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Abstract—Random abstract simplicial complex representation
provides a mathematical description of wireless networks and
their topology. In order to reduce the energy consumption
in this type of network, we intend to reduce the number of
network nodes without modifying neither the connectivity nor
the coverage of the network. In this paper, we present a reduction
algorithm that lower the number of points of an abstract
simplicial complex in an optimal order while maintaining its
topology. Then, we study the complexity of such an algorithm for
a network simulated by a binomial point process and represented
by a Vietoris-Rips complex.

Index Terms—Simplicial homology; algebraic topology; reduc-
tion algorithm; point processes; complexity; wireless networks.

I. INTRODUCTION

Wireless networks are everyday more present in our lifes:
WiFi is the main internet access in our homes, cellular systems
such as 4G and soon 5G provide its access everywhere else.
Moreover with IoT, every object in our kitchen or in our
bathroom will in the near future be connected as well. The
quality of service of this type of network is primarily its
connectivity and its coverage, only after checking this first two
characteristics can come the capacity of the network, that is the
number of users or connected devices a network can accept.
However whether a network of sensors is fully connected, or
whether a set of base stations does cover a whole domain,
is not that easy to determine since network nodes are often
irregularly deployed. Indeed, recent works such as [1] or [2]
show that cellular networks deployment can be approached
by random point processes going from the repulsive Ginibre
point process to the neither repulsive nor attractive Poisson
point process depending on the type of area (rural or urban)
or the type of systems (every systems or only 4G systems for
example).

Algebraic topology, [3], turns out to provide the solutions
to the problem of how to compute the topology of a random
set of points. Based on the geometrical data of the network
(network nodes locations, communication or coverage radii),
it is possible to build a combinatorial object representing
it: the simplicial complex. Basically a simplicial complex is
the generalization of the concept of graph, it is made of
k-simplices where 0-simplices are vertices, 1-simplices are
edges, 2-simplices are triangles, 3-simplices are tetrahedron
and so on. In particular, the C̆ech simplicial complex allows
to represent exactly the coverage of the union of the coverage
disks as stated in the Nerve lemma in [4]. Then algebraic
topology is a tool to compute the number of connected
components, of coverage holes, and of 3D voids, that are the
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so-called Betti numbers of the simplicial complex representing
the network, as detailed in [5]. However, the computational
time to obtain the Betti numbers can explode with the size of
the simplicial complex, then it is possible to compute them in a
decentralized way as seen in [6], or using persistent homology
in [7], [8].

In this paper, we present a reduction algorithm for abstract
simplicial complexes. Points, called 0-simplices, are removed
one-by-one from an abstract simplicial complex while its
topology remain unchanged. The removal order in the algo-
rithm is optimal for the complexity of the abstract simplicial
complex implementation and of the algorithm. We use the
Vietoris-Rips simplicial complex built on a binomial point
process for representing a wireless network and illustrate our
algorithm. A first version of this algorithm has been presented
in [9] and it has been used for cellular networks applications
in [10]–[12]. We investigate the complexity of our reduction
algorithm and show that it depends on the size of the largest
simplex of the abstract simplicial complex. We compute its
almost sure asymptotical behavior for a Vietoris-Rips complex
based on a binomial point process, in which case it is also
known as the clique number in a random geometric graph.

This is the first reduction algorithm for abstract simplicial
complexes that uses homology to reduce the complex that
we know of. Usually reduction algorithms for simplicial
complexes are used to reduce complexes prior to the com-
putation of their topology in order to reduce its complexity.
For example, in [13] and [14], the authors use reduction of
chain complexes in order to compute the homology groups
and the Betti numbers. Witness complexes of [15] are another
example of simplicial complexes reduction: the simplicial
complex is reduced to a given number of vertices in order
to compute the various topological invariants, such as the
Betti numbers. So reduction of a simplicial complex has been
used in order to compute its topology, we intend to do the
opposite: reduction of the simplicial complex becomes the
aim, while the homology computation is the mean to do it.
The reduction problem can also be seen as a dominating graph
problem [16]. However, since there is no notion of coverage
in graphs, algorithms for the dominating graph problem do
not maintain the topology of the initial simplicial complex.
Our problem has also been studied under a game-theoretic
approach in [17], where the authors define a coverage function.
But they can only identify sub-optimal solutions that do not
guarantee an unmodified coverage.

When computing the complexity of the algorithm, we focus
on Vietoris-Rips complexes based on binomial point processes
that fall into the class of random geometric complexes. There
exists known results for this class of complexes [18], especially
the moments of the number of k-simplices are explicitly
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known [19]. In the end, we are reduced to compute the
behavior of the size of the largest simplex, which is known
as the clique number in graph theory. The clique number of
the random geometric graph has been heavily studied in the
literature, and its behavior described according to percolation
regimes in [20]. In [21], it is proved that monotone properties
of random geometric graph have sharp thresholds. Hence,
in [22], [23], the authors prove that, in the subcritical regime,
the clique number becomes concentrated on two consecutive
integers. Moreover, in the subcritical regime, weak laws of
large numbers [24] and central limits theorems [25] have been
found for some functionals, including the clique number. Then
for the supercritical regime, in [26], the authors described the
behavior of the clique number. In this paper, we intend to
gather all these results in one place: we provide the almost
sure asymptotical behavior of the clique number of the random
geometric graph for every of the three regimes thanks to the
exact formulas of the moments of the number of k-simplices
computed in [19].

The remainder of the paper is organized as followed. First
in Section II, we remind some simplicial homology and alge-
braic topology definitions and properties. Then the reduction
algorithm and its properties are described in Section III. The
complexity of the algorithm is investigated for a random set
of points in Section IV. Finally we conclude in Section V.

II. MATHEMATICAL BACKGROUND

A. Simplicial Homology

Considering a set of points representing network nodes, the
first idea to apprehend the topology of the network would be
to look at the neighbors graph: if the distance between two
points is less than a given parameter then an edge is drawn
between them. An example of a neighbors graph can be seen in
Fig. 1. However this representation is too limited to transpose
the network’s topology. First, only 2-by-2 relationships are
represented in the graph, there is no way to grasp interactions
between three or more nodes. Moreover, there is no concept
of coverage in a graph. That is why we are interested in more
complex objects.

Fig. 1. A wireless network and its neighbors graph representation.

Indeed, graphs can be generalized to more generic combi-
natorial objects known as simplicial complexes. While graphs
model binary relations, simplicial complexes can represent

higher order relations. A simplicial complex is thus a combina-
torial object made up of vertices, edges, triangles, tetrahedra,
and their n-dimensional counterparts.

Given a set of vertices X and an integer k, a k-simplex is
an unordered subset of k+ 1 vertices {x0, x1, . . . , xk} where
xi ∈ X,∀i ∈ {0, . . . , k} and xi 6= xj for all i 6= j. Thus,
a 0-simplex is a vertex, a 1-simplex an edge, a 2-simplex a
triangle, a 3-simplex a tetrahedron, etc. See Fig. 2 for instance.

