‘%)}:1—{—0(%)
k=M+1 k k

uniformly for \ € A;p,l <n < M. Here we used ZZ":MH k—12 < ]‘C;IO x% T = ﬁ
Furthermore H2/1:1 24t == (2m)*™M (M), By the definition of @, (\), we then

obtain that H?i/[o()\év — 1) equals

T aM ! 4 n3 2 2 n2
s B () + 0N @ 1+ O ) 1+ 0 )

as claimed. O

Lemma 9.5 Uniformly for A€ A, ,, 1<n <M, Q,(\) = O(n?).

Proof: By the Counting Lemma (cf [22]) for periodic eigenvalues there exits ng > 1
so that |\ — 4n%72| < 1 for any n > ng. Note that ng can be chosen uniformly
for bounded sets of functions «, 8 € Cg. It turns out that the cases 1 < n < nyg
and ng < n < M have to be treated separately. However they can be proved in a
similar way and so we concentrate on the case ng < n < M only.

1 A — AN (Ao — A
G =gy -y [ P2t e
n k#n,n—1

sin(\/X/Z)

and that — can be written as an infinite product,

sin(v/A/2) H m2n? — N4 H 472 — X
VA/2 m>1 min® m>1 dmi,
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Hence for A € A, ,,

s = (sin(Vay) ) Ax2 4m? >
% =25 ( N ) (=) 0 o)

n—1
Q=N =N

where f, (\) = Hk;ﬁn,n—l I . Clearly, uniformly for A € A ,, ng <
n < M, one has /\4—7:;5 =14+0(%) and
sin(v/\/2) ’ < 4m? - Am? | )2 _
VA/2 (45 — N4y = A)
2
Sin(\/X/Q) 43 TaTn_1 — O(n?)
(T = VA/2) (Tt = VA/2) A2 + VA2 (271 + VA)?

sin (v3/2) _
mo s n s M, o v~ O

Finally we need to estimate f,, (\). For n > ng, by the choice of p > 0 there exists
p' >0 so that [477 — \| > %|kz2 —n?, Vk#n,n—1, VAeA,, Thus

where we used that for A € A

n,o?

Ao =M1 =N < (14 Pam]) (1 4 |Pa i
(4772 —\)2 = ari—\ ami—\
o —Am? A, —4n?
o) (o)

Using that _,-, k72 < /6, one has by Cauchy-Schwarz

Agi, — A7 Aoy — 4,
> | s 2 [T |STK where
k#n,n—1 k#n,n—1
1
K= () g = 47 + Mgy — 4mi[*) .
E>1

Hence, uniformly for A€ A, ng <n < M,

n?y’

o= T QB V0EL -

2 _ 2
k#n,n—1 (47Tk A)

- 2
Agp_q — 4T
L2 — n2

Aok — 47'(']%

< exp Z log(1—|—p/ m

k#n,n—1

)+ > log (144

k#n,n—1

)
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<exp(2p/'7K).

Altogether, Q. () = O(n?) uniformly for A € A, ), ng < n < M as claimed. [

n,0’

Proof of Theorem 2.3: By Proposition 9.1 the factor qK,Q appearing in the product
representation (9.1) of A% — 4 satisfies the asymptotics

_ 1
Combining Lemma 9.2, Lemma 9.3, and Lemma 9.4 one obtains, uniformly for A
in A, , with 1 <n < F(M)

2 2

A% (- 3 =4 = [A2() — 4+ O ) Qs (W] (1 + 0()) (1 +0(2)).

L

4N?
As Q;, (M) = O(n?) (Lemma 9.5) and A2 (X\) —4 = O(1) uniformly for A € A;,,
with 1 <n < F(M) it then follows that

F(M)?
W)\)—4:A2_(A)—4+O( )

To determine how the signs of Ay and A_ are related note that for A in the set

A% (-2 4+

{zeC| dist(z,[Ay,_1,25,]) <20}, 1<n<F(M),

one has
An(— 2+W>\) (— )N "J{/AQ( 2+m)\) and A_(A\) = (=1)"{/AZ(N).
Hence
2
An(— 2+4]1V2A) (- 1)NA,(>\)+O(F(]\A;) )

The estimates for X in Ai o With 1 <n < F(M) are obtained in a similar fashion.
Finally, to see that these estimates are uniform on bounded sets of a, 5 in 002 (T,R)
it suffices to note that p of (9.5) can be chosen uniformly on such sets as the periodic
eigenvalues of —92+ g+ are compact functions of «, 8 — see [22], Proposition B.11).

