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Reduction Algorithm for Random Abstract

Simplicial Complexes
Anaïs Vergne, Laurent Decreusefond, Philippe Martins, Senior Member, IEEE

Abstract

In this paper, we present a reduction algorithm for abstract simplicial complexes that we apply to Vietoris-Rips complexes
based on random point processes. Our algorithm aims at reducing the number of simplices of an abstract simplicial complex
without modifying its topology, i.e. its Betti numbers. The vertices are removed in an optimal order for the abstract simplicial
complex implementation complexity. Some mathematical properties of the reduction algorithm and its resulting abstract simplicial
complex are derived. Then the complexity of the algorithm is investigated: we are reduced to compute the behavior of the size of
the largest simplex in the abstract simplicial complex, which is known in graph theory as the clique number. We find its asymptotic
behavior when the number of vertices goes to infinity depending on the percolation regime for the underlying random geometric
graph on the torus.

Index Terms

Simplicial homology, random configurations, reduction algorithm.

I. INTRODUCTION

A
LGEBRAIC topology is the field of mathematics that uses algebraic tools to study topological properties of spaces.

Simplicial homology is the branch of algebraic topology dealing with topological spaces made up of k-simplices, the

k-dimensional counterparts of triangles. First developed for the classification of manifolds, it is now heavily used in image

processing and geometric data analysis. More recently, simplicial homology representation for wireless sensor networks was

initiated in [1]. Consider a set of sensors deployed in a bounded domain of the plane, which can monitor some aspects

(temperature, humidity, intrusion, etc) inside a limited region around each of them. The coverage problem is then to know

whether the domain is fully monitored by the sensor network, which holds if there is no coverage hole. First, simplicial

homology provides a mathematical tool to represent the wireless sensor network by the union of coverage disks centered on

each sensor via the C̆ech complex. The method consists in calculating from the geometric data, a combinatorial object known

as the simplicial complex. Basically an abstract simplicial complex is a list of vertices, edges, triangles, tetrahedra, etc, called

k-simplices, satisfying one condition: every subset of a k-simplex of the complex must be in the list of l-simplices, l < k,

of the complex. Then algebraic topology gives a way to compute the number of coverage holes in a simplicial complex. An

algebraic structure on the list of simplices and linear maps between them are build. Some of the topological properties, such

as the number of connected components and the number of coverage holes, are then given by the dimension of some quotient

vector spaces: the so-called Betti numbers.

The coverage of a wireless sensor network is computed via homology in [1], [2]. However, the computational time can

explode with the size of the simplicial complex. Persistent homology provides a way to compute the Betti numbers while

avoiding the combinatorial explosion, as seen in [3]–[5]. Another way to avoid the combinatorial explosion is to reduce the

size of the simplicial complex. For example, in [6], [7], the authors use reduction of chain complexes in order to compute

the homology groups and the Betti numbers. Witness complexes are another example of simplicial complexes reduction: the

simplicial complex is reduced to a given number of vertices in order to compute the various topological invariants, such as

the Betti numbers. So reduction of a simplicial complex has been used in order to compute its homology. We intend to do the

opposite: reduction of the simplicial complex become the aim, while the homology computation is the mean to do it.

In this paper, we present a reduction algorithm for abstract simplicial complexes: vertices are removed one by one from

an abstract simplicial complex while its topology remains intact. The order in which the vertices are removed is such that

the complexity of the abstract simplicial complex implementation is reduced as much as possible. When a vertex is removed

from a simplicial complex, all the simplices it is a face of are subsequently removed. The algorithm and its properties are

presented here for a particular random abstract simplicial complexes: the Vietoris-Rips complex built on either a binomial or

a Poisson point process. However it can be applied to any type of abstract simplicial complexes. We show that the algorithm

reaches a local optimum solution and we exhibit both an upper and a lower bound for the number of removed vertices. We

also provide some characteristics of the resulting abstract simplicial complex. Finally we investigate the complexity of our

reduction algorithm. We show that it depends on the size of the largest simplex of the abstract simplicial complex of which

we compute the almost sure asymptotical behavior on the torus.
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This is the first reduction algorithm for abstract simplicial complexes that uses homology to reduce the complex that we

know of. The reduction problem can be seen as a dominating graph problem [8]. However, since there is no notion of coverage

in graphs, algorithm for the dominating graph problem do not maintain the topology of the initial simplicial complex. Our

problem has also been studied under a game-theoretic approach in [9], where authors define a coverage function. But they

can only identify sub-optimal solutions that do not guarantee an unmodified coverage. When computing the complexity of the

algorithm, we are reduced to compute the behavior of the size of the largest simplex, which is known as the clique number

in graph theory. The clique number of the random geometric graph has been heavily studied in the literature, and its behavior

described according to percolation regimes in [10]. In [11], the authors proved that monotone properties of random geometric

graphs, such as the connectivity of the graph, have sharp thresholds. In [12], then in [13] for a weaker assumption, the authors

prove a conjecture of Penrose [10] stating that, in the subcritical regime, the clique number becomes concentrated on two

consecutive integers, as in the Erdös-Rényi model cf. [14]. Moreover, in the subcritical regime, weak laws of large numbers

[15] and central limits theorems [16] have been found by Penrose and Yukich for some functionals, including the clique

number, in random geometric graphs. Then in the supercritical regime, using the uniform norm, Appel and Russo [17], were

able to find strong laws for the maximum vertex degree and for cliques. In particular, they found the behavior of the clique

number in the supercritical regime via the behavior of the maximum vertex degree.

The remainder of the paper is organized as followed. First in Section II, we remind some simplicial homology and random

configurations definitions and properties. Then the reduction algorithm is described in Section III, while its properties are

exposed in Section IV. Finally the complexity of the algorithm is investigated in Section V.