0-simplex 1-simplex 2-simplex 3-simplex

Fig. 2. Examples of k-simplices

Any subset of vertices included in the set of the k + 1
vertices of a k-simplex is a face of this k-simplex. A k-face is
then a face that is a k-simplex. Thus, a k-simplex has exactly
k+1 (k−1)-faces, which are (k−1)-simplices. For example,
a tetrahedron has four 3-faces which are triangles. The inverse
notion of face is coface: if a simplex S1 is a face of a larger
simplex S2, then S2 is a coface of S1. As for faces, a k-coface
is a coface that is a k-simplex.

A simplicial complex is a collection of simplices which is
closed with respect to the inclusion of faces, i.e. all faces
of a simplex are in the set of simplices, and whenever
two simplices intersect, they do so on a common face.
An abstract simplicial complex is a purely combinatorial
description of the geometric simplicial complex and there-
fore does not need the property of intersection of faces.
In this article, we are only interested in the combinatorial
description of a simplicial complex, that is why we will only
consider abstract simplicial complexes, even if the adjective
“abstract” may sometimes be dropped. Let us denote by
x0, x1, . . . some vertices, and then write [x0, . . . , xk] a k-
simplex for any k integer. An example of an abstract simplicial
complex with five 0-simplices x0, . . . , x4, six 1-simplices
[x0, x1], [x0, x2], [x1, x2], [x1, x4], [x2, x3], [x3, x4], and one 2-
simplex [x0, x1, x2] can be seen in Fig. 3.

x0

x1

x2
x3

x4

Fig. 3. Example of an abstract simplicial complex

The abstract simplicial complex that can exactly represent
the topology of a wireless network (see the Nerve lemma in
[4]) is the C̆ech complex whose definition is:
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Definition 1 (C̆ech complex). Let (X, d) be a metric space,
ω a finite set of points in X , and r a real positive number.
The C̆ech complex of parameter r on the set of vertices ω,
denoted Cr(ω), is the abstract simplicial complex whose k-
simplices are the unordered (k+ 1)-tuples of vertices in ω for
which the intersection of the k + 1 balls of radius r centered
at the k + 1 vertices is non empty.

However, the C̆ech complex can be difficult to build since
one must know the intersection of every three balls. Therefore,
we are interested in the approximation of the C̆ech complex,
the Vietoris-Rips complex:

Definition 2 (Vietoris-Rips complex). Let (X, d) be a metric
space, ω a finite set of points in X , and r a real positive
number. The Vietoris-Rips complex of parameter r of ω,
denoted Rr(ω), is the abstract simplicial complex whose k-
simplices correspond to the unordered (k+1)-tuples of vertices
in ω which are pairwise within distance less than 2r of each
other.

The Vietoris-Rips complex is easier to build than the C̆ech
complex since it is build only based on the neighbors graph
information, and it provides a good approximation for the net-
work’s topology if the network nodes are deployed according
to a Poisson point process [27]. An example of a Vietoris-Rips
complex can be seen in Fig. 4.

Fig. 4. A wireless network and its Vietoris-Rips complex.

B. Algebraic Topology
Given an abstract simplicial complex, one can define an

orientation on the simplices by defining an order on the
vertices, where a change in the orientation corresponds to a
change in the sign:

x0 x1

x0

x1

x2

[x0, x1] = −[x1, x0]

[x0, x1, x2] = −[x0, x2, x1]

Then a change of sign corresponds to a swap between two
vertices:

[x0, . . . , xi, . . . , xj , . . . ,xk] =

− [x0, . . . , xj , . . . , xi, . . . , xk].

Then let us define the vector spaces of the k-simplices of a
simplicial complex:

Definition 3. Let S be an abstract simplicial complex.
For any integer k, Ck(S) is the vector space spanned by

the set of oriented k-simplices of S.

Then we can define a boundary map on these vector spaces:

Definition 4. Let S be an abstract simplicial complex and
Ck(S) the vector space of its k-simplices for any k integer.

The boundary map ∂k is defined as the linear transformation
∂k : Ck(S) → Ck−1(S) which acts on the basis elements
[x0, . . . , xk] of Ck(S) via:

∂k[x0, . . . , xk] =

k∑
i=0

(−1)
i
[x0, . . . , xi−1, xi+1, . . . , xk].

For example, for a 2-simplex we have:

x0

x1

x2 x0

x1

x2
∂2([x0, x1, x2]) = [x1, x2]− [x0, x2] + [x0, x1]

The boundary map on any k-simplex, is the cycle of its (k−
1)-faces. This map gives rise to a chain complex (a sequence
of vector spaces and linear transformations):

. . .
∂k+2−→ Ck+1

∂k+1−→ Ck
∂k−→ Ck−1

∂k−1−→ . . .
∂1−→ C0

∂0−→ 0.

We can see on our previous abstract simplicial complex
example of Fig. 3 the computation of the three first boundary
maps:

∂0 =
( [x0] [x1] [x2] [x3] [x4]

0 0 0 0 0
)

∂1 =



[x0x1] [x0x2] [x1x2] [x1x4] [x2x3] [x3x4]

[x0] −1 −1 0 0 0 0
[x1] 1 0 −1 −1 0 0
[x2] 0 1 1 0 −1 0
[x3] 0 0 0 0 1 −1
[x4] 0 0 0 1 0 1



∂2 =



[x0, x1, x2]

[x0, x1] 1
[x0, x2] −1
[x1, x2] 1
[x1, x4] 0
[x2, x3] 0
[x3, x4] 0


As its name indicates, the boundary map applied to a linear

combination of simplices gives its boundary. The boundary of
a boundary is the null application. Therefore this theorem can
be easily demonstrated (see [3] for instance):

Theorem 1. For any k integer,

∂k ◦ ∂k+1 = 0.
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Let S be an abstract simplicial complex. Then we can
denote the k-th boundary group of S as Bk(S) = im ∂k+1,
and the k-th cycle group of S as Zk(S) = ker ∂k. Then, we
have Bk(S) ⊂ Zk(S)

We are now able to define the k-th homology group:

Definition 5. The k-th homology group of an abstract simpli-
cial complex S is the quotient vector space:

Hk(S) =
Zk(S)

Bk(S)
.

Then its dimension is:

Definition 6. The k-th Betti number of the abstract simplicial
complex S is:

βk(S) = dimHk(S).

According to its definition, the k-th Betti number counts
the number of cycles of k-simplices that are not boundaries
of (k + 1)-simplices, that are the k-th dimensional holes. In
small dimensions, they have a geometrical interpretation:
• β0 is the number of connected components,
• β1 is the number of coverage holes,
• β2 is the number of 3D-voids.

For any k ≥ d where d is the dimension, we can note that
βk = 0.

We can compute the Betti numbers of the abstract simplicial
complex of Fig. 3:

β0 = dim ker ∂0 − dim im ∂1

= 1

β1 = dim ker ∂1 − dim im ∂2

= 1.

This complex indeed has one connected component and one
coverage hole with 4 sides.

For further reading on algebraic topology, see [3].