0

As An(p) and A_()\) are analytic functions one can apply Cauchy’s theorem to de-
duce from Theorem 2.3 Correspondlng estimates of the derivatives (9] Ay or equiv-
alently BJAN( 2+ 4N2) (4N2)13 Ay ( 2+ 4N2) as well as 63AN (

(EINQ))J a;JAAN (2 z772)- Let

~ 1)

+,M + .
AT =N - L A5pany + 1 +il=1,1].
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Corollary 9.6 Let F satisfy (F), M = [F(N)] with N > Ny, and o, 3 € C3(T,R).
Then, for any j > 1 and uniformly for X\ in Al_’M,

. 2
m@{AN (—2 + 4—1172)\> = (-)NHA_(N) + 0O (F(J\]\j) )

o M
and stmilarly, for X in Aj

e oot 00 (%57)

These estimates hold uniformly on bounded sets of functions o, 8 in CS(T,R).

Proof: By Cauchy’s theorem, for j > 1,

1 >_ 11 AN(=24 =2)

IAN -2+ —A) =—— :
o N( TNt T o on- (2 — AT

1

_ d
(4N?)] ¢

and

11 A_(2)

j - -\
RA-N) = glomi Joa—m (2 — A1

dz
where 9A =M denotes the boundary of the rectangle A=M = A5 M with counter-
clockwise orientation. Hence

AN (=24 A/AN? A An(—24 L) — (C1)NVA_ (5
h N((4Nj)j/ )_(—1)Naf\A()\):%ﬁ/ N +‘t§_)A>j£1) (),

ony M

For A in A;’M, |z — A2 > 1 and hence by Theorem 2.3, uniformly on AI’M

AN (—2+ A/AN?)

. 11 AN(—2+ 352) — A_(2)
_y _+ IN
(4N2)i KhAa-W =i / (z— A)itl dz
anyg M
_(F(M)?
_0 ( 2 ) .

By this argument, also the uniformity statement with respect to «, 8 follows. [

Corollary 9.6 allows to obtain asymptotics of the zeroes of Ay (u) := %A N(p) at
the edges in terms of the zeroes of Ay(\) 1= %Ai()\). One sees in a straightfor-
ward way that the N — 1 zeroes of the polynomial Ay (u) are all real and simple
and when listed in increasing order, satisfy AY,_; < A < A\ for any 0 < n < N.
Similarly one sees that the zeroes of )\f are all real and simple, and when listed in
increasing order, satisfy AL, | < AF <AL for any n > 1.
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Corollary 9.7 Let F satisfy (F), M = [F(N)], and o, 3 € C3(T,R). Then for
any 1 <n < F(M),

: A n? F(M)>? N At n? F(M)?
AN d - .
" AN? <N2 M ) and AN-n e O <N2 M >

These estimates hold uniformly on bounded sets of functions o, 8 in CS(T,R).

Proof: The asymptotics of the zeroes of A ~(u) at the two edges are obtained in
a similar fashion so we concentrate on the ones at the left edge. Let I', be the
contour of the box [\, _; — p, A5, + p| +i[—1, 1], contained in Al_’M

I = 0([Ag1 — £ Ag, + 0] +i[-1,1])

where p is chosen as in (9.5). By Theorem 2.1, for N sufficiently large, )\nN is
the only zero of Ay(p) in the box —2 4+ = ([A5,_1 — p, A, —|— pl +i[—1,1]). In
particular, A ~ (i) doesn’t vanish on the contour I'YY = —2 + 1 N2 r, By Cauchy’s
theorem it then follows that for any 1 < n < F(M), 1 = 2m fFN o Ndu and