II. PRELIMINARIES

A. Simplicial homology

For further reading on algebraic topology, see [18]. Graphs can be generalized to more generic combinatorial objects known as

simplicial complexes. While graphs model binary relations, simplicial complexes represent higher order relations. A simplicial

complex is a combinatorial object made up of vertices, edges, triangles, tetrahedra, and their n-dimensional counterparts. Given

a set of vertices V and an integer k, a k-simplex is an unordered subset of k + 1 vertices [v0, v1 . . . , vk] where vi ∈ V and

vi 6= vj for all i 6= j. Thus, a 0-simplex is a vertex, a 1-simplex an edge, a 2-simplex a triangle, a 3-simplex a tetrahedron,

etc. See Fig. 1 for instance.

0-simplex 1-simplex 2-simplex

Fig. 1. Example of k-simplices.

Any subset of vertices included in the set of the k+1 vertices of a k-simplex is a face of this k-simplex. Thus, a k-simplex

has exactly k+1 (k− 1)-faces, which are (k− 1)-simplices. For example, a tetrahedron has four 3-faces which are triangles.

The inverse notion of face is coface: if a simplex S1 is a face of a larger simplex S2, then S2 is a coface of S1. A simplicial

complex is a collection of simplices which is closed with respect to the inclusion of faces, i.e. all faces of a simplex are in

the set of simplices, and whenever two simplices intersect, they do so on a common face. An abstract simplicial complex is a

purely combinatorial description of the geometric simplicial complex and therefore does not need the property of intersection

of faces.

One can define an orientation for an abstract simplicial complex, where a change in the orientation corresponds to a change

in the sign of the coefficient. For instance if one swaps vertices vi and vj :

[v0, . . . , vi, . . . , vj , . . . , vk] = −[v0, . . . , vj , . . . , vi, . . . , vk].

Then let us define vector spaces of k-simplices and a boundary map on them:

Definition 1: Given an abstract simplicial complex X , for each integer k, Ck(X) is the vector space spanned by the set of

oriented k-simplices of X .

Definition 2: The boundary map ∂k is defined to be the linear transformation ∂k : Ck → Ck−1 which acts on basis elements

[v0, . . . , vk] of Ck via

∂k[v0, . . . , vk] =

k
∑

i=0

(−1)i[v0, . . . , vi−1, vi+1, . . . , vk].
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The boundary map on any k-simplex, is the cycle of its (k − 1)-faces. This map gives rise to a chain complex: a sequence

of vector spaces and linear transformations.

. . .
∂k+2−→ Ck+1

∂k+1−→ Ck
∂k−→ Ck−1

∂k−1−→ . . .
∂1−→ C0

∂0−→ 0.

Finally let us define:

Definition 3: The k-th boundary group of X is Bk(X) = im ∂k+1.

Definition 4: The k-th cycle group of X is Zk(X) = ker ∂k.

The boundary map applied to a cycle gives the cycle of this cycle which is zero as can be seen in Fig. 2. Therefore a

standard result asserts that for any integer k,

∂k ◦ ∂k+1 = 0.

It follows that Bk ⊂ Zk.

v0

v1

v2

[v0, v1, v2] ∂2−→

v0

v1

v2

[v0, v1] + [v1, v2]

+[v2, v0]

∂1−→

v0

v1

v2

v1 − v0 + v2 − v1

+v0 − v2 = 0

Fig. 2. Application of the boundary map to a 2-simplex.

We are now able to define the k-th homology group and its dimension:

Definition 5: The k-th homology group of X is the quotient vector space:

Hk(X) =
Zk(X)

Bk(X)
.

Definition 6: The k-th Betti number of X is the dimension:

βk = dimHk = dimZk − dimBk.

We can compute the Betti numbers in a simple case as an example. Let X be the abstract simplicial complex made up of 5
vertices [v0], . . . , [v4], 6 edges [v0, v1], [v0, v2], [v1, v2], [v1, v4], [v2, v3] and [v3, v4], and one triangle [v0, v1, v2] represented

in Fig. 3.

v0

v1

v2
v3

v4

Fig. 3. A geometric representation of X .

The boundary maps associated to the abstract simplicial complex X are easy to obtain in matrix form:

∂1 =













v0v1 v0v2 v1v2 v1v4 v2v3 v3v4

v0 −1 −1 0 0 0 0
v1 1 0 −1 −1 0 0
v2 0 1 1 0 −1 0
v3 0 0 0 0 1 −1
v4 0 0 0 1 0 1













,
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∂2 =

















v0v1v2

v0v1 1
v0v2 −1
v1v2 1
v1v4 0
v2v3 0
v3v4 0

















.

The boundary map ∂0 is the null function on the set of vertices. Then we can compute the Betti numbers:

β0(X) = dimker ∂0 − dim im ∂1

= 5− 4

= 1

β1(X) = dimker ∂1 − dim im ∂2

= 2− 1

= 1

B. Model

In this paper, we apply our reduction algorithm to Vietoris-Rips complexes based on a random point process that we define

here. Let us first denote by T
d
a the torus of side a in dimension d. The space of configurations on T

d
a, is the set of locally

finite simple point measures (see [19] for details):

ΩX =

{

ω =

n
∑

k=1

δ(xk) : (xk)
k=n
k=1 ⊂ X, n ∈ N ∪ {∞}

}

,

where δ(x) denotes the Dirac measure at x ∈ T
d
a. It is often convenient to identify an element ω of ΩX with the set

corresponding to its support, i.e.
∑n

k=1 δ(xk) is identified with the unordered set {x1, . . . , xn}. For A ∈ B(X), we have

δ(x)(A) = 1[A](x), so that

ω(A) =
∑

x∈ω

1[A](x),

counts the number of atoms in A. Simple measure means that ω({x}) ≤ 1 for any x ∈ X . Locally finite means that ω(K) < ∞
for any compact K of X . The configuration space ΩX is endowed with the vague topology and its associated σ-algebra denoted

by FX .

