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From Toda to KdV

D. Bambusi∗, T. Kappeler†, T. Paul‡

May 6, 2015

Abstract

For periodic Toda chains with a large number N of particles we con-
sider states which are N−2-close to the equilibrium and constructed
by discretizing arbitrary given C2−functions with mesh size N−1. Our
aim is to describe the spectrum of the Jacobi matrices LN appearing
in the Lax pair formulation of the dynamics of these states as N → ∞.
To this end we construct two Hill operators H± – such operators come
up in the Lax pair formulation of the Korteweg-de Vries equation –
and prove by methods of semiclassical analysis that the asymptotics
as N → ∞ of the eigenvalues at the edges of the spectrum of LN are
of the form ±(2− (2N)−2λ±n + · · · ) where (λ±n )n≥0 are the eigenvalues
of H±. In the bulk of the spectrum, the eigenvalues are o(N−2)-close
to the ones of the equilibrium matrix. As an application we obtain
asymptotics of a similar type of the discriminant, associated to LN .

1 Introduction

It is well known that the (periodic) Toda lattice is an integrable system and by
classical heuristic arguments, its dynamics are expected to be well described by
solutions of the (periodic) KdV equation in the continuous limit (cf [31, 11, 30]).
However, only quite recently [29, 4], it has been rigorously proved that in an
appropriate asymptotic regime, small solutions of Toda lattices, or more generally,
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of chains of particles with nearest neighbors interaction, referred to as FPU chains,
can be described approximately in terms of solutions of the KdV equation. It is
important to note that in order to approximate one solution of an FPU chain, two
solutions of the KdV equation are needed, one corresponding to a right moving
wave, and the other corresponding to a left moving wave. Furthermore we recall
that these results are proved by averaging type methods, allowing to control the
dynamical variables for long, but finite intervals of time.
Since the (periodic) Toda lattice is an integrable system, one expects that the above
approximation results can be improved in this case by computing the asymptotics
of quantities such as the frequencies. In addition, one would like to understand
how the integrable structure of Toda lattices is related to the corresponding one of
the KdV equation in the continuous limit. In particular, recall that both equations
admit a Lax pair formulation. The one for Toda lattices involves Jacobi matrices
and the one for the KdV equation Schrödinger operators. In the setup of lattices
on the entire line, Toda [30] showed by a formal computation that the continuous
limit of Jacobi matrices is given by one Schrödinger operator (cf [30], p. 93), leading
to one solution of the KdV equation. But in view of the rigorous results of [29, 4],
two solutions of KdV are needed to describe the asymptotics of solutions of Toda
lattices in the continuous limit. Hence even on a formal level, Toda’s result is
incomplete, at least for general initial data. These limitations of Toda’s result are
also shared by works in the periodic setup such as [17, 18] as well as by studies of
other lattices (cf e.g. [25]). Indeed, in [17], p. 587, the author points out that he
only considers very special initial data of the periodic Toda lattice.
The formal results of Toda et al. and the rigorous results of [29, 4] lead to the
problem of how to construct two Schrödinger operators yielding the two KdV
solutions needed to describe the asymptotics of Toda lattices in the continuous
limit without the restrictions on the initial data mentioned above. In the present
paper, we solve this problem in the periodic setup in which case these operators
are also referred to as Hill operators. It might come as a surprise that they are
constructed by some methods of semiclassical analysis. One of the main results we
show says that they can be used to approximately describe the limiting asymptotics
of the spectra of periodic Jacobi matrices.
We believe that our results and the methods developed for proving them will be
an essential tool for studying all kinds of properties of the asymptotics of Toda
lattices in the continuous limit. Results in this direction are obtained in [3] by
applying what is proved in the present paper: one of the results of [3] provides
the first two terms in the asympotics of the Toda frequencies in terms of the KdV
frequencies corresponding to the two Hill operators, mentioned above.
Finally we would like to discuss the connection of the present research with the
so called FPU problem, which actually is the main motivation for our research.
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We recall that in their celebrated report [13], Fermi, Pasta, and Ulam studied the
dynamics of FPU chains. They wanted to confirm numerically that energy sharing
among the different degrees of freedom occurs. Very much to their surprise, they
observed recurrent dynamics instead. It led to the question, referred to as the
FPU problem, whether the observed recurrence phenomenon persists in the ther-
modynamic limit. In case it does, it would contradict the so called equipartition
principle leading to potentially serious problems for the foundations of classical
statistical mechanics. We emphasize that, notwithstanding the huge number of
computations and the enormous amount of theoretical work done up till now (see
e.g. [6], [8], [24], [27]), an answer to this problem is still not known. For status
reports on the research of FPU chains see [7], [10], [16].
In the context of the FPU problem, our interest in Toda lattices stems from the
facts that on the one side, Toda lattices are integrable and hence their continuous
limits might be easier to study and at a deeper level, due to the additional struc-
tures present, and that on the other side, near the equilibrium, FPU chains are
well approximated by Toda chains. Indeed, it was already pointed out in [12] that
close to the equilibrium, (periodic) FPU chains are typically better approximated
by (periodic) Toda chains than by the linear model. Subsequently, numerical ev-
idence was found that up to a long time, periodic solutions of FPU chains with
small initial data are very well approximated by Toda chains. See the quite recent
work in this direction [5] and references therein.

2 Statement of main results

The Toda lattice, in the setting of periodic boundary conditions with periodN ≥ 2,
is the Hamiltonian system with Hamiltonian

H =
1

2

N∑

n=1

p2n +

N∑

n=1

eqn−qn+1 .

Here qn denotes the displacement from the equilibrium position of the n’th par-
ticle, pn its momentum and (qn, pn) is defined for any n in Z by requiring that
(qi+N , pi+N ) = (qi, pi) for any i ∈ Z. When expressed in Flaschka coordinates,

bn = −pn and an = e
1
2
(qn−qn+1)([14]), the Hamiltonian equations of motion associ-

ated to H take a Lax pair formalism description given by

L̇ = [B,L] (2.1)
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where the N ×N matrices L = L(b, a) and B = B(a) are of the form




b1 a1 0 . . . 0 aN
a1 b2 a2 . . . 0 0
0 a2 b3 . . . 0 0
...

...
0 . . . . . . bN−1 aN−1

aN 0
... aN−1 bN




and




0 a1 0 . . . 0 −aN
−a1 0 a2 . . . 0 0
0 −a2 0 . . . 0 0
...

...
0 . . . . . . 0 aN−1

aN 0
... −aN−1 0




respectively, with a = (an)1≤n≤N ∈ R
N
>0 and b = (bn)1≤n≤N ∈ R

N . Notice that
the matrix L(0N , 1N ) with b = 0N = (0, ..., 0) and a = 1N = (1, ..., 1) is an
equilibrium for (2.1). We are interested in the N → ∞ asymptotics of various
spectral quantities of L(bN , aN ) for bN , aN of the form

bNn = εβ
( n
N

)
and aNn = 1 + εα

( n
N

)
(2.2)

where ε is a coupling parameter and α, β are functions in C2
0 (T,R), i.e. 1−periodic

C2−functions with [α] = [β] = 0 with [α] denoting the mean of α, [α] =
∫ 1
0 α(x)dx.

Alternatively, one can consider

pNn = −εβ
( n
N

)
and qNn = −2Nεξ

( n
N

)

where ξ is the element in C3
0 (T), satisfying ξ

′ = α. Using that

exp(
qNn − qNn+1

2
) = 1 +

qNn − qNn+1

2
+O(ǫ/N) = aNn +O(ǫ/N)

one can show that our results stated below hold for either of the two discretizations.
The limiting equations strongly depend on the choice of the coupling parameter ǫ.
In [9] it is shown that with ǫ ∼ 1, one obtains in the limit as N → ∞ a nonlinear
system of equations of hyperbolic type, which contains as a special case the inviscid
Burgers equation. In contrast to [9], we choose ε ≡ εN = (2N)−2. It turns out
that in this case, the asymptotics of the dynamics is described in terms of two
solutions of the KdV equation (cf [3]). Our aim is to compute the asymptotics of
the eigenvalues of L(bN , aN ) and of the corresponding discriminant as N → ∞.
Let us note that in view of the Lax pair representation, the spectrum of L(bN , aN )
is conserved by the Toda flow. To obtain a set of independent integrals of motion
it turns out to be more convenient (see e.g. [19]) to double the size of L(bN , aN )
and to consider

Qα,βN ≡ Q(bN , aN ) = L
(
(bN , bN ), (aN , aN )

)
, (2.3)
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namely

Qα,βN =




bN1 aN1 0 . . . . . . . . . . . . . . . 0 aNN
aN1 bN2 aN2 0 . . . . . . . . . . . . . . . 0
0 aN2 bN3 aN3 0 . . . . . . . . . . . . 0
...

...
0 . . . 0 aNN−1 bNN aNN 0 . . . . . . 0
0 . . . . . . 0 aNN bN1 aN1 0 . . . 0
...

...
0 . . . . . . . . . . . . . . . 0 aNN−2 bNN−1 aNN−1

aNN 0 . . . . . . . . . . . . . . . 0 aNN−1 bNN




The eigenvalues of Qα,βN when listed in increasing order and with multiplicities
satisfy

λN0 < λN1 ≤ λN2 < · · · < λN2N−3 ≤ λN2N−2 < λN2N−1.

By Floquet theory (cf. e.g. [19]) one sees that in the case where N is even,
λ0, λ3, λ4, . . . , λ2N−5, λ2N−4, λ2N−1 are the N eigenvalues of L(bN , aN ). For N
odd, they are given by λ1, λ2, λ5, λ6, . . . , λ2N−5, λ2N−4, λ2N−1. To describe the
asymptotics of λNn at the edges, n ∼ 1 or n ∼ 2N − 1, we need to introduce two
Hill operators H± := −∂2x + q± with potentials

q±(x) = −2α(2x) ∓ β(2x). (2.4)

The discovery of these two operators and of their role in the description of the
asymptotics as N → ∞ of the spectrum of Qα,βN is one of the main contributions
of this paper. The role played by the operators H− and H+ in the description
of the asymptotics of the left respectively right edge of the spcetrum of Qα,βN
will be explained in detail in Section 7. Furthermore we point out that in our
subsequent paper [3] we prove that the limiting dynamics of the Toda lattices
(bN , aN ) as N → ∞ can be described in terms of the solutions of the KdV equation
corresponding to q− and q+. Note that the two potentials q− and q+ determine α
and β uniquely and that they are independent from each other. Loosely speaking,
in terms of the asymptotics described in [3], it means that the parts of the Toda
lattices corresponding to the spectrum at the two edges do not interact although
Toda lattices are nonlinear systems. The formulas (2.4) for q− and q+ are an
outcome of semiclassical analysis, discussed in Section 4 – see also the explanations
below after Remark 2.2 .
Note that q± are periodic functions of period 1/2. The periodic eigenvalues
(λ±n )n≥0 of H± on [0, 1], when listed in increasing order and with multiplicities,
are known to satisfy λ±0 < λ±1 ≤ λ±2 < · · · . It turns out that the asymptotics of
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the eigenvalues of Qα,βN exhibit three different regions: the bulk and the two edges,
which shrink to {−2} and {+2}, respectively, as N → ∞. Each of these three
parts of the spectrum has its proper asymptotics: in the bulk, the spectrum is
close to the one of the equilibrium matrix by a distance smaller than the distance
between the given Jacobi matrices and the equilibrium matrix, whereas in each of
the two edges, the first correction is of the same order as this distance and involves
the spectrum of one of the two Hill operators H±.
To define the two edges of the spectrum consider a function F : N → R≥1 satisfying

(F ) lim
N→∞

F (N) = ∞; increasing; F (N) ≤ Nη with 0 < η < 1/2.

Theorem 2.1 Let F satisfy (F) and let α, β ∈ C2
0 (T,R). Then the asymptotics

of λNn are as follows:
at the left edge: for 0 ≤ n ≤ 2[F (N)]

λNn = −2 +
1

4N2
λ−n +O(F (N)2N−3)

at the right edge: for 0 ≤ n ≤ 2[F (N)]

λN2N−1−n = 2− 1

4N2
λ+n +O(F (N)2N−3)

in the bulk: for n = 2ℓ, 2ℓ − 1 with [F (N)] < ℓ < N − [F (N)],

λNn = −2 cos
ℓπ

N
+O(N−2F (N)−1).

These estimates hold uniformly in 0 ≤ n ≤ 2N − 1 and uniformly on bounded
subsets of functions α, β in C2

0 (T,R).

Remark 2.2 In the case where F (N) = Nη, 0 < η < 1/2, the asymptotics of
Theorem 2.1 read as follows:

λNn = −2 +
1

4N2
λ−n +O(N−3+2η), ∀ 0 ≤ n ≤ 2[Nη]

λN2N−1−n = 2− 1

4N2
λ+n +O(N−3+2η), ∀ 0 ≤ n ≤ 2[Nη ]

λN2ℓ, λ
N
2ℓ−1 = −2 cos

ℓπ

N
+O(N−2−η), ∀ [Nη] < n < N − [Nη].
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To prove Theorem 2.1 we use singular perturbation methods, more specifically
methods from semiclassical approximation. Indeed it has been proved in [9]

that Jacobi matrices such as Qα,βN can be viewed as matrix representations of
certain semiclassical Toeplitz operators TN in the framework of the geometric
quantization of the 2d torus. Note that the Jacobi matrices Qα,βN – and hence
the associated Toeplitz operators – are perturbations of size 1

N2 of the equi-

librium matrix Q(0N , 1N ) whose spectrum is {−2 cos lπN , l = 0, . . . , N}. Since

cos lπN−cos (l−1)π
N = O(N−2) for l ∼ 1 or l ∼ N , the size of the perturbation is of the

same order as the spacing between the unperturbed eigenvalues so that regular per-
turbation methods fail. Using semiclassical methods, we compute the asymptotics
of the eigenvalues at the two edges of the spectrum by constructing semiclassical
(Lagrangian) quasimodes for TN , for which the two Hill operators appear in the
transport equation associated to the construction. As customary for the quantiza-
tion of compact symplectic manifolds, the Toeplitz operators TN act on a Hilbert
space of dimension 2N with N playing the role of t he inverse of an effective Planck
constant. In the bulk, i.e. for 1 ≪ l ≪ N, one has | cos lπN − cos (l−1)π

N | ≫ N−2 and
thus regular perturbation methods apply. Finally let us mention that our method
allows to obtain the full asymptotic expansion in 1

N2 of the entire spectrum – see
the discussion at the end of Section 8.