III. REDUCTION ALGORITHM

In wireless networks, redundancy is frequent: sensors are
cheap devices, adding too many sensors to a network creates
reliability with reasonable cost. In cellular networks, dimen-
sionning is done based on peak traffic hours, and is thus
under-used during low-traffic periods. In order to conserve
energy in both types of networks, some nodes can be turned
off, may it be temporarily or until other nodes fail. But the
topology of the network has to be maintained: connectivity is
needed for the network nodes to communicate, and coverage
maintenance assures the service to users. Simplicial homology
representation of wireless networks provides a mathematical
translation of the problem: remove vertices from an abstract
simplicial complex without modifying its topology.

The main idea of our algorithm is to use the information
from the topology of the network to reduce the number of
vertices. First we use simplicial homology representation to
compute the topology of the wireless network. Thanks to that
representation, we are able to detect the vertices that are the
more redundant. We then remove vertices in an optimal order

for the computation complexity, while the topology of the
network, and in particular its Betti number, is unchanged. In
the remainder of this section, we present in full details the
reduction algorithm, that was first introduced in a limited form
in [9].

A. Preliminaries

The reduction algorithm takes as input an abstract simplicial
complex described by its list of simplices. But it also needs
another information. Indeed, if we consider for example an
abstract simplicial complex connected and without coverage
holes, i.e. with Betti numbers β0 = 1 and β1 = 0, the optimal
mathematical reduction of this complex is a single vertex. Its
topology is in fact unchanged, there is still one connected
component, and no cycle around any coverage hole. But that
is not what we intend to do. Therefore we must designate
critical vertices that define the limits of the reduction. They
usually define the boundary of the area, they are then external
boundary vertices. If there is a coverage hole whose size must
not be increased, the vertices surrounding it, that are internal
boundary vertices, have also to be listed as critical. But if
the area covered is not essential, then critical vertices can
be limited to access end points that have to stay connected
for instance. In 3D, the critical vertices would define the
limit surface of the volume. These critical vertices can not
be removed by the algorithm. Then the list of critical vertices,
whatever they are, internal or external boundary, access end
points, etc, is given as input to the reduction algorithm, along
with the abstract simplicial complex. Please note that for the
algorithm to give adequate results, the critical vertices have to
be correctly defined, that means that they must really define
the limits of the abstract simplicial complex to reduce.

Then if the abstract simplicial complex is defined in di-
mension d, then there exists d nonzero homology groups.
For k ≥ d, the k-th homology group Hk does not exist and
βk = 0. Therefore it is possible to maintain the homology of
the complex up to the (d− 1)-th degree. At the beginning of
the algorithm, we must choose to which degree the homology
has to be maintained. For example, in two dimensions, it
is possible to maintain both connectivity and coverage, H0

and H1, or to maintain only the connectivity (H0). Note that
there is no sense to maintain the k-th degree homology if
the (k − 1)-th is not maintained since the former implies the
latter, consider maintaining coverage without connectivity for
example. The degree of homology that is to be maintained by
the algorithm is denoted by k0, typically in two dimensions
k0 = 1, or sometimes k0 = 0 to just maintain connectivity
without considering coverage.

B. Characteristics

The algorithm works by calculating some characteristics
for the simplices of the abstract simplicial complex it has to
reduce. If the degree of homology that has to be maintained
is k0, then the largest size of simplices that are concerned are
(k0 + 1)-simplices (in order to compute Bk0 = im ∂k0+1).
We can conclude then that simplices larger than (k0 + 1)-
simplices are useless to the homology up to the k0-th degree.
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For instance, in two dimensions, if we want to maintain the
homology up to the first degree, that is the coverage, only
2-simplices are concerned, and larger simplices are useless.

Our idea is now to sort the (k0 + 1)-simplices in order to
know which ones to conserve in the reduced abstract simplicial
complex. To do that we characterize the superfluousness of
each (k0 + 1)-simplex via a degree that we define below:

Definition 7 (Degree). Let [x0, . . . , xk] be a k-simplex of an
abstract simplicial complex S for k integer. Its degree is the
size of its largest coface:

D[x0, . . . , xk] = max{d | [x0 . . . , xk] ⊂ d-simplex}.

By definition, we can see that for any k-simplex, k integer,
D[x0, . . . , xk] ≥ k.

We can see an example of computation of degrees for the
2-simplices of an abstract simplicial complex in Fig. 5. A 2-
simplex that is a maximum face, as [x2, x6, x7], has a degree
of 2, whereas a 2-simplex that is the face of a 4-simplex, as
[x0, x1, x7], has a degree of 4.

x0 x2
x1

x6

x7x8

x3

x5

x4

D[x0, x1, x7] = 4

D[x2, x6, x7] = 2

D[x3, x4, x6] = 3

Fig. 5. Example of computation of degrees of 2-simplices

The greater the degree of a k-simplex is, the more super-
fluous this k-simplex is. Therefore, the greater the degree of
a (k0 + 1)-simplex is, the more likely it is to be removed, and
its removal is less likely to modify the k0-th homology.

But, in order to reduce an abstract simplicial complex, we do
not remove directly (k0+1)-simplices, we remove 0-simplices,
that lead to the removal of their cofaces. Therefore, we need to
bring the information about the superfluousness of a (k0 + 1)-
simplex that is contained in its degree, down to the 0-simplex
level. To do that, we define an index for every 0-simplex, that
characterizes its level of sensitivity for the k0-th homology.

Definition 8 (Index). Let x be a 0-simplex, its index is the
minimum of its (k0 + 1)-cofaces degrees:

I(x) = min{D[x0, . . . , xk0+1] | x ∈ [x0, . . . , xk0+1]}.

If x has no (k0 + 1)-coface then I(x) = 0.

We can see an example in Fig. 6 of computation of indices
of the 0-simplices of the abstract simplicial complex of Fig. 5.
In this example, we are interested in the 0-th and 1-st degrees
of homology, i.e. connectivity and coverage, that means that
k0 = 1 and we compute the degrees on the 2-simplices.

I(x0) = 4

I(x1) = 4
I(x2) = 2

I(x3) = 3
I(x4) = 3

I(x5) = 3
I(x6) = 2

I(x7) = 2I(x8) = 4

x0 x2
x1

x6

x7x8

x3

x5

x4

Fig. 6. Example of computation of indices of 0-simplices

With this definition of indices, we can see that a 0-simplex
is as sensitive as its most sensitive coface, or in other terms
as superfluous as its least superfluous coface. The index
of a 0-simplex can also be viewed as an indicator of the
density of 0-simplices “around” it, in the neighbor sense. For
example, an index of k0 + 1 indicates that at least one of its
(k0 + 1)-coface has no (k0 + 2)-cofaces, whereas an index of
k > k0 + 1 indicates that each of its (k0 + 1)-cofaces are the
face of simplices larger than k-simplices. The main idea of
the algorithm is thus to remove the vertices with the greatest
indices.

C. Algorithm description

As stated in the previous subsections, the reduction al-
gorithm takes as input an abstract simplicial complex and
the list of critical 0-simplices that can not be removed. We
must also know the degree k0 of homology that has to be
maintained. The algorithm begins by computing the topology
of the network up to the k0-th degree of homology, that is the
first k0+1 Betti numbers. Then, it computes the characteristics
we need: the degrees of the (k0 +1)-simplices and the indices
of the 0-simplices. After that, the algorithm removes a 0-
simplex with a maximal index. If there are more than one
such index, one is chosen randomly uniformly among them.
The removal of a 0-simplex leads to the removal of all of its
cofaces. Then the algorithm goes on doing the same thing with
the obtained reduced abstract simplicial complex.