Here, the set of points of the Vietoris-Rips complex is represented by a random point process: binomial or random:

Definition 7 (Binomial point process): Let f be the uniform probability density function on the torus T
d
a, and n an integer.

Then a point process ω is a binomial point process of n points on T
d
a, if the following two conditions hold:

i) The process ω has n points,

ii) The vertices positions are drawn according to f independently of each other.

Definition 8 (Poisson point process): Let λ be a positive real number. Then a point process ω is a Poisson point process of

intensity λ on T
d
a if the following two conditions hold:

i) For any subset A of Td
a, the number of points of ω in A has a Poisson distribution with parameter λ‖A‖

Pr(ω(A) = k) = eλ‖A‖ (λ‖A‖)k
k!

,

ii) For any disjoint subset A, A′ of Td
a, the random variables ω(A) and ω(A′) are independent.

Conditionally to the number of points, the points of a Poisson point process are drawn uniformly, that is to say according

to f independently of each other. So the difference between a binomial and a Poisson point process lies in the fact that the

number of points is set in the first one and drawn in the second one.

Given a set of points randomly drawn, we can now define the Vietoris-Rips complex which vertices are the set of points:

Definition 9 (Vietoris-Rips complex): Given (X, d) a metric space, ω a finite set of points in X , and r a real positive

number. The Vietoris-Rips complex of parameter r of ω, denoted Rr(ω), is the abstract simplicial complex whose k-simplices

correspond to unordered (k + 1)-tuples of vertices in ω which are pairwise within distance less than 2r of each other.
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III. REDUCTION ALGORITHM

In this section, we present the reduction algorithm which provides which vertices and associated simplices may be removed

from an abstract simplicial complex without altering its topology. We use algebraic topology in order to compute the complex

topology, but we also use this information to have the order in which we can remove the vertices so that the computation

complexity is reduced as much as possible.

The algorithm needs two inputs. First it needs the abstract simplicial complex, with all its simplices specified. With only an

abstract simplicial complex, the optimal reduction with no modification in the homology will always be to reduce the complex

to a simple vertex. That is why the algorithm needs as a second input a list of vertices of the abstract simplicial complex that

have to be kept by the reduction algorithm. We call these vertices critical vertices. Then the algorithm removes non-critical

vertices and their faces one by one from the simplicial complex without changing its homology, i.e. its Betti numbers. At

the end, we obtain a final simplicial complex, and a list of removed vertices. In this paper we reduce our examples to the

Vietoris-Rips complex, even though the algorithm works with any abstract simplicial complex.

There are as many nonzero homology groups, hence nonzero Betti numbers, as sizes of simplices in the abstract simplicial

complex. Therefore it is possible to define different algorithms following the number of Betti numbers that have to be kept

unchanged. We will denote by k0 the number of Betti numbers that the algorithm takes into account.

In dimension d, for the Vietoris-Rips complex there are d Betti numbers that have a relevant geometric meaning. For

simulations reasons we restrict our examples to maximum two dimensions. So in one dimension, the reduction algorithm can

only consider one Betti number, whereas in two dimensions the algorithm can maintain only connectivity, or both connectivity

and coverage.

Let us now define the full domain hypothesis when the reduction algorithm is applied a Vietoris-Rips complex in two or

less dimensions:

Definition 10 (Full domain hypothesis): In dimension d ≤ 2, we define if k0 = d, for a C̆ech or a Vietoris-Rips complex

with β0 = 1 and, if k0 = 2, β1 = 0, the full domain hypothesis which holds when all the vertices of the abstract simplicial

complex lie within the same geometric domain defined by the critical vertices.

In one dimension, this means that the critical vertices are two extremity vertices and all other vertices have to be in the

same path linking the two critical vertices.

In two dimensions, this means that the critical vertices are boundary vertices and all other vertices have to lie in the area

defined by the critical vertices.

We can note that it is always possible to satisfy the full domain hypothesis by removing, before the reduction algorithm, all

vertices not in the path defined by the critical vertices for the connectivity algorithm in one dimension, or not lying in the

convex hull of the critical vertices in two dimensions.

A. Degrees

The first step of the algorithm is the calculation of a number, which we call the degree, that we define for every k0-simplex,

where k0 is the number of Betti numbers to be kept unchanged. To connect vertices, we only need 1-simplices, and to cover an

area, we only need 2-simplices. Generalizing this idea, we have that we only need k0-simplices to maintain k0 Betti numbers.

And larger simplices, i.e. simplices with more than k0 + 1 vertices, are superflous for the k0-th homology (first k0 Betti

numbers). We intend to characterize the superfluousness of k0-simplices with the following definition of degree:

Definition 11: For k0 an integer, the degree of a k0-simplex [v0, v1, . . . , vk0
] is the size of its largest coface:

D[v0, v1, . . . , vk0
] = max{d | [v0, v1, . . . , vk0

] ⊂ d-simplex}.

By definition we have D[v0, v1, . . . , vk0
] ≥ k0.

For the remainder of the thesis, let sk(X), or sk, be the number of k-simplices of the simplicial complex X . Let D1, . . . , Dsk0
denote the sk0

degrees of a simplicial complex; they are computed according to Algorithm 1.