As an application of Theorem 2.1 we derive asymptotics for the characteristic
polynomial χN (µ) of Q

α,β
N as N → ∞. Note that χN (µ) gives rise to the spectral

curve {(µ, z) ∈ C
2|z2 = χN (µ)} which plays an important role in the theory of

periodic Toda lattices. These asymptotics will be of great use in the subsequent
work [3]. By Floquet theory, χN (µ) can be expressed in terms of the discriminant
associated to the difference equation (k ∈ Z)

aNk−1y(k − 1) + bNk y(k) + aNk y(k + 1) = µy(k). (2.5)

Indeed denote by yN1 and yN2 the fundamental solutions of (2.5) determined by

yN1 (0, µ) = 1, yN1 (1, µ) = 0 and yN2 (0, µ) = 0, yN2 (1, µ) = 1.

The discriminant of (2.5) is then defined as the trace of the Floquet matrix asso-
ciated to (2.5) and given by

∆N (µ) = yN1 (N,µ) + yN2 (N + 1, µ).

In view of the Wronskian identity, µ is an eigenvalue of L(bN , aN ) [Qα,βN ] iff ∆N (µ)−
2 = 0 [∆2

N (µ) − 4 = 0}]. Hence up to a multiplicative constant, ∆2
N − 4 and

χN coincide. From the recursive formula for yN2 (k, µ) one then sees ([19]) that

∆2
N (µ)− 4 = q−2

N χN (µ) where qN =
N∏
1
(1 + 1

4N2α(
n
N )).
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Analogously, denote by ∆±(λ) ≡ ∆(λ, q±) the discriminant of

−y′′(x, λ) + q±(x)y(x, λ) = λy(x, λ) (2.6)

defined as the trace of the Floquet operator associated to (2.6),

∆±(λ) = y±1 (1/2, λ) + (y±2 )
′(1/2, λ)

where y±1 (x, λ) and (y±2 )
′(x, λ) are the fundamental solutions of (2.6) defined by

y±1 (0, λ) = 1, (y±1 (0, λ))
′ = 0 and y±2 (0, λ) = 0, (y±2 (0, λ))

′ = 1.

Similarly as in the case of the Toda lattice, λ is a periodic eigenvalue of H± on the
interval [0, 1] iff ∆2

±((λ)−4 = 0. Note that ∆2
±((λ)−4 is an entire function and can

be viewed as a regularized determinant of H±, referred to as characteristic function
of (2.6). It leads to the spectral curves {(λ, z) ∈ C

2| z2 = ∆2
±(λ) − 4} which play

an important role in the theory of the KdV equation. We will state our result on
the asymptotics of χN in terms of the discriminant ∆N . With M = [F (N)] and

F as before, let Λ±,M ≡ Λ±,M
2 be the box

Λ±,M := [λ±0 − 2, λ±2[F (M)] + 2] + i[−2, 2]

and choose N0 ∈ Z≥1 so that

λ±2k+1 − λ±2k ≥ 6 ∀ k ≥ F (F (N0)) (2.7)

By the Counting Lemma for periodic eigenvalues (cf e.g. [22]), N0 can be chosen
uniformly for bounded subsets of function α, β in C2

0 (T,R).

Theorem 2.3 Let F satisfy (F), M = [F (N)] with N ≥ N0, and α, β ∈ C2
0 (T,R).

Then uniformly for λ in Λ−,M

∆N

(
− 2 +

1

4N2
λ
)
= (−1)N∆−(λ) +O

(
F (M)2

M

)
. (2.8)

Similarly, uniformly for λ in Λ+,M

∆N (2−
1

4N2
λ) = ∆+(λ) +O

(
F (M)2

M

)
. (2.9)

These estimates hold uniformly on bounded subsets of functions α and β in C2
0 (T,R).
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Remark 2.4 In the case where F (N) = Nη, 0 < η < 1/2, the asymptotics of
Theorem 2.3 read as follows:

∆N

(
− 2 +

1

4N2
λ
)
= (−1)N∆−(λ) +O

(
N−η(1−η)

)
, ∀λ ∈ Λ−,Nη

,

∆N (2−
1

4N2
λ) = ∆+(λ) +O

(
N−η(1−η)

)
, ∀λ ∈ Λ+,Nη

.

We remark that we did not aim at getting the maximal range of the λ’s for which
(2.8) and (2.9) hold. Moreover, although we didn’t state such a result here, our
method allows to compute the asymptotics of the discriminant for λ in the bulk
region as well. In the companion paper [3], the results of Theorems 2.1 and 2.3
are used as an important ingredient for computing the asymptotics of frequencies
and actions of Toda lattices in terms of the corresponding quantities of the KdV
equation.

Organisation of paper: The proof of Theorem 2.1 relies on the construction of
quasimodes for the Jacobi matrices Qα,βN . This construction is done in the frame-

work of the geometric quantization of the torus (Section 3). The matrices Qα,βN
are shown to be the matrix representation of Toeplitz operators (Section 4), whose
action on a certain type of Lagrangian states is described in detail in Theorem
4.4. Proposition 5.1 in Section 5 states an abstract result on the construction of
quasimodes that we couldn’t find in the literature and which is crucial for the proof
of Theorem 2.1. The two cases corresponding to the bulk and the edges of the
spectrum are treated in Section 6 and Section 7 respectively. The proof of Theo-
rem 2.1 is summarized in Section 8. In Section 9 we first compute the asymptotics
of the Casimir functionals of the Toda lattice (Proposition 9.1) and then, using

Theorem 2.1, obtain the asymptotics of the discriminant of Qα,βN in terms of the
discriminants of H±, stated in Theorem 2.3. In addition, we apply Theorem 2.3 to
prove similar asymptotics for the derivatives of ∆N (µ) and to derive aymptotics
of the zeroes of ∂µ∆N (µ) at the two edges.

Methods: The methodology used in this paper, based on the geometric quantization
of the torus, is strongly inspired by [9]. In that paper, the authors consider the
large N asymptotics of Toda lattices, both for Dirichlet and periodic boundary
conditions, in the case where the an’s and bn’s are given by the discretization
of regular functions, i.e. the coupling parameter ǫ equals 1, and they derive the
limiting PDE.

Finally we mention that this work has been announced in [2].

Acknowledgments: The authors would like to thank the University of Milan, the
Swiss National Science Foundation, the University of Zürich, the CNRS and the
École polytechnique for financial support during the elaboration of this work.
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3 Geometric quantization of T2

The geometric quantization of the two dimensional torus (resp. sphere) and the
underlying so-called Toeplitz operators theory has been shown in [9] to be a natural
set-up for studying the large N limit of the Toda lattice with periodic (resp.
Dirichlet) boundary conditions. Although most of the computations in the present
papers are going to be carried out from scratch, we recall in this section the basic
facts concerning Toeplitz operators.
Consider the standard 2-dimensional torus T2 = R

2/Z2, identified with C/(Z+iZ),
with canonical symplectic form ω = dx ∧ dy and Planck constant (4πN)−1. Let
E → T

2 be a holomorphic line bundle with connection ∇ = d − 2πixdy and
denote by κ the curvature form, κ = d(−2πixdy). Then i

2πκ = ω. In particular,
the Chern class of E, given by the cohomology class

[
i
2πκ
]
, satisfies

[
i
2πκ
]
= [ω].

Denote by (H∼
2N , 〈·, ·〉∼) the Hilbert space whose elements are holomorphic sections

T
2 → E⊗2N , viewed as entire functions f : C → C satisfying

f(z +m+ in) = e2Nπ[z(m−in)+ 1
2
(m2+n2)]f(z) ∀(m,n) ∈ Z

2, z ∈ C.

The inner product is given by 〈f, g〉∼ =
∫
[0,1]2 f(z)g(z)e

−2Nπ|z|2dxdy. We identify

H∼
2N (isometrically) with the space H2N of theta functions of order 2N , i.e. entire

functions f : C → C, satisfying

f(z +m+ in) = e2Nπ(n
2−2inz)f(z) ∀(m,n) ∈ Z

2, z ∈ C

with inner product 〈f, g〉 =
∫
[0,1]2 f(z)g(z)e

−4πNy2dxdy. For 0 ≤ j ≤ 2N − 1, let

θNj (z) = (4N)1/4e−πj
2/2N

∑

n∈Z
e−π(2Nn

2+2jn)e2πiz(j+2Nn). (3.1)

One verifies that (θNj )0≤j≤2N−1 is an orthonormal basis of H2N . Observe that
in contrast to the ’standard’ case of the quantization of a cotangent bundle, the
Hilbert space H2N is finite dimensional. From a point of view of physics, this fact
is justified by the Heisenberg uncertainty principle. The Toeplitz quantization
of a function F : T2 → R is given by the sequence of operators TNF : H2N →
H2N , f 7→ PN (fF ) where PN : (L2([0, 1]2, e−4Nπy2dxdy) → H2N denotes the
orthogonal projector,

(PNf)(z) =
2N−1∑

j=0

〈f, θNj 〉θNj (z).

More generally, a Toeplitz operator is a sequence of operators (TN )N≥1 where for
N ≥ 1, TN : H2N → H2N is an operator of the form TN ∼ ∑∞

j=0N
−jTNSj

. The

function S0 : T
2 → R is referred to as principal symbol.
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4 Jacobi matrices as Toeplitz operators

In this section we study Jacobi matrices with entries defined in terms of discretiza-
tions of functions of a certain regularity, from a ’Toeplitz operator’ perspective. In
particular we show how their action on certain families of elements in the Hilbert
spaces H2N , referred to as Lagrangian states, can be explicitly described in terms
of differential operators – see Theorem 4.4 below. This theorem is key for our
construction of quasimodes.
For α, β in C2

0(T,R) and N ≥ 3, denote by Tα,βN the linear operator on H2N whose

representation with respect to the basis [θN2N−1, . . . , θ
N
0 ] is Qα,βN . As an example,

consider the operator T 0,0
N . To study its properties let us begin by recording the

following elementary result.

Lemma 4.1
(
(∓1)n

)
0≤n≤2N−1

is an eigenvector of Q0,0
N corresponding to the eigen-

value ∓2, and, for any 1 ≤ ℓ ≤ N − 1, the vectors
(
eiπ(N−ℓ)n/N)

0≤n≤2N−1
and(

eiπ(N+ℓ)n/N
)
0≤n≤2N−1

are eigenvectors of Q0,0
N corresponding to the eigenvalue

−2 cos ℓπN . They form an orthogonal basis in C
2N .

From Lemma 4.1 it follows that ψN,k(z), 0 ≤ k ≤ 2N − 1, is an orthonormal basis
of H2N of eigenfunctions of T 0,0

N , T 0,0
N ψN,k = 2cos kπN ψ

N,k, where

ψN,k(z) = (2N)−1/2
2N∑

n=1

eiπ
kn
N θN2N−n(z) = (2N)−1/2

2N−1∑

n=0

e−iπ
kn
N θNn (z). (4.1)

Alternatively, ψN,k can be expressed with the help of the kernel

ρN (z, w) =

2N−1∑

j=0

θNj (z)θNj (w). (4.2)

Lemma 4.2 For any 0 ≤ k ≤ 2N − 1,

ψN,k(z) = (4N)−1/4

∫ 1

0
ρN
(
z, k/2N + is

)
e−2Nπs2ds.

Proof: In view of (3.1) and (4.2), the claimed identity follows easily from the

identity
∑

n∈Z
∫ 1
0 e

−2πN(n+s+ j
2N

)2ds =
∫∞
−∞ e−(

√
2πNx)2dx = (2N)−1/2. �

It is useful to introduce for an arbitrary real or complex valued function f ∈ L2(T)
and 0 ≤ k ≤ 2N − 1,

ψN,kf (z) = (4N)−1/4

∫ 1

0
f(s)ρN

(
z, k/2N + is

)
e−2Nπs2ds. (4.3)
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It is an element in H2N . For f ∈ L2(T), denote by f̂n the n’th Fourier coef-
ficient of f , f̂n =

∫ 1
0 f(x)e

−i2πnxdx and by ‖f‖ℓ the ℓ-th Sobolev norm ‖f‖ℓ =(∑
n∈Z |f̂n|2(1 + |n|)2ℓ

)1/2
. Further denote by ‖f‖Cℓ the following norm of f ∈

Cℓ(T): ‖f‖Cℓ = sup
0≤x≤1

∑ℓ
j=0 |∂

j
xf(x)|.

Lemma 4.3 For f, g ∈ L2(T) and 0 ≤ k, ℓ ≤ 2N − 1

(i) ψN,kf (z) = 1√
2N

∑2N−1
j=0 θNj (z)e−iπkj/N

∑
m∈Z f̂me

−πm2/2Ne−iπmj/N .

Alternatively, with ∆ = −d2/dx2,

ψN,kf (z) =
1√
2N

2N−1∑

j=0

(
e−∆/8πNf

)(
− j/2N

)
e−iπkj/NθNj (z). (4.4)

(ii) 〈ψN,kf , ψN,ℓg 〉 =
∑

n∈Z f̂nĝn+k−ℓe
−πn2/2Ne−π(n+k−ℓ)

2/2N .

(iii)
〈ψN,kf , ψN,kg 〉 − 〈f, g〉

 ≤ 1
4πN ‖f ′‖0 · ‖g′‖0 ∀ f, g ∈ H1(T).

(iv) The linear maps L2(T) → H2N , f 7→ ψN,kf , are bounded, ‖ψN,kf ‖ ≤ ‖f‖0.

Proof: (i) By the definitions of ψN,kf and ρN

ψN,kf (z) = (4N)−1/4
2N−1∑

j=0

θNj (z)

∫ 1

0
f(s) θNj (k/2N + is) e−2Nπs2ds.

Using the definition (3.1) of θNj one gets

(4N)−1/4

∫ 1

0
f(s)θNj (

k

2N
+ is)e−2Nπs2dx = e−iπ

kj
N

∑

n∈Z

∫ 1

0
e−2πN(n+s+ j

2N
)2f(s)ds.

(4.5)

As
∑

n∈Z e
−2πN(n+s+j/2N)2 = 1√

2N

∑
n∈Z e

2πn(s+j/2N)e−πn
2/2N (Poisson summa-

tion formula) it then follows that

(4N)−1/4

∫ 1

0
f(s)θNj

(
k/2N + is

)
e−2Nπs2ds =

1√
2N

∑

n∈Z
eiπ

(n−k)j
N e−π

n2

2N f̂−n,

12



yielding the claimed formula. To verify the alternative formula, note that by (4.5)
and the fact that f is periodic, one has

ψN,kf (z) =

2N−1∑

j=0

θNj (z)e−iπkj/N
∑

n∈Z

∫ 1

0
e−2πN(n+s+j/2N)2f(s)ds

=
2N−1∑

j=0

θNj (z)e−iπkj/N
∫ ∞

−∞
e−2πN(y+j/2N)2f(y)dy.