There is one exception: if there is a difference between
the Betti numbers computed on the newly reduced abstract
simplicial complex and the original ones, the removal of the
0-simplex is cancelled. That means that this 0-simplex is put
back in the simplicial complex. To prevent from trying to
removing it again, that would lead to the same conclusion, the
0-simplex is flagged as critical, along with the input critical
0-simplices. Thus the list of critical 0-simplices evolve during
the algorithm execution.

Then the algorithm goes on repeating the computation of
the Betti numbers, degrees and indices to find a 0-simplex to
remove. It removes 0-simplices one by one until the maximum
index of a 0-simplex is equal to k0 + 1. Indeed it is the
minimum value for the degrees of (k0 + 1)-simplices, so it
is the lower bound that it can reach.

We give in Algorithm 1 the whole reduction algorithm for
the conservation of the k0-th homology. We use a negative
index equal to −1 to flag critical 0-simplices as such.
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Considering an abstract simplicial complex S, we denote by
sk(S) its number of k-simplices and by βk(S) its k-th Betti
number, for k integer. Then we denote by x1, . . . , xs0(S) its
0-simplices and by y1, . . . , ysk0+1(S) its (k0 + 1)-simplices.
We write I(x) for the index of the 0-simplex x, and D(y) for
the degree of the (k0 + 1)-simplex y.

Algorithm 1 Reduction algorithm
Require: abstract simplicial complex S, list L of critical 0-

simplices.
Computation of β0(S), . . . , βk0(S)
Computation of D(y1), . . . , D(ysk0+1(S))
Computation of I(x1), . . . , I(xs0(S))
for all x ∈ L do
I(x) = −1

end for
Imax = max{I(x1), . . . , I(xs0(S))}
while Imax > k0 + 1 do

Draw uniformly x̂ such that I(x̂) = Imax

S′ = S\{x̂} %Removal of x̂ and its cofaces
Computation of β0(S′), . . . , βk0(S′)
if βk(S′) 6= βk(S) for some k = 0, . . . , k0 then
I(x̂) = −1

else
Computation of D(y1), . . . , D(ysk0+1(S′))
for all x ∈ {x1, . . . , xs0(S′)} do

if I(x) 6= −1 then
Computation of I(x)

end if
end for
Imax = max{I(x1), . . . , I(xs0(S′))}
S = S′

end if
end while
return X

We can see in Fig. 7 an example of the reduction algorithm
for the homology conservation up to the first degree on a
Vietoris-Rips complex with a boundary of critical vertices
along the square.

Fig. 7. Example of the reduction algorithm on a Vietoris-Rips complex.

We can note that it is possible to reduce the computations
of the algorithm by remarking that when a 0-simplex of index
I is removed then only the 0-faces of its I-cofaces with index

I can have their index impacted as proofed in the following
lemma. That means that we only need to re-compute the
degrees needed for the indices of the 0-simplices that shared
an I-simplex with the removed 0-simplex.

Lemma 1. When a 0-simplex of index I is removed, only the
0-faces of its I-cofaces with index equal to I can have their
index modified.

Proof. Let x̂ be the removed 0-simplex, and x be any 0-
simplex of the current abstract simplicial complex, we denote
by I(x) its index. We differentiate four cases:
• x and x̂ have no common coface.

Then none of the degrees of the (k0 + 1)-cofaces of x will
change, and neither will its index.
• x and x̂ have a maximum common coface that is a k-

simplex with k < k0.
As in the previous case, none of the degrees of the (k0 + 1)-
cofaces of x will change, and neither will its index.
• x and x̂ have a maximum common coface that is a k-

simplex with k0 ≤ k < I .
Then x̂ should have an index of k < I , which is absurd.
• x and x̂ have a maximum common coface that is a k-

simplex with k ≥ I .
Either I(x) < I , then it comes from the degree of a (k0 + 1)-
simplex not common with x̂, and its index does not change
with the removal of x̂. Else, if I(x) = I , either its value comes
from a I-simplex not shared with x̂ and remains unmodified.
Or it comes from a common I-simplex. Only in this latter
case, I(x) is modified by the removal of x̂.

D. Properties

1) Homology invariance: We have built our reduction
algorithm to be homology invariant. That means that the
initial abstract complex, the final reduced complex and every
intermediary reduced complex are homotopy equivalent. They
have the same Betti numbers and any basis element of the k-
th homology group Hk in the initial complex can be mapped
to a basis element of the k-th homology group in the final
complex for any k integer.

Theorem 2. The reduction algorithm stated in the algorithm
described in Alg. 1 is homology invariant up to the k0-th
degree.

Proof. To verify that the algorithm is homology invariant up
to the k0-th degree, we need only to check that each loop
does not modify the k0-th homology. In each loop of the
algorithm, we verify that the Betti numbers β0, . . . , βk0 are
unchanged. That means that the dimension of the homology
groups H0, . . . ,Hk0 do not change. For any k ∈ {0, . . . , k0},
if one or more cycle are added in Hk, by the removal of a
0-simplex, then the removal is cancelled by the algorithm. The
same goes with one or more deletions of cycles in Hk. The
only way that a change in the homology is undetected and
allowed by the algorithm is if in a loop the same number of
cycles of Hk are simultaneously added and deleted by a single
0-simplex removal.
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For any k ∈ {0, . . . , k0}, Hk is the k-th homology group of
cycles of k-simplices (Zk) that are not boundaries of (k+ 1)-
simplices (Bk), note that Bk ⊂ Zk.

On the one hand, let us look what happens if a cycle is added
in Hk. Since a new cycle of Zk, that is a list of k-simplices,
can not be created by removing simplices, the removal of a
0-simplex adds a cycle in Hk only if a cycle which was both
in Bk and Zk ceases to be in Bk, i.e. if the 0-simplex had a
(k + 1)-coface that was not redundant.

On the other hand, we investigate the deletion of a cycle in
Hk. The removal of a 0-simplex can not make a cycle only in
Zk to be in both Bk and Zk since it does not create (k + 1)-
simplices. So a deletion of a cycle in Hk, due to the removal
of a 0-simplex, is necessarily a deletion in Zk. Therefore, the
removal of a 0-simplex deletes a cycle in Hk only if this 0-
simplex had a k-coface which was in the cycles of Zk and not
the boundaries of BK . That means that this 0-simplex was a
boundary vertex of a k-th dimensional hole.

If a 0-simplex that is both a boundary vertex to a k-th
dimensional hole and has a non-redundant (k + 1)-coface
is removed, simultaneously a cycle is deleted and another
is created in Hk. The deletion of the 0-simplex leads to an
enlargement of the k-th dimensional hole. The (k+ 1)-coface
assures that the hole still has boundaries and exists. It is then
possible to map the cycle of the smaller (previous to the 0-
simplex removal) hole to the larger (post 0-simplex removal)
hole. And the two abstract simplicial complexes (pre and post
0-simplex removal) are homotopy equivalent.