Algorithm 1 Degree calculation

for i = 1 → sk0
do

Get (v0, . . . , vk0
) the vertices of the i-th k0-simplex

k = k0
while (v0, . . . , vk0

) are vertices of a (k + 1)-simplex do

k = k + 1
end while

Di = k
end for

return D1, . . . , Dsk0
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We can see an example of values of the degree for 2-simplices in Fig. 4: The degree of an alone 2-simplex is 2, when it is

the face of 3-simplex it becomes 3.

v0

v1

v2

D[v0, v1, v2] = 2

v0

v1

v2 v3

D[v0, v1, v2] = 3

Fig. 4. Example of values of the degree for 2-simplices

B. Indices

In order to reduce the abstract simplicial complex, we need to remove k-simplices for any k, including k < k0. So, we

remove the smallest simplices: 0-simplices, i.e. vertices, and their faces are subsequently removed. That is why we bring

the superfluousness information of the k0-simplices down to the vertices with an index. We consider a vertex sensitive if its

removal leads to a change in the Betti numbers of the simplicial complex. Since a vertex is as sensitive as its most sensitive

k0-simplex, the index of a vertex is the minimum of the degrees of the k0-simplices it is a vertex of:

Definition 12: The index of a vertex v is the minimum of the degrees of the k0-simplices it is a vertex of:

I[v] = min{D[v0, v1, . . . , vk0
] | v ∈ [v0, v1, . . . , vk0

]},

If a vertex v is not a vertex of any k0-simplex then I[v] = 0.

Let v1, v2, . . . , vs0 be the vertices of the simplicial complex, the computation of the s0 indices is done as shown in Algorithm

2.

Algorithm 2 Indices computation

for i = 1 → s0 do

I[vi] = 0
for j = 1 → sk0

do

if vi is vertex of k0-simplex j then

if I[vi] == 0 then

I[vi] = Dj

else

I[vi] = min{I[vi], Dj}
end if

end if

end for

end for

return I[v1], . . . , I[vs0 ]

We can see in Fig. 5 an example of index values in a simplicial complex. Vertices of a k0-simplex are more sensitive than

vertices of only largest simplices.

The index of a vertex is then an indicator of the density of vertices around the vertex: an index of k0 indicates that at least

one of its k0-coface has no (k0 + 1)-cofaces, whereas a higher index indicates that each one of its k0-cofaces is the face of

at least one larger simplex. The main idea of the algorithm is thus to remove the vertices with the greatest indices.

Remark 1: An index of 0 indicates that the vertex has no k0-coface: the vertex is isolated up to the k0-th degree. For k0 = 1,

that means that the vertex is disconnected from any other vertices. For k0 = 2, the vertex is only linked to other vertices by

edges, therefore it is inside a coverage hole. Under the full domain hypothesis, these vertices should not exist.
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v0

v1

v2 v3

v4

D[v0, v1, v2]=D[v0, v1, v3]=D[v0, v2, v3]=D[v1, v2, v3]=3

D[v1, v3, v4] = 2

I[v0]=I[v2]=3 and I[v1]=I[v3]=I[v4]=2

Fig. 5. Example of values of the indices of vertices in a simplicial complex

C. Optimized order for vertices removal

The algorithm now removes vertices from the initial abstract simplicial complex following an optimized order for the

topology computation complexity. Indeed the computation of the Betti numbers as well as the implementation of the abstract

simplicial complex can have their complexity explode with the size of the abstract simplicial complex. The removal of a vertex

leads to the removal of all the simplices it is a face of. So the removal of a vertex with many k0-faces leads to a significant

decrease first in the complexity of the k0-simplices degrees computations, then in the complexity of the Betti number βk0−1

computation, since the boundary map ∂k0
size decreases, but also in the abstract simplicial complex implementation itself.

Indeed, an abstract simplicial complex is implemented via the list of all its simplices.

We begin by computing the first k0 Betti numbers. Then the degrees of all the k0-simplices and the indices of all the vertices

are computed as explained in the previous section. The critical vertices of the input list are given a negative index, to flag

them as unremovable. Then the indices give us an order for the removal of vertices: the greater the index of a vertex, the

more likely it is superfluous for the k0-th homology of its simplicial complex. Therefore, the vertices with the greatest index

are candidates for removal: one is chosen randomly. The removal of a vertex leads to the degradation of all its k-faces to

(k − 1)-simplices for every integer k ≥ 1.

At every vertex removal, we need to ensure that the homology is unchanged. We compute the first k0 Betti numbers thanks

to the boundary maps every time a vertex is removed. This computation is instantaneous since the complex is already built,

and only adjacency matrices defining the complex are needed. If the removal changes the homology, the vertex is put back in

the simplicial complex. Moreover its index is assigned a temporary negative value so that the vertex is not candidate for the

following draw. The temporary values are recalculated at the next effective removal of a vertex.

Otherwise, if the removal does not change the homology, the removal is confirmed. And the modified degrees of the k0-

simplices and the indices of the vertices are recalculated. We can note that only the vertices of maximum index can have their

indices changed, as explained in Lemma 1. Moreover, in order to improve the algorithm performance it is possible to only

compute the modified degrees of k0-simplices. It suffices to flag the k-simplices, k > k0, which are the largest cofaces of

k0-simplices. Then when one of them is degraded, the degrees of its k0-faces are decreased by one.

Lemma 1: When a vertex of index Imax is removed, only the vertices sharing an Imax-simplex with it, and of index Imax

can have their index changed.

Proof: Let w be the removed vertex of index Imax, and v any vertex of the simplicial complex.

If v does not share any simplex with w, none of the degrees of its k0-simplex will change, and neither will its index.

Thus let us consider that the maximum common simplex of v and w is a k-simplex. If k < k0, then the removal of w and

this k-simplex has no incidence at all on the degree of v by definition. Next, if k0 ≤ k < Imax then w has an index k < Imax,

which is absurd. We can thus assume that k ≥ Imax. Either the index of v is strictly less than Imax and thus comes from a

simplex not shared with w, therefore it is unmodified by the removal of w. Or if the index of v is Imax, it either still comes

from a Imax-simplex not shared with w and remains unmodified, or it comes from a common Imax-simplex. This latter case

is the only case where the index of v can change.