Evaluating the heat flow for the initial data f at x = − j
2N and time t = 1

4
1

2πN we
obtain the claimed identity (4.4).

(ii) By the definition of ρN and the fact that (θNj )0≤j≤2N−1 is an orthonormal basis
of H2N , we have that

∫ 1

0
ρN
(
x+ iy, k/2N + is

)
ρN
(
x+ iy, ℓ/2N + it

)
e−4πNy2dxdy

=
∑

j,n

θNj
(
k/2N + is

)
θNn
(
ℓ/2N + it

)
〈θNj , θNn 〉 =

2N−1∑

j=0

θNj
( k
2N

+ is
)
θNn
( ℓ

2N
+ it

)
.

Hence 〈ψN,kf , ψN,ℓg 〉 is equal to

2N−1∑

j=0

1√
4N

1∫

0

θNj
(
k/2N + is

)
f(s)e−2Nπs2ds

1∫

0

θNj
(
k/2N + it

)
g(t)e−2Nπt2dt.

By (i) and the fact that
∑2N−1

j=0 eiπ(ℓ−n−k+m)j/N = 2Nδℓ−n,k−m we get that

〈ψN,kf , ψN,ℓg 〉 =
∑

m∈Z
f̂−mĝ−m+k−ℓe

−πm2/2Ne−π(−m+k−ℓ)2/2N .

(iii) From item (ii) it follows that for k = ℓ,

〈ψN,kf , ψN,kg 〉 =
∑

n∈Z
f̂nĝne

−πn2/N = 〈f, g〉 −
∑

n∈Z
f̂nĝn(1− e−πn

2/N ).

As 0 ≤ 1− e−πn
2/N ≤ πn2/N one has by the Cauchy-Schwarz inequality

∑

n∈Z
f̂nĝn(1− e−πn

2/N )
 ≤ 1

4πN

∑

n∈Z
|f̂n||ĝn|(2πn)2 ≤ 1

4πN
‖f ′‖0‖g′‖0

13



and the claimed estimate follows.

(iv) By (ii) (for f = g and k = ℓ) ‖ψN,kf ‖2 =∑n∈Z |f̂n|2e−πn
2/N ≤ ‖f‖20. �

Next we describe how Tα,βN acts on ψN,kf . This result will be an important in-

gredient to obtain the asymptotics of the eigenvalues of Qα,βN at the edges. For
f ∈ L2(T) and 0 ≤ ℓ ≤ 2N − 1, introduce, with α2(x) := α(2x),

Dα,β
ℓ (f) :=2 cos

(ℓπ
N

− i

2N
∂x
)
f +

1

4N2

(
β2(x) + 2α2(x) cos

(ℓπ
N

− i

2N
∂x
))
f.

(4.6)

This expression is to be understood in the sense of functional calculus. More
precisely, cos

(
ℓπ
N − i

2N ∂x
)
is viewed as a multiplier operator in Fourier space

cos
(
ℓπ/N − i/2N∂x

)
f =

∑

n∈Z
f̂n cos

(
ℓπ/N + 2πn/2N

)
ei2πnx.

Theorem 4.4 For any f ∈ C2 and 0 ≤ ℓ ≤ 2N − 1

‖Tα,βN ψN,ℓf − ψN,ℓ
Dα,β

ℓ (f)
‖ ≤ 1

N3
Kα,β‖f‖C2 with Kα,β := ‖α‖C2 + ‖β‖C2 + 1.

To prove Theorem 4.4 we first need to establish some auxiliary results. First note
that Qα,βN = Q0,β

N +
(
Q0,α
N −Q0,0

N

)
Q+
N +Q−

N

(
Q0,α
N −Q0,0

N

)
where

Q+
N =




0 1 0

0 0
...

...
... . . . 1

1 0 0




and Q−
N is the transpose of Q+

N . Denote by T±
N the operator on H2N whose matrix

representation with respect to the basis [θN2N−1, . . . , θ
N
0 ] are Q±

N . Notice that T±
N

are isometries as Q±
N are the matrix representations of permutations. Further

T 0,0
N = T+

N + T−
N as Q0,0

N = Q+
N + Q−

N . For any f ∈ L2(T) and 0 ≤ ℓ ≤ 2N − 1,
define

D±
ℓ (f) = exp

(
± i

2πℓ− i∂/∂x

2N

)
f and D0,0

ℓ = D+
ℓ +D−

ℓ .

Lemma 4.5 For any f ∈ L2(T) and 0 ≤ ℓ ≤ 2N − 1,

T±
Nψ

N,ℓ
f = ψN,ℓ

D±

ℓ (f)
and T 0,0

N ψN,ℓf = ψN,ℓ
D0,0

ℓ (f)
.
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Proof: Since ψN,ℓf is linear in f it suffices to verify the claimed identities for

f(x) = ek(x) := ei2πkx. By Lemma 4.3 (i) and the fact that (eiπnj/N )0≤j≤2N−1 is
an eigenvector of Q±

N with eigenvalue e±iπn/N one has

T±
Nψ

N,ℓ
ek

= e±iπ(k+ℓ)/NψN,ℓek
= ψN,ℓ

e±iπ(k+ℓ)/Nek

As e±iπ(k+ℓ)/Nei2πkx = e±iπℓ/Ne±
−i∂/∂x

2N

(
ei2πkx

)
= D±

ℓ

(
ei2πkx

)
the claimed identi-

ties follow. �

The key result used in the proof of Theorem 4.4 is the following one.

Lemma 4.6 Let f, g ∈ C2(T). Then with f2(x) := f(2x), one has

|(T 0,f
N − T 0,0

N )ψN,kg − 1

4N2
ψN,kgf2

‖ ≤ 1

32πN3

(
‖(gf2)′′‖C0 + ‖f‖C0‖g′′‖C0

)
.

Proof: Note that Q0,f
N − Q0,0

N is a diagonal matrix with entries (2N)−2f(j/N),

1 ≤ j ≤ 2N . By the definition of T 0,f
N , it then follows that

(
T 0,f
N − T 0,0

N

)
θNj = (2N)−2f

(
(2N − j)/N

)
θNj = (2N)−2f

(
− j/N

)
θNj .

Hence by Lemma 4.3 (i)

4N2
(
T 0,f
N − T 0,0

N

)
ψN,kg (z) =

1√
2N

2N−1∑

j=0

f2(−
j

2N
)θNj (z)e−iπkj/N

(
e−

∆
8πN g

)
(− j

2N
).

Furthermore, one has ψN,kgf2
(z) = 1√

2N

∑2N−1
j=0 θNj (z)e−iπkj/Ne−∆/8πN (gf2)

(
−j/2N

)
.

As (θj)0≤j≤2N−1 is an orthonormal basis of H2N , it then follows

‖ψN,kf2g
− 4N2(T 0,f

N − T 0,0
N )ψN,kg ‖2 ≤ 1

2N

2N−1∑

j=1

[e−∆/8πN ,Mf2 ]g
(
− j

2N

)2

where Mf2 denotes the operator on L2(T) of multiplication by f2 and [·, ·] is the
commutator of operators. Hence

‖ψN,kf2g
− 4N2(T 0,f

N − T 0,0
N )ψN,kg ‖ ≤ sup

0≤x≤1

[e−∆/8πN ,Mf2 ]g(x)
.

We estimate the latter expression using e−∆t = Id−∆
∫ t
0 e

−∆sds,

f2(x)(e
−∆/8πN g)(x) = f2(x)g(x) − f2(x)

(∫ (8πN)−1

0
e−∆sds ∆g

)
(x).
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Using the formula of the heat kernel on R and the identity
∫∞
−∞ e−(x−y)2/4sdy =√

4πs one gets

(
∫ (8πN)−1

0
e−∆sds ∆g

)
(x)
 ≤ ‖g′′‖C0(8πN)−1 and


∫ (8πN)−1

0
e−∆sds∆(gf2)(x)

 ≤ ‖(gf2)′′‖C0 (8πN)−1.

Combining these estimates yields the claimed estimate. �

Finally, for the proof of Theorem 4.4 we will also need the following lemma.

Lemma 4.7 For f ∈ C1(T), denote by Mf2 the multiplication operator on L2(T)
by f2(x) := f(2x). Then the operator [D±

k ,Mf2 ] on L
2(T) satisfies

[D±
k ,Mf2 ] =

(
f(2x)− f(2x± 1

N
)
)
D±
k and ‖[D±

k ,Mf2 ]‖L2→L2 ≤ 1

N
‖f ′‖C0 .

Moreover ∥∥[T 0,f
N − T 0,0

N , T±
N ]
∥∥
H2N→H2N

≤ 1

N
‖f ′‖C0 .

Proof: Recalling that D±
k = e±i

2πk−i∂/∂x
2N , it is straightforward to verify that the

values of the two operators coincide for any g = ei2πnx. The claimed identity
then follows by linearity. The claimed bound of the operator norm of [D±

k ,Mf2 ]
then follows from the unitarity of D±

k . The second estimate is proved using

the matrix representation of the operators involved. Recall that Q0,f
N − Q0,0

N =

diag
(
(2N)−2f(j/N)1≤j≤2N

)
. Thus [(Q0,f

N −Q0,0
N ), Q+

N ] is the 2N × 2N matrix




0 γ1 0

0 0 . . .
...

...
... γ2N−1

γ2N 0 0




with γi = f
( i
N

)
− f

(i+ 1

N

)
.

Hence

∥∥[(Q0,f
N −Q0,0

N ), Q+
N ]
∥∥
R2N→R2N = sup

1≤i≤2N

f
( i
N

)
− f

(i+ 1

N

) ≤ 1

N
‖f ′‖C0 .

As Q−
N (Q

0,f
N −Q0,0

N ) is the transpose of (Q0,f
N −Q0,0

N )Q+
N , the same estimate holds

for [(Q0,f
N −Q0,0

N ), Q−
N ]. �
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Proof of Theorem 4.4: We write Tα,βN as a sum of operators

Tα,βN = T 0,0
N +

(
T 0,β
N − T 0,0

N

)
+
(
T 0,α
N − T 0,0

N

)
T+
N + T−

N

(
T 0,α
N − T 0,0

N

)

= T 0,0
N +

(
T 0,β
N − T 0,0

N

)
+ T 0,0

N

(
T 0,α
N − T 0,0

N

)
+
[(
T 0,α
N − T 0,0

N

)
, T+

N

]
.

By Lemma 4.5 and Lemma 4.6 we get, respectively, T 0,0
N ψN,ℓf = ψN,ℓ

D0,0
ℓ (f)

and

∥∥(T 0,β
N − T 0,0

N

)
ψN,ℓf − 1

4N2
ψN,ℓβ2f

∥∥ ≤ 1

8N3
‖β‖C2‖f‖C2 and

T 0,0
N

(
T 0,α
N − T 0,0

N

)
ψN,ℓf − 1

4N2
ψN,ℓ
D0,0

ℓ (α2f)
= T 0,0

N

(
(T 0,α
N − T 0,0

N )ψN,ℓf − 1

4N2
ψN,ℓα2f

)
.

As T 0,0
N = T+

N + T−
N and T±

N are isometries it follows from Lemma 4.6 that

∥∥T 0,0
N

(
T 0,α
N − T 0,0

N

)
ψN,ℓf − 1

4N2
ψN,ℓ
D0,0

ℓ (α2f)

∥∥ ≤ 1

4N3
‖α‖C2‖f‖C2 .

By Lemma 4.7 and Lemma 4.3 (iv) it follows that

∥∥[(T 0,α
N − T 0,0

N

)
, T+

N

]
ψN,ℓf

∥∥ ≤ ‖α′‖C0

4N3
‖ψN,ℓf ‖ ≤ ‖α′‖C0

4N3
‖f‖0.

Finally, we need to estimate ψN,ℓ
α2D

0,0
ℓ f

− ψN,ℓ
D0,0

ℓ (α2f)
. As by Lemma 4.3 (iv), the

linear map g 7→ ψN,ℓg is bounded by 1 on L2(T), it follows from Lemma 4.7 that

∥∥ψN,ℓ
α2D

0,0
ℓ f

− ψN,ℓ
D0,0

ℓ (α2f)

∥∥ ≤ ‖α2D
+
ℓ f −D+

ℓ (α2f)‖0 + ‖α2D
−
ℓ f −D−

ℓ (α2f)‖0

≤ 2

N
‖α′‖C0‖f‖0.

Taking into account the simple identity, Dα,β
ℓ (f) = D0,0

ℓ (f)+ 1
4N2β2f+

1
4N2α2D

0,0
ℓ (f),

the obtained estimates imply the claimed one. �

5 Spectral results by quasimodes

In this section we prove results on quasimodes used in the proof of Theorem 2.1.
Assume that H is a finite dimensional Hilbert space with inner product 〈ψ, φ〉 and
induced norm ‖ψ‖ = 〈ψ,ψ〉1/2. Further assume that A : H → H is a selfadjoint
linear operator.
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Proposition 5.1 (i) Assume that there exist ψ ∈ H with ‖ψ‖ = 1, µ ∈ R and
C > 0 so that

‖(A− µ)ψ‖ ≤ C. (5.1)

Then there exists an eigenvalue λ of A so that |λ− µ| ≤ C.
(ii) Assume that there exist two elements ψ± ∈ H, ‖ψ±‖ = 1, µ ∈ R, 0 ≤ θ < 1,
and C > 0 so that

‖(A− µ)ψ±‖ ≤ C and
〈ψ+, ψ−〉

 ≤ θ.

Then for any D > 8C(1 − θ)−1, there exist two eigenvalues λ± of A so that
|λ± − µ| ≤ D. If λ+ = λ−, then the multiplicity of λ+ is at least two.

Proof: (i) Denote by (λj)j∈I the eigenvalues of A listed with their multiplicities.
As A is selfadjoint H has an orthonormal basis of eigenvectors, (ψj)j∈I , where
ψj ∈ H is an eigenvector corresponding to the eigenvalue λj. Assume that for any
j ∈ I, |λj − µ| > C. Then the vector ψ =

∑
j∈I〈ψ,ψj〉ψj satisfies

C2 = C2‖ψ‖2 <
∑

j∈I

〈ψ,ψj〉
2

(λj − µ)2 = ‖(A − µ)ψ‖2 ≤ C2,

a contradiction. Hence the assumption is not true and (i) follows.