1 AN
)\N 377 Jrw :“alA du. Hence

. a2A
RS (P e L)

d
n 2mi Jrn p) AN(M)) a

and with the change of variable y = —2 + ﬁ

BAN (—24 132
AN?(AY 4 2) = / A8 ( +4f§2)dA.
2mi Jr: "O\AN (<24 7iz)

Similarly one has A, = L fF d)\ The difference 4N2(AN 4+2) — A~ thus
equals
1 BAN (24 172) (= 1)Na§A ()
— A 3 ] X
27 T 8)\AN (—2 + W) ( 1) ()‘)
_ 1\ BAN (224 ) - (2D aiA N
i T Aw (2 )
LU BA W ((CDVRA N - AN (24 5))
2 Jr; AN (—2 + W) MA_(N) .
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The two latter integrals are estimated separately. Use Corollary 9.6 and the facts
that on T';,, A = O(n?) and

1 1
BA_(N), , — o(1)
g RAN(—2+25) HA_(N
to conclude that each of the two integrals is O (n2 F(AA//[[)Q >, yielding

. . 2
AN2(AY +2) =\, +0O <n2%> .

The statement on the uniformity of the estimates is obtained by using that a
corresponding one for the discriminants and their derivatives holds. O

A Auxiliary results

In this appendix we prove auxiliary results needed to compute the asymptotics of
the discriminant.

Lemma A.1 For N — oo,

N-1
IT (- cos %) —2N2 N1+ 0N (A1)

Proof: Note that 1 — cos(nd) > 0 for 1 <n < N, and ¢ := n/N. To compute the
product in (A.1) we therefore can take the logarithm, yielding,

Zlog (1 — cos(nd)) Zlo CO& n6 + Zlog n5

n=1 n=1
Clearly
N
Z:log(né)2 = Nlogé* + log(N!)? = log ((N)NN|)2.

n=1

To compute the asymptotics of Z 1 log (1 (COS)(Qn 6)) introduce

1 —
f(x):log(%sx) 0<z<m.
Note that for 0 < z <,
l—cosz 1 1, 1 1 5
_— = = — ...:—1—— e >0.
2 SRR -7 )



Hence f(z) is a well-defined, smooth function on the interval [0,7]. Now apply
the well known formula for approximating the sum ZnN:1 f(nd) by an integral (cf

e.g. [1])

N - o
S fnd) = % /O F(z)dz + w +0(5) (A.2)
n=1

where the error term O(6) is bounded by

6= sup |f"(2)]- length([0, ).

12 0<z<m
Clearly
f(m)—fO) 1 2 1 2
=ttt = —(log(—) —log =) =log —.
5 5 (log(—) —log 5) = log —
Further, 4 5 fo r)dr = § fo (log(1 —cos x) —2log x)dx can be explicitly computed
by Lemma A. 2
1 (7 1
5/0 log(l —cosz) = —glogQ = log2—N
and

0 0

Combining all these estimates yields

2 [" 2 m 1
——/0 logxdx:——(xlogx—x)|0:2N+]Og7r2_N_

al 21 1 AN 1
Zlog(l—cos(né)) log (= —oN 2N)+2N+10g(WN!) +O(N)

or
2N

N 2 e 1

By Stirling’s formula, N! = v2rNNYe V(1 + O(%)) it follows

N
4N 1
H (1 — cos %) = 2—N(1 + O(N))
n=1
and as (1 — cos N) | N = 2 we then conclude that
N
2N 1
[T (1 —cos =) = S5 (1+0(5))- 0
n=1

Lemma A.2 [ log(l + cosx)dr = —mlog2.
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Proof: First note that by the change of variable of integration x := 7w — s,
s K K
/ log(1 + cos z)dx = / log(1 + cos(m — s))ds = / log(1 — cos s)ds.
0 0 0

Hence, with I := f07r log(1 — cos z)dz, one has

™ w/2
2[ = / (log(1 + cosx) + log(1 — cosz))dx = 2/ log(sin® )dz.
0 0

Using that sin? z = %(1 — Cos 2:6) and making the change of variable s = 2x, one
gets [ = % fow log(1 — cos s)ds — 5 log2 and the claim follows. ([l