The algorithm goes on removing vertices until every remaining vertex is unremovable, thus achieving optimal result. Every

vertex is unremovable when all indices are strictly below k0. By the definition of indices, that means when all indices are

equal to zero or negative (temporarily or not). Some things can be refined with the full domain hypothesis in the wireless

sensor network application case. First the stopping condition can be improved to Imax being strictly greater than k0:

Lemma 2: Under the full domain hypothesis, the algorithm can stop when all vertex indices are below or equal to k0.

Proof: Let us suppose the input data satisfies the full domain hypothesis. Let v be a vertex of index I(v) = k0, which

means that at least one of its k0-cofaces has no (k0 + 1)-coface. The removal of this vertex would lead to the removal of this

particular k0-simplex. Since we need to maintain the homology on the entire simplicial complex that is defined by the critical

vertices without shrinking its covered domain, this would lead to a k0-dimensional hole, and an increment of βk0−1.

For the connectivity algorithm, the removal of an edge which is not the side of a triangle leads to a disconnectivity in the

path linking the critical vertices. For the coverage algorithm, the removal of a triangle which is not the face of a tetrahedron
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leads to the creation of a coverage hole inside the area defined by the critical vertices.

Then under the full domain hypothesis in the wireless sensor network application, all temporarily unremovable vertices

(negative index vertices) stay unremovable:

Lemma 3: Under the full domain hypothesis, when the removal of a vertex modify the homology, it will always modify it.

Proof: In the full domain hypothesis, the distance between the extremity vertices can not be decreased, or the covered

domain can not have its area decreased. Since the domain size is unchanged, as in the proof of Lemma 2, the removal of a

vertex that has led to a change in a Betti number will always lead to the same change.

We give in Algorithm 3 the whole algorithm for the conservation of the first k0 Betti numbers.

Algorithm 3 Reduction algorithm

Require: Simplicial complex X , list LC of critical vertices.

Computation of β0(X), . . . , βk0−1(X)
Computation of D1(X), . . . , Dsk0

(X)
Computation of I[v1(X)], . . . , I[vs0(X)]
for all v ∈ LC do

I[v] = −1
end for

Imax = max{I[v1(X)], . . . , I[vs0(X)]}
while Imax ≥ k0 do

Draw w a vertex of index Imax

X ′ = X\{w}
Computation of β0(X

′), . . . , βk0−1(X
′)

if βi(X
′) 6= βi(X) for some i = 0, . . . , k0 − 1 then

I[w] = −1
else

Computation of D1(X
′), . . . , Ds′

k0
(X ′)

for i = 1 → s′0 do

if I[vi(X
′)] == Imax then

Recomputation of I[vi(X
′)]

end if

if I[vi(X
′)] == −1 && vi /∈ LC then

Recomputation of I[vi(X
′)]

end if

end for

Imax = max{I[v1(X ′)], . . . , I[vs′
0
(X ′)]}

X = X ′

end if

end while

return X

D. Figures

We can see in Fig. 6 one realization of the connectivity algorithm on a Vietoris-Rips simplicial complex of parameter ǫ = 1
based on a Poisson point process of intensity λ = 4 drawn on a square of side length 4. The critical vertices are chosen at

random: a vertex is critical with probability pc = 0.5 independently from every other vertices. In the figure, critical vertices

are circled, while non-critical ones which are kept to maintain the connectivity between critical vertices are represented by

stars.

Then, we can see in Fig. 7 one realization of the coverage algorithm on a Vietoris-Rips complex of parameter ǫ = 1 based

on a Poisson point process of intensity λ = 4.2 drawn on a square of side length a = 2. To the vertices drawn with the

Poisson point process, we add a fixed boundary of vertices on the square perimeter. The critical vertices are then defined to be

the boundary vertices, thus we satisfy satisfying the full domain hypothesis for the coverage algorithm. The boundary/critical

vertices are circled on the figure.
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Fig. 6. A Vietoris-Rips complex before and after the connectivity algorithm.
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Fig. 7. A Vietoris-Rips complex before and after the coverage algorithm.

IV. PROPERTIES

The first property of our algorithm is that the reached solution is optimal. It may not be the optimum solution if there are

multiple optima but it is a local optimum. In game theory vocabulary that means that the algorithm reaches a Nash equilibrium:

Theorem 1 (Nash equilibrium): The reduction algorithm reaches a Nash equilibrium as defined in [9]: every vertex in the

final simplicial complex is needed to maintain its homology.
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Proof: In the final simplicial complex, every vertex is of index strictly smaller than k0 in the general case. By the definition

of the indices, we then differentiate two types of vertices: vertices of index −1 and 0.

First, negative indices are given to vertices to flag them as unremovable. Either a vertex is of negative index because it is

a critical vertex, in which case it is required to stay in the complex. Or a vertex is of negative index if its removal leads to a

change in the Betti numbers. Since there has been no other removal that has changed the complex, that fact is still true.

Then a vertex of null index is an isolated vertex. If it is isolated up to the k0-th degree, its removal will decrease the k0-th

Betti number. For example, the removal of a disconnected vertex would decrement β0. As well the removal of a vertex inside

of a hole would lead to the union of 2 or more holes.

Finally, if the input data satisfies the full domain hypothesis, the proof of Lemma 2 shows that the algorithm still reaches a

Nash equilibrium.

Secondly, we are able to find both a lower and an upper bound the number of removed vertices. The number of removed

vertices is at least one vertex removed by index value, and at most every vertex of non minimal index before the algorithm:

Theorem 2 (Upper and lower bounds): Let Ek be the set of vertices that have indices k before the algorithm. The number

of removed vertices M is bounded by:

Imax
∑

k=k0+1

1[Ek 6=∅] ≤ M ≤
Imax
∑

k=k0+1

|Ek|.

with |Ek| being the cardinality of Ek .