(ii) By item (i), there exists an eigenvalue λi1 with |µ − λi1 | ≤ C. Let us assume
that λi1 has multiplicity one and

|µ− λ| > D ∀λ ∈ spec(A)\{λi1}. (5.2)

Then P := 1
2π

∫
K(z − A)−1dz is the orthogonal projector of H onto the one di-

mensional eigenspace of the eigenvalue λi1 where K denotes the counterclockwise
oriented circle of radius D/2 centered at λi1 . To estimate Pψ± note that ψ± =
(z−A)−1(z−A)ψ± = (z−A)−1(z−λi1)ψ±+(z−A)−1r± where r± = (λi1−A)ψ±.
Note that ‖r±‖ ≤ ‖(µ−A)ψ±‖+ |µ− λi1 | ≤ 2C and

(z −A)−1ψ± = (z − λi1)
−1ψ± − (z − λi1)

−1(z −A)−1r±. (5.3)

Write r± as r± = Pr± + (Id − P )r± and use (z − A)−1Pr± = (z − λi1)
−1Pr± to

see that 1
2πi

∫
K(z − λi1)

−1(z −A)−1Pr±dz = 0. Hence

1

2πi

∫

K
(z − λi1)

−1(z −A)−1r±dz =
1

2πi

∫

K
(z − λi1)

−1(z −A)−1(Id− P )r±dz.

By Cauchy’s theorem we then get

1

2πi

∫

K
(z − λi1)

−1(z −A)−1r±dz = (λi1 −A)−1(Id− P )r±. (5.4)
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Hence integrating (5.3) along the contour K one concludes from (5.4) that

Pψ± = ψ± + (λi1 −A)−1(Id− P )r±.

By (5.1) - (5.2) we then have ‖(λi1 − A)−1(Id − P )r±‖ ≤ D−12C and thus, with
η := 2CD−1 < 1, it follows that 0 ≤ 1− ‖Pψ±‖2 ≤ η2, i.e.

‖Pψ±‖ ≥
√

1− η2 > 1− η, (5.5)

and
〈Pψ+, Pψ−〉 − 〈ψ+, ψ−〉

 ≤ 2η + η2, implying that
〈Pψ+, Pψ−〉

 ≤ θ + 2η + η2. (5.6)

In order to assure that Pψ+ and Pψ− are linearly independent we request that〈Pψ+, Pψ−〉
 < ‖Pψ+‖‖Pψ−‖. In view of (5.5) and (5.6) this latter inequal-

ity is satisfied when 0 < η < 1−θ
4 . But by the definition of η and D, one has

2Cη−1 = D > 8C
1−θ . Thus we proved that Pψ+ and Pψ− are linearly indepen-

dent, contradicting our assumption. Hence there are at least two (counted with
multiplicities) eigenvalues of A inside the circle of radius D and center λi1 . �

6 Quasimodes for the bulk of spec(T α,β
N )

We want to apply Proposition 5.1 (ii) to the bulk of the spectrum of Tα,βN ,

{λN2ℓ−1, λ
N
2ℓ | M < ℓ < N −M}

where M ≡ MN = [F (N)]. For M < ℓ < N −M and N ≥ 3 arbitrary choose
µ ≡ µNℓ to be the ℓ’th double eigenvalue of T 0,0

N , µNℓ := −2 cos ℓπN . Our construction
of quasimodes follows the standard procedure of perturbation theory of double
eigenvalues: first we construct two approximate eigenvectors ψℓ0,± of the operator∏
ℓ ◦(T

α,β
N − T 0,0

N )

Eℓ

where Eℓ denotes the two dimensional eigenspace of the

eigenvalue −2 cos ℓπN of T 0,0
N and the operator is the composition of the restriction

of the perturbation Tα,βN − T 0,0
N to Eℓ with the orthogonal projection

∏
ℓ onto Eℓ.

The two quasimodes ψℓ± are then obtained by adding a first order correction to

ψℓ0,±. To this aim introduce ψ̃ℓ+ = ψN,N+ℓ and ψ̃ℓ− = ψN,N−ℓ where we recall that

ψN,k denotes the eigenvector of T 0,0
N with eigenvalue 2 cos kπN defined by (4.1). One

has

ψ̃ℓ± = (2N)−1/2
2N−1∑

n=0

e∓inπ
N−ℓ
N θNn

T 0,0
N ψ̃ℓ± = −2 cos

ℓπ

N
· ψ̃ℓ± and 〈ψ̃ℓ+, ψ̃ℓ−〉 = 0.
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Denote by α̂k, β̂k, k ∈ Z the Fourier coefficients of α, β and set

γ̂ℓ := β̂ℓ − 2 cos
ℓπ

N
α̂ℓ, e−iηℓ := γ̂ℓ/|γ̂ℓ| if γ̂ℓ 6= 0, and eiηℓ := 1 if γ̂ℓ = 0.

For any M < ℓ < N −M, let ψℓ± := ψℓ0,± + ϕℓ± where

ψℓ0,± :=
ψ̃ℓ+ ± eiηℓ ψ̃ℓ−√

2
and ϕℓ± := −

∑

n 6=N±ℓ

〈ψN,n, (Tα,βN − T 0,0
N )ψℓ0,±〉

2 cos ℓπN + 2cos nπN
ψN,n.

Lemma 6.1 The elements ψℓ±, M < ℓ < N −M , of H2N satisfy

(i) 〈ψℓ+, ψℓ−〉 = O(
K2

α,β

M2 ) and ‖ψℓ±‖ = 1 +O(
K2

α,β

M2 );

(ii)
∥∥(Tα,βN +2cos ℓπN

)
ψℓ±
∥∥ = O

(
K2
α,β

1
N2M

)
where Kα,β = ‖α‖C2+‖β‖C2+1.

First we need to establish the following auxiliary result.

Lemma 6.2 (i) For any M < ℓ < N −M and n 6= N ± ℓ

|〈ψN,n, (Tα,βN − T 0,0
N )ψℓ0,±〉| = O

(
Kα,β

N2

(
min±

1

(N − n± ℓ)2
+

1

N

))
.

(ii) For any M < ℓ < N −M, 〈ψℓ0,+, (Tα,βN − T 0,0
N )ψℓ0,−〉 = O

(
Kα,β

N3

)
and

〈ψℓ0,+, (Tα,βN − T 0,0
N )ψℓ0,+〉 =

e−2πℓ2/N

2N2
ℜγ̂ℓ +O

(
Kα,β

N3

)
,

〈ψℓ0,−, (Tα,βN − T 0,0
N )ψℓ0,−〉 = −e

−2πℓ2/N

2N2
ℜγ̂ℓ +O

(
Kα,β

N3

)
.

Proof: By (4.1), ψℓ0,± = ψN,N+ℓ±eiηlψN,N−l
√
2

. Recall that by (4.3), one has for f ≡ 1

the identity ψN,k = ψN,k1 and by Proposition 4.4, for f arbitrary, Tα,βN ψN,kf =

ψN,k
Dα,β

k f
+O(

Kα,β

N3 ) where Dα,β
k is given by

2 cos
(
kπ/N − i(2N)−1∂x

)
+ (2N)−2

(
β2(x) + 2α2(x) cos

(
kπ/N − i(2N)−1∂x

))
.

For f ≡ 1 one has Dα,β
k 1 = 2 cos

(
kπ/N

)
+ g(x) where g(x) = (2N)−2

(
β2(x) +

2α2(x) cos
(
kπ/N

))
and

(Tα,βN − T 0,0
N )ψN,k = (Tα,βN − T 0,0

N )ψN,k1 = ψN,kg +O

(
Kα,β

N3

)
.
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By Lemma 4.3(ii) we have

〈ψN,n1 , ψN,kg 〉 = (2N)−2
(
(̂β2)k−n + 2cos

(
kπ/N

)
(̂α2)k−n

)
e−π(n−k)

2/2N .

Choosing k = N ± ℓ, item (i) then follows as by assumption α, β ∈ C2
0 (T,R). To

prove item (ii) note that for n = N ± ℓ, one has N ± ℓ − k ∈ {0,±2ℓ}. It then

follows from the definition of eiηℓ that 〈ψℓ0,+, ψ
N,N+ℓ
g − eiηℓψN,N−ℓ

g 〉 = 0 and

〈ψℓ0,+, ψN,N+ℓ
g + eiηℓψN,N−ℓ

g 〉 = eiηℓ
(
(̂β2)2ℓ − 2 cos

(
ℓπ/N

)
(̂α2)2ℓ

) e−2πℓ2/N

4N2

+e−iηℓ
(
(̂β2)−2ℓ − 2 cos

(
ℓπ/N

)
(̂α2)−2ℓ

) e−2πℓ2/N

4N2
=
e−2πℓ2/N

4N2
2ℜγ̂ℓ.

From these and similar computations the claimed estimates follow. �

Proof of Lemma 6.1: (i) First note that for any M < ℓ < N −M and 0 ≤ n ≤ N
with n 6= N±ℓ, |2 cos ℓπN +2cos nπN | ≥ 2Mπ

N2 . Indeed, in the case whereM < ℓ ≤ N/2
and 0 ≤ k := N − n < ℓ one has

|2 cos ℓπ
N

− 2 cos
kπ

N
| = 2

∫ ℓπ
N

kπ
N

sin(x)dx ≥ 2

∫ ℓπ
N

kπ
N

2x

π
dx

leading to the claimed lower bound. All other cases are treated in a similar way.
By Lemma 6.2 (i) one then concludes that

‖ϕℓ±‖ = O(Kα,β
1

M
). (6.1)

On the other hand, ψℓ0,+ and ψℓ0,− are orthogonal to each other, and both are

orthogonal to ϕℓ±. Hence 〈ψℓ+, ψℓ−〉 = 〈ϕℓ+, ϕℓ−〉. Combined with the above estimate

one gets 〈ψℓ+, ψℓ−〉 = O(
K2

α,β

M2 ). Using in addition that ‖ψℓ0,±‖ = 1 one then has

‖ψℓ±‖ = 1 +O(
K2

α,β

M2 ). (ii) We apply standard perturbation theory and write

Tα,βN ψℓ± = (T 0,0
N + (Tα,βN − T 0,0

N ))(ψℓ0,± + ϕℓ±) (6.2)

and split the right hand side of (6.2) into four parts

T 0,0
N ψℓ0,±, T 0,0

N ϕl±, (Tα,βN − T 0,0
N ))ψℓ0,±, (Tα,βN − T 0,0

N ))ϕℓ±.

Note that T 0,0
N ψℓ0,± = −2 cos ℓπN ψ

ℓ
0,± and

T 0,0
N ϕl± = −

∑

n 6=N±ℓ
2 cos

nπ

N
·
〈ψN,n, (Tα,βN − T 0,0

N )ψℓ0,±〉
2 cos ℓπN + 2cos nπN

ψN,n

21



= −
∑

n 6=N±ℓ

(
1− 2 cos ℓπN

2 cos ℓπN + 2cos nπN

)
〈ψN,n, (Tα,βN − T 0,0

N )ψℓ0,±〉ψN,n.

In view of the definition of ϕℓ±, this yields the identity

T 0,0
N ϕℓ± = −2 cos

ℓπ

N
ϕℓ± −

∑

n 6=N±ℓ
〈ψN,n, (Tα,βN − T 0,0

N )ψℓ0,±〉ψN,n.

Combined with

(Tα,βN −T 0,0
N )ψℓ0,± =

∑

n 6=N±ℓ
〈ψN,n, (Tα,βN −T 0,0

N )ψℓ0,±〉ψN,n+
∑

s∈{+,−}
〈ψℓ0,s, (Tα,βN −T 0,0

N )ψℓ0,±〉ψℓ0,s

one gets

(Tα,βN − T 0,0
N )ψℓ0,± + T 0,0

N ϕℓ± = −2 cos
ℓπ

N
ϕℓ± +

∑

s∈{+,−}
〈ψℓ0,s, (Tα,βN − T 0,0

N )ψℓ0,±〉ψℓ0,s.

By Lemma 6.2 (ii) it then follows that

(Tα,βN − T 0,0
N )ψℓ0,± + T 0,0

N ϕℓ± = −2 cos
ℓπ

N
ϕℓ± +O

(
Kα,β

N2

(
1

M2
+

1

N

))
.

Finally, the expression

(Tα,βN − T 0,0
N )ϕℓ± = −

∑

n 6=N±ℓ

〈ψN,n, (Tα,βN − T 0,0
N )ψℓ0,±〉

2 cos ℓπN + 2cos nπN
(Tα,βN − T 0,0

N )ψN,n

can be estimated by Lemma 6.2 (i) to get for some constant C ≥ 1,

‖(Tα,βN −T 0,0
N )ϕℓ±‖ ≤ C

∑

n 6=N±ℓ

N2

M

Kα,β

N2

(
min±

1

(N − n± ℓ)2
+

1

N

)
‖(Tα,βN −T 0,0

N )ψN,n‖.

Inspecting the proof of Lemma 6.2 (i) one sees that ‖(Tα,βN −T 0,0
N )ψN,n‖ = O(

Kα,β

N2 ),

yielding ‖(Tα,βN − T 0,0
N )ϕℓ±‖ = O(

K2
α,β

N2M
). Combining all the above estimates, item

(ii) follows. �

Lemma 6.1 allows to apply Proposition 5.1 and leads to the following result.

Proposition 6.3 For any N ≥ 3 and M < ℓ < N −M , there exists a pair of
eigenvalues τN,ℓ− ≤ τN,ℓ+ of Tα,βN satisfying

τN,ℓ± + 2cos
ℓπ

N

 = O

(
Kα,β

1

N2M

)
where Kα,β = ‖α‖C2 + ‖β‖C2 + 1.

For N sufficiently large these pairs are separated from each other,

· · · < τN,ℓ− ≤ τN,ℓ+ < τN,ℓ+1
− ≤ τN,ℓ+1

+ < · · ·
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Proof: According to Lemma 6.1, for any N ≥ 3 and any M < ℓ < N −M

∥∥(Tα,βN + 2cos
ℓπ

N

)
ψN±
∥∥ = O

(
K2
α,β

N2M

)
.

By Proposition 5.1 (ii), there are two eigenvalues τN,ℓ− ≤ τN,ℓ+ of Tα,βN satisfying

τN,ℓ± + 2cos
ℓπ

N

 = O

(
K2
α,β

N2M

)
.

In case τN,ℓ+ = τN,ℓ− , the eigenvalue has multiplicity at least two. To see that for N

sufficiently large, one has τN,ℓ+ < τN,ℓ+1
− , recall from the proof of Lemma 6.1 that

|2 cos ℓπ
N

− 2 cos
(ℓ+ 1)π

N
| ≥ 2Mπ

N2
M < ℓ < N −M.