We can note that if we want to have a reduction algorithm
that is homology invariant and that do not enlarge k-th
dimensional holes, then all the hole boundary vertices must
be defined as critical in the input.

2) Optimal order for vertices removal: In our reduction
algorithm, we choose to compute the topology and use it to
reduce an abstract simplicial complex in order to minimize
the size of the complex in relation to its topology. In addition
to keeping the homology invariant, we use the homology
information to improve the algorithm performance.

Theorem 3. The order in which 0-simplices and their cofaces
are removed from the abstract simplicial complex by the reduc-
tion algorithm defined in Alg. 1 is optimal for its computation
complexity.

Proof. When a 0-simplex is removed from the abstract simpli-
cial complex, all of its coface are subsequently removed too. In
Alg. 1, the 0-simplices are removed by decreasing indices. An
index of I indicates that every (k0+1)-coface of the 0-simplex
has I-faces at least. The bigger the index of a 0-simplex is, the
bigger the degrees of its (k0 + 1)-cofaces are. So the removal
of the maximum index 0-simplex minimize at most the degrees
computations that must be done in every loop.

Moreover we can see that the bigger the index of a 0-
simplex is, the bigger the minimum common size of its cofaces
greater than (k0 + 1)-simplices is. An abstract simplicial
complex is implemented by the list of all its simplices. And
the homology up to the k0-th degree (i.e. (k0 + 1)-simplices),
is computed. By eliminating the greatest (k0 + 1)-simplices

cofaces, the algorithm reduces also the size of the simplicial
complex implementation, and its topology computation.

3) Optimal solution: The reduction algorithm reaches a
local optimum, that may not be the global optimum if there
are multiple local optima. In game theory vocabulary, that
means that the algorithm reaches a Nash equilibrium as defined
in [17]:

Theorem 4. The reduction algorithm defined in Alg. 1 reaches
a Nash equilibrium: the final complex can not be further
reduced, no more 0-simplex can be removed.

Proof. By definition of degrees and indices given in the
previous subsection, indices computed on (k0 + 1)-simplices
degrees are greater or equal to k0 + 1. However, in the final
complex, every 0-simplex is of index smaller or equal to k0+1,
since its the ending condition on the “while” loop.

Then there are three possibility for the value I(x) of the
index of a 0-simplex x in the final complex:
• I(x) = −1 which means that x has been defined or

flagged as critical.
• I(x) = 0 which means that x has no (k0 + 1)-coface.
• I(x) = k0 + 1.
First, a critical 0-simplex can be either defined as such,

in which case its removal was forbidden, and it should be
in the final complex. Or it as been flagged by the algorithm
because its removal was tried and changed the Betti numbers
of the abstract simplicial complex, which is forbidden. If the
initial critical 0-simplices are well-defined as the limits of the
complex, then the removal of a vertex 0-simplex that has led
to a change in a Betti number would always lead to the same
change. So a flagged critical 0-simplex stays as such.

Secondly, a 0-simplex of null index is an isolated vertex
for the k0-th homology as it has no (k0 + 1)-coface. Then, its
removal would decrease one of the Betti numbers β0, . . . , βk0 .
For example, the removal of a 0-simplex with no 1-cofaces will
decrease β0, and the removal of a 0-simplex with 1-cofaces
and no 2-cofaces would decrease either β1.

Finally, if x has a degree of I(x) = k0 +1. That means that
at least one of its (k0 + 1)-cofaces has no larger coface. Then
the removal of x would lead to the removal of this (k0 + 1)-
simplex with no coface. This would create a k0-th dimensional
hole, and βk0 would be incremented.

4) Bounds for the number of removed 0-simplices: With the
reduction algorithm, we go from an initial abstract simplicial
complex to a final complex with an optimal number of 0-
simplices. We are now interested in the number of 0-simplices
that can be removed from the initial complex.

Theorem 5. Let Ek be the set of 0-simplices that have index
k in the initial complex, and |Ek| be its cardinality. Then the
number M of removed 0-simplices by the algorithm defined
in Alg. 1 is bounded by:

Imax∑
k=k0+2

1Ek 6=∅ ≤M ≤
Imax∑

k=k0+2

|Ek|.

Proof. We begin by looking at the upper bound. First, let us
state that a 0-simplex with an index equal or less than k0 + 1,
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can not have its index increased during the algorithm. It is a
direct consequence of Lemma 1 and the fact that the stopping
limit is when the maximum index is equal to k0 + 1. Then 0-
simplices of index equal or less than k0+1 are never removed
by the algorithm. Thus the number of other 0-simplices is an
upper bound for M .

For the lower bound, according to Lemma 1, the removal
of a 0-simplex of index Imax can only modify the indices
that were set to Imax previously. In the worst case, all indices
Imax change and the value of Imax is decreased. Thus, at least
one 0-simplex per index value is removed. And the number of
index values strictly above k0 + 1 constitutes a lower bound
for M .

Remark. We can note that the upper bound for the number of
removed 0-simplices is optimal. Since it is reached for example
in the case of an abstract simplicial complex limited to a n-
simplex and its faces, with n integer. Whatever the definition
of the limit with the critical 0-simplices, only the latter will
stay in the final complex.

We can also note that the lower bound for the number of
removed 0-simplices is optimal too. Indeed, it is reached for
instance for a complex limited to a n-simplex with n−1 critical
0-simplices.

IV. COMPLEXITY

In this section, we investigate the complexity of the algo-
rithm presented in Alg. 1 for the conservation of the k0-th
homology. For S an abstract simplicial complex, let us denote
by sk the numbers of its k-simplices for any k integer. We
also denote by K the integer such that the maximum simplex
in S is a K-simplex. Then the size of the input data of the
reduction algorithm depends on s0, . . . , sK .

To compute the complexity of the whole reduction algo-
rithm, we must first compute the complexity of the computa-
tion of the k0 + 1 first Betti numbers denoted β0, . . . , βk0 .

Proposition 1. The complexity of the computation of the Betti
numbers β0, . . . , βk0 is in O(maxk=0,...,k0+1(s3k)).

Proof. The computation of the Betti number βk relies on the
computation of the ranks of matrices ∂k of size sk−1×sk and
∂k+1 of size sk × sk+1.

Moreover, the computation of the rank of a matrix of size
n×m is of complexity O(nmmin(n,m)).

Now, we look at the complexities of the computations of
the degrees and the indices needed in the reduction algorithm:

Proposition 2. The complexity of the computation of the
degree of a (k0 + 1)-simplex is in O(

∑K
k=k0+2 sk).

Proof. To compute the degree of a k-simplex, we must explore
at most all the larger simplices than k-simplices.

Proposition 3. The complexity of the computation of the index
of a 0-simplex is in O(sk0+1).

Proof. The index of a 0-simplex is just the minimum of its
(k0 + 1)-cofaces’ degrees, that are at most sk0+1.

Then, we are able to write the whole reduction algorithm
complexity:

Theorem 6 (Reduction algorithm complexity). The reduction
algorithm described in Alg. 1 has a complexity in:

O(s0( max
0≤k≤k0+1

s3k + sk0+1

K∑
k=k0+2

sk)).