Proof: Let us begin with the upper bound. The maximum number of vertices the can be removed by the algorithm is the

number of vertices that initially have their index strictly greater than k0. This is an optimal upper bound since this number of

removed vertices is reached in the following case:

Let a k-simplex, with k > k0, be the initial abstract simplicial complex, and nC of its vertices be the initial critical vertices,

necessarily nC ≤ k+1. The nC critical vertices have negative indices, the k+ 1− nC other vertices have an index of k, and

they are all removed.

v0
I[v0] = 4

v1
I[v1] = −1

v2
I[v2] = −1

v3
I[v3] = 4

Before

v0

v1
I[v1] = −1

v2
I[v2] = −1

v3

After

Fig. 8. Example of this case with k = 3 and nC = 2, the two vertices v0 and v3 are removed by the algorithm.

For the lower bound, we have seen in Lemma 1 that the removal of a vertex of index Imax can only change the index

of vertices of index Imax. In the worst case, it decreases all indices Imax and the value of Imax changes, not necessarily to

Imax − 1 depending on the critical vertices. Thus we can see, that at least one vertex per index value can be removed, hence

the result.

The lower bound is reached in the previous case if nC = k.

Then if we use the following definition of a dominating set:

Definition 13 (Dominating set): As defined in [8], a set S ⊆ V of vertices of a graph G = (V,E) is called a dominating

set if every vertex v ∈ V is either an element of S or is adjacent to an element of S.

Under the full domain hypothesis, the final set of vertices is a dominating set of the initial set:

Theorem 3: In two dimensions for the coverage algorithm applied to a a Vietoris-Rips complex under the full domain

hypothesis, the set of remaining vertices of the final complex is a dominating set of the set of vertices of the initial complex.

Proof: Under the full domain hypothesis, initial vertices are all in the geometric domain defined by the critical vertices.

For the coverage algorithm that means that initial vertices lie in the area defined by the critical vertices. The homology of the

complex is unmodified by the algorithm therefore there is no coverage hole in the final complex. The area is still covered.

Then, each point of this area is inside a 2-simplex. This is true for every vertex of the initial complex, it is thus adjacent to

three remaining vertices.
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V. COMPLEXITY

In this section, we investigate the complexity of our algorithm for the Vietoris-Rips complex based on a binomial point

process. If we consider the number of vertices n = s0 to be the parameter, then the complexity of the implementation of the

abstract simplicial complex is potentially exponential. Indeed, the number of simplices in an abstract simplicial complex of

n vertices is at most 2n − 1. Therefore the data implementation is at most of complexity O(2n) compared to the number of

vertices n.

Theorem 4 (Complexity): The complexity of the algorithm to keep k0 Betti numbers for an abstract simplicial complex of

sk k-simplices and n = s0 vertices, is upper bounded by:

n2sk0
+ (n+ sk0

)

C−1
∑

k=0

sk

with C being the size of the largest simplex in the initial abstract simplicial complex.

Proof: At the beginning we suppose that the entry data is the simplicial complex represented by the list of all its simplices.

So all simplices are already implemented.

Let C − 1 be the size of the largest simplex in the abstract simplicial complex, C being known as the clique number of the

underlying graph.

For the computation of the degrees of every k0-simplex, the algorithm traverses at most all the k-simplices for k0 < k ≤ C−1
to check if the k0-simplex is included in it. Since there is sk k-simplices, that means that the degrees computation complexity

is upper bounded by sk0

∑C−1
k=k0+1 sk.

For the computation of the indices, the algorithm traverses, for every one of the n vertices, its k0-cofaces, which is at most

all the k0-simplices. The complexity of the computation of the indices has therefore an upper bound of nsk0
.

For the computation of the Betti numbers, we need to implement the boundary map matrices which are of sizes n× s1 and

s1× s2 respectively. These computations do not appear on the algorithm complexity since their complexity is strictly less than

the complexity of the computations of the degrees.

These three computations are done at the beginning of the algorithm. Then at each removal of vertices, at most n removed

vertices, the following is done:

• The simplices of the removed vertex are deleted: complexity which upper bound is
∑C−1

k=0 sk.

• The Betti numbers are recomputed via the adjacency matrices which already exist.

• The modified degrees are recomputed automatically with the deletions of simplices.

• The at most n− 1 modified indices are recomputed: complexity which upper bound is (n− 1)sk0
.

Remark 2: Since the simplicial complex is of size O(2n), the complexity of the algorithm is polynomial relatively to the

size of the input data.

One can easily see that the size of the largest simplex of a Vietoris-Rips complex based on a binomial point process is the

clique number of the underlying random geometric graph. And this parameter, denoted C, as one can see in the complexity

formula of Theorem 4, is of great importance in the complexity: it can make the latter go from polynomial to exponential.

That is why we investigate its behavior in more details.

In [20], the authors provide expressions for moments of random variables of the C̆ech complex by means of Malliavin

calculus. Thanks to their use of the uniform norm the so-called C̆ech complex is the exact same as the Vietoris-Rips complex.

Then we are able to apply the results of [20] to our case, especially in the expressions of the expectation and the variance of

the number of (k − 1)-simplices.

In order to use the results from [20], we first need to make a few assumptions:

1) First, we use the uniform norm to calculate the distance between two vertices. Note that [20] also provides the needed

results for the Euclidean norm, however their expressions are not as tractable as the ones for the uniform norm.

2) Let us take θ =
(

r
a

)d
, then we must have θ ≤

(

1
2

)d
. This insures that the graph is small on the torus, and that no vertex

is its own neighbor.

We can note that the parameter θ acts as a coverage parameter: if one puts vertices along a regular grid of side r, one needs
1
θ

vertices to cover the area of Td
a. These assumptions hold for the remainder of the section.