Hence by choosing N0 sufficiently large, the pairs of eigenvalues τN,ℓ± with N ≥ N0

satisfy τN,M+1
− ≤ τN,M+1

+ < τN,M+2
− ≤ τN,M+2

+ < · · · < τN,N−1−M
− ≤ τN,N−1−M

+ .
�

7 Quasimodes for the edges of spec(T α,β
N )

In this section we want to apply Proposition 5.1 to the two edges of the spectrum
of Tα,βN . They are treated in the same way, so we concentrate on the left edge only,

λN0 < λN1 ≤ λN2 < . . . < λN2M−1 ≤ λN2M

where again M ≡ MN = [F (N)]. For 0 ≤ j ≤ 2M , choose as approximate
eigenvalue

µN,j− = −2 +
1

4N2
λ−j (7.1)

where λ−0 < λ−1 ≤ λ−2 < . . . are the periodic eigenvalues of H− = −d2/dx2 + q−,
considered on the interval [0, 1]. Here

q− = β2 − 2α2 and α2(x) = α(2x), β2(x) = β(2x).

Furthermore choose as quasimodes

ϕN,j− (z) := ψN,N
g−j

(z) = (4N)−1/4

∫ 1

0
g−j (s)̺N (z,

1

2
+ is)e−2Nπs2ds (7.2)
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where (g−j )j≥0 is an orthonormal basis of eigenfunctions of H−. First we need to

establish bounds for g−j and its derivatives. By the counting lemma (cf e.g. [22]),
for any N with

MN > 2(1 + ‖q−‖0)e‖q−‖0 (7.3)

it follows that for 0 ≤ j ≤ 2M ,

|λ−j | ≤ 4π2(M +
1

2
)2 ≤ 8π2F (N)2. (7.4)

Recall that Kα,β = ‖α‖C2 + ‖β‖C2 + 1 for any α, β ∈ C2(T).

Lemma 7.1 For any N satisfying (7.3) and any α, β ∈ C2(T),

(i) ‖(g−j )′‖0 ≤ (2Kα,β + 8π2F (N)2)1/2; (ii) ‖(g−j )′′‖0 ≤ 2Kα,β + 8π2F (N)2;

(iii) ‖(g−j )′′′‖0 ≤ (2Kα,β + 8π2F (N)2)3/2 + 2Kα,β ;

(iv) ‖(g−j )IV ‖0 ≤ 3(2Kα,β + 8π2F (N)2)2 + 2Kα,β ≤ 4(2Kα,β + 8π2F (N)2)2.

Proof: (i) Taking the inner product of −(g−j )
′′+q−g

−
j = λ−j g

−
j with g−j , integrating

by parts and using (7.4) and ‖g−j ‖0 = 1 yields the bound (i) for ‖(g−j )′‖0. (ii) Using
again (g−j )

′′ = q−g
−
j − λ−j g

−
j one gets

‖(g−j )′′‖0 ≤ ‖q−‖0‖g−j ‖0 + |λ−j |‖g−j ‖0 ≤ 2Kαβ + 8π2F (N)2.

(iii) is obtained by deriving (g−j )
′′ = q−g

−
j − λjg

−
j and using (i). (iv) is obtained

by arguing in the same way. �

We also need bounds for ‖g−j ‖C0 and ‖g−j ‖C2 . It is convenient to formulate the

result in a general form. For a real valued potential q ∈ L2(T), denote by (fj)j≥0

an orthonormal basis of periodic eigenfunctions of H = −d2/dx2 + q on [0, 1].

Lemma 7.2 (i) The expression supj≥0 ‖fj‖C0 is bounded uniformly on bounded
sets of potentials in L2(T).
(ii) For any N with M = [F (N)] > 2(1 + ‖q‖0)e‖q‖0 and any 0 ≤ j ≤ 2M

‖f ′′j ‖C0 ≤
(
‖q‖0 + 8π2F (N)2

)
‖fj‖C0 and ‖f ′j‖C0 ≤ 2

(
‖q‖C0 + 8π2F (N)2

)
.

Proof: (i) It is well known that f0 doesn’t vanish on [0, 1]. As for any j ≥ 1, fj is
orthogonal to f0, it has to vanish at least once. Hence there exists 0 ≤ xj < 1 so
that fj(xj) = 0. As a consequence, the translate Txjfj = fj(· + xj) is a Dirichlet
eigenfunction for the translated potential Txjq. Note that ‖Txjq‖0 = ‖q‖0 and
‖Txjfj‖C0 = ‖fj‖C0 . Therefore supj≥1 ‖fj‖C0 is bounded uniformly on bounded
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sets of potentials in L2(T) by the corresponding result for the Dirichlet problem
– see e.g. [28, p. 35]. It remains to bound ‖f0‖C0 . As λ0(q) is never a Dirichlet
eigenvalue, one has

f0(x) =
1

c0

(
y1(x, λ0) +

1− y1(1, λ0)

y2(1, λ0)
y2(x, λ0)

)
where

c0 = c0(q) =
( ∫ 1

0

(
y1(x, λ0) +

1− y1(1, λ0)

y2(1, λ0)
y2(x, λ0)

)2
dx
)1/2

and y1, y2 are the fundamental solutions of −y′′ + qy = λy. By [28, p. 7]

|yi(x, λ0(q), q)| ≤ e‖q‖0 ∀ 0 ≤ x ≤ 1 and i = 1, 2.

Further, by [28, p 18], yi(x, λ, q) is a compact function of q ∈ L2(T), uniformly on
bounded subsets of [0, 1] × C. By [22, p 199], L2(T) → R, q 7→ λ0(q) is a compact
function as well and so is q 7→ y2(1, λ0(q), q). As λ0(q) is never a Dirichlet eigen-
value y2(1, λ0(q), q) > 0 for any q in L2(T). By the compactness, y2(1, λ0(q), q) is
uniformly bounded away from 0 on bounded sets of potentials in L2(T). Similarly,
one argues by compactness to conclude that c0(q) > 0 is uniformly bounded away
from 0 on bounded sets of potentials in L2(T).
(ii) Note that ‖f ′′j ‖C0 ≤

(
‖q‖C0 + |λj |

)
‖fj‖C0 . Hence the claimed estimate of

‖f ′′j ‖C0 follows from item (i) and (7.3) - (7.4). Finally, for any 0 ≤ x, y ≤ 1,

f ′j(x) = f ′j(y)+
∫ x
y f

′′
j (s)ds. Integrate in y and apply the Cauchy-Schwarz inequality

to conclude that

‖f ′j‖C0 ≤ ‖f ′j‖0 + ‖f ′′j ‖0 ≤
(
‖q‖C0 + 8π2F (N)2

)1/2
+
(
‖q‖C0 + 8π2F (N)2

)

where the latter inequality follows from the proof of Lemma 7.1 (i), (ii). �

Lemma 7.3 For any N with M = [F (N)] > 2(1 + ‖q−‖0)e‖q−‖0 and any 0 ≤ j ≤
2M , the elements ϕN,j− in H2N satisfy the following estimates:

(i) |〈ϕN,j− , ϕN,k− 〉 − δj,k| ≤ 1
4πN (2Kα,β + 8π2F (N)2) ∀0 ≤ k ≤ 2M.

(ii) ‖(Tα,βN + 2− 1
4N2λ

−
j )ϕ

N,j
− ‖ ≤ F (N)2

N3 (Kα,β + 1)2C

where C > 0 can be chosen uniformly on L2-bounded subsets of C2(T).

Proof: (i) By the definition (4.3) and Lemma 4.3 (iii), |〈ϕN,j− , ϕN,k− 〉 − 〈g−j , g−k 〉| ≤
1

4πN ‖(g−j )′‖0‖(g−k )′‖0. By Lemma 7.1 (i), we get ‖(g−j )′‖0‖(g−k )′‖0 ≤ 2Kα,β +

8π2F1(N)2 and hence the claimed estimate. (ii) By the triangle inequality

‖Tα,βN ϕN,j− − µN,j− ϕN,j− ‖ ≤ ‖Tα,βN ϕN,j− − ψN,N
Dα,β

N (g−j )
‖+ ‖ψN,N

Dα,β
N (g−j )

− µN,j− ϕN,j− ‖.
(7.5)
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Let us begin by estimating the latter term. By definition, ϕN,j− = ψN,N
g−j

and hence

µN,j− ϕN,j− = ψN,N
µN,j
−

g−j
. By Lemma 4.3 (iv) we then conclude

‖ψN,N
Dα,β

N (g−j )
− µN,j− ϕN,j− ‖ ≤ ‖Dα,β

N (g−j )− µN,j− g−j ‖0. (7.6)

As Dα,β
ℓ = 2cos

(
ℓπ
N − i

2N ∂x
)
+ 1

4N2

(
β2 + α22 cos(

ℓπ
N − i

2N ∂x)
)
one gets for ℓ = N

Dα,β
N − 2 cos

(
− i

2N ∂x
)
+ 1

4N2

(
β2 − α22 cos(− i

2N ∂x)
)
. Furthermore, µN,j− g−j =(

− 2− 1
4N2 ∂

2
x

)
g−j + 1

4N2

(
β2 − 2α2

)
g−j . Hence we get

‖Dα,β
N (g−j )−(µN,j− )g−j ‖0 ≤ ‖2 cos

(
− i

2N
∂x
)
g−j −

(
2 +

1

4N2
∂2x
)
g−j ‖0

+
1

4N2
‖2α2

(
1− cos(− i

2N
∂x)
)
g−j ‖0.

(7.7)

The latter two terms are estimated individually.

2 cos
(
− i

2N
∂x
)
g−j =

∑

n∈Z
2 cos

(πn
N

)(
ĝ−j
)
n
ei2πnx.

Using the Taylor expansion of 2 cos πnN , one concludes that

‖2 cos
(
− i

2N
∂x
)
g−j −

(
2 +

1

4N2
∂2x
)
g−j ‖0

≤ 1

12

1

(2N)4
(∑

n∈Z

(ĝ−j )n
2

(2πn)8
)1/2 ≤ 1

12

1

(2N)4
‖(g−j )IV ‖0.

By Lemma 7.1, it then follows that

∥∥2 cos
(
− i

2N
∂x
)
g−j −

(
2 +

1

4N2
∂2x
)
g−j
∥∥
0
≤ 1

48

1

N4

(
2Kα,β + 8π2F (N)2

)2
. (7.8)

In a similar way one estimates

1

4N2

∥∥2α2

(
1− cos(− i

2N
∂x)g

−
j

)∥∥
0
≤ ‖α‖C0

4N2

(∑

n∈Z

(πn
N

)4(ĝ−j )n
2)1/2

≤ ‖α‖C0

(2N)4
‖(g−j )′′‖0 ≤

Kα,β

16N4

(
2Kα,β + 8π2F (N)2

)
≤ 1

32N4

(
2Kα,β + 8π2F (N)2

)2

where for the latter inequality we again used Lemma 7.1. Combining (7.6) - (7.8)
yields

∥∥ψN,N
Dα,β

N (g−j )
− µN,j− ϕN,j−

∥∥ ≤ F (N)4

16N4
(8π2 + 2Kα,β)

2. (7.9)
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It remains to estimate the first term on the right hand side of (7.5). By Theo-
rem 4.4 (with ℓ = N),

∥∥Tα,βN ϕN,j− − ψN,N
Dα,β

N (g−j )

∥∥ ≤ 1

N3
Kα,β‖g−j ‖C2 . (7.10)

By Lemma 7.2, for any 0 ≤ j ≤ 2MN

‖g−j ‖C2 ≤
(
2Kα,β + 8π2F (N)2

)
C (7.11)

where C ≥ 1 can be chosen uniformly on bounded subsets of L2(T). Combin-

ing (7.5), (7.9), (7.10), and (7.11) yields
∥∥Tα,βN ϕN,j− − µN,j− ϕN,j−

∥∥ ≤ F (N)4

16N4 (8π2 +

2Kα,β)
2 + F (N)2

N3 Kα,β(2Kα,β + 8π2)C where C ≥ 1 can be chosen uniformly on
bounded subsets of L2(T). �

Proposition 7.4 For any N ≥ 3 and any 0 ≤ j ≤ 2M there exists an eigenvalue
τN,j− of Tα,βN satisfying

τN,j− − µN,j−
 ≤ F (N)2

N3
(Kα,β + 1)2C

where C > 0 can be chosen uniformly on L2-bounded subsets of C2(T). For N
sufficiently large, the eigenvalues τN,j− can be listed in increasing order

τN,0− < τN,1− ≤ τN,2− < . . . < τN,2M−1
− ≤ τN,2MN .

Proof: According to Lemma 7.3, for any N ≥ 3 and 0 ≤ j, k ≤ 2M ,

∥∥(Tα,βN − µN,j−
)
ϕN,j−

∥∥ ≤ CN :=
F (N)2

N3
(Kα,β + 1)2C

where C can be chosen uniformly on L2-bounded subsets of C2(T). Further-

more, for N0 sufficiently large,
〈ϕN,j− , ϕN,k− 〉 − δj,k

 < 1
2 ∀N ≥ N0. We now

apply Proposition 5.1 (i) or (ii) depending on whether µN,j− is sufficiently iso-

lated or not. Note the the pair µN,2ℓ− , µN,2ℓ−1
− is separated from {µN,j−

0 ≤ j ≤
2M}\{µN,2ℓ− , µN,2ℓ−1

− } by at least O(N−2), uniformly on L2-bounded sets of α’s

and β’s. If µN,2ℓ− − µN,2ℓ−1
− ≤ 2CN , then

∥∥(Tα,βN − µN,2ℓ−
)
ϕN,2ℓ−1
−

∥∥ ≤ CN +
µN,2ℓ− − µN,2ℓ−1

−
∥∥ϕN,2ℓ−1

−
∥∥

≤ CN + 2CN
(
1 +O(F (N)2N−1)

)
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Applying Proposition 5.1 (ii) to µN,2ℓ− , ϕN,2ℓ− , ϕN,2ℓ−1
− and DN = 2 · 8 · 3CN we

conclude that there are two eigenvalues τN,2ℓ−1
− ≤ τN,2ℓ− of Tα,βN so that

τN,j− − µN,2ℓ−
 ≤ DN =

F (N)2

N3
(Kα,β + 1)2C

for j ∈ {2ℓ, 2ℓ − 1}, where C can be chosen uniformly on L2-bounded subsets of

C2(T). If µN,2ℓ− −µN,2ℓ−1
− > 2CN , then apply Proposition 5.1 (i) to conclude that for

j ∈ {2ℓ, 2ℓ−1}, there exists an eigenvalue τN,j− of Tα,βN so that |τN,j− −µN,j− | ≤ CN .