Proof. In the reduction algorithm, the k0 + 1 first Betti
numbers β0, . . . , βk0 , the sk0+1 degrees and the s0 indices are
computed at each run that is at most s0 times. The computation
of the indices becomes negligible compared to the computation
of the Betti numbers.

At the end, at most every simplex has been removed,
then the removal of simplices is of overall complexity of
O(
∑K
k=0 sk). This complexity is negligible for the whole

algorithm.
The complexity to mark 0-simplexes as critical and the

complexity to compute Imax are both in O(s0), and are also
negligible.

Remark. The complexity of the reduction algorithm is poly-
nomial relatively to the size of the input data s0, . . . , sK .

Traditionally we prefer to express the complexity of an
algorithm just relatively to the number of points, that is s0
the number of 0-simplices. But we can see that the number
K is key here. Indeed every number sk appears directly in
the complexity formula. However, K appears as the limit of
a sum, and since it is upper bounded only by s0, its behavior
determines if the complexity is polynomial or exponential in
s0.

Thus, we first keep the size of the largest simplex K as a
variable in the complexity formula:

Corollary 7. The reduction algorithm described in Alg. 1 has
a complexity upper bounded by:

O(s3k0+7
0 + sk0+3

0

K∑
k=k0+2

(
s0

k + 1

)
).

Proof. The number of k-simplices sk is upper bounded by(
s0
k+1

)
for any k integer. Taking the expression of the com-

plexity from Theorem 6, we have:

s0( max
0≤k≤k0+1

s3k + sk0+1

K∑
k=k0+2

sk)

≤ s0( max
0≤k≤k0+1

(
s0

k + 1

)3

+

(
s0

k0 + 2

) K∑
k=k0+2

(
s0

k + 1

)
)

≤ s0(

(
s0

k0 + 2

)3

+

(
s0

k0 + 2

) K∑
k=k0+2

(
s0

k + 1

)
)

Since k0 is a fixed small number compared to s0 when s0
goes to infinity, and

(
s0
k

)
is increasing for k ≤ k0 + 2.

Then the fact that
(
s0
k

)
≤ sk0 concludes the proof
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Then we express the complexity with only the number of
0-simplices s0 as a parameter:

Corollary 8. The reduction algorithm described in Alg. 1 has
a complexity upper bounded by:

O(sk0+3
0 2s0).

Proof. The size of the largest simplex K can only be up-
per bounded by s0 in the general case. Then the fact that∑n
k=0

(
n
k

)
= 2n concludes the proof.

We can see that the complexity of the reduction algorithm
relatively to s0 can vary drastically. Indeed if the number of
large simplices is negligible relatively to the number of smaller
simplices then the computation of the Betti numbers will be
the preponderant part and the complexity of the reduction
algorithm will be polynomial in s0. However, if it is there are
large simplices, then the computation of the degrees will be the
longest, and the reduction algorithm will have a complexity
that is exponential in s0.

We propose in the following of this section a thorough study
on the behavior of the complex and the size of its largest
simplex K that will determine the complexity of the reduction
algorithm.

A. Model

In order to study the behavior of an abstract simplicial
complex, we first must choose a particular complex. We select
the Vietoris-Rips complex for its mathematical tractability and
its wireless network representation capacity. We now have to
decide on which set of points the complex is build.

When evaluating the behavior of a complex, we need to
take into account side effect: indeed a point in the center of
the plane area considered will have more neighbors, and thus
be part of larger simplices that a point on the edge of the area.
In order to avoid these side effects, we choose to consider a
torus instead of a plane. Let us denote by Tda the torus of side
a in dimension d. Usually, we will have d = 2.

We now define the space of configurations:

Definition 9. The space of configurations on Tda is the set of
locally finite simple point measures:

ΩX =

{
ω =

n∑
k=1

δ(xk) : (xk)
k=n
k=1 ⊂ X, n ∈ N ∪ {∞}

}
,

where δ(x) denotes the Dirac measure for x ∈ Tda.

It is convenient to identify an element ω of ΩX with the
set corresponding to its support, i.e.

∑n
k=1 δ(xk) is identified

with the unordered set {x1, . . . , xn}. For A ⊂ X , we have
δ(x)(A) = 1A(x), so that ω(A) =

∑
x∈ω 1A(x) counts the

number of points in A. Simple measure means that there are
no two points in the same place, that is ω({x}) ≤ 1 for any
x ∈ X . Locally finite means that ω(K) <∞ for any compact
K of X . The configuration space ΩX is endowed with the
vague topology and its associated σ-algebra denoted by FX .

For further reading on random point processes, we refer to
[28].

We now define the binomial point process that is a variation
of the well-known Poisson point process but with a fixed
number of points:

Definition 10 (Binomial point process). Let f be the uniform
probability density function on the torus Tda, and n an integer.
Then a point process ω is a binomial point process of n points
on Tda, if the following two conditions hold:

(i) The process ω has n points,
(ii) The points’ positions are drawn according to f indepen-

dently from each other.

In order to have reasonable results we need to make two
assumptions. First, we need to ensure that the ratio r

a that is
the ratio between the connexion distance of the Vietoris-Rips
complex and the size of the torus, is not too big so that two
points are able to be connected 2 times on both sides of the
torus:

Assumption 1. Let us denote by θ the ratio
(
r
a

)d
, then we

assume that:

θ =
( r
a

)d
≤
(

1

2

)d
.

Then the behavior of the number of simplices is not easy
to obtain. In [19], the authors provide expressions for the
moments of the number of simplices for the Vietoris-Rips
complex by means of Malliavin calculus. They obtain results
for the classic Euclidean norm, however the expressions are
not tractable. That is why we make Assumption 2:

Assumption 2. For the construction of the Vietoris-Rips
complex based on a binomial point process, we use the uniform
norm.

For x ∈ Tda of elements (x1, . . . , xd) the uniform norm of
x is:

‖x‖∞ = max{|x1|, . . . , |xd|}.

Then we can use the results presented in [19]:

Theorem 9 ( [19]). Let k ≥ 1 be an integer. The expectation
and variance of the number of k-simplices in a Vietoris-Rips
complex based on a binomial point process of n = s0 points
on the torus Tda are:

E [sk−1] =

(
n

k

)
θk−1kd (1)

V [sk−1] =

k+1∑
i=1

(
n

2k − i

)(
2k − i
k

)(
k

i

)

θ2k−i−1

(
2k − i+ 2

(k − i)2

i+ 1

)d
. (2)

For a better reading we will denote by n the number of
points of the binomial point process, that is equal to s0 the
number of 0-simplices of the abstract simplicial complex.
Throughout this section we will investigate the almost sure
asymptotic behavior of the size of the largest simplex K and
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the complexity of the reduction algorithm when n tends to
infinity and with respect to the distribution of the n points
according to a binomial point process.

Definition 11. We say that the property P is true asymptoti-
cally almost surely if P[P true]→ 1 when n tends to infinity.