Lemma A.3 Foranyl <M < N,

(g772) " (112 >H (1= cos(5) = (573) " (MD?exp (= O(7))-  (A3)

Proof: As in the proof of Lemma A.1, consider the logarithm of the product in
(A.3), to obtain, with ¢ := 7/N,

nzllog (1 — cos(nd)) = é log —|— log(1 + (il:;)LQ))
where b, =1 — cosnd — (nd)” ) . Clearly
St 1o (L (% o) o (o). (A
Further not that (121%’)12 < 0 and
2 5  M?
() = ‘ < =(nd)? < —.

As for —1 < z <0,

0> log(l+z) = (]mH-’ ‘2+@+...)>—M7
2 3 = T T
it then follows that
20y, M? M2, 4 M?
0 < —log (1 —(1-—=)""=0(=
< og( +(n6)2)< N2( N2) (NQ)



Summing up these estimates yields

2by, M? M3
M - —).
>t 1+ (7)< M - O(3) = O(gy)
Combined with the estimate (A.4) one gets the claimed estimate. O

Lemma A.4 Foranyl <M < N

l nm M3
oM 27!—[1(1—1—(:08?) > 2Mexp(—O(W)).

Proof: Notethatl—i—cos%:2—%(%)2—1—...:2(1—(;—”)24—...).Thus
o nm o nm
H(l—i—cosﬁ):QMH(l—(ﬁ)Q—i—...)§2M
n=1 =1

and

M ; M o,
H 1—|—CO&— =2 exp(Zlog(l—(ﬁ) +...)) >
n=1 =1
M
0 M3
> 2M exp (- (W)Z;Tﬂ) > 2Mexp (- O(W)) O

Finally we compute the spectral data for the operator —d?/dz? when considered
with periodic / antiperiodic boundary conditions on the interval [0, T]. The funda-

mental solutions of —d?/dz? are given by i (z, \) = cos v Az and yo(x, \) = %
Thus the periodic / antiperiodic eigenvalues are

N =0, AT =2 | = (’”‘—TW)2 Vn > 1

and a basis of eigenfunctions is given by
nmw .o nm
fo=1;  fon(x) = cos (?m), fon—1(z) = sin (?x)
The discriminant can be computed to be
AT(A) = y1(T, A) + (T, A) = 2cos(VAT)

hence

Ap(N)? — 4 = 4cos’(VAT) — 4 = —4sin®(VAT).
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Assin /= /il "nzﬂ; , it then follows that
2 2 T2 2
Ar(V? —4= - [T (& n” )? =42 ] (

n>1 n>1 T2

In view of the values of )\T it follows that

2 gn 1 )‘)
Ar(N\)? —4 = —4T2) H 3y :
n>1 T

Furthermore we compute the entire functions 1/1%()\), k > 1, leading to the nor-
_e» .
\/md)\ characterized by

1 b (V)
2 c/

TITE ¢/ AZ(N) — 4
where, as usual, 'L’ is a counterclockwise contour around A}, = AT | so that all
other eigenvalues )\g, k 7é 2n,2n — 1, are in the exterior of I'’. We claim that

2 2

ck H Jl with ol F = <l_7r> and ¢ = £
l - k — :

e (3)° T ki

malized differentials

AN =6,p Vn,k>1

Indeed, as UlT’k is in the £’th gap interval, it follows that JlT’k = (%)2, Vi # k.
T
The constant c{ is then determined by 1 = % fFT U gy As

k $/AZ(N)—4
7r2
i) 1 (%)

k-
¢/A2(N) — 4 i2TVA N — AL,

one gets by Cauchy’s Theorem that ck = 2,;[ as claimed. In the special case where

= 1/2 one gets

NG 4__)\1—[ )\Qn_2)\2n 1—A)

nm)
n>1
where \, = AT for any n > 0 and A(X) = Ap()) . For the entire
T:l/ T=1/2
functions g (A) = (A )|T_% one gets
_ (2lm)? — A _r 1
A = 2k7r 1171 @mp = ckleey = g
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