In particular, we then conclude that τN,2ℓ−1
− < τN,2ℓ− .

Recall that the pairs µN,2ℓ− , µN,2ℓ−1
− are separated from each other by O(N−2). As

F (N) ≤ Nη with 0 < η < 1/2 it then follows from the definition of CN that for N
sufficiently large τN,0− < τN,1− ≤ τN,2− < . . . < τN,2N−1

− ≤ τN,2M− . �

8 Asymptotics of the periodic eigenvalues

The aim of this section is to prove Theorem 2.1 stated in the introduction.
Proof of Theorem 2.1 In view of Proposition 6.3, Proposition 7.4, and the result
corresponding to Proposition 7.4 for the right edge of the spectrum we have ob-
tained three groups of eigenvalues. At the left and right edge of spec(Tα,βN ) there
are according to Proposition 7.4, 2M + 1 eigenvalues, which for N sufficiently
large are different from each other when counted with multiplicities. In the bulk
of spec(Tα,βN ), we found according to Proposition 6.3, N −M − 1 pairs of eigen-

values of Tα,βN which for N sufficiently large are again different from each other.
It remains to show that

τN,2M < τN,2M+1 and τN,2N−2M−2 < τN,2N−2M−1.

To see it, note that by the Taylor expansion of cos and (7.4), we have

µN,2M− = −2 +
1

N2
λ−2M ≤ −2 + π2

(M + 1/2)2

N2
.

Hence −2 cos (M+1)π
N − µN,2M− ≥ Mπ2

N2 + O
(

1
N2

)
. Moreover, by Proposition 7.4,

τN,2M − µN,2M− = O
(
M2

N3

)
and τN,2M+1 + 2cos (M+1)π

N = O
(

1
N2

)
by Proposi-

tion 6.3. Therefore, for N sufficiently large, τN,2M < τN,2M+1. Similarly one
shows that τN,2N−2M−2 < τN,2N−2M−1. Hence the eigenvalues (τN,n)0≤n≤2N−1

of Tα,βN are listed in increasing order (and with multiplicities) and thus coincide
with (λNn )0≤n≤2N−1. The claimed estimates now follow from Proposition 6.3 and
Proposition 7.4. �

28



To finish this section, let us mention that for smooth potentials and with some
effort, our method allows to compute the full asymptotic expansion in 1

N2 of all

the eigenvalues of Tα,βN . For eigenvalues in the bulk, such an asymptotic expansion
is obtained by regular perturbation theory at any order. As the eigenvalues come
in separated pairs and the eigenvalues forming such a pair might coincide, their
asymptotics are obtained via a 2 × 2−block diagonalization and a subsequent
straightforward diagonalization of the (symmetric) 2×2−blocks. For eigenvalues in
one of the edges of the spectrum, the asymptotics is obtained by adding corrections
to the ’densities’ g±j in (7.2), obtained by improving Theorem 4.4 so that the

remainder term can be chosen to be of arbitrary order in N−2. These corrections
can be explicitly computed by solving homological equations, obtained from the
asymptotic expansion of the operator Dα,β

ℓ in (4.6) and solved by inverting certain
Hill operators. As the eigenvalues of a Hill operator come in separated pairs and
two eigenvalues forming such a pair might coincide, one obtains their asymptotics
also via a 2× 2−block diagonalization.

9 Asymptotics of the discriminant

The principal goal of this section is to prove Theorem 2.3 concerning the asymp-
totics of the discriminant ∆N (µ). Recall (cf. [19], Section 2) that ∆2

N (µ) − 4 is

related to the characteristic polynomial of Qα,βN as follows

∆N (µ)
2 − 4 = q−2

N

2N−1∏

j=0

(λNj − µ). (9.1)

First we derive asymptotics of qN =
∏N

1 (1 + 1
4N2α(

n
N )). For later reference we

derive at the same time also asymptotics for pN := 1
2tr(Q

α,β
N ) = 1

2

∑2N−1
0 λNn =

1
4N2

∑N
1 β(i/N). It turns out that the asymptotics of pN is better than one could

expect from the asymptotics of the eigenvalues in Theorem 2.1.

Proposition 9.1 Uniformly on bounded subsets of functions α, β in C2
0 (T),

qN = 1 +O(N−3) and pN = O(N−3). (9.2)

Proof: As
∫ 1
0 β(x)dx = 0 it follows from (A.2) that

pN =
1

2
tr(Qα,βN ) = (2N)−2

N∑

i=1

β
( i
N

)
= O(N−3).
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Similarly, one has
∑N

i=1(2N)−2α( iN ) = O(N−3) and thus

qN = exp

(
N∑

i=1

log

(
1 +

1

4N2
α(

i

N
)

))
= exp(O(N−3))

leading to the claimed estimate qN = 1 +O(N−3). �

In the introduction we have also introduced the discriminants ∆±. For q± = 0
one gets ∆(λ) = 2 cos(

√
λ/2) (cf end of Appendix A) and hence, with πn = πn for

n ≥ 1,

∆(λ)2 − 4 = −4 sin2(
√
λ/2) = −λ

∏

n≥1

(4n2π2 − λ)2

16π4n
.

Similarly (see [22]), for q± arbitrary, one gets the following product representation

∆±(λ)
2 − 4 = (λ±0 − λ)

∏

n≥1

(λ±2n − λ)(λ±2n−1 − λ)

16π4n
. (9.3)

Finally recall from the introduction that Λ±,M denote the boxes

Λ±,M ≡ Λ±,M
2 := [λ±0 − 2, λ±2[F (M)] + 2] + i[−2, 2]

where M = [F (N)] and N ≥ N0. We chose N0 ∈ Z≥1 so that

λ±2k+1 − λ±2k ≥ 6 ∀ k ≥ F (F (N0)). (9.4)

The estimates (2.8) and (2.9) of Theorem 2.3 are obtained in a similar fashion
so we concentrate on the proof of (2.8) only. We first need to establish several
auxiliary results. We cover Λ−,M by open neighborhoods, each containing one
spectral band and its adjacent gaps,

Λ−,M =
⋃

n≤[F (M)]

Λ−
n,ρ

where Λ−
1,ρ := [λ−0 − 3, λ−2 + 2ρ] + i[−3, 3] and for 2 ≤ n ≤ [F (M)] − 1,

Λ−
n,ρ := [λ−2n−3 − 2ρ, λ−2n + 2ρ] + i[−3, 3] and

Λ−
[F (M)],ρ := [λ−2[F (M)]−3 − 2ρ, λ−2[F (M)] + 3] + i[−3, 3]

with ρ > 0 chosen so that

λ±2k + 2ρ < λ±2k+1 − 2ρ ∀ k ≥ 0. (9.5)
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We will study the asymptotics of ∆2
N

(
−2+ 1

4N2λ
)
in each domain Λ−

n,ρ separately.
For this purpose introduce

PN1 (µ) := ε−3Π2
j=0(λ

N
j − µ) and PNn (µ) := ε−4Π2n

j=2n−3(λ
N
j − µ) ∀2 ≤ n ≤M

where ε = 1/4N−2. Furthermore define for 1 ≤ n ≤M , QNn (µ)

∆2
N (µ)− 4 = ε4PNn (µ)QNn (µ).

Defining πk = kπ for k 6= 0 and π0 = 1, we write similarly ∆2
−(λ) − 4 =

1
16π4P

−
1 (λ)Q−

1 (λ) with

P−
1 (λ) = Π0≤j≤2(λ

−
j − λ) and Q−

1 (λ) = Πk≥2

(λ−2k − λ)(λ−2k−1 − λ)

16π4k

whereas for 2 ≤ n ≤M, we define ∆2
−(λ)− 4 = 1

16π4
n−1

1
4π2

n
P−
n (λ)Q−

n (λ) with

P−
n (λ) := (λ−2n − λ)(λ−2n−1 − λ)(λ−2n−2 − λ)(λ−2n−3 − λ)

and

Q−
n (λ) =

1

4π2n
(λ−0 − λ)

∏

k 6=n,n−1

(λ−2k − λ)(λ−2k−1 − λ)

16π4k
.

By Theorem 2.1, for λ in Λ−
n,̺ with 2 ≤ n ≤M,

PNn (−2 +
1

4N2
λ) =

2n∏

j=2n−3

(λNj − (−2 + ελ−j )

ε
+ (λ−j − λ)

)

=

2n∏

j=2n−3

(
λ−j − λ+O

(M2

N

))
= P−

n (λ) +O
(
n3
M2

N

)
(9.6)

where we used that λ−j − λ = O(n) for λ ∈ Λ−
n,ρ and 2n − 3 ≤ j ≤ 2n. Similarly ,

for n = 1, one has

PN1 (−2 +
1

4N2
λ) = P−

1 (λ) +O(
M2

N
).

In order to prove (2.8) we show that, for 2 ≤ n ≤M ,

∆2
N (−2 + ελ)− 4 =

1

16π4n−1

1

4π2n

(
P−
n (λ) +O

(
n3
M2

N

))
Q−
n (λ) +O

(M2

N

)
+O

( 1

M

)

(9.7)
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uniformly for λ in Λ−
n,̺ and, for n = 1,

∆2
N (−2 + ελ)− 4 =

1

16π4
(
P−
1 (λ) +O

(M2

N

))
Q−

1 (λ) +O
(M2

N

)
+O

( 1

M

)
(9.8)

uniformly for λ in Λ−
1,̺. The estimates (9.7) and (9.8) are proven in two steps.

Lemma 9.2 Uniformly for any µ = −2 + ελ where λ ∈ Λ−
n,̺ and 1 ≤ n ≤ F (M)

2N−2M−2∏

j=2M+1

(λNj − µ) =
N4M+2

(2π)4M (M !)4
(
1 +O

(n2
M

))
.

Proof: Set ξN2N−1 = 4 and, for 1 ≤ ℓ ≤ N − 1,

ξN2ℓ = ξN2ℓ−1 = 2(1− cos
ℓπ

N
). (9.9)

Note that ξNj is an increasing sequence satisfying for 2M + 1 ≤ j ≤ 2N − 2M − 2

ξNj ≥ ξN2M+1 > ξN2M = 2
(
1− cos

Mπ

N

)
>
M2π2

N2

(
1− π2

12

M2

N2

)
.

For j ∈ {2ℓ, 2ℓ− 1} and µ = −2 + ελ with λ ∈ Λ−
n,̺, in view of Theorem 2.1,

λNj − µ = −2 cos
ℓπ

N
+O

( 1

F (N)N2

)
+ 2− ελ

= ξNj − ελ+O
( 1

F (N)N2

)
= ξNj +O

( n2
N2

)

where we used that λ = O(n2) for λ ∈ Λ−
n,̺. Hence

2N−2M−2∏

j=2M+1

(
λNj − µ

)
=

2N−2M−2∏

j=2M+1

ξNj
(
1 +

1

ξNj
O
( n2
N2

))

=

2N−2M−2∏

j=2M+1

ξNj ·
2N−2M−2∏

j=2M+1

(
1 +

1

ξNj
O
( n2
N2

))
. (9.10)

The latter two products are estimated separately. As by (9.9), 1
ξNj

= O(N
2

M2 ) for

2M < j < 2N − 2M − 1 and hence 1
ξNj
O( n

2

N2 ) = O(F (M)2

M2 ) for 1 ≤ n ≤ F (M) one

can estimate

2N−2M−2∑

j=2M+1

log
(
1 +

1

ξNj
O
( n2
N2

))
= O

( n2
N2

)N−M−1∑

ℓ=M+1

1

1− cos ℓπN
.
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Note that 1
1−cos x is a monotonically decreasing function on [Mπ

N , π]. Hence

π

N

N−M−1∑

ℓ=M+1

1

1− cos ℓπN
≤

π−Mπ
N∫

Mπ
N

dx

1− cos x
.

Taking into account that 1− cos x = 2 sin2 x2 and making the change of variable of
integration t := x

2 we get

π−Mπ
N∫

Mπ
N

dx

1− cos x
=

π−Mπ
N∫

Mπ
N

dx

2 sin2 x2
=

1
2

(
π−Mπ

N

)
∫

Mπ
2N

dt

sin2 t
= −cos t

sin t

 1
2
(π−Mπ

N
)

Mπ
2N

≤ N

M
.

Thus
∑2N−2M−2

j=2M+1 log
(
1 + 1

ξNj
O
(
n2

N2

))
= O

(
n2

M

)
leading to

2N−2M−2∏

j=2M+1

(
1 +

1

ξNj
O
( n2
N2

))
= eO

(
n2

M

)
= 1 +O

(n2
M

)
.

It then follows that

2N−2M−2∏

j=2M+1

(λNj − µ) =
(
1 +O

(n2
M

))
·
2N−2M−2∏

j=2M+1

ξNj

= 22(N−2M−1)
N−M−1∏

ℓ=M+1

(
1− cos

(ℓπ
N

))2 ·
(
1 +O

(n2
M

))

= 22(N−2M−1)
( ∏N−1

ℓ=1

(
1− cos ℓπN

)
∏M
ℓ=1

(
1− cos ℓπN

)∏M
ℓ=1

(
1− cos (N−ℓ)π

N

)
)2(

1 +O
(n2
M

))
.

By Lemma A.1, Lemma A.3, and Lemma A.4 this latter expression can be esti-
mated by

22N−4M−2 (2N2−N )2
(
1 +O

(
1
N

))
(
π2

2N2

)2M
(M !)4

(
1−O

(
M3

N2

))
22M

(
1−O

(
M3

N2

))
(
1 +O

(n2
M

))

=
1

24M
N4M+2

π4M (M !)4
(
1 +O

(n2
M

))

which is the claimed estimate. �
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Lemma 9.3 Uniformly for µ = −2 + ελ with λ in Λ−
n,̺ and 1 ≤ n ≤M ,

2N−1∏

j=2N−2M−1

(λNj − µ) = 24M+2
(
1 +O

(M3

N2

))
.

Proof: In view of Theorem 2.1 (right edge), for any 0 ≤ j ≤ 2M, λ ∈ Λ−
n,̺,

λN2N−1−j − µ = 2− ελ+j +O
(M2

N3

)
− (−2 + ελ) = 4 +O

(M2

N2

)

as λ+j = O(M2) for any 0 ≤ j ≤ 2M . Thus

2N−1∏

j=2N−2M−1

(λNj − µ) =
2M∏

j=0

(λN2N−1−j − µ) = 42M+1
2M∏

j=0

(
1 +O

(M2

N2

))

= 24M+2exp
( 2M∑

j=0

log
(
1 +O

(M2

N2

)))
.