B. Percolation regimes

One can easily see that the number K that is the size of the
largest simplex in a complex is the equivalent of the clique
number C in a graph. More precisely we have that K = C−1,
since a k-simplex has k+1 points. Moreover the Vietoris-Rips
complex is by definition the clique complex of the geometric
graph. Then the Vietoris-Rips complex based on a binomial
point process is the clique complex of the random geometric
graph. That is why we use the same percolation regimes to
study K as the ones described for random geometric graphs.
For further reading random geometric graphs and the definition
of percolation regimes, see [20]. We show in Figure 8 the three
different percolation regimes.
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Fig. 8. Percolation regimes

The percolation regimes are defined with the use of the
Bachman-Landau notations that we define here. For non-
negative functions f and g we write as n tends to infinity:

• f(n) = o(g(n)) if for every ε > 0 there exists M such
that for n ≥ M , we have f(n) ≤ εg(n). We say that f
is dominated by g asymptotically.

• f(n) = O(g(n)) if there exists k > 0 and M such that
for n ≥ M , we have f(n) ≤ kg(n). We say that f is
bounded by g asymptotically.

• f(n) ∼ g(n) if f(n) = O(g(n)) and g(n) = O(f(n)).
We say that f and g are equal asymptotically.

• f(n) � g(n) if f(n)
g(n) = o(1). We say that f is small

compared to g asymptotically.

C. Subcritical regime

In this subsection, we consider that θ = o( 1
n ). In the

subcritical regime, the Vietoris-Rips complex is composed of
various disconnected components. We can see an example of
a Vietoris-Rips complex in the subcritical regime in Figure 9.

Therefore the size of the largest simplex K is expected to
be rather small, n-simplices do not exist in this regime. That
is why we focus on the number of k-simplices sk for k ≥ 1
small compared to n, i.e. k � n.

We are able to derivate approximations from Theorem 9:

0 1 2 3 4 5 6
0

1

2

3

4

5

6

Fig. 9. Subcritical regime θ = o( 1
n
)

Lemma 2. For k ≥ 1 and k � n in the subcritical regime,

E [sk] ∼ nk+1

(k + 1)!
θk(k + 1)

d

V [sk] ∼ nk+1

(k + 1)!
θk(k + 1)

d
.

Proof. This is a direct consequence of the subcritical regime
hypothesis applied to Equations 1 and 2.

Meanwhile, in the subcritical regime, the random geometric
graph shares similar properties with the Erdös-Rényi model,
that is the graph with n points where each edge is chosen
independently with probability p. The clique number of the
Erdös-Rényi graph has been studied first in [29], and its almost
sure behavior has been described in [30]:

Theorem 10 ( [30]). Let us define nk ∼ p−k/2 and n′k ∼ (1+
3 log k
k )p−k/2. When n goes to infinity, with a fixed probability

p, for almost every graph, there is a constant c such that if
n′k ≤ n ≤ nk+1 for some k > c, then the clique number is
K = k.

That means that the size of the largest simplex K grows
slowly step by step as the number of points n goes to infinity.
We find similar results for the Vietoris-Rips complex:

Theorem 11. Let k be a non zero integer and η a strictly
positive real number. We then define:

θ′k =

(
(k + 1)!(k + 1)

1+η−d

nk+1

)1/k

θk =

(
(k + 1)!(k + 1)

−(1+η+d)

nk+1

)1/k

.

Then for k � n and θ′k < θ < θk+1 in the subcritical regime,
the size of the largest simplex in a Vietoris-Rips complex based
on a binomial point process of n points on the torus Tda is
asymptotically almost surely:

K = k.
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Proof. For θ > θ′k, thanks to the approximations of Lemma 2
we have:

E [sk] ≥ nk+1

(k + 1)!
θ′kk (k + 1)

d
= (k + 1)

1+η
.

And for θ < θk,

E [sk] ≤ nk+1θkk(k + 1)
d

= (k + 1)
−(1+η)

.

Moreover, for k � n when n goes to infinity, we consider n
large enough so that n > k!kk(1+2η). Since kk > (k + 1)

k−1

for all k ≥ 1, we have:

n > kk(1+2η)k!

⇒ n > kk(1+η−d)kk(η+d)k!

⇒ n > kk(1+η−d)(k + 1)
(k−1)(η+d)

k!

⇒ n > kk(1+η−d)(k + 1)
(k−1)(1+η+d) 1

(k + 1)
k−1 k!

⇒ n > kk(1+η−d)(k + 1)
(k−1)(1+η+d) (k!)

k

((k + 1)!)
k−1

⇒ n
1

k(k−1) >
(k1+η−dk!)

1/(k−1)

((k + 1)
−(1+η+d)

(k + 1)!)
1/k

⇒ n
k
k−1

n
k+1
k

>
(k1+η−dk!)

1/(k−1)

((k + 1)
−(1+η+d)

(k + 1)!)
1/k

⇒ θk > θ′k−1.

We can now consider θ such that θ′k < θ < θk+1.
On the one hand, we find an upper bound for the probability

of the non-existence of k-simplices:

P[sk = 0, θ > θ′k] ≤ V [sk]

E [sk]
2 ∼

1

E [sk]
≤ 1

(k + 1)
1+η .

On the other hand, we can find an upper bound for the
probability of existence of (k + 1)-simplices:

P[sk+1 > 0, θ < θk+1] ≤ E [sk+1] ≤ 1

(k + 2)
1+η .

Finally we have:

P[∃θ, θ′k < θ < θk+1,K 6= k]

<
1

(k + 1)
1+η +

1

(k + 2)
1+η .

As the sum
∑∞
k=1 k

−(1+η) converges, the Borel-Cantelli
theorem implies that with the exception of finitely many k’s,
for all θ such that θ′k < θ < θk+1, one has K = k. Then when
n goes to infinity, we have asymptotically almost surely that
K = k as n goes to infinity:

P[K = k, θ′k < θ < θk+1]
n→∞−−−−→ 1,

concluding the proof.

Finally we can conclude on the complexity of the reduction
algorithm in this regime:

Theorem 12. The reduction algorithm described in Alg. 1 for
a Vietoris-Rips complex based on a binomial point process of

n points on the torus Tda in the subcritical regime such that
θ = o( 1

n ), has a complexity in:

O(n3k0+7).

Proof. This is a direct consequence of Corollary 7 and
Theorem 11 as the first part of the complexity becomes
preponderent.

D. Critical regime

We now consider that θ ∼ 1
n so that the abstract simplicial

complex is in the critical regime. In this regime, percolation
occurs: the disconnected components begin to connect into
one sole connected component. We can see an example of a
Vietoris-Rips complex in the critical regime in Figure 10.
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Fig. 10. Critical regime θ ∼ 1
n

The size of the largest simplex K is still rather small
compared to n as n goes to infinity, n-simplices still do not
exist in this regime. This allows us to focus on the number
of k-simplices sk for k ≥ 1 bounded by n asymptotically, i.e.
k = O(n).

We are able to derivate new approximations from Theorem
9 in this regime:

Lemma 3. For k ≥ 1 and k = O(n) in the critical regime,

E [sk] ∼ 1√
2π
n(k + 1)

d−k+ 1
2

V [sk] ∼ 1√
2π
n(k + 1)

d−k+ 1
2 .

Proof. The expectation approximation is a direct consequence
of Equation 1, the critical regime approximation θ ∼ 1

n and
Stirling’s approximation: n! ∼

√
2πn

(
n
e

)n
.