Thus, let Nk denote the number of (k − 1)-simplices. Then N1 = n is the number of vertices, and the results of [20] state

that:

Theorem 5 ( [20]): The expectation and variance of the number of (k− 1)-simplices, for k > 1, in a Vietoris-Rips simplex

based on a binomial point process on the torus T
d
a are given by:

E [Nk] =

(

n

k

)

kdθk−1, (1)
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and,

V [Nk] =

k
∑

i=1

(

n

2k − i

)(

2k − i

k

)(

k

i

)

θ2k−i−1

(

2k − i+ 2
(k − i)2

i+ 1

)d

. (2)

In this section, we are interested in the almost sure asymptotic behavior of the complexity of our algorithm as n tends to

infinity. Let us first define almost sure:

Definition 14: We say that G(n, r) asymptotically almost surely has property P if P[G(n, r) ∈ P ] → 1 when n tends to

infinity.

Then throughout this section, we use Bachman-Landau notations. For non-negative functions f and g we write as n tends

to infinity:

• f(n) = o(g(n)) if for every ǫ > 0 there exists n0 such that for n ≥ n0, we have f(n) ≤ ǫg(n). We say that f is

dominated by g asymptotically.

• f(n) = O(g(n)) if there exists k > 0 and n0 such that for n ≥ n0, we have f(n) ≤ kg(n). We say that f is bounded

by g asymptotically.

• f(n) ∼ g(n) if f(n) = O(g(n)) and g(n) = O(f(n)). We say that f and g are equal asymptotically.

• f(n) ≪ g(n) if
f(n)
g(n) = o(1). We say that f is small compared to g asymptotically.

We study the asymptotical behavior of the size of the largest simplex under percolation regimes: these regimes are defined

following the variations of θ compared to 1
n

.

A. Subcritical regime

In this subsection, we consider that θ = o( 1
n
). In the subcritical regime for the percolation, the Vietoris-Rips complex mainly

consists of disconnected components. The size of the largest simplex is small compared to the number of vertices n when the

latter tends to infinity. Therefore we can focus on k-simplices for k asymptotically small compared to n.

From the exact expressions we had from [20], we can derive asymptotical expressions for the moments of the number of

(k − 1)-simplices:

Lemma 4: For k ≥ 1 small compared to n, according to Theorem 5,

E [Nk] ∼ nkθk−1kd, and V [Nk] ∼ nkθk−1kd.

Proof: This is a direct consequence of the subcritical regime hypothesis applied to Equations 1 and 2.

The size of the largest simplex in this regime has sharp thresholds [12], [13], that means that it grows by steps, but we still

need to find the regimes of θ where we can bind the expectation of the number of (k − 1)-simplices:

Definition 15: We define for η > 0 and for k ≥ 1:

θ′k =
k

1+η−d
k−1

n
k

k−1

, and θk =
k−

1+η+d
k−1

n
k

k−1

.

Then for θ > θ′k, thanks to the approximations of Lemma 4 we have:

E [Nk] ≥ nk

(

k
1+η−d
k−1

n
k

k−1

)k−1

kd ≥ k1+η.

And for θ < θk,

E [Nk] ≤ nk

(

k−
1+η+d
k−1

n
k

k−1

)k−1

kd ≤ k−(1+η)

This leads to:

Theorem 6: In the subcritical regime, for k ≥ 1 small compared to n, and θ′k < θ < θk+1, the size of the largest simplex

is asymptotically almost surely C = k.

Proof: For k ≥ 1 small compared to n when n tends to infinity, we can easily check that if n > k2(1+η)k. This holds in

particular when n tends to infinity and k is fixed. Then we have that θk+1 > θ′k.

We can now consider θ such that θ′k < θ < θk+1. Thanks to the approximations of Lemma 4, we can, on one hand, find an

upper bound for the probability of the non-existence of (k − 1)-simplices:

P[Nk = 0, θ > θ′k] ≤
V [Nk]

E [Nk]
2 ∼ 1

E [Nk]
≤ 1

k1+η
.



13

On the other hand, we can find an upper bound for the probability of existence of k-simplices:

P[Nk+1 > 0, θ < θk+1] ≤ E [Nk+1] ≤
1

(k + 1)1+η
.

Finally we have:

P[∃θ, θ′k < θ < θk+1, C 6= k] <
1

k1+η
+

1

(k + 1)1+η
.

As the sum
∑∞

k=1 k
1+η converges, the Borel-Cantelli theorem implies that with the exception of finitely many k’s, for all θ

such that θ′k < θ < θk+1, one has C = k. Then when n goes to infinity, we have asymptotically almost surely that C = k:

P[C = k, θ′k < θ < θk+1] → 1,

concluding the proof.

Finally we can conclude about the complexity of our algorithm in the subcritical regime:

Theorem 7 (Subcritical regime complexity): In the subcritical regime for θ′k < θ < θk+1, the complexity of the reduction

algorithm to keep k0 Betti numbers for the Vietoris-Rips complex on a binomial point process on the torus Td
a, is in O(nk0+2).

Proof: This is a direct consequence of Lemma 4, Theorem 4 and Theorem 6 with the subcritical regime assumptions.

B. Critical regime

In the critical regime, where θ ∼ 1
n

, percolation occurs: disconnected components of the complex begin to connect into one

sole connected component. The size of the largest simplex is still rather small compared to n, allowing us to consider only

the k-simplices for k = O(n) when n goes to infinity.

In this regime we have a direct approximation of our variable θ, allowing us to compute an approximation of the expected

number of (k − 1)-simplices integer from the Equation 1.

Lemma 5: For k = O(n), and according to Theorem 5, we have:

E [Nk] ∼
1√
2π

nkd−k− 1
2 , and V [Nk] ∼

1√
2π

nkd−k− 1
2 .