Using the bound
∑2M

j=0 log
(
1 +O

(
M2

N2

))
= O

(
M3

N2

)
we get

2N−1∏

j=2N−2M−1

(λNj − µ) = 24M+2exp
(
O
(M3

N2

))
= 24M+2

(
1 +O

(M3

N2

))

which is the claimed estimate. �

Lemma 9.4 Uniformly for µ = −2+ελ with λ ∈ Λ−
n,̺, the product

∏2M
j=0(λ

N
j −µ)

satisfies the following estimates: (i) for 2 ≤ n ≤ F (M)

π4M

4

(M !)4

N4M+2

1

16π4n−1

1

4π2n

(
P−
n (λ)+O(

n3M2

N
)
)
·Q−

n (λ) · (1+O(
n2

M
)) · (1+O(

M2

N
));

(ii) for n = 1

π4M

4

(M !)4

N4M+2

1

16π4
(
P−
1 (λ) +O(

M2

N
)
)
·Q−

1 (λ) · (1 +O(
1

M
)) · (1 +O(

M2

N
)).

Proof: In view of the asymptotics of Theorem 2.1, with ε = (2N)−2,

λNj − µ = −2 + ελ−j + 2− ελ+O(
M2

N3
) = ε(λ−j − λ+O(

M2

N
)).
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Hence
∏2M
j=0(λ

N
j − µ) = ε2M+1

∏2M
j=0(λ

−
j − λ+O(M

2

N )). The items (i) and (ii) are
proved in a very similar way - in fact (ii) is a little simpler. Hence we concentrate
on (i), i.e. the case where 2 ≤ n ≤ F (M). Given λ in Λ−

n,̺, the latter product is
split up into three parts,

2n−4∏

j=0

(λ−j − λ+O(
M2

N
)) ·

2n∏

j=2n−3

(λ−j − λ+O(
M2

N
)) ·

2M∏

j=2n+1

(λ−j − λ+O(
M2

N
)).

Note that
2n∏

j=2n−3

(λ−j − λ+O(
M2

N
)) = P−

n (λ) +O(
n3M2

N
)

uniformly for λ ∈ Λ−
n,̺ with 2 ≤ n ≤M , cf. equation (9.6). Next consider

2n−4∏

j=0

(
λ−j − λ+O(

M2

N
)
)
=

2n−4∏

j=0

(λ−j − λ) ·
2n−4∏

j=0

(
1 +

1

λ−j − λ
O(
M2

N
)
)
.

We claim that
2n−4∏

j=0

(1 +
1

λ−j − λ
O(
M2

N
)) = 1 +O(

M2

N
)

uniformly for λ in Λ−
n,ρ. Indeed, by the choice of ̺, the factors (λ − λ−j )

−1, 2ℓ −
1 ≤ j ≤ 2ℓ, can be estimated by O((n2 − ℓ2)−1) uniformly for λ ∈ Λ−

n,̺ and

1 ≤ ℓ ≤ n− 2. Hence
2n−4∑
j=0

1
λ−λ−j

is a bounded analytic function of λ ∈ Λ−
n,ρ with a

bound depending on ρ. Similarly one treats

2M∏

j=2n+1

(λ−j − λ+O(
M2

N
)) =

2M∏

j=2n+1

(λ−j − λ) ·
2M∏

j=2n+1

(1 +
1

λ−j − λ
O(
M2

N
)).

Again, by the choice of ̺ and the asymptotics of λ−j ,
∑2M

j=2n+1
1

λ−j −λ is a bounded

analytic function of λ ∈ Λ−
n,ρ. Thus

2M∏

j=2n+1

(
1 +

1

λ−j − λ
O(
M2

N
)
)
= 1 +O(

M2

N
).
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Combining the estimates obtained we have

2M∏

j=0

(λNj − µ) = ε2M+1 ·
M∏

k=1

24π4k · (λ−0 − λ) ·
n−2∏

k=1

(λ−2k − λ)(λ−2k−1 − λ)

24π4k
· 1

16π4n−1

· 1

16π4n
·
(
P−
n (λ) +O(

n3M2

N
)
)
·

M∏

k=n+1

(λ−2k − λ)(λ−2k−1 − λ)

24π4k
· (1 +O(

M2

N
)).

Finally we note that, with λ−j = 4k2π2+αj for j ∈ {2k, 2k− 1}, where αj = O(1),

∞∏

k=M+1

(λ−2k − λ)(λ−2k−1 − λ)

24π4k
= exp

{ ∞∑

k=M+1

log
(λ−2k − λ

4π2k

)
+ log

(λ−2k−1 − λ

4π2k

)
}

= exp

{ ∞∑

k=M+1

log
(
1 +

α2k − λ

4π2k

)
+ log

(
1 +

α2k−1 − λ

4π2k

)
}

= 1 +O(
n2

M
)

uniformly for λ ∈ Λ−
n,ρ, 1 ≤ n ≤ M . Here we used

∑∞
k=M+1

1
k2 ≤

∫∞
M

1
x2 dx = 1

M .

Furthermore
∏M
k=1 2

4π4k == (2π)4M (M !)4. By the definition of Q−
n (λ), we then

obtain that
∏2M
j=0(λ

N
j − µ) equals

ε2M+1 (2π)
4M (M !)4

16π4n−1 · 4π2n
(
P−
n (λ) +O(

n3M2

N
)
)
Q−
n (λ)

(
1 +O(

M2

N
)
)(
1 +O(

n2

M
)
)

as claimed. �

Lemma 9.5 Uniformly for λ ∈ Λ−
n,̺, 1 ≤ n ≤M , Q−

n (λ) = O(n2).

Proof: By the Counting Lemma (cf [22]) for periodic eigenvalues there exits n0 ≥ 1
so that |λ±n − 4n2π2| ≤ 1 for any n ≥ n0. Note that n0 can be chosen uniformly
for bounded sets of functions α, β ∈ C2

0 . It turns out that the cases 1 ≤ n < n0
and n0 ≤ n ≤ M have to be treated separately. However they can be proved in a
similar way and so we concentrate on the case n0 ≤ n ≤M only.

Q−
n (λ) =

1

4π2n
(λ−0 − λ)

∏

k 6=n,n−1

(λ−2k − λ)(λ−2k−1 − λ)

16π4k
(9.11)

and that sin(
√
λ/2)√
λ/2

can be written as an infinite product,

sin(
√
λ/2)√
λ/2

=
∏

m≥1

m2π2 − λ/4

m2π2
=
∏

m≥1

4π2m − λ

4π2m
.
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Hence for λ ∈ Λ−
n,̺,

Q−
n (λ) =

λ−0 − λ

4π2n

(
sin(

√
λ/2)√
λ/2

)2(
4π2n · 4π2n−1

(4π2n − λ)(4π2n−1 − λ)

)2

f−n (λ) (9.12)

where f−n (λ) =
∏
k 6=n,n−1

(λ−2k−λ)(λ
−

2k−1−λ)
(4π2

k−λ)2
. Clearly, uniformly for λ ∈ Λ−

n,̺, n0 ≤

n ≤M , one has
λ−λ−0
4π2

n
= 1 +O( 1n) and

(
sin(

√
λ/2)√
λ/2

)2(
4π2n · 4π2n−1

(4π2n − λ)(4π2n−1 − λ)

)2

=

(
sin(

√
λ/2)

(πn −
√
λ/2)(πn−1 −

√
λ/2)

)2

· 43 · π4nπ
4
n−1

λ(2πn +
√
λ)2(2πn−1 +

√
λ)2

= O(n2)

where we used that for λ ∈ Λ−
n,̺, n0 ≤ n ≤ M , sin (

√
λ/2)

(πn−
√
λ/2)(πn−1−

√
λ/2)

= O(1).

Finally we need to estimate f−n (λ). For n ≥ n0, by the choice of ρ > 0 there exists
ρ′ > 0 so that |4π2k − λ| ≥ 1

ρ′ |k2 − n2|, ∀k 6= n, n− 1, ∀λ ∈ Λ−
n,̺. Thus

∣∣∣∣∣
(λ−2k − λ)(λ−2k−1 − λ)

(4π2k − λ)2

∣∣∣∣∣ ≤
(
1 +

∣∣∣λ
−

2k−4π2
k

4π2
k−λ

∣∣∣
)(

1 +

∣∣∣∣
λ−2k−1−4π2

k

4π2
k−λ

∣∣∣∣
)

≤
(
1 + ρ′

∣∣∣λ
−

2k−4π2
k

k2−n2

∣∣∣
)(

1 + ρ′
∣∣∣∣
λ−2k−1−4π2

k

k2−n2

∣∣∣∣
)

(9.13)

Using that
∑

k≥1 k
−2 ≤ π2/6, one has by Cauchy-Schwarz

∑

k 6=n,n−1

∣∣∣∣
λ−2k − 4π2k
k2 − n2

∣∣∣∣ ,
∑

k 6=n,n−1

∣∣∣∣∣
λ−2k−1 − 4π2k
k2 − n2

∣∣∣∣∣ ≤ πK where

K :=
(∑

k≥1

|λ−2k − 4π2k|2 + |λ−2k−1 − 4π2k|2
) 1

2 .

Hence, uniformly for λ ∈ Λ−
n,̺, n0 ≤ n ≤M ,

|f−n (λ)| =
∏

k 6=n,n−1

(λ−2k − λ)(λ−2k−1 − λ)

(4π2k − λ)2

≤ exp


 ∑

k 6=n,n−1

log
(
1 + ρ′

∣∣∣∣
λ−2k − 4π2k
k2 − n2

∣∣∣∣
)
+

∑

k 6=n,n−1

log
(
1 + ρ′

∣∣∣∣∣
λ−2k−1 − 4π2k
k2 − n2

∣∣∣∣∣
)
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≤ exp(2ρ′πK).

Altogether, Q−
n (λ) = O(n2) uniformly for λ ∈ Λ−

n,̺, n0 ≤ n ≤M as claimed. �

Proof of Theorem 2.3: By Proposition 9.1 the factor q−2
N appearing in the product

representation (9.1) of ∆2
N − 4 satisfies the asymptotics

q−2
N = 1 +O

( 1

N3

)
.

Combining Lemma 9.2, Lemma 9.3, and Lemma 9.4 one obtains, uniformly for λ
in Λ−

n,ρ with 1 ≤ n ≤ F (M)

∆2
N (−2 +

1

4N2
λ)− 4 =

[
∆2

−(λ)− 4 +O(
M2

n3N
)Q−

n (λ)
](
1 +O(

n2

M
)
)(
1 +O(

M2

N
)
)
.

As Q−
n (λ) = O(n2) (Lemma 9.5) and ∆2

−(λ) − 4 = O(1) uniformly for λ ∈ Λ−
n,̺

with 1 ≤ n ≤ F (M) it then follows that

∆2
N (−2 +

1

4N2
λ)− 4 = ∆2

−(λ)− 4 +O(
F (M)2

M
).

To determine how the signs of ∆N and ∆− are related note that for λ in the set

{z ∈ C | dist(z, [λ−2n−1, λ
−
2n]) < 2̺}, 1 ≤ n ≤ F (M),

one has

∆N (−2+
1

4N2
λ) = (−1)N−n +

√
∆2
N (−2 +

1

4N2
λ) and ∆−(λ) = (−1)n +

√
∆2

−(λ).

Hence

∆N (−2 +
1

4N2
λ) = (−1)N∆−(λ) +O(

F (M)2

M
).

The estimates for λ in Λ+
n,̺ with 1 ≤ n ≤ F (M) are obtained in a similar fashion.

Finally, to see that these estimates are uniform on bounded sets of α, β in C2
0 (T,R)

it suffices to note that ρ of (9.5) can be chosen uniformly on such sets as the periodic
eigenvalues of −∂2x+q± are compact functions of α, β – see [22], Proposition B.11).

�

As ∆N (µ) and ∆−(λ) are analytic functions one can apply Cauchy’s theorem to de-
duce from Theorem 2.3 corresponding estimates of the derivatives ∂jµ∆N or equiv-
alently ∂jλ∆N (−2 + λ

4N2 ) =
1

(4N2)j
∂jµ∆N

(
−2 + λ

4N2

)
as well as ∂jλ∆N

(
2− λ

4N2

)
=

(−1)j

(4N2)j
∂jµ∆N

(
2− λ

4N2

)
. Let

Λ±,M
1 = [λ+0 − 1, λ±2[F (M)] + 1] + i[−1, 1].
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Corollary 9.6 Let F satisfy (F), M = [F (N)] with N ≥ N0, and α, β ∈ C2
0 (T,R).

Then, for any j ≥ 1 and uniformly for λ in Λ−,M
1 ,

1

(4N2)j
∂jµ∆N

(
−2 +

1

4N2
λ

)
= (−1)N∂jλ∆−(λ) +O

(
F (M)2

M

)

and similarly, for λ in Λ±,M
1

(−1)j

(4N2)j
∂jµ∆N

(
2− 1

4N2
λ

)
= ∂jλ∆+(λ) +O

(
F (M)2

M

)
.

These estimates hold uniformly on bounded sets of functions α, β in C2
0 (T,R).

Proof: By Cauchy’s theorem, for j ≥ 1,

1

(4N2)j
∂jµ∆N

(
−2 +

1

4N2
λ

)
=

1

j!

1

2πi

∫

∂Λ−,M

∆N (−2 + 1
4N2 z)

(z − λ)1+j
dz

and

∂jλ∆−(λ) =
1

j!

1

2πi

∫

∂Λ−,M

∆−(z)
(z − λ)1+j

dz

where ∂Λ−,M denotes the boundary of the rectangle Λ−,M ≡ Λ−,M
2 with counter-

clockwise orientation. Hence

∂jµ∆N

(
−2 + λ/4N2

)

(4N2)j
−(−1)N∂jλ∆−(λ) =

1

j!

1

2πi

∫

∂Λ−,M
2

∆N (−2 + 1
4N2 z)− (−1)N∆−(z)

(z − λ)j+1
dz.

For λ in Λ−,M
1 , |z − λ|2 ≥ 1 and hence by Theorem 2.3, uniformly on Λ−,M

1

∂jµ∆N

(
−2 + λ/4N2

)

(4N2)j
− ∂jλ∆−(λ) =

1

j!

1

2πi

∫

∂Λ−,M
2

∆N (−2 + 1
4N2 z)−∆−(z)

(z − λ)j+1
dz

= O

(
F (M)2

M

)
.