Then, since k = O(n), we can approximate the variance by
its dominating term in Equation 2 that is i = k that leads to
V [sk] ∼ E [sk].

We then derive from these approximations, the almost sure
asymptotical behavior of the size of the largest simplex K:
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Theorem 13. In the critical regime, the size of the largest
simplex in a Vietoris-Rips complex based on a binomial point
process of n points on the torus Tda, grows asymptotically al-
most surely slower than lnn with an arbitrary small distance.
That means that for all η strictly positive real number:

(lnn)
1−η

< K < lnn.

Proof. First for k > lnn, we find an upper bound for
the expectation of the number of k-simplices thanks to the
approximation of Lemma 3:

E [sk] <
1√
2π
n(lnn+ 1)

d+ 1
2−lnn.

One can easily check that this upper bound tends to 0 as n goes
to infinity. Then, since P[sk > 0] ≤ E [sk], the probability that
there exists k-simplices tends to 0:

P[K > k] = P[sk > 0]
n→∞−−−−→ 0 ∀k > lnn,

and K < lnn asymptotically almost surely.
On the other hand, for k < (lnn)

1−η for all η > 0, we find a
lower bound for the expectation of the number of k-simplices:

E [sk] >
1√
2π
n((lnn)

1−η
+ 1)

d+ 1
2−(lnn)

1−η

.

This lower bound tends to infinity as n grows. Thanks to the
asymptotic equivalence of the variance and the expectation of
the number of k-simplices, we have that P[sk = 0] ≤ 1

E[sk]
,

and the probability that there exists no k-simplices tends to
infinity:

P[K < k] = P[sk = 0]
n→∞−−−−→ 0 ∀k < (lnn)

1−η
,

and K > (lnn)
1−η asymptotically almost surely.

We can now derive the complexity of the reduction algo-
rithm in the critical regime:

Theorem 14. The reduction algorithm described in Alg. 1 for
a Vietoris-Rips complex based on a binomial point process of
n points on the torus Tda in the critical regime such that θ ∼ 1

n
has a complexity in:

O(nlnn).

Proof. The complexity from Corollary 7 is O(n3k0+7 +
nk0+3

∑K
k=k0+1

(
n
k+1

)
). Then Theorem 13 gives us an approx-

imation for K.
Since lnn < n

2 for every n ≥ 2, the preponderent term of
the sum is

(
n

lnn

)
that can only be upper bounded by nlnn.

E. Supercritical regime

In the supercritical regime, we have that 1
n = o(θ). Percola-

tion has occurred: the Vietoris-Rips complex is now connected
and tends to become the complete complex, I.e. the complex
with all simplices by analogy with the complete graph. We
can see an instance of a Vietoris-Rips complex in this regime
in Figure 11.

0 1 2 3 4 5 6
0

1

2

3

4

5

6

Fig. 11. Supercritical regime 1
n

= o(θ)

In the supercritical regime, it is no more possible to obtain
approximations from the exact formulas of Theorem 9 since
K becomes equivalent to n as they tend to infinity.

However, the behavior of the size of the largest simplex for
a binomial point process has already be studied by Appel and
Russo in [26] as the clique number of a random geometric
graph. They first find the almost sure asymptotic rate for the
maximum vertex degree. Then by squeezing the clique number
between two values of the maximum vertex degree, they
obtain its asymptotic behavior. We propose here an alternative
approach.

First, we state a fact true in any percolation regime:

Lemma 4. In a Vietoris-Rips complex based on a binomial
point process of n points we always have that:

n ≤ (K + 1)d1
θ
e.

Proof. Let us consider a lattice square grid of spacing r, the
parameter of the Vietoris-Rips complex, on the torus Tda. Then
the number of little squares of side r is:

d
(a
r

)d
e = d1

θ
e.

All points that lie inside a same little square of side r are
connected to each other, and are in the same simplex, by
definition of the Vietoris-Rips complex. The number K is the
size of the largest simplex, so there are at most K + 1 points
in the same square.

The sum on all the squares concludes the proof.

We can now write the main theorem for the behavior of K
in the supercritical regime:

Theorem 15. In the supercritical regime, the size of the largest
simplex in a Vietoris-Rips complex based on a binomial point
process of n points on the torus Tda grows asymptotically
almost surely as nθ:

K ∼ nθ.
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Proof. On the one hand, we know from Lemma 4 that n ≤
(K + 1)d 1θ e. Then as d 1θ e ≤

1
θ + 1, we have that:

K ≥ nθ

1 + θ
.

As n goes to infinity, θ tends to 0. Then we have asymptoti-
cally almost surely that:

K ≥ nθ.

On the other hand, by definition of the Vietoris-Rips com-
plex, a k-simplex occurs when k + 1 points are in the same
ball of diameter r. Without loss of generality, we can center
the ball on one of the point. Then we can write:

P[K > nθ] = P[snθ > 0]

= P[∃ x, |B(x,
r

2
)| ≥ nθ],

where x is a point of the binomial point process, and |B(x, r2 )|
counts the number of points of the process that lie in the ball
B(x, r2 ) centered in x of radius r

2 .
Let x1, . . . , xn denote the n points of the binomial point

process,

P[K > nθ] = P[∃ 1 ≤ i ≤ n, |B(xi,
r

2
)| ≥ nθ]

≤ P[

n⋃
i=1

|B(xi,
r

2
)| ≥ nθ]

≤
n∑
i=1

P[|B(xi,
r

2
)| ≥ nθ].

Then by stationarity of the binomial point process, we have:

P[K > nθ] ≤
n∑
i=1

P[|B(xi,
r

2
)| ≥ nθ]

≤ nP[|B(x1,
r

2
)| ≥ nθ].

The number of points in the ball B(x1,
r
2 ) follows a

binomial distribution of n − 1 points and of probability θ:
Binom(n−1, θ). Therefore Hoeffding’s inequality implies that:

P[K > nθ] ≤ nP[|B(x1,
r

2
)| ≥ nθ]

≤ nP[|B(x1,
r

2
)| ≥ (n− 1)(θ +

θ

n− 1
)]

≤ n exp (−2
θ2

n− 1
).

As this last upper bound tends to 0 as n tends to infinity, we
have asymptotically almost surely:

K ≤ nθ.

We are now able to derive the complexity of the reduction
algorithm in the supercritical regime:

Theorem 16. The reduction algorithm described in Alg. 1 for
a Vietoris-Rips complex based on a binomial point process of

n points on the torus Tda in the supercritical regime such that
1
n = o(θ) has a complexity in:

O(nk0+32n).

Proof. This is Corollary 8.

We can see that in this regime, we were not able to improve
the complexity via the behavior of K.

V. CONCLUSION

In this paper, we have presented a reduction algorithm
for abstract simplicial complexes. We apply this algorithm to
Vietoris-Rips complexes that can represent wireless networks
and their topology, it then provides a solution for energy saving
in redundant wireless networks.

We have proved that our reduction algorithm maintains the
complex’s homology, works in an optimal order for compu-
tation’s complexity, and reaches an optimal solution. Finally
we have investigated its complexity depending on the size of
the input, and in a second approach depending only on the
number of points.
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