Proof: We have from Equation 1 that E [Nk] =
(

n
k

)

θk−1kd.

After some calculations via Stirling’s approximation n! ∼
√
2πn

(

n
e

)n
, we obtain the result for the expectation.

Thanks to the fact that k = O(n), we can still approximate the variance of Nk by its dominating term in i = k, and

V [Nk] ∼ E [Nk].
From that approximation and using the same process as in the previous subsection, we can write:

Theorem 8: In the critical regime, the size of the largest simplex grows asymptotically almost surely slower than lnn with

an arbitrarily small distance:

(lnn)1−η < C < lnn, ∀η > 0.

Proof: First, for k > lnn, we can find an upper bound for the expectation approximation of Lemma 5 by:

E [Nk] < n(lnn)d−
1
2
−lnn.

One can easily check that n(lnn)d−
1
2
−lnn → 0. Since P[Nk > 0] ≤ E [Nk], the probability that there exists (k−1)-simplices

tends to 0 and:

P[C > k] = P[Nk > 0] → 0 ∀k > lnn,

and C < lnn asymptotically almost surely.

Then, for k < (lnn)1−η with η > 0, we can now find a lower bound for the expectation approximation by:

E [Nk] > n(lnn)(1−η)(d− 1
2
−(lnn)1−η)

And one can check that n(lnn)(1−η)(d− 1
2
−(lnn)1−η) → +∞. Then, thanks to the asymptotic equivalence of the variance and

the expectation of Nk, we have P[Nk = 0] ≤ 1
E[Nk]

: the probability that there exists no (k − 1)-simplices tends to 0, and:

P [C < k] = P[Nk = 0] → 0 ∀k < (lnn)1−η.

Thus, C > (lnn)1−η asymptotically almost surely.

Finally we can conclude about the complexity of our algorithm in the critical regime:

Theorem 9 (Critical regime complexity): In the critical regime, the complexity of the reduction algorithm to keep k0 Betti

numbers for the Vietoris-Rips complex on a binomial point process on the torus T
d
a, is in O(nk0+2 lnn).

Proof: This is a direct consequence of Lemma 5, Theorem 4 and Theorem 8 using Stirling’s approximation.
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C. Supercritical regime

In the supercritical regime, 1
n

= o(θ), the Vietoris-Rips complex on a binomial point process is connected and tends to

become the complete complex. The asymptotic behavior of the clique number has already been studied in this regime in [17]

by Appel and Russo. They first find the almost sure asymptotic rate for the maximum vertex degree. Then by squeezing the

clique number between two values of the maximum vertex degree, they obtain its asymptotic behavior. We propose here an

alternative approach.

In this regime, percolation has occurred, that is to say that the complex is connected and the size of the simplices is not

asymptotically small anymore compared to n. Therefore an upper bound via the expected number of k-simplices is not a good

enough approach anymore. Instead, we came back to the definition of the Vietoris-Rips complex.

For the first step of our exploration, we use a similar argument as in [17]. To cover the torus T
d
a, one needs at least ⌈ 1

θ
⌉

balls of diameter r in dimension d. If one places these balls along a lattice square grid with spacing r, one can denote Bi,

for 1 ≤ i ≤ ⌈ 1
θ
⌉, the ⌈ 1

θ
⌉ needed balls centered on the points of the grid and of radius r

2 . Then the number of vertices n is

smaller than the sum of the number of vertices in each ball Bi:

n <

⌈ 1
θ
⌉

∑

i=1

#{Bi}

where #{Bi} is the number of vertices in Bi.

Moreover, vertices in the same ball Bi are within distance r of each other, therefore they form a simplex. By definition, for

every i we have #{Bi} ≤ C. Thus we have:

C >
n

⌈ 1
θ
⌉ ≥ nθ

1 + θ

When θ tends to 0, the size of the largest simplex is asymptotically greater than nθ. We can now write:

Theorem 10: In the supercritical regime, the size of the largest simplex C grows as nθ asymptotically almost surely.

Proof: We still have to prove that C is asymptotically almost surely smaller than nθ.

A (k − 1)-simplex occurs when k vertices are in the same ball of diameter r. Without loss of generality we can center the

ball on one of the vertex of the complex. We have:

P[C > nθ] = P[Nnθ > 0]

= P[∃ x,#{B(x,
r

2
)} ≥ nθ − 1],

where x is a vertex of the complex, and #{B(x, r
2 )} the number of vertices in the ball centered in x and of radius r

2 .

Let x1, . . . , xn denote the n vertices, their positions are independent, thus we can write:

P[∃ i ∈ {1, . . . , n},#{B(xi,
r

2
)} ≥ nθ − 1]

≤ P[

n
⋃

i=1

#{B(xi,
r

2
)} ≥ nθ − 1]

≤
n
∑

i=1

P[#{B(xi,
r

2
)} ≥ nθ − 1]

≤ nP[#{B(x1,
r

2
)} ≥ nθ − 1].

The number of vertices in the ball B(x1,
r
2 ) follows a binomial distribution Binom(n−1, θ). Therefore Hoeffding’s inequality

implies that:

P[#{B(x1,
r

2
)} > nθ]

≤ P[#{B(xi,
r

2
)} > (n− 1)(θ +

θ

n− 1
)]

≤ exp (−2
θ2

n− 1
).

Then the size of the largest simplex C is asymptotically almost surely smaller than nθ, concluding the proof.

Finally we can conclude about the complexity of our algorithm in the supercritical regime:

Theorem 11 (Supercritical regime complexity): When in the supercritical regime, the complexity of the reduction algorithm

to keep k0 Betti numbers for the Vietoris-Rips complex on a binomial point process on the torus T
d
a, is in O(nk0+12n).

Proof: This is a direct consequence of Theorem 4 and Theorem 10.
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