By this argument, also the uniformity statement with respect to α, β follows. �

Corollary 9.6 allows to obtain asymptotics of the zeroes of ∆̇N (µ) :=
d
dµ∆N (µ) at

the edges in terms of the zeroes of ∆̇±(λ) :=
d
dλ∆±(λ). One sees in a straightfor-

ward way that the N − 1 zeroes of the polynomial ∆̇N (µ) are all real and simple
and when listed in increasing order, satisfy λN2n−1 ≤ λ̇Nn ≤ λN2n for any 0 < n < N.

Similarly one sees that the zeroes of λ̇±n are all real and simple, and when listed in
increasing order, satisfy λ±2n−1 ≤ λ̇±n ≤ λ±2n for any n ≥ 1.

39



Corollary 9.7 Let F satisfy (F), M = [F (N)], and α, β ∈ C2
0 (T,R). Then for

any 1 ≤ n ≤ F (M),

λ̇Nn = −2 +
λ̇−n
4N2

+O

(
n2

N2

F (M)2

M

)
and λ̇NN−n = 2− λ̇+n

4N2
+O

(
n2

N2

F (M)2

M

)
.

These estimates hold uniformly on bounded sets of functions α, β in C2
0 (T,R).

Proof: The asymptotics of the zeroes of ∆̇N (µ) at the two edges are obtained in
a similar fashion so we concentrate on the ones at the left edge. Let Γ−

n be the
contour of the box [λ−2n−1 − ρ, λ−2n + ρ] + i[−1, 1], contained in Λ−,M

1 ,

Γ−
n = ∂([λ−2n−1 − ρ, λ−2n + ρ] + i[−1, 1])

where ρ is chosen as in (9.5). By Theorem 2.1, for N sufficiently large, λ̇Nn is
the only zero of ∆̇N (µ) in the box −2 + 1

4N2 ([λ
−
2n−1 − ρ, λ−2n + ρ] + i[−1, 1]). In

particular, ∆̇N (µ) doesn’t vanish on the contour ΓNn = −2+ 1
4N2Γ

−
n . By Cauchy’s

theorem it then follows that for any 1 ≤ n ≤ F (M), 1 = 1
2πi

∫
ΓN
n

∂2µ∆N

∂µ∆N
dµ and

λ̇Nn = 1
2πi

∫
ΓN
n
µ
∂2µ∆N

∂µ∆N
dµ. Hence

λ̇Nn = −2 +
1

2πi

∫

ΓN
n

(µ + 2)
∂2µ∆N (µ)

∂µ∆N (µ)
)dµ

and with the change of variable µ = −2 + λ
4N2

4N2(λ̇Nn + 2) =
1

2πi

∫

Γ−
n

λ
∂2λ∆N

(
−2 + λ

4N2

)

∂λ∆N

(
−2 + λ

4N2

)dλ.

Similarly one has λ̇−n = 1
2πi

∫
Γ−
n
λ
∂2λ∆−(λ)

∂λ∆−(λ)dλ. The difference 4N
2(λ̇Nn +2)− λ̇−n thus

equals

1

2πi

∫

Γ−
n

λ

(
∂2λ∆N

(
−2 + λ

4N2

)

∂λ∆N

(
−2 + λ

4N2

) − (−1)N∂2λ∆−(λ)

(−1)N∂λ∆−(λ)

)
dλ

=
1

2πi

∫

Γ−
n

λ
∂2λ∆N

(
−2 + λ

4N2

)
− (−1)N∂2λ∆−(λ)

∂λ∆N

(
−2 + λ

4N2

) dλ

+
1

2πi

∫

Γ−
n

λ
∂2λ∆−(λ) ·

(
(−1)N∂λ∆−(λ)− ∂λ∆N

(
−2 + λ

4N2

))

∂λ∆N

(
−2 + λ

4N2

)
∂λ∆−(λ)

dλ.
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The two latter integrals are estimated separately. Use Corollary 9.6 and the facts
that on Γ−

n , λ = O(n2) and

∂2λ∆−(λ),
1

∂λ∆N

(
− 2 + λ

4N2

) , 1

∂λ∆−(λ)
= O(1)

to conclude that each of the two integrals is O
(
n2 F (M)2

M

)
, yielding

4N2(λ̇Nn + 2) = λ̇−n +O

(
n2
F (M)2

M

)
.

The statement on the uniformity of the estimates is obtained by using that a
corresponding one for the discriminants and their derivatives holds. �

A Auxiliary results

In this appendix we prove auxiliary results needed to compute the asymptotics of
the discriminant.

Lemma A.1 For N → ∞,

N−1∏

n=1

(
1− cos

nπ

N

)
= 2N2−N (1 +O(N−1)). (A.1)

Proof: Note that 1− cos(nδ) > 0 for 1 ≤ n ≤ N , and δ := π/N . To compute the
product in (A.1) we therefore can take the logarithm, yielding,

N∑

n=1

log(1− cos(nδ)) =

N∑

n=1

log
(1− cos(nδ)

(nδ)2
)
+

N∑

n=1

log(nδ)2.

Clearly
N∑

n=1

log(nδ)2 = N log δ2 + log(N !)2 = log
(
(
π

N
)NN !

)2
.

To compute the asymptotics of
∑N

n=1 log
(1−cos(nδ)

(nδ)2

)
introduce

f(x) = log
(1− cos x

x2
)

0 ≤ x ≤ π.

Note that for 0 ≤ x ≤ π,

1− cosx

x2
=

1

2
− 1

4!
x2 + . . . =

1

2
(1− 1

12
x2 + . . .) > 0.
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Hence f(x) is a well-defined, smooth function on the interval [0, π]. Now apply
the well known formula for approximating the sum

∑N
n=1 f(nδ) by an integral (cf

e.g. [1])
N∑

n=1

f(nδ) =
1

δ

∫ π

0
f(x)dx+

f(π)− f(0)

2
+O(δ) (A.2)

where the error term O(δ) is bounded by

δ
1

12
sup

0≤x≤π
|f ′′(x)| · length([0, π]).

Clearly
f(π)− f(0)

2
=

1

2

(
log(

2

π2
)− log

1

2

)
= log

2

π
.

Further, 1
δ

∫ π
0 f(x)dx = 1

δ

∫ π
0 (log(1− cos x)−2 log x)dx can be explicitly computed

by Lemma A.2,
1

δ

∫ π

0
log(1− cos x) = −π

δ
log 2 = log

1

2N

and

−2

δ

∫ π

0
log xdx = −2

δ
(x log x− x)

π
0
= 2N + log

1

π2N
.

Combining all these estimates yields

N∑

n=1

log(1− cos(nδ)) = log
( 2
π

1

2N
1

π2N
)
+ 2N + log

( πN
NN

N !
)2

+O(
1

N
)

or
N∏

n=1

(
1− cos(

nπ

N
)
)
=

2

π

e2N

2NN2N
(N !)2

(
1 +O(

1

N
)
)
.

By Stirling’s formula, N ! =
√
2πNNNe−N

(
1 +O( 1

N )
)
it follows

N∏

n=1

(
1− cos

nπ

N

)
=

4N

2N
(
1 +O(

1

N
)
)

and as
(
1− cos nπN

)
n=N

= 2 we then conclude that

N−1∏

n=1

(
1− cos

nπ

N

)
=

2N

2N
(
1 +O(

1

N
)
)
. �

Lemma A.2
∫ π
0 log(1± cos x)dx = −π log 2.
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Proof: First note that by the change of variable of integration x := π − s,
∫ π

0
log(1 + cos x)dx =

∫ π

0
log(1 + cos(π − s))ds =

∫ π

0
log(1− cos s)ds.

Hence, with I :=
∫ π
0 log(1− cos x)dx, one has

2I =

∫ π

0
(log(1 + cos x) + log(1− cos x))dx = 2

∫ π/2

0
log(sin2 x)dx.

Using that sin2 x = 1
2(1 − cos 2x) and making the change of variable s = 2x, one

gets I = 1
2

∫ π
0 log(1− cos s)ds− π

2 log 2 and the claim follows. �

Lemma A.3 For any 1 ≤M < N ,

( π2
2N2

)M
(M !)2 ≥

M∏

n=1

(
1− cos(

nπ

N
)
)
≥
( π2
2N2

)M
(M !)2 exp

(
−O(

M3

N2
)
)
. (A.3)

Proof: As in the proof of Lemma A.1, consider the logarithm of the product in
(A.3), to obtain, with δ := π/N ,

M∑

n=1

log(1− cos(nδ)) =

M∑

n=1

(
log

(nδ)2

2
+ log(1 +

2bn
(nδ)2

)
)

where bn = 1− cosnδ − (nδ)2

2 . Clearly

M∑

n=1

log
(nδ)2

2
= log

((M !)2

2M
(
π

N
)2M

)
= log

(
(M !)2(

π2

2N2
)M
)
. (A.4)

Further not that 2bn
(nδ)2

< 0 and

 2bn
(nδ)2

 =
− 2

4!
(nδ)2 +

2

6!
(nδ)4 −

 ≤ 1

12
(nδ)2 ≤ M2

N2
.

As for −1 < x < 0,

0 > log(1 + x) = −
(
|x|+ |x|2

2
+

|x|3
3

+ . . .
)
≥ −|x| 1

1− |x|

it then follows that

0 < − log
(
1 +

2bn
(nδ)2

)
<
M2

N2

(
1− M2

N2

)−1
= O

(M2

N2

)
.
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Summing up these estimates yields

0 < −
M∑

n=1

log
(
1 +

2bn
(nδ)2

)
≤M · O(

M2

N2
) = O(

M3

N2
).

Combined with the estimate (A.4) one gets the claimed estimate. �

Lemma A.4 For any 1 ≤M < N

2M ≥
M∏

n=1

(
1 + cos

nπ

N

)
≥ 2M exp

(
−O(

M3

N2
)
)
.

Proof: Note that 1 + cos nπN = 2− 1
2

(
nπ
N

)2
+ . . . = 2

(
1− ( nπ2N )2 + . . .

)
. Thus

M∏

n=1

(
1 + cos

nπ

N

)
= 2M

M∏

n=1

(
1− (

nπ

2N
)2 + . . .

)
≤ 2M

and
M∏

n=1

(
1 + cos

nπ

N

)
= 2M exp

( M∑

n=1

log
(
1− (

nπ

2N
)2 + . . .

))
≥

≥ 2M exp
(
− (

π

2N
)2

M∑

n=1

n2
)
≥ 2M exp

(
−O(

M3

N2
)
)
. �

Finally we compute the spectral data for the operator −d2/dx2 when considered
with periodic / antiperiodic boundary conditions on the interval [0, T ]. The funda-

mental solutions of −d2/dx2 are given by y1(x, λ) = cos
√
λx and y2(x, λ) =

sin
√
λx√
λ

.

Thus the periodic / antiperiodic eigenvalues are

λT0 = 0; λT2n = λT2n−1 =
(nπ
T

)2 ∀n ≥ 1

and a basis of eigenfunctions is given by

f0 = 1; f2n(x) = cos
(nπ
T
x
)
; f2n−1(x) = sin

(nπ
T
x
)
.

The discriminant can be computed to be

∆T (λ) = y1(T, λ) + y′2(T, λ) = 2 cos(
√
λT )

hence
∆T (λ)

2 − 4 = 4 cos2(
√
λT )− 4 = −4 sin2(

√
λT ).
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As sin
√
µ =

√
µ
∏
n≥1

n2π2−µ
n2π2 , it then follows that

∆T (λ)
2 − 4 = −4λT 2

∏

n≥1

(n2π2 − λT 2

n2π2
)2

= −4T 2λ
∏

n≥1

( n2π2

T 2 − λ
n2π2

T 2

)2
.

In view of the values of λTn , it follows that

∆T (λ)
2 − 4 = −4T 2λ

∏

n≥1

(λT2n − λ)(λT2n−1 − λ)

(nπT )4
.

Furthermore we compute the entire functions ψTk (λ), k ≥ 1, leading to the nor-

malized differentials
ψT
k (λ)√

∆2
T (λ)−4

dλ characterized by

1

2π

∫

ΓT
n

ψTk (λ)

c

√
∆2
T (λ)− 4

dλ = δn,k ∀n, k ≥ 1

where, as usual, ΓTn is a counterclockwise contour around λT2n = λT2n−1, so that all
other eigenvalues λTk , k 6= 2n, 2n− 1, are in the exterior of ΓTn . We claim that

ψTn (λ) = cTk
∏

l 6=k

σT,kl − λ
(
lπ
T

)2 with σT,kl =

(
lπ

T

)2

and cTk =
2T 2

kπ
.

Indeed, as σT,kl is in the ℓ’th gap interval, it follows that σT,kl =
(
lπ
T

)2
, ∀l 6= k.

The constant cTk is then determined by 1 = 1
2π

∫
ΓT
k

ψT
k (λ)

c
√

∆2
T (λ)−4

dλ. As

ψTk (λ)

c

√
∆2
T (λ)− 4

= cTk
1

i2T
√
λ

(
kπ
T

)2

λ− λT2k

one gets by Cauchy’s Theorem that cTk = 2T 2

kπ as claimed. In the special case where
T = 1/2 one gets

∆(λ)2 − 4 = −λ
∏

n≥1

(λ2n − λ)(λ2n−1 − λ)

(2nπ)4

where λn ≡ λTn


T=1/2

for any n ≥ 0 and ∆(λ) ≡ ∆T (λ)

T=1/2

. For the entire

functions ψk(λ) := ψTk (λ)|T= 1
2
one gets

ψk(λ) =
1

2kπ

∏

l 6=k

(2lπ)2 − λ

(2lπ)2
and ck := cTk |T= 1

2
=

1

2kπ
.

45



References

[1] H. Amann, J. Escher: Analysis II, Birkhäuser, Basel, 1999.
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H. Poincaré Phys. Théo. 59 (4), 357–382, 1993.

[27] M. Pettini, M. Landolfi: Relaxation properties and ergodicity breaking in non-
linear Hamiltonian dynamics, Phys. Rev. A 41, 768-783, 1990.

[28] J. Pöschel, E. Trubowitz: Inverse spectral theory, Academic Press, Boston,
1987.

47



[29] G. Schneider, C. Wayne: Counter-propagating waves on fluid surfaces and the
continuum limit of the Fermi-Pasta-Ulam model, in International Conference
on Differential Equations, Vol. 1.2 (Berlin 1999), 390-404, World Sci. Publ.
2000.

[30] M. Toda: Theory of nonlinear lattices, 2nd edition, Springer Series on Solid-
State Sciences 20, Springer, 1989.

[31] N. Zabusky, M. Kruskal: Interaction of solitons in a collisonsless plasma and
the recurrence of initial states, Phys. Rev. Lett. 15, 240 - 245, 1965.